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Abstract

To bring more intelligence to edge systems, Federated Learning (FL) is proposed to
provide a privacy-preserving mechanism to train a globally shared model by utilizing
a massive amount of user-generated data on devices. FL enables multiple clients col-
laboratively train a machine learning model while keeping the raw training data local.
When the dataset is horizontally partitioned, existing FL algorithms can aggregate
CNN models received from decentralized clients. But, it cannot be applied to the sce-
nario where the dataset is vertically partitioned. This manuscript showcases the task of
image classification in the vertical FL settings in which participants hold incomplete
image pieces of all samples, individually. To this end, the paper discusses AdptVFed-
Conv to tackle this issue and achieves the CNN models’ aim for training without
revealing raw data. Unlike conventional FL algorithms for sharing model parameters
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1082 Y.Lietal.

in every communication iteration, AdptVFedConv enables hidden feature represen-
tations. Each client fine-tunes a local feature extractor and transmits the extracted
feature representations to the backend machine. A classifier model is trained with
concatenated feature representations as input and ground truth labels as output at the
server-side. Furthermore, we put forward the model transfer method and replication
padding tricks to improve final performance. Extensive experiments demonstrate that
the accuracy of AdptVFedConv is close to the centralized model.

Keywords Federated learning - Transfer learning - Convolutional neural network -
Machine learning

Mathematics Subject Classification 68T05

1 Introduction

Along with the rapid development of mobile edge computing technology, more intel-
ligence is brought to edge systems which can significantly bridge the capacity of the
cloud and the requirement of devices and thus can boost the response performance of
devices and improve the quality of mobile services. While the successful applications
of intelligence in mobile edge computing, more concerns have been raised about pri-
vacy problems. Federated Learning (FL) has been coined to help decentralized data
sources to jointly train a machine learning model while keeping privacy data local.
In the scenario where a single organization or user cannot collect adequate data, FL
can help improving accuracy. According to different application scenarios, FL can be
categorized as horizontal FL, vertical FL, and federated transfer learning [1].

Horizontal FL has been used in scenarios where datasets share the same (or, similar)
feature space from various space sample. For example, two hospitals in one city serve
different patients and record similar body information. They can use horizontal FL
approaches to collaboratively train a medical image classification model. Whereas in
vertical FL, datasets of different clients share the same sample space from different
feature space. For example, an e-commerce company and a bank in one city may
serve the same users, but the feature space of their collected datasets is different. The
e-commerce company records the users’ online shopping behaviors while the bank
has the users’ deposit and loan information. Training a model through a vertical FL
method can assist in better evaluation of users’ credit ratings.

Numerous techniques have been discussed in the literature in the context of privacy-
preserving vertical FL such as [2-9]. Vertical FL algorithms are based mainly on
security mechanisms because each participant cannot achieve the local training objec-
tive independently. Common security mechanisms include homomorphic encryption
and secure multi-party computation.

The core issue of FL is how to improve the performance of machine learning mod-
els through communication. Existing algorithms average uploaded model parameters
to get a global model. However, such algorithms suffer from these disadvantages:
(1) Modern ML models, especially artificial neural networks, may memorize arbi-
trary information. Sharing model parameters may also take the risk of revealing some
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Fig.1 The Pipeline of AdptVFedConv. Each sample in the dataset is divided into a 2*2 grid. These 4 tiles
are held by 4 different participants. The server owns the ground truth label. First, the server trains a base
model and shares it with clients. Each client fine-tunes the local feature extractor with local data and uploads
their hidden feature representations. The server will collect and concatenate them to train a server classifier

information about the raw training data. Recent works have demonstrated that FL
may not always provide sufficient privacy guarantees, as sharing model parameters
can nonetheless reveal sensitive information [10-15]. (ii) Each client sample from
a unique data distribution making the datasets heterogeneous, i.e., non-independent
identically distributed (non-iid). Work [16] showed that, with non-iid datasets, the
performance of conventional FL algorithms degrade significantly. (iii) With neural
networks becoming deeper, the communication cost of exchanging model parameters
increases.

