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Abstract

Real-time and safety-critical systems are an integration of multiple functionalities onto
a single computing platform. Some of the functionalities are safety-critical and subject
to certification while the rest of the functionalities are nonsafety-critical and do not
need the certification. Various researches have been done for the scheduling theory
of mixed-criticality systems. But the time-triggered scheduling of mixed-criticality
systems is very popular and used in industry. Since the schedule is prepared offline in
a time-triggered mixed-criticality system, we need to prepare the schedule in such a
way that the schedule must tolerate fault online. Hence the problem of fault-tolerance
in the time-triggered system is important. This work proposes a new and novel time-
triggered fault-tolerant algorithm for mixed-criticality systems. Then we show that
the proposed algorithm is correct and tolerate at most one fault over the hyperpe-
riod. Finally, we compare the proposed algorithm with the existing time-triggered
scheduling algorithms for mixed-criticality systems.

Keywords Real-time systems - Mixed-criticality systems - Fault-tolerant -
Time-triggered schedule - TT-Merge algorithm - MCEDF - OCBP algorithm

Mathematics Subject Classification 68M15 - 68M20 - 68MO1 - 68W40

1 Introduction

A real-time system [11,20] is required to not only generate correct results but also
produce such results within a stipulated time called deadline. Typical applications
of real-time systems span across various domains including defense and space sys-
tems, networked multimedia systems, embedded automotive and avionics systems etc.
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In real-time systems, satisfying the timing specifications for a given set of tasks by
determining an appropriate order among task executions boils down to a challenging
scheduling problem. Traditional scheduling schemes have primarily dealt with sce-
narios in which all tasks belong to a single criticality level. In these systems, tasks at
distinct criticality levels are typically handled by allocating a dedicated server for each
criticality level. However, such federated schemes often make the resulting systems
prone to severe resource under-utilization. In recent years, there is an increasing trend
towards integrating applications at different importance/criticality levels and imple-
menting them onto a single computation platform. Such an integrated system, often
referred to as a mixed-criticality system [3,30], helps to reduce cost, energy consump-
tion and resource under-utilization. For example, let us consider a UAV (Unmanned
Aerial Vehicle) [29] whose primary mission is to capture the ground images. The
functionalities (jobs) of such a UAV can be easily classified into two criticality-
based categories: (i) safety-critical—functionalities related to safe flight operation of
the UAV; higher in criticality (HI-criticality) and (ii) mission-critical—functionalities
related to image capturing; relatively lower in criticality (LO-criticality). Satisfying
the timing specifications of the Hl-criticality functionalities even under worst-case
scenarios is very important as they are related to safe flight operation and are typi-
cally certified by Certification Authorities (CAs). In order to ensure safety, the CAs
typically use very conservative worst-case execution time (WCET) estimates for the
tasks and actual task execution times may typically be expected to be significantly
less than these conservative WCETs (also called Hl-criticality WCETSs) in most cases.
On the other hand, the general goal of the System Designers (SDs) is to satisfactorily
execute both Hl-criticality and LO-criticality functionalities within limited resource
budgets, so that cost overhead may be controlled. In order to achieve their objective, an
important design strategy adopted by SDs is to assume less conservative WCET esti-
mates for the HI-criticality tasks (referred to as LO-criticality WCETs of Hl-criticality
tasks). As only SDs are concerned about the timely execution of LO-criticality tasks
and hence they are assumed to have only a single WCET (referred to as LO-criticality
WCETs of LO-criticality tasks). The CAs are not concerned about the execution of LO-
criticality tasks. They are only concerned about the execution of Hl-criticality tasks.
We know that estimating the WCET is a difficult job. The CAs use very pessimistic
tools to estimate the WCET of a job. Hence the CAs expect a higher WCET for the
HI-criticality jobs than that estimated by the SDs. Let us understand the technicality
of the mixed-criticality schedulability problem using the following example.

