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Abstract
For many distributed applications, data communication poses an important bottleneck
from the points of view of performance and energy consumption. As more cores
are integrated per node, in general the global performance of the system increases
yet eventually becomes limited by the interconnection network. This is the case for
distributed data-parallel training of convolutional neural networks (CNNs), which
usually proceeds on a cluster with a small to moderate number of nodes. In this paper,
we analyze the performance of the Allreduce collective communication primitive, a
key to the efficient data-parallel distributed training of CNNs. Our study targets the
distinct realizations of this primitive in three high performance instances of Message
Passing Interface (MPI), namely MPICH, OpenMPI, and IntelMPI, and employs a
cluster equipped with state-of-the-art processor and network technologies. In addition,
we apply the insights gained from the experimental analysis to the optimization of the
TensorFlow framework when running on top of Horovod. Our study reveals that a
careful selection of the most convenient MPI library and Allreduce (ARD) realization
accelerates the training throughput by a factor of 1.2× compared with the default
algorithm in the same MPI library, and up to 2.8× when comparing distinct MPI
libraries in a number of relevant combinations of CNN model+dataset.
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1 Introduction

Computationally demanding applications are frequently executed in large high per-
formance computing (HPC) facilities, in order to tackle their time complexity via
additional hardware resources. However, this type of acceleration is often limited by
non-negligible overheads introduced by data movement. For many distributed algo-
rithms, how and when the data are moved, between processes running in different
nodes over an interconnection network, determines the global performance [6]. More-
over, data movement is also a significant contributor to energy consumption in current
facilities [14]. For distributed training of convolutional neural networks (CNNs) [3,9],
communication is a crucial factor, with a potentially high impact on the performance
of this process, when conducted on a cluster of computers.

TensorFlow (TF)1 [1], and PyTorch2 [10] are nowadays the two most widely-
used distributed training frameworks for CNNs. When executed on a cluster, they
both exploit data parallelism by partitioning and distributing the workload among the
processes/cluster nodes across the batch dimension (i.e., the training samples) [2]. As
a result, at each iteration of the training procedure, once the gradient of each layer is
computed, all processes have to combine (specifically, reduce via addition) their new
model parameter values, yielding the same initial state for the next training step [2].

MPI (Message Passing Interface) [15] is leveraged by distributed training frame-
works such as TF, TF+Horovod3 [13], and PyTorch as the underlying communication
layer. Among different communication primitives, the MPI application programming
interface (API) comprises the MPI_Allreduce primitive for the reduce+broadcast com-
munication needed in distributed data-parallel training of CNNs.

In this paper, we extend our previous work in [4] with a complete evaluation of
MPI_Allreduce for three popular instances of MPI, analyzing the impact of this prim-
itive on the distributed training of CNNs, using a top-of-the-shelf cluster with nodes
connected via an EDR Infiniband interconnection network. In addition, we complete
this study by targeting a variety of scenarios including four CNN models and two
datasets with distinct batch sizes. In particular, our work makes the following contri-
butions:

– We identify the Allreduce (ARD) algorithms underlying the realizations of
MPI_Allreduce in MPICH, OpenMPI, and IntelMPI.

– We demonstrate the performance gap between the theoretical communication
throughput of these algorithms, and the real execution performance. Moreover,
we highlight some details that may cause the deviation.

1 https://www.tensorflow.org.
2 https://pytorch.org.
3 https://github.com/horovod/horovod.

123

https://www.tensorflow.org
https://pytorch.org
https://github.com/horovod/horovod


Impact of the MPI allreduce in distributed training of CNNs 1103

– We perform a complete evaluation of the ARD algorithms on a small cluster
consisting of 8 nodes, equipped with Intel Xeon Gold 5120 processors connected
via a EDR high performance network.

– We illustrate the practical benefits of a careful selection of the communication
library and ARD algorithm for the acceleration of distributed data-parallel CNN
training using TF+Horovod for the distributed CNN scenarios.

In this paper, we overcome the limitations presented in our previous work by
re-visiting the MPI libraries using an state-of-the-art cluster. In [4], a modern tech-
nology was simulated by applying a scaling factor to the experimental results in order
to “accelerate” the computation power of the nodes so that the balance between
communication-computation was compensated. In this work, we directly apply the
ARD optimization without acting over the experimental results.