To overcome these disadvantages, we seek inspiration from human behavior.
Human beings can learn new knowledge through communication in a different way
from FL. When communicating with others, we neither share raw information we
received nor aggregate the brain’s “parameters”. In contrast, we transform received
information into language that can be understood by others. In artificial neural net-
works, the model is similar to a human’s brain and we can regard hidden layer outputs
as language. Thus, in the proposed framework, participants share the hidden feature
maps instead of model parameters. Hidden feature maps carry feature information of
training data so that other models can also take it as inputs. But it is hard to restore
the training data without knowing model parameters.

Let hidden feature maps take the function of language, one challenge is to estimate
which layer’s output is optimal. Taking image recognition as an example, when we see
a painting and try to describe objects in it, the content expressed by different people
is always similar and can be understood by others. But when we discuss the idea the
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painting wants to convey, different people often come to different conclusions. Human
beings always get similar conclusions on common sense problems which means the
model used in this step is similar for different people. Inspired by these, we divide a
neural network into a shallow model and a deep model. The shallow model, also called
the local feature extractor, can extract feature maps from input data. The deep model,
also called the server classifier, can take feature maps collected from all participants
as input to predict the correct label.

Figure 1 illustrates how AdptVFedConv works. The dataset is vertically partitioned
into several grids and each client owns one of them. We succeed the case study pre-
sented by Yang [1] when a single positive participant owns labels and can’t reveal them
to anyone. The proposed model architecture is based on VGG. The later is broken up
into the server part and the client part.

To this end, the key contributions of this manuscript are the following:

1. Present a novel adaptive vertical federated learning algorithm called AdptVFed-
Conv. In the algorithm, the feature extractor can be used to train a global feature
classifier at the server-side or train a personalized feature classifier to adapt to
local data distribution. When clients get the base feature extractor from the back-
end, they train a local autoencoder and adaptively fine-tune the feature extractor
with local data. By reducing the loss between input image and generated image,
the feature extractor adapts to local data distribution.

2. Compare AdptVFedConv with the centralized model and analyze the causes of
accuracy loss. We then propose several optimization methods. We rely on the
model transfer method to resolve the issue of feature space alignment and use the
replication padding trick to reduce convolution errors in a distributed environment.

3. Study the transferability of different layers in the model. We demonstrate by exper-
iments how to split a CNN model such that the produced features representation
is in a better generalization.

The paper is organized as follows. After an overview of related works in Sect. 2,
we present details of AdptVFedConv in Sect. 3. Experimental setup and results are
described in Sect. 4. We finally make a conclusion of this paper and discuss about
future works in Sect. 5.

2 Related works

2.1 Convolution neural networks

The convolution neural network, short as CNN, is a type of deep neural network. Unlike
the traditional full-connected models, each layer of the CNN consists of a rectangular
3D grid of neurons. The neurons of a layer are only connected to the neurons in a
receptive field, which is a small region in the immediately preceding layer, rather than
the entire set of neurons. By using receptive fields, CNNs exploit the spatially-local
correlation of input data.

VGG [3] is a classical CNN model. A convolution block in VGG consists of a
convolution layer, a Batch Normalization layer, and a ReLLU activation function. The
kernel size of the convolution layer is often set to (3 x 3). By stacking two (3 x 3)
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convolution layers, the model can achieve comparative performance with one (5 x
5) convolution layer, but the number of learnable parameters is smaller. After several
convolution layers, there is a max-pooling layer to reduce the size of the input image.
An input image will be finally flattened into a vector representation, which is used to
predict the true label by full-connected layers.

2.2 Federated learning

Federated learning is a decentralized learning approach that enables multiple partici-
pants to collaboratively train machine learning models while keeping the training data
on local devices. Existing works on federated learning, such as FedAvg [17], FedOpt
[18], and FedMA [19], mainly focus on the horizontal settings . These methods share
model parameters during training and aggregate them at the server-side. FedGKT [20]
applies the horizontal FL setting but works differently by exchanging hidden fea-
tures representations. They also introduce the knowledge distillation technique into
FL. FedGKT has several advantages compared with conventional FL algorithms such
as it requires less (i) edge computation, (ii) communication, and (iii) asynchronous
training.