Example 1 Consider the instance given in the following table which has three jobs.
The given instance is EDF schedulable from the perspective of system designers
(SDs) and certification authorities (CAs), as shown in the Figs. 1 and 2, respectively.
The CAs use very conservative tools, and their estimates are given in the last column
of Table 1. When we consider the WCET estimated by the CAs, it is easily verifiable
that EDF fails to schedule the given instance. On the other hand, we know that CAs do
not care about the schedulability of the LO-criticality jobs. So they certify the system
only if the Hl-criticality jobs are schedulable. We can verify that the Hl-criticality
jobs are schedulable with respect to the WCET estimation of the CAs as shown in
Fig. 2 where we ignore job ji. This is because j3 and j, can be scheduled in the
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Table 1 Instance for Example 1

Job Arrival time Deadline Criticality C;(LO) C; (HI)
J1 0 3 LO
2 0 6 HI 3 4
J3 1 5 HI 2
Fig.1 Schedule according to the
SDs
0 1 2 5 6
Fig.2 Schedule according to the
CAs
0 2 6

interval [0,2] and [2,6]. SDs also verify the system as correct as they consider WCET
estimated by them as shown in Fig. 1. But if job j3 and j, executes for more than its
WCET that estimated by the SDs in the schedule given in Fig. 1, then the instance
is not schedulable. It is a hazardous situation when both the SDs and CAs certify the
system to be correct and the jobs of the system behave according to the estimation
of CAs. In this case, it is not possible to correctly schedule each job in the system
as we do not know the actual execution time of a job a prior to the run time. Hence
the MC-schedulability is hard and popular among the real-time system researchers’
community.

In this paper, we focus on the time-triggered schedule [4-7,15] of a mixed-criticality
system. As we know, the whole schedule of the jobs is prepared prior to the run-time
in a time-triggered system and generally kept in a tabular format. When the system
goes online, the tables are followed to dispatch the jobs for each time instant z. There
are various algorithms discussed [4,5,25] to find the time-triggered schedule of a
uniprocessor mixed-criticality systems. But none of the above algorithms discussed
the fault-tolerant aspect of the uniprocessor mixed-criticality approach.

1.1 Fault-tolerant mixed-criticality systems

Real-time systems are marked by their necessity to react to events in the environment
within specified time bounds. Thus, the correct behavior of Real-time systems depends
not only on the value of the computation but also on the time at which the results are
produced [11]. Here we consider the hard real-time systems, i.e. the real-time systems
which have stringent timing constraints. If the timing constraints are not satisfied, then
a hard real-time system may lead to catastrophic results. This may lead to the loss of
life. So the system designers do their best to ensure that all the timing constraints will
meet before the system is deployed to the mission. Hence the designers design an
appropriate model of the target system which is analyzed for any fault that may occur
during the mission. A fault [22] is an event which may occur in the system that leads to a
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system failure. Apart from satisfying the timing constraints, most researchers emphasis
towards the fault-tolerant real-time systems. A fault-tolerant real-time system [16,22]
not only ensures the timing constraints but also ensures the functional correctness of
the system. Generally, there are two major faults occur in a real-time system, i.e.,
permanent and transient faults. A transient fault is one that does not reoccur if you
retry the operation. A permanent fault is not transient; it is repeatable.

In this paper, we focus on the transient faults [32] only. From the definition of the
transient faults, we know that if the operation is retried then the fault will not reoccur.
Our main goal is to design a fault-tolerant algorithm that can tolerate at most one fault
over the hyperperiod. Since we are considering a time-triggered system, the scheduling
table related to the instance is constructed prior to the run-time.

The fault-tolerant aspect in a time-triggered system [17] is an interesting problem,
because the whole schedule is prepared prior to the run-time but the faults can occur
at the run-time only. Hence we must allocate sufficient time for each job such that
they can tolerate the faults occur at the run-time. Here we assume that the proposed
algorithm can tolerate at most one fault in one hyperperiod. This is a fair assumption,
because no system can tolerate n number of faults. Apart from that if a uniprocessor
system encounters n number of faults, then the system will lead to failure and difficult
to recover.