Although graphic processor units (GPUs) are commonly used for distributed train-
ing of CNNs, our experimental analysis is focused on “non-accelerated” clusters. For
this purpose, we spawn one MPI-rank per node and exploit the inter-node parallelism
via OpenMP threads. This approach avoids the growth in the communication overhead
that arises when increasing the number of nodes, and allows to augment the batch size
per process without exceeding the memory capacity of the nodes. At this point, we
emphasize the interest of companies like Facebook to exploit idle workload cycles in
their HPC facilities, which leave a significant number of (general-purpose) multicore
CPUs to perform distributed training during off-peak periods [8].

The rest of the paper is organized as follows. In Sect. 2 we review some previous
works and compare them with the contributions presented in this study. In Sect. 3
we re-visit the family of ARD algorithms, together with a theoretical analysis of
their arithmetic and communication costs. In addition, we expose the difference in
performance attained by the real execution of this primitive in comparison with the
theoretical models. In Sect. 4, we carry out a complete experimental evaluation of the
realization of these algorithms in the three target MPI libraries. In Sect. 5 we extend
our experimental analysis to the distributed training of CNNs using TF+Horovod. In
Sect. 6 we discuss other aspects that are not directly tackled in this paper. Finally,
in Sect. 7 we close the paper with a few concluding remarks and a sketch of future
research lines.

2 Related work

The performance optimization of the MPI collectives has been a constant research
and development topic since the formulation of the standard and the first prototype
implementations. From the point of view of performance modeling, the works in [5]
and [12] tried to offer accurate cost models for different collective communication
primitives. While the former describes several algorithmic implementations for the
MPI collective primitives depending of the message size, the latter goes beyond the
theory and analyzes the library source code.

From the software point of view, there exist other works that aim at improving
the performance of MPI collectives. In [16], the authors evaluate distinct algorithmic
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realizations of collective communications to estimate the best option depending on the
number of nodes and the message size. This knowledge is then applied to the selection
module of the MPICH library. The authors in [7] present a hierarchical approach for
reduction-based collective primitives, presenting notable performance improvements
in small- and medium-size clusters.

Manual fine-tuning for collective communication via multilayer perceptrons was
also analyzed in [18], using earlier versions of OpenMPI (1.4) and MPICH2. In [17],
the same authors improve the performance of the reduction collective by targeting
the intra-node parallelization. Both works were applied to the batch pattern training
algorithm and also improve the performance by reducing the number of collective
communications (as Horovod does).

Our work does not aim to model the performance of the MPI algorithms. Instead,
our goal is to highlight the significant gap between theory and practice for several well-
knownalgorithms. In this sense,we alignour effortswith theworkdone in [17,18],with
state-of-the-art MPI library implementations (as [18] suggests), and apply the insights
gained from our study to evaluate the performance of distributed CNN training using
TF+Horovod.

3 Allreduce algorithms

3.1 A family of Allreduce algorithms

MPI is the de facto standard API for message-passing in distributed-memory systems,
yet the standard only specifies the functionality that must be covered by the realization
and the interface of the routines (primitives). Over the past decades, a fair number of
MPI libraries have been developed, following the evolution of network technology
and software, resulting in MPICH,4 OpenMPI,5 IntelMPI,6 and MVAPICH7 as some
of the most relevant instances of the API.

There exist a variety of algorithms that can be used to implement an ARD collective
communication. Most MPI libraries aim to optimize performance by selecting among
these algorithmic variants at execution time, depending on features such as themessage
size, the number ofMPI ranks (processes), the network topology, etc. Themost popular
algorithms for ARD include (see [5,7,16]):

1. RDB (Recursive doubling): Initially, the processes that are a distance 1 apart
exchange (and reduce) their data. Next, those processes that are a distance 2 apart
do the same with the complete data they own after the first exchange. This is
repeated for the processes which are at distance 4 apart, then those at distance 8
apart,. . . till all the processes have received all the data.