There is no paradigm for vertical federated learning and each conventional machine
learning algorithm has a unique version for vertical federated learning scenario. Exist-
ing works [6-8, 21] designed their algorithms based on tree models. Work [22]
proposed a privacy-preserving SVM classifier over vertically partitioned data. Work in
[5] proposes a platform for distributed features by gathering local outputs into a final
one using nonlinear and linear transformations. Nonetheless, none of these methods
are applicable to CNN models.

2.3 Transfer learning

Fine-tuning is a popular technique which can accelerate training and transfer knowl-
edge from pre-trained model. The transferability of different layers in a neural network
raise our attention when designing the algorithm. The researchers in [23] discuss the
transferability of various layers in CNNs. The work presented in [24] focus on the
transferability of RNNs in natural language processing applications. These two works
reached similar conclusions that initializing a network with pre-trained model param-
eters can provide support for generalization whilst deep layers are not adequate for a
model transfer. This paper discusses and evaluates scenarios through which we found
the ideal model for transferability of features in deep neural networks.

3 Proposed framework
3.1 Problem setup

In the scenario of vertical FL, datasets share the same sample space but different feature
space. Each image is split into several pieces, and different participants own different
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Table 1 Summary of symbols

Symbols Ilustration

Dk Dataset stored in the k;j, client

x{‘ The iz, input image of the k;h client
Hik Hidden representations of input xlk
Vi Labels of input x;

Wek Feature extractor in the &, client
Wy Classifier in the server

lee (") Corss-entropy loss

Inse(+) Mean square error loss

pieces, i.e., the number of participants and image pieces are equal. In all participants,
we choose one, called positive participant, to hold the label data and cannot share
the label with others during training. The positive participant also plays the role of
server while other participants play like the client. In this paper, we call the positive
participant the server and other participants clients to distinguish their role.

Assuming that there are K participants and the positive participant is the Ist. D
represents the entire dataset, with the sample number of N and category number of C.
Let X lk denote the piece of the ith sample held by participant k. For server, it owns
dataset D1={(Xi1, yi)}lN: | Where y; is the corresponding label of sample X;, y; €
{1,2.,...C}. For clients, D*={X¥}N | ke {2...K}.

A complete CNN model W is split into two parts: a feature extractor W, and a
server classifier Wy. Each participant creates a local feature extractor Wf. They are
similar but not the same, and all initialized with Wel. Each client also needs to train
a generator ng to fine-tune the WX. The server creates two classifiers, a smaller one
Weis: used in the base feature extractor training step and a larger one W; to classify
aggregated hidden feature maps.

In the prediction step, clients need to send their hidden feature maps Hl.k , the output
of Wf, to the server. The server will aggregate Hl.k by position information to get H;
and take it as the input of W to predict the correct label.

The symbols used in the algorithm are summarized in Table 1.

3.2 Vertical federated learning for CNNs

There are three steps in our proposed approach. In the first step, the server trains a
feature extractor through supervised training and broadcasts it to all clients. Second,
each client fine-tunes the received model with local data using the architecture of
an auto-encoder. Then they calculate the feature representations of local data and
upload them to the server. Finally, the server collects extracted feature representations
and concatenates them. The server then trains a classifier to predict the true label.
The implementation steps of the proposed framework will be discussed in the below
sections.
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Algorithm 1 AdptVFedConv

Input: Datasets Dl, Dz, DK

Output: Distributed models We], We2 s WeK , server classifier Wy
1: ServerTrain():

2: for (xil,y,-) e D' do

3:  //train base feature extractor

4 W e W) = lee (], yis w);

5: end for

6: for each client k=2,3,....K do

7:  // broadcast Wel and receive returned feature maps
8 H* « ClientTrain(k, W) );

9: end for

10: H < concatenate(Hl, Hz, ey HK)

11: for (h;,y;) € (H,Y) do

12: // train server classifier Wy with feature map H
13: Wy < Wy —n*vlce(h},yi:w):

14: end for

15: return Wy

16:

17: ClientTrain(k, W):

18: Initialize WX with W

19: for x!‘ € Dk do

20: Wé‘ <« Wé‘ —n* vlmsg(x{‘; w);

21: end for

22: HX « fkwk, xk)

23: return H* to server

3.2.1 Server pre-training

The first problem we need to solve is how to get a local feature extractor with high
generalization. The hidden feature maps extracted by different clients should be struc-
turally similar and aligned so that the server classifier can take them as input. If all
clients train their own feature extractors with local data, extracted features will not be
aligned in channels. To solve this problem, we use the method of model-based transfer.