We present a new time-triggered scheduling algorithm in this paper on investi-
gating the fault-tolerant aspect of the time-triggered uniprocessor mixed-criticality
systems. To our best knowledge, these are the first results in this setting. Our detailed
contributions are as follows:

— We point out the requirement of the fault-tolerant aspect of the time-triggered
uniprocessor mixed-criticality systems.

— We construct a fault-tolerant algorithm to find the time-triggered schedule for
mixed-criticality uniprocessor systems.

— We demonstrate various trade offs for the fault-tolerant algorithm of time-triggered
mixed-criticality systems with both theoretical and experimental results.

The rest of the paper is organized as follows: Sect. 2 describes the system model and
presents definitions and related work on fault-tolerant algorithm of mixed-criticality
real-time systems and time-triggered scheduling. In Sect. 3, we propose a new fault-
tolerant algorithm which constructs multiple tables to find a time-triggered schedule
for a dual-criticality MC instance. Section 4 includes experimental results based on a
large number of randomly generated mixed-criticality instances. Section 5 concludes
the paper.

2 System models and literature review

Here we describe the mixed-criticality job model used in this paper. The mixed-
criticality model used in this paper is based on at most two levels of criti-
cality, LO and HI. A job is characterized by a 5-tuple of parameters: j; =
(a;i, d;, xi, Ci(LO), C;(HI)), where

— a; € N denotes the arrival time.
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— d; € NT denotes the absolute deadline.

xi € {LO, HI} denotes the criticality level.

C;(LO) € NT denotes the LO-criticality worst-case execution time.
— C;(HI) e NT denotes the Hl-criticality worst-case execution time.

We assume that the system is preemptive and C;(LO) < C;(HI) for 1 <i < n.
Note that in this paper, we consider arbitrary arrival times of jobs.

An instance of mixed-criticality (MC) [3,9] job set can be defined as a finite collec-
tion of MC jobs, i.e., I = {ji, j2,..., ju}. The job j; in the instance [ is available for
execution at time @; and should finish its execution before d;. The job j; must execute
for ¢; amount of time which is the actual execution time between ¢; and d;, but this can
be known only at the time of execution. The collection of actual execution time (c;) of
the jobs in an instance [ at run-time is called a scenario. The scenarios in our model
can be of two types, i.e., LO-criticality scenarios and Hl-criticality scenarios. When
each job j; in instance I executes ¢; units of time and signals completion before its
C; (LO) execution time, it is called a LO-criticality scenario. If any job j; in instance
I executes ¢; units of time and doesn’t signal its completion after it completes the
C; (LO) execution time, then this is called a HI-criticality scenario.

Each mixed-criticality instance needs to be scheduled by a scheduling strategy
where both kinds of scenarios (LO and HI) can be scheduled. If we have prior
knowledge about the scenario, then the scheduling strategy is known as a clairvoyant
scheduling strategy. If we don’t have prior knowledge about the scenario, then the
scheduling strategy is called an online scheduling strategy. Here we assume that if
any job continues its execution without signaling its completion at C; (LO) then no
LO-criticality jobs are required to complete by their deadlines. Now, we define the
notion of MC-schedulability.

Definition 1 An instance I is MC-schedulable if it admits a correct online scheduling
policy.

First, we present the conventional time-triggered scheduling [4] strategy of MC
instances. Later in this section, we define the time-triggered scheduling strategy in the
presence of a fault. As we know, the schedule of the jobs in a time-triggered system is
generally prepared in a tabular format, prior to the runtime. Since we are considering a
dual-criticality system, we will construct two tables Sy and St o for a given instance
I which will be used at run-time. The length of the tables is the length of the interval
[minj,e/{a;}, max ;e {d;}]. The rules to use the tables Syr and Spo at run-time, (i.e.,
the scheduler) are as follows:

— The criticality level indicator I' is initialized to LO.

While (I' = LO), at each time instant t the job available at time t in the table S o

will execute.