2. RSA (Rabenseifner’s algorithm): This option performs a Reduce-Scatter followed
by an Allgather exchange [16].

4 https://www.mpich.org.
5 https://www.open-mpi.org.
6 https://software.intel.com/content/www/us/en/develop/tools/mpi-library.html.
7 https://mvapich.cse.ohio-state.edu.
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Table 1 Theoretical costs of common ARD algorithms

Id. Alg. Latency (×α) Bandwidth (×β−1) Arithmetic (×γ −1)

1 RDB log p n log p n log p

2 RSA 2 log p 2n p−1
p n p−1

p

3 LIN 2(p − 1) 2n (p − 1) n (p − 1)

4 RNG 2(p − 1) 2n p−1
p n p−1

p

5 SRG (2p + s − 3) (p + s − 2) ns (p + s − 2) ns
+(p − 1) np

3. LIN (Linear): This basic scheme initially reduces the data into a root process, using
p−1 point-to-point (P2P) messages, to then broadcast the result from there, using
p − 1 additional P2P messages.

4. RNG (Ring): A pairwise-exchange algorithm [16] is used for the Reduce-Scatter
phase, and a ring algorithm is applied for the Allgather.

5. SRG (Segmented ring): This is a segmented variant of RNG that divides the messages
into s segments.

3.2 Theoretical cost models for ARD

Let us consider an ARD primitive executed over n · p “data items”, evenly distributed
across a platform consisting of p nodes, with a single MPI rank or process per node.
Moreover, assume that the network links are characterized by a latency α (in seconds)
and a bandwidth β (in data items per second); and assume also that the interconnection
network supports simultaneous transfers between all pairs of nodes at full link band-
width. Finally, consider that each node can operate at a rate of γ additions per second.
With these premises, Table 1 displays the theoretical costs of the ARD algorithms,
divided into their latency, bandwidth, and arithmetic components. (For simplicity, in
the table we assume that p is a power of 2.)

3.3 Theoretical cost analysis for ARD

The formulae in Table 1 offer a straight-forward tool to expose the theoretical
properties and behaviour of the distinct ARD algorithms. To illustrate this, consider a
cluster characterized by the following parameters: α = 2 μs, β = 11, 770 MB/s (that
is, 11, 770·106 bytes/s),8 andγ = 8·109 (32-bit floatingpoint) operations per secondor
FP32 flops/s. (These values were experimentally determined for the cluster employed
in the practical evaluation in this paper; see Sect. 4.) Furthermore, consider this cluster
comprises p nodes, and the vectors to be reduced consist of n FP32 numbers in each
cluster node. In Fig. 1, we report the performance of the ARD algorithms, measured
in MiB/s, when fixing three of the following parameters: message dimension n = 220

8 For β we can transform data items/s into MB/s by simply taking into account the storage requirements
of data type. The same holds to transform the arithmetic rate γ from arithmetic operations/s into bytes/s.
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Fig. 1 Estimation of cost given by the theoretical models for the ARD algorithms. In the top-left plot, the
number of nodes p = 50 (one MPI-rank per node); in the top-right plot, the message size n = 16 · 220
bytes. In the bottom-right plot, δ is a factor that multiplies the reference value γ = 8 · 109 FP32 flops/s.
For SRG, s = 64

bytes, number of nodes p = 50, link bandwidth β = 11, 770 MiB/s, and scaling
factor δ = 1; while varying the remaining one.

In all the experiments in this paper, the throughput rates for the ARD algorithms (in
MiB/s) are computed by dividing the message size n (in bytes) by the time required
to complete the reduction. However, the actual number of bytes that are transferred
during an ARD is considerably larger than n; see Table 1. On the one hand, this
explains the lower performance of the ARD collective compared with the theoretical
P2P bandwidth. On the other hand, compared with an evaluation based on the standard
time metric, this MiB/s rate sets an upper bound on the ARD performance, facilitating
the identification of the asymptotic throughput.

This first study exposes that, for these particular values of link latency/bandwidth,
arithmetic rate, and number of nodes/processes, the best algorithm largely depends on
the message size. In addition, RSA and RNG show higher scalability with the number
of nodes. Also, these two variants report significant gains when increasing the link
bandwidth and the arithmetic capacity. Therefore, at least in theory, they are the best
candidates to deliver the highest performance in the distributed training of CNNs.