It is expected that all clients train their local model with the same initialized model
parameters. Therefore, we need one to broadcast its local feature extractor to others.
Generally, supervised learning provides better performance compared to unsupervised
learning. So, we let the server play this role. The server first trains a complete CNN
model with local data. Several shallow layers, denoted as Wel, of the model will be
treated as a shared feature extractor to initialize other clients’ local models. The rest
of the model, denoted as W,;5; will be dropped and not be used in the prediction step.
It should be noted that there are a few structural distinctions between W, and Wy.
Let f), represents the pre-training model, /., refers to cross-entropy loss function. The
aim of this step is optimizing this objective:

N
argmin Y " lee(fp (W}, Wer): X1, i) ey
(W) Weis) =1
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3.2.2 Model transfer

When clients get the base feature extractor from the server, they train a local autoen-
coder and fine-tune the feature extractor with local data. An autoencoder is a type of
neural network used to learn efficient representations of unlabeled data. The autoen-
coder works by attempting to reconstruct the input from the hidden representation. The
purpose of fine-tuning is to improve the performance of feature extractors in extract-
ing local features. Furthermore, making a difference among different client models is
more resistant to hidden vector reconstruction attacks.
Client k initializes its feature extractor WX with W), k € {2,3, ..., K}:

Wh < w) 2)

The W works as an encoder. We then construct a decoder Wé‘ with inversion
structure to the encoder to form an autoencoder. To fine-tune the Wek, the learning
rate of Wf is small while that of Wé’,‘ is normal. By reducing the loss between input
image and generated image, the feature extractor adapts to local data distribution. The
optimization of the following objective represents the main goal of this step:

N
argmin Y~ Luee (FE(WE, WE: x5), X§) 3)
WEWE) =1

where ka represents the autoencoder model held by client k, /5, represents mean-
square loss function.

3.2.3 Feature map aggregation

After getting a local feature extractor, each client calculate representations of local
data and updates them to the server. As shown in Figure 1, the server will concatenate
these feature representations according to the position:
— 1 2 K
H; = concatenate(H; , Hf, ..., H;") “4)
Here Hl.k = fL'F(Wek, X f‘ ) means representations uploaded by clients. We assume
that the position information of all image pieces is known and fixed.
The server necessitates training a classifier with adjacent feature maps as an input

to predict the class of the input. The optimization of the following objective represents
the main goal of this step:

N
argmin » " Leo(fs(Wys Hy). yi) )

Ws o1

where f represents the server model.
The pseudo-code of all steps is shown in Algorithm 1.
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Fig. 2 Convolution on Cutting Boundary. (a) shows the normal convolution calculation on a complete
image. When cutting along the red line, the adjacent point pairs (a7, a;3) are assigned to different pieces.
(b) and (c) respectively show how the two padding mode works. Replication padding mode is to take the
value of the nearest point as the padding value

3.3 Cause of accuracy loss and optimization

Since FL algorithms work in the distributed scenario and the communication of raw
data is forbidden, a pixel can only get information locally. Compared with the cen-
tralized scenario, less information makes it hard to train a good feature extractor.
We observe in preliminary experiments that there is an accuracy loss in distributed
scenarios compared with centralized scenarios. Analyzing the training process of con-
volution in the two scenarios, we find that when calculating the convolution value of
points located on the cutting boundary, the value of some adjacent points cannot be
obtained anymore. The image cutting makes these points no longer adjacent and weak-
ens the ability of convolution layers to collect information from surrounding points.
The accuracy loss caused by this problem is hard to remove under the condition that
exchanging raw data is forbidden. However, by adjusting the padding value to make
it closer to the original value, the accuracy loss can be reduced.