— If a job executes for more than its LO-criticality WCET without signaling com-
pletion, then I' is changed to HI.

— While (I" = HI), at each time instant t the job available at time t in the table Sy
will execute.

Now we present the system model in presence of a fault.
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Definition 2 A dual-criticality MC instance [ is said to be time-triggered schedulable
[4] if it is possible to construct the two schedules Syr and Sy for 7, such that the
run-time scheduler algorithm described above schedules I in a correct manner.

Here We assume that the proposed fault-tolerant algorithm tolerates at most one
fault over a hyperperiod. We construct a scheduling table for each job in the instance
I which will be used to dispatch jobs according to the following dispatcher (i.e., the
scheduler). Initially, we begin with the tables Sy o and Syy. If job j; encounters a fault
in LO-criticality, then the scheduler will switch to table Sio. On the other hand, if job
Ji encounters a fault in HI-criticality, then the scheduler will switch to table Sf_u. The
rules of the scheduler are as follows:

— The criticality level indicator I' is initialized to LO.

— The fault table indicator .% is initialized to the table Si .

— While (I' = LO), at each time instant t the job available at time t in the table
indicated by the fault table indicator .% will be executed.

— If a fault occurs for a job ji, then the fault table indicator .7 will be changed
to S| ; and the jobs will be dispatched according to the table Si ;.

— If a job j; executes for more than its LO-criticality WCET without signaling
completion, then I" is changed to HI.

— While (I' = HI and .% = Sp0), at each time instant t the job available at time t in
the table Sy will execute.

— If a fault occurs for a job j;, then the fault table indicator F will be changed
to Sjy; and the jobs will be dispatched according to the table Sfy;.

— While (I' =Hl and .% = Sl’;ll), at each time instant t the job available at time t in
the table Sli{l will execute.

2.1 Literature review

In 2007, Vestal [30] introduced the mixed-criticality model to the real-time system’s
research community. He proposed a fixed-task-priority scheduling strategy, which was
later [10] proven to be optimal. Since then, the mixed-criticality model is the center of
attraction for all the researchers of the real-time system community. In 2011, Baruah
et al. [4] proposed an algorithm to find the time-triggered schedule for given mixed-
criticality instances based on OCBP [3]. Socci et al. [25] also proposed a time-triggered
scheduling algorithm which was a priority-based algorithm. Behera and Bhaduri [5]
proposed a time-triggered scheduling algorithm, hereafter abbreviated as TT-Merge,
which directly constructs the scheduling tables for a given mixed-criticality instance
without using any priority order for the jobs. They also prove the dominance of the
TT-Merge algorithm over the algorithms proposed in [4,25] with respect to the number
of instances scheduled successfully. Apart from these, there are various fault-tolerant
algorithms [14,18,21,27] proposed for mixed-criticality systems. In 2017, Burns and
Davis [10] published a survey paper where various fault-tolerant scheduling algorithm
for mixed-criticality systems are discussed.
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RM Pathan [21] proposed an approach to model the mixed-criticality system from
the perspective of fault-tolerant. Then they presented a fault-tolerant mixed-criticality
algorithm for their proposed model. They used a backup strategy to tolerate the fault
that occurs at the run-time. In 2014, Huang et al. [14] proposed a fault-tolerant mixed-
criticality scheduling algorithm that models safety requirements for tasks of varying
criticalities in the presence of transient faults. Lin et.al [18] proposed a novel online
slack-reclaiming algorithm is also proposed to recover from as many faults as possible
before the jobs’ deadline. In 2015, Thekkilakattil et al. [26] proposed a fault-tolerant
scheduling scheme that promised to tolerate permanent faults and influences the associ-
ated safety assurance. In another research, Thekkilakattil et al. [28] derived a sufficient
test that determines the fault-tolerant feasibility of a set of mixed-criticality real-time
tasks under the assumption that the inter-arrival time between two consecutive error
bursts is at least equal to the hyper-period of the task set.