3.4 Experimental cost analysis for ARD

Although the theoretical costs of the ARD algorithms provide some useful hints, Fig. 2
demonstrates that there exist important deviations between the theoretical behaviour
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Fig. 2 Theoretical cost (lines labelled with the “-T” suffix) and real performance of the ARD algorithms in
OpenMPI using 7 and 8 MPI-ranks (one per node) (left and right, respectively)

and the real performance of theARDalgorithms implemented inOpenMPI.9 (A similar
observationholds for otherMPI instances.) This test demonstrates the need for a careful
study of all the ARD alternatives before selecting the most convenient realization.

Several aspects can be highlighted from the analysis of the plots in Fig. 2:

– RSA (chosen as the baseline or default option by almost all MPI libraries) is rarely
the best option for messages of size larger than 32 MiB;

– the most appropriate algorithm varies depending on the numbers of processes; and
– RNG and SRG are clearly the best options for large messages, of size greater than
225 bytes.

The following reasons explain some of the deviations between theory and practice:

– The theoretical models assume that the bandwidth link works at full throughput
independently of the message size.

– The theoretical models do not take into account software/hardware limitations
(e.g., number and size of buffers in the underlying implementation).

– In theory, the models assume a perfect overlap between communications inside a
process (thus, e.g., the cost of IRecv+Send is estimated as that of a Send); however,
the practice may differ from that perfect implementation.

Let us analyze in more detail the last factor. For that purpose, consider the results in
Fig. 3, where the line labeled as “THEO” shows the theoretical cost of the algorithm;
the line “REAL” is the actual performance offered by the implementation; and the lines
labeled as “OVLP” and “NOVL” respectively correspond to the theoretical costs if either
the internal communications can be fully overlapped or there is no overlap. For the RSA

algorithm, in the left-hand side plot of the figure, we observe that OVLP (where all the
communication is overlapped) is the best case for messages of up to 224 bytes. Beyond
that size, any of the approximations yield a higher transfer rate than the theoretical
cost. It is also notable the poor performance attained by the implementation, which
only outperforms the non-overlapping code for messages of size larger than 220 bytes.
For RNG, in the right-hand side plot, THEO lies in between the rates offered by OVLP
andNOVL, and REAL is closer toNOVL. This implies that, although the implementation
aims to overlap most computation and communication, this is not possible.

9 The cluster that was used for this experiment will be presented later, in Sect. 4.
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Fig. 3 Theoretic and real performance of the ARD algorithms on OpenMPI for RSA and RNG (left and
right, respectively) using 8 MPI-ranks (one per node)

Table 2 ARD algorithms in
MPICH, OpenMPI, and
IntelMPI. The asterisk in the
RNG-based algorithms indicates
that, although OpenMPI
classifies two of its variants as
“ring” algorithms, the actual
implementation corresponds to a
different communication scheme

Id. Alg. MPICH OpenMPI IntelMPI

1 RDB ✓ ✓ ✓

2 RSA ✓ ✓ ✓

3 LIN – ✓ –

4 RNG – ✓∗ ✓

5 SRG – ✓∗ –

This initial evaluation exposes the importance of analyzing in detail the perfor-
mance of the distinct ARD algorithms, prior to utilizing a particular instance from an
application that heavily depends on this type of collective communication, as is the
case of distributed CNN training.

We close this section by noting that a deeper study of the factors that underlie this
theory-vs-real performance deviation is out of scope for this work.

4 Experimental selection of MPI_Allreduce in MPI libraries

In this section we evaluate the ARD algorithms that are implemented in the three MPI
libraries targeted in this work: MPICH 3.3.1, OpenMPI 4.1, and IntelMPI 2020. For
the ARD primitives, these instances of the API instantiate the algorithms listed in
Table 2.