In the procedure of calculating convolution values, padding is a common practice
to keep the image size while zero-padding is the default mode. As shown in Fig. 2,
assuming the convolution kernel is fixed, when calculating the convolution value of
points on the cutting boundary using the zero-padding mode, the result differs in the
two scenarios because the padding value is far different from the original. Empirically,
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1090 Y.Lietal

the pixel value of two adjacent points is closer which inspired us to use the replication
padding mode to reduce error. Later in Sect. 4, we will prove the correctness of our
analysis by experiment.

3.4 Security discussion

In our work, we let the server share their feature extractor as a base model, and other
clients fine-tune it with local data. Note that, the server is also the owner of labels,
which collects hidden feature maps from other clients without sharing its own. This
means none of the participants share the parameters of their own feature extractor and
hidden feature maps simultaneously, which is necessary for protecting the privacy of
training data.

On the other hand, a sharing feature extractor is quite necessary for the algorithm.
An input image can be separated into three dimensions: RGB channels, height, and
width. For example, a sample in the CIFAR-10 dataset has 3 RGB channels, with
height and width set to 32 pixels. We denote the size of the input image as (3 x 32
x 32). A convolution layer is to calculate new feature maps and expand the channels.
A max-pooling layer can upsample the value in a small region and reduce the size
of the input. Several convolution blocks, which are composed of convolution layers
and max-pooling layers, will finally flatten an image into a vector. In this process,
each channel represents a unique feature representation. If each client train their local
feature extractor without communication, the feature representation is of high possible
not aligned. By model transferring and local fine-tuning, each client owns a similar
feature and can avoid the problem of feature align.

The number of convolution layers in the local feature extractor is one of the focuses
of our study. As shown in Sect. 4.3, in a convolution neural network, hidden features
transition from general to specific by increasing of convolution layers. Fewer layers in
the local feature extractor can bring better performance while the security degrades.
Therefore, we need to achieve a balance between model performance and data security.

The hidden vector reconstruction attack is a potential threat to our model. Empiri-
cally, hidden features after the max pool layer are more resistant to attack than before
because the amount of data is halved. In our standard experiment, we take outputs
of the first max pool layer as hidden feature maps. More research on the security of
exchanging hidden feature maps is needed and we believe that existing methods such
as differential privacy and secure multi-party computation can protect data security
from the hidden vector attack.
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4 Experiments
4.1 Experiments structure
4.1.1 Task and dataset

The training task of image classification. We perform experiments on tree different
datasets, CIFAR-10, CIFAR-100, and CINIC-10, which is common in FL research.
During generating data for each client, we split a complete input image into four
small pieces and assign them to four different clients. All image pieces owned by one
participant locate in a fixed position and are the same size. For various methods, we
record the top 1 test accuracy as the metric to evaluate the performance of the model.

4.1.2 Model architecture

We employ the architecture of the VGG-16 net to design our model. We divide the
VGG-16 net into two parts. A shallow model which consists of several convolution
blocks works as the feature extractor. A deep model which consists of both convolution
blocks and full-connected layers works as the classifier. Each client trains a local
feature extractor and shares representations of local data with the server. The server
classifier is trained with adjacent hidden feature representations as input and ground
truth labels as the target. In the experiment, as shown in Fig. 1, we take the first two
convolution layers with the first max pool layer as the feature extractor. The rest of
the VGG-16 model serves as the server classifier. The size of the feature extractor
and server classifier is adjustable. We can increase the number of layers in the feature
extractor and reduce the number of layers in the server classifier synchronously. This
may lead to a change in the transferability of feature maps. We will later design more
experiments to study it in the ablation study.