Al-bayati et al. [1] proposed a four mode model that addresses fault and execution
time overrun with separate modes. In 2017, Zhou et al. [35] proposed a non-time-
triggered fault-tolerant algorithm for mixed-criticality systems where re-execution of
tasks was adopted to tolerate a transient fault. In 2021, Ranjbar et al. [23] proposed a
design-time task-drop aware schedulability analysis based on the EDF-VD algorithm
that bounds the LO-criticality tasks drop in the Hl-criticality scenario.

Apart from the above, there are many articles available those proposed fault-tolerant
scheduling algorithm for multiprocessor mixed-criticality systems. Zeng et al. [33]
proposed a fault-tolerant scheduling algorithm for multiprocessor mixed-criticality
systems that relies on the task replication and re-execution to tolerate a fault. Al-
bayati et al. [2] proposed a fault-tolerant technique for multi-core mixed-criticality
systems where the Hl-criticality tasks executing on the core that exhibit fault are
moved to other cores, and the LO-criticality tasks are discarded if required in the
newly assigned core. This work also useful for permanent faults in multi-core systems.
Safari et al. [24] proposed a technique that uses the inherent redundancy of multicores
to apply the standby-sparing technique for fault-tolerance. There are few scheduling
techniques proposed in [13,31,34] which are not fault-tolerant but must be investigated
in terms of fault-tolerant and mixed-criticality systems. We are not discussing the
other fault-tolerant multiprocessor algorithms as our work is focused on uniprocessor
mixed-criticality systems.

The above discussion clarifies that all the fault-tolerant scheduling algorithms are
proposed for either uniprocessor or multiprocessor mixed-criticality systems. There
does not exist a fault-tolerant scheduling algorithm for a time-triggered system in
mixed-criticality systems. There is no time-triggered fault-tolerance scheduling algo-
rithm for mixed-criticality systems because the computation of a table is challenging
that can not be changed during the run-time. Since we do not know the exact time
of a fault, preparing a scheduling table prior to run-time is difficult. That means we
need to find a scheduling table that can handle fault online and need not be changed at
run-time. Hence we propose a fault-tolerant time-triggered scheduling algorithm for
the uniprocessor mixed-criticality systems, which constructs a scheduling table for
each job. Since the TT-Merge algorithm outperforms all the time-triggered algorithms
in the literature, we apply the TT-Merge algorithm to find the fault-tolerant schedule
for any instance /.
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2.2 Recap of TT-merge algorithm

In this section, we briefly review the TT-Merge algorithm from [5] which constructs
two scheduling tables Sy o and Sy. If the jobs of an instance are dispatched according
to these tables, then no job will miss its deadline. The scheduling table length is equal
to the maximum deadline among all the jobs in the instance. Initially, the TT-Merge
algorithm constructs two temporary tables, 7; o and 7yy;. Then the temporary tables
TLo and 7Ty are merged to construct the table St o. Finally, the TT-Merge algorithm
uses table Sy to construct Syy. We have constructed our fault-tolerant algorithm
based on the TT-Merge algorithm.

2.2.1 Construction of tables 7| o and 7y,

As discussed above, the construction of 71 o and 7y is a preliminary phase. The table
710 is constructed using LO-criticality jobs only where table 7y is constructed using
Hl-criticality jobs only. The jobs in the tables 710 and 7yy are arranged using the
EDF algorithm [19]. Then the jobs in both the tables are then moved as close to their
deadline as possible. In table 7y, the initial C;(LO) units of allocations of each HI-
criticality job are retained and the remaining C; (HI) — C; (LO) units of allocation are
unallocated.

For example, consider the instance in Table 2. The hyperperiod of the task set is 18.
Here deadline of the two LO-criticality jobs j; and j3 are 6 and 14, respectively. Now
we schedule j; and j3 as close to their deadline as possible in the interval [4, 6] and
[12, 14]intable 7 o. Similarly, the two HI-criticality jobs j, and j4 are scheduled in the
interval [9, 12] and [14, 18] in table 7g;. But we need to retain the initial C; (LO) units
of execution time and unallocate the remaining C; (HI) — C;(LO) units of execution
time from table 7. The final table 7y o and 7y are given in Fig. 3.