4.1 Characterization of the cluster

The experiments in this work were conducted on the Altec cluster, a platform con-
sisting of 8 nodes, equipped each with two Intel Xeon Gold 5120 CPU processors (14
cores, running with a nominal frequency of 2.20 GHz), and connected via an Infini-
band EDR network. A single MPI rank (process) was mapped per node in all cases,
and we repeated the experiments using 7 and 8 nodes. The first cluster configuration

123



Impact of the MPI allreduce in distributed training of CNNs 1109

Fig. 4 P2P network performance in the Altec cluster measured using the ping-pong benchmarking test in
OpenMPI on a single pair of nodes (left); and four pairs of nodes, with each pair starting the test in 2-second
intervals with a fixed message size n = 16 MiB (right)

was selected because some of the ARD algorithms largely benefit from the number of
MPI ranks being an integer power of two. However, this is not always possible or con-
venient when running an application, such as a distributed deep learning framework,
on a real cluster facility.

In order to report the actual performance of the network links and, at the same time,
expose some of the reasons for the deviation of the algorithm costs discussed in the
previous section, we performed a simple ping-pong benchmark. The left-hand side plot
in Fig. 4 offers the results from this P2P characterization test using OpenMPI, showing
that the Infiniband EDR network delivers a sustained link bandwidth β ≈ 11.7 GB/s
when the message size is larger than 4 MiB (that is, 4 · 220 bytes). This ping-pong
test also offered an estimated link latency of α ≈ 2 μs. Similar values were obtained
when the ping-pong test was run on top of the other two MPI libraries. Here, the
drop in link bandwidth for messages of size larger than 32 MiB is caused by the
internal implementation of the MPI libraries, in aspects such as buffering. In order to
approximate γ , we used a straightforward code that performed the summation of two
long vectors with FP32 numbers (similar to the STREAM benchmark10).

The right-hand side plot in Fig. 4 demonstrates that the network can sustain the P2P
bandwidthwhen up to 4 pairs of nodes run the ping-pong test (and, therefore, exchange
messages) simultaneously. This is a fundamental assumption of the theoretical models
presented in Sect. 3.2.

4.2 Individual evaluation

When the user provides no specific indication, the MPICH, OpenMPI, and IntelMPI
libraries choose the ARD algorithm that is employed at runtime, depending only on
the message size and number of processes. This selection can be quite simple (e.g.,
taking into account the theoretical cost,) or rather evolved (e.g., made via test-and-error
approaches resulting in a long list of if-else statements).

10 https://www.cs.virginia.edu/stream/.
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In this subsection, we evaluate the ARD algorithms available in the three target
MPI libraries. For MPICH, this includes only two of the algorithms listed in Table 2
(ids. 1, 2); OpenMPI implements all the algorithms ; and IntelMPI comprises three of
the ARD algorithms in the table (ids. 1, 2, 4) plus the following 9 additional variants
(numbered with ids. 6–14 next):

6. Shumilin’s ring (SHR),
7. Reduce+Broadcast (R+B),
8. Topology-aware Reduce+Broadcast (TA-R+B),
9. Binomial Gather+Scatter (BGS),

10. Topology-aware binominal Gather+Scatter (TA-BGS),
11. Knomial (KNO) ,
12. Topology-aware SHM-based flat (TA-SHM BF),
13. Topology-aware SHM-based Knomial (TA-SHM KNO), and
14. Topology-aware SHM-based Knary (TA-SHM KNA).

Several of these variants correspond to segmented algorithms, for which IntelMPI
sets the segmentationparameter to s = 64. Furthermore, the SRG algorithm inOpenMPI
employs a non-segmented ring formessages of up to 8MiB and, from that point, selects
s to set the segment size to 1 MiB.

The ARD algorithm can be selected via environment variables for MPICH or,
alternatively, via command arguments passed to mpirun in the case of OpenMPI and
IntelMPI. Without an explicit indication from the user, the library follows its internal
selection mechanism. In our plots, this default selection is labeled as “AUTO”.

Figure 5 reports the results from this individual evaluation of the MPI libraries
leading to the following observations:

– MPICH: AUTO selects RDB, which turns to be a suboptimal option as it delivers a
much lower performance for messages larger than 215 bytes (32 KiB) for both 7
and 8 nodes.