In our experiment, the size of the convolution kernel always sets to (3 x 3) to
capture the information of adjacent pixels and facilitate optimization. For local feature
extractors, the input is an image piece of size (3 x 16 x 16) and the output is feature
maps having a size of (64 x 8 x 8). The server will collect feature maps and concatenate
them to a complete feature map having a size of (64 x 16 x 16). For server classifier,
the size of hidden feature maps changes in turns: (64 x 16 x 16) — (128 x 8 x 8)
— (256 x4 x 4) - (512 x 2 x 2) — (512 x 1 x 1). As the size of an input image
decreases, the number of channels increases. An input image is finally converted into
a vector of dimension 512. Then, we apply three fully connected layers of dimensions
4096, 4096, and 10 respectively to get the output. In the fully connected layers, we set
the dropout rate to 0.5.

When fine-tuning with local data, an auxiliary generative model is needed. The
generative model is designed to reconstruct the input, so it has the opposite structure
to the feature extractor. For a (Conv, BN, ReLLU) block in the feature extractor, there
is a (ConvTrans, BN, ReLU) block corresponding to it in the generative model. Con-
vTrans is the reverse operation of Conv, recovering the input image from its hidden
representation. Similarly, we use the upsampling layer to correspond to the max pool
layer. The local feature extractor and the generative model work together to form an
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autoencoder. The feature extractor only needs fine-tuning as mentioned before, so
the learning rate of the feature extractor is set to /e-5 while the learning rate of the
generative model is set to /e-3. The client can learn better feature representations by
closing the distance between input and generated image.

We also use simulated annealing, image flipping, and random crop to improve the
performance, which is the same in all experiments.

4.1.3 Baseline

VFL is a distributed machine learning paradigm for the scenario where features are
separated across decentralized clients. For each conventional machine learning algo-
rithm (or model), there is a VFL version. To the best of our knowledge, no existing
works study the problem of how CNN models work with vertically partitioned datasets.

The centralized scenario and the non-cooperation scenario are used as comparison
groups in our experiments. In the non-cooperation scenario, we train the model only
with local data. We prove that collaborative training can effectively improve model
performance when clients do not have sufficient local data. In the centralized scenario,
we train a VGG-16 net with a complete dataset as input, meaning that transmitting
raw data is allowed. This is the upper bound of our experiments.

To further study the influence of key factors on the experimental results, we design
serveral ablation experiments:

(1) The first group of ablation experiments aims to study to effectiveness of model
transfer. We consider the situation that all clients train their own feature extractor
with local dataset independently, i.e., cancel the step (2) in Fig. 1.

(2) The second group of ablation experiments aims to verify the optimazation method
proposedin Sect. 3.3. We record the top 1 accuracy of two different padding modes,
zero-padding mode and replication padding mode.

(3) The third group of ablation experiments studies the transferability of different lay-
ers. In deep neural networks, the hidden representation of different layers carries
different information. The output of shallow layers is more similar to the raw input
and may leak more information while can train a model for better performance.
We want to achieve a trade-off between security and performance through this
group of experiments. We adjust the number of convolution blocks in the feature
extractor and classifier. Adding a convolution block to the feature extractor means
removing one from the classifier and vice versa.

4.2 Results discussion

Figure 3 illustrates the accuracy of the conducted test on three datasets. It includes
the result of AdptVFedConv, the centralized model, and the non-cooperation model.
We also list all achieved results in Table 2.

It can easily be seen that compared with the non-cooperation model, collaborative
training can hugely enhance accuracy of prediction. If we check the image pieces held
by each participant, we can find that the information contained in many image pieces
is not enough to support predicting the label. Some image pieces even contain only
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Table2 Test Accuracy of Different Methods on Three Datasets

Methods CIFAR-10 CIFAR-100 CINIC-10
AdptVFedConv(ours) 91.30 69.72 80.69
Centralized(VGG-16) 94.04 73.24 84.73
Non-cooperation 65.85 37.88 53.75
No model transfer 87.73 63.87 76.65
Zero-padding mode 90.79 67.55 79.69

Bold values are represent the algorithm proposed in this work
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Fig.3 Test Accuracy on Three Datasets

the background. AdptVFedConv can help concatenate decentralized hidden feature
maps to form a complete feature representation. It can be seen from the comparison of
AdptVFedConv and Non-cooperation curves in Fig. 3 that AdptVFedConv improves
about 25% to 31% test accuracy on three different datasets.