2.2.2 Construction of tables S| o and Sy

The tables 71 o and 7y are then merged to construct the table Sy o, starting from time
instant 0 going up to P. At each time instant 7, four situations can occur: (1) 7L
and 7y are both empty (2) 7 o is empty but 7y is non-empty (3) 71 o is non-empty
but Ty is empty and (4) 710 and 7y are both non-empty. In case of situation 4, the
algorithm declares failure and in all other cases, a job is allocated at the time slot #, if
ready; see [5] for the details.In Example 2, we have explained the construction of table
SLo- Once the table St g is constructed, the algorithm starts the construction of table
Sur. The same example also shows how the TT-Merge algorithm works along with
the fault-tolerant algorithm. For further details about TT-Merge, we refer the reader
to [5].

3 Our work

In this section, we propose a fault-tolerant algorithm which is based on the TT-Merge
algorithm and tolerate at most one fault in the entire schedule over the hyperperiod.
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Here we consider the jobs which have only one instance. Hence the hyperperiod for

the instance /7 is n\}ax{di }. The proposed algorithm produces the fault-tolerant tables
Ji

Sio and SiH as output, where table S]’;O represents the LO-criticality table for i™
LO-criticality job and table SI"_H represents the Hl-criticality table for i HI-criticality
job. Here we assume that the context switch time between two jobs and the context
switch time to change from one scheduling table to the other is negligible. It is easy
to check whether the instance / can tolerate at most one fault over a hyperperiod.

Theorem 1 An instance I is schedulable and tolerate at most one fault over a hyper-
period if and only if the following equations hold:
For LO-criticality scenario:

3" Ci(LO) + max(Ci (LO)} < max{d;) ()
Vi Vji Vji

For Hl-criticality scenario:

E Ci(LO) + E C; (HI) + max{C;(@;)} < max{d;} )
. . Vji Vji
Vj,' /\X,‘:LO V./i AXi =HI

Proof (=) In this part of the proof, we assume that the instance / is schedulable and
tolerate at most one fault. We need to show that the Eqgs. 1 and 2 are correct.

Let us assume that the scenario is in LO-criticality. Since the instance / is schedula-
ble and tolerate at most one fault, there must be sufficient time for a job j; to complete
its execution after all the jobs finish their execution before its deadline, i.e., d;. Suppose
job ji is the job with maximum execution time among all the jobs in the instance /.
Then the total time required to execute all the jobs is ) i C; (LO) +maxy, {C; (LO)}.
Since it is schedulable it must be less than or equal to maxy j; {d;}.

Now assume that the scenario is in Hl-criticality. In other words, a job j; has not
signaled its completion after finishing the execution of C; (LO) units of execution time.
Hence the scenario is in Hl-criticality. In the worst-case situation, a Hl-criticality job
Ji will trigger the scenario change (by not signaling its completion after finishing the
execution of C;(LO) units of execution time) after all the LO-criticality jobs finish
their execution and no HI-criticality job other than j; have started their execution.
Since all the jobs have scheduled correctly, we can write the equation as follows

Y. GLO+ Y Ci(HD < max(d]) 3)

Vji Axi=LO Vjinxi=HI

We know that the instance can tolerate at most one fault over the hyperperiod. As in
the LO-criticality scenario case, we add the execution time of the job with maximum
execution time to the already calculated time in Eq. 3. Hence we prove that if the
instance / is schedulable and tolerate at most one one fault, then the Egs. 1 and 2 hold.

(<) In this part of the proof, we assume that the the Eqs. 1 and 2 are correct. We
need to show that the instance / is schedulable and tolerate at most one fault.
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Let us assume that the scenario is in LO-criticality. From Eq. 1, it is clearly seen that
all the jobs can finish their Lo-criticality execution as well as a job j; with maximum
LO-criticality execution before maxy j, {d;}. Hence an instance I can be scheduled in
the LO-criticality scenario and can tolerate at most one fault over the hyperperiod.