– OpenMPI: AUTO selects the RSA algorithm in both scenarios, which corresponds to
the best for some message sizes. However, it is suboptimal compared with SRG or
RNG for message sizes larger than 225 bytes and 8 nodes. These two algorithms are
also the best choice for message sizes from 217 to 219 and 7 nodes.

– IntelMPI: For 8 nodes, AUTO makes a fairly good selection, except for message
sizes larger than 225, where this should be changed to RNG. For 7 nodes, RNG delivers
the best performance while, unfortunately, AUTO adopts RSA.

As a short summary from this study, we conclude that, for this particular cluster
configurations, MPICH misses the optimal configuration for medium and large mes-
sage sizes, independently of the number of nodes; OpenMPI fails in selecting RSA for
RNG or SRG for the largest messages; and IntelMPI offers a mixed optimization level:
good for 8 nodes but rather suboptimal for 7 nodes.
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Fig. 5 Evaluation of the ARD algorithms inMPICH (top), OpenMPI (middle) and IntelMPI (bottom) using
7 and 8 MPI-ranks (one per node) of the Altec cluster (left and right, respectively)

4.3 Global comparison

In this final part, we illustrate the performance differences comparing the AUTO and the
BEST algorithm, for the three targetMPI instances. For this experiment, BEST corresponds
to the best option for each message size and number of processes.

Figure 6 displays the results of this global evaluation, offering two main conclu-
sions:

– There are large gaps between the performance of BEST and AUTO for MPICH when
p = 7, 8, as well as IntelMPI and OpenMPI when p = 7. The differences are
significantly narrower for OpenMPI and IntelMPI when p = 8. This exposes an
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Fig. 6 Comparison of the AUTO and BEST ARD algorithms in MPICH, OpenMPI, and IntelMPI using 7
and 8 MPI-ranks (one per node) of the Altec cluster (left and right, respectively). The labels in the BEST
lines indicate the id of the ARD algorithm that offers the best performance for that particular library and
message size

appealing opportunity to improve the performance of MPI_Allreduce for IntelMPI
and OpenMPI when utilizing 7 nodes, and for MPICH when using 8 nodes.

– For p = 8, MPICH-AUTO is optimal for small messages (up to 217 bytes) but fails
for other cases. IntelMPI-RNG delivers a high MiB/s rate for p = 7, and for the
larger message sizes with p = 8. However, this algorithm is not selected as AUTO.
OpenMPI-RNG/-SRG performs best formessage sizes up to 219; from 225 bytes when
p = 7; and from 225 bytes with p = 8. Again, AUTO adopts the RSA algorithm,
being suboptimal on these message sizes window.

5 Impact of ARD in distributed DNN training

In this section, we analyze the gains that can be attained via a careful selection of the
ARD algorithms on the distributed data-parallel training of CNNs. To this end, we
employ Google’s TF framework 2.3.0 for deep learning, running on top of Horovod
0.19, which provides a workload distribution tool that scales TF to run on a multi-
node cluster. In addition, we consider 4 different CNN models —namely AlexNet,
ResNet50, ResNet110, and VGG11— and two well-known datasets: ImageNet and
Cifar10. The following configurations are selected for the evaluation:

– AlexNet+ImageNet. This is a classic CNNmodel characterized by a reduced num-
ber of convolutions followed by three dense layers.

– ResNet50+ImageNet. This benchmark from MLPerf [11] is composed of a series
of residual blocks combining convolutions, batch normalization layers, and ReLU
functions.

– ResNet110+Cifar10. This combination explores the behavior of a large DNN
model with a “small” dataset (compared with ImageNet).

– VGG11+ImageNet. Thismodel is computationally very intensive, which paves the
road to analyzing a type of scenario where communications play a less significant
role.

123



Impact of the MPI allreduce in distributed training of CNNs 1113

Fig. 7 Message sizes and number of transfers of each size for four of the selected configurations

Figure 7 represents the communication requirements for four configurations in
terms of message sizes and number number of messages of each size. These data
demonstrate the need to steer our experimental evaluation to cover a range of message
sizes that expands from 1 KiB to 1 GiB.