Compared with the centralized model, the proposed AdptVFedConv achieves very
close performance. As analyzed in Sect. 3.3, in the convolution process, accuracy
loss is unavoidable since the edge points cannot take values from the adjacent pixels
normally. The accuracy of the centralized model is the threshold of our experiment
since exchanging raw data is allowed. This work is to make the performance of the
distributed model closer to the upper bound. The amount of accuracy loss is related
to the number of Conv layers in the feature extractor. In the ablation study, we will
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Table 3 Accuracy vs Layer
Numbers in the Feature
Extractor. The first col.u.mn 1C 92.30 70.75 83.10
represents the composition of the

Layers CIFAR-10 CIFAR-100 CINIC-10

feature extractor. 1C represents a 2C 9L07 69.37 80.49
convolution block while 1M 2C+IM 91.30 69.72 80.69
represents a max-pooling layer. 3C+IM 89.63 67.28 77.59
On the whole, th
1 the WO, Lhe SCCuraey. oM 87.06 63.20 74.06
decreases with the increase of
layer numbers 4C+2M 85.47 60.85 70.43
5C+2M 81.42 54.64 67.08
6C+2M 77.13 50.94 62.62
7C+2M 69.67 47.10 60.18
7C+3M 73.11 45.62 59.83

demonstrate that the test accuracy degrades as the number of Conv layers in the feature
extractor increases.

4.3 Ablation study

We design several ablation experiments to verify the effectiveness of key factors on
experiment results.

4.3.1 Effectiveness of Model Transfer

As mentioned in the above sections, all clients fine-tune a shared feature extractor
locally. In this group of ablation experiments, we prove that starting training with a
model initialized with the same parameters can boost model performance. We omit-
ted step 1 in Fig. 1, making all clients train their local feature extractor with local
data independently. Since most participants have no label data, they can only use an
autoencoder to train the feature extractor. The row of ’No model transfer’ in Table 2
demonstrates that, without model transferring, the test accuracy degrades significantly.
We can see that model transfer is of great help to train a better model.

4.3.2 Effectiveness of the replication padding trick

Table 2 shows the results of the efficacy of using replication padding mode. We record
the top 1 accuracy in the scenario that all participants using zero-padding mode as a
comparison. We observe that the accuracy of zero-padding mode is always lower than
that of replication padding mode, which proves the effectiveness of our optimization
method. This group of experiments also prove the correctness of our analysis on
accuracy loss. To eliminate the accuracy loss, it is necessary to exchange the values
of edge points in each convolution calculation step, which is forbidden in our setting
(Fig. 4).
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Fig.4 Accuracy Test for Various
Layer Numbers in the Feature 904
Extractor
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4.3.3 Transferability of different layers

We change the splitting position of the VGG-16 model and record the top 1 accuracy of
each splitting position. We take a complete convolution process, including a convolu-
tion layer, a batch normalization function, and an active function, as a base convolution
unit. We also record the effect of the max pool layer, since it can effectively reduce
the communication cost and make the communication more secure. From Table 3, we
foresee that there is an indirect relationship between accuracy and layer numbers in the
feature extractor: accuracy decreases whilst layer numbers increases. This is because
of features transition from general to specific by the deepening of convolution. Note
that, in all three datasets, adding the first max pool layer into the local feature extractor
has no negative impact on the accuracy. This is of help for us to achieve a balance
between performance and security.

5 Conclusion and future work

In this work, we presented a new image classification algorithm through a vertical
FL scenario. Unlike the conventional algorithms for sharing model parameters, the
proposed algorithm enabled sharing hidden feature representations which is more
similar to human behavior. AdptVFedConv is the first vertical FL algorithm to support
CNNs and introduced multiple advantages over other state-of-the-art approaches such
as less demand for edge computation and communication cost. Although there is an
accuracy loss compared with the centralized model, we proposed several optimization
methods to reduce it and the experiments proved the efficacy.

In this study, image pieces owned by one participant are always located in a fixed
position and are all the same size. This follows the scenario of vertical federated
learning but is too idealistic. In future research, we plan to relax the restriction to
make our method more practical.
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