5.1 Hiding the communication cost with Horovod

Horovod relies on MPI for the data exchanges and therefore utilizes the underlying
ARD algorithms to realize the reduce+broadcast exchanges that are necessary during
the distributed data-parallel training of CNN models. In addition, Horovod overlaps
communication and arithmetic via an auxiliary communication thread as follows:
Consider Fig. 8, which illustrates the data dependencies appearing during a single
forward pass (FP) and backward pass (GC forGradient computation andWU forWeight
update) for a DNN consisting of L layers. In Horovod, the use of the communication
thread overlaps the global reduction ARl , for a certain layer l, with the computations
corresponding to GCl−1, GCl−2,…, GC1. Furthermore, Horovod decides whether to
aggregate the data corresponding to several consecutive layers into a single ARD
communication operation of a larger dimension.

5.2 Evaluation inAltec

As an initial experiment, Fig. 9 displays the performance, in terms of images per
second, attained by AUTO and BEST in the three target libraries. This simple test exposes
the distinct behaviour of the different DNNmodel+dataset cases and, at the same time,
clearly indicates that there is not a single optimal choice. The results also demonstrate
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1114 A. Castelló et al.

Fig. 8 Data dependencies in the training. The colored boxes correspond to the computational stages: FP,
GC and WU; the circles denote ARD exchanges AR; and the arrows indicate dependencies. The colored
dashed lines mark operations which can be overlapped

Fig. 9 Images per second of the CNN using 8 MPI-ranks (one per node) of the Altec cluster with b = 16
and 32 (left and right, respectively)

the need to optimize for each configuration: Due to the reduced model (in terms of
model parameters and layers), AlexNet+ImageNet presents a communication-bound
scenario. VGG11+ImageNet is at the opposite extreme, corresponding to a compute-
bound case. ResNet50+ImageNet and ResNet110+Cifar10 lie in between, becoming
compute-bound as the batch size b is increased.

Figure 10 reports the benefits of enforcing a specific selection of BEST instead of
AUTO from within the MPI_Allreduce primitive in MPICH, OpenMPI, and IntelMPI,
for the training of the selected DNN models and datasets via TF+Horovod, using 8
nodes of Altec cluster with a batch size b comprising 16, 32, and 64 images. For a
complete comparison, the BEST algorithm is comparedwith the AUTO for each individual
library (e.g., OpenMPI-BEST against OpenMPI-AUTO) in the left-hand column of plots,
and taking the IntelMPI-AUTO algorithm as the baseline in the right-hand column of
plots.
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Fig. 10 Performance of TF+Horovod using 8 MPI-ranks (one per node) of the Altec cluster with b = 16,
32, and 64 (from top to bottom), with the results normalized with respect to either the AUTO algorithm of
the corresponding library (left) or the AUTO algorithm in IntelMPI (right)

The first observation from this experiment is the need to carefully selecting the best
option fromwithin all the ARD possibilities (including both algorithm and library) for
a concrete scenario before executing the CNN training: the benefits of a careful choice
of the optimal algorithm within a particular library may render a performance boost of
up to 40% in IntelMPI andMPICH, and up to 11%withOpenMPI. In general, the gains
narrow as the training becomes more compute-bound (in particular, when increasing
the batch size) and the impact of the communication decreases. Note, however, that
there are limits to the dimension of the batch; see Sect. 5.3. Overall, OpenMPI outper-
forms its counterparts for almost all possible scenarios. As an exception to this general
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Table 3 Performance comparison in terms of images per second of 8 CPUs against 8 GPUs using OpenMPI
4.1 and NCCL

AlexNet ResNet50 ResNet110 VGG11
Hardware ImageNet ImageNet Cifar10 ImageNet

CPU (AUTO) 330 27 196 58

CPU (BEST) 337 31 197 64

GPU (AUTO) 10,156 3054 20,786 3657

GPU (NCCL) 26,928 3092 21,059 3846

rule, IntelMPI is the best choice for a few cases, in particular, ResNet50+ImageNet
and VGG11+ImageNet with b = 16, 64, and VGG11+ImageNet with b = 32.

5.3 Limitations of the analysis

The insights gained from the experimental evaluation in this section canvarydepending
on two factors with an impact on the computation-communication balance, namely
the batch size and the interconnection network. We next discuss these in detail:

– Although the arithmetic cost grows linearly with the batch size b, for a distributed
data-parallel scheme the communication cost is largely independent of b (but
grows with p). Therefore, for a cluster with a fixed number of nodes, the practi-
cal contribution of the communication overhead to the total training cost can be
reduced by increasing the batch size. Unfortunately, there is a fundamental limit to
the largest batch size that can be used in neural network training and, already for
modest batch sizes, there appears a significant decline in the convergence rate of
the training process. This issue can be tacked to a certain point, via the integration
of very sophisticated, case-specific algorithmic techniques; see, e.g., [19].

– TheTop500 list11 fromNovember 2020 comprises 25 systems connected via Infini-
band HDR and 61 with Infiniband EDR. These two interconnection networks from
Mellanox respectively present link speeds of 50 Gbps, and 25 Gbps per lane. If we
compare this performance evolution (2× per interconnection generation) and the
year gap between them (4 years), it is clear that it is much slower than the evolution
in terms of computational power of CPUs/GPUs. Therefore, if the growth of both
elements follows the same trend, the optimization (via the selection of the best
algorithm or via the implementation of new communication patterns) is crucial for
future applications.

6 Discussion

In this paper, we highlight the importance of the selection of MPI communication
library as well as, the appropriated algorithm implementation of the MPI_Allreduce

communication collective in order to accelerate distributed CNN training.We focus on

11 https://www.top500.org.
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general-purpose clusters (CPU only) because they still represent an important niche of
computing resourceswhich can be dedicated to the distributedCNN training.Although
the experiments are done in a relative “small” cluster, the results expose how the
appropriate choice of the software stack benefits performances. These analyses should
be performed by all hardware-software combinations with the aim of achieving the
best performances in all cases.

Although this study does not include clusters accelerated with GPUs, it is conve-
nient to comment on the significant performance difference between CPUs and GPUs.
Table 3 compares the throughput (in terms of images per second)when usingOpenMPI
and NVIDIANCCL. The CPU rows show the results when using the AUTO and the BEST

algorithm with a batch size of 64 images. The rows labeled as GPU (AUTO) and (NCCL)
employ either the CUDA-aware OpenMPI 4.1 library or the NCCL communication
library developed by NVIDIA, in both cases using a batch size of 256.

The adoption ofGPUaccelerators roughly increases the performance by a factor that
ranges between 30× and 106×, though increases comewith a considerable acquisition
cost and power consumption footprint.

7 Conclusions and future work

We have conducted a complete experimental analysis of all the realizations of the
ARD collective communication primitive in three popular MPI libraries: MPICH,
OpenMPI, and IntelMPI using a cluster equipped with the state-of-the-art processor
and network technologies. This study yields a number of relevant insights:

– There is a significant gap between the theoretical cost models for the ARD
algorithms and their practical implementation in current MPI libraries. We have
highlighted a few aspects that negatively affect the accuracy of the theoretical
models.

– For some combinations of message size/number of nodes, the three MPI libraries
make a poor selection of the best ARD algorithm, offering ample space for opti-
mization.

– In general, all three libraries automatically select the RSA algorithm for ARD (the
best algorithm, in theory), instead of the ring-based algorithms which the experi-
ments show is a better option in a relevant variety of cases.

– When the number of processes participating in the communication is not an integer
power-of-two, the overall communication throughput drops significantly, except
for the ring-based solutions, which are independent of this feature.

– As the arithmetic capacity of the cluster nodes raises, the interconnection network
poses a performance bottleneck. For distributed data-parallel training of CNNs,
this can be tackled via either integrating a faster computer network or augmenting
the batch size. However, it is surely beneficial to optimize the communication
layer by choosing the best MPI library (in case this is possible) and/or select the
appropriate ARD algorithm.

– Overall, when this last type of optimization is applied to distributed CNN training,
the performance improvement is up to 20% compared with the automatic selection
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done in the same MPI instance, and up to 280% if we compare the distinct MPI
libraries.
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