Now assume that the scenario is in Hl-criticality. From Eq. 2, we can check infer
that the left hand side of the equation is a sum of three terms. The first term is the sum
of all the execution time of LO-criticality jobs. The second term is the sum of the HI-
criticality execution time of all the HI-criticality jobs. The third term is the maximum
execution time among all the jobs. The sum of first two terms depict the total execution
time required for all the jobs to be scheduled over the hyperperiod. In the worst case
situation, we know that a Hl-criticality job will trigger the scenario change after all
the LO-criticality jobs finish their execution. If a fault has already been occurred for
a LO-criticality job, then the third term is added which will be the execution time
of a LO-criticality job. On the other hand, if a fault has already been occurred for a
HI-criticality job, then the third term is added which will be the execution time of
a HI-criticality job. In Eq. 2, the third term is the maximum execution time among
all the jobs in the instance. So, the instance is schedulable in HI-criticality scenario
when Eq. 2 holds. Hence we prove that if the Egs. 1 and 2 hold, then instance [ is
schedulable and tolerate at most one one fault. O

A fault can occur in a job at any time while in execution. We check the occur-
rence of a fault at the end of its execution. If a fault is found then the job is
re-executed immediately after its faulty execution. We assume that the time taken
to check for the occurrence of a fault is negligible. We know that a fault can occur
at any point of time while the system is running online and the time-triggered
tables are prepared prior to the run-time. Hence we need to allocate sufficient extra
times for each job, so that, each job can complete their execution correctly on time.

Algorithm 1 Construct-LO-table(T)

Input : A job instance I = {j1,j2, ..., jn}, Where j; =< a;, d;, xi, C;(LO), C;(HI) >.
Output : Temporary table 71,0
Assume the earliest arrival time is 0.

1: Let D denote the maximum length among all the jobs of instance I: D :=
max(di,ds,...,dn);

: The length of table 71,0 is set to D;

: Let L be the set of LO-criticality jobs of the instance I;

: Let O be the EDF order of the jobs of L on the time-line using C; (LO) units of execution
for each job j;;

: if (any job cannot be scheduled) then
Declare failure;

end if

: Starting from the rightmost job segment of the EDF order of L, move each segment of
a job j; as close to its deadline as possible in table 91,0.

=W N
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We recall Algorithm 1 from [5] that constructs the table .77 o which includes only the
LO-criticality jobs. This algorithm chooses the LO-criticality jobs from the instance
I and orders them in EDF order [19]. Then, all the job segments of the EDF schedule
are moved as close to their deadline as possible so that no job misses its deadline in
table A 0.

Note that, if the arrival times of the jobs are not the same, then the jobs may execute
in more than one segment, in general. If the arrival times of all the jobs are the same
then, the jobs will execute in one segment.

Algorithm 2 Construct-HI-table(I)

Input : A job instance I = {j1, j2, ..., jn }, Where j; =< a;, d;, xi, Ci(LO), C;(HI) >.
Output : Temporary table 1

1: Let D denote the maximum length among all the jobs of instance I: D :=
max(di, da, ... ,dn);

2: The length of table 1 is set to D;

Let H be the set of Hl-criticality jobs of the instance I;

Let O be the EDF order of the jobs of L on the time-line using C;(HI) units of execution

for each job j;;

if (any job cannot be scheduled) then
Declare failure;

end if

Starting from the rightmost job segment of the EDF order of H, move each segment of

a job j; as close to its deadline as possible in table 7.

for i :=1 to |H| do

10:  Allocate C;(LO) units of execution to job j; from its starting time in table 37 and

leave the rest unallocated;
11: end for

©

Algorithm 2, also from [5], constructs the table Z3; which contains only the HI-
criticality jobs. This algorithm chooses the Hl-criticality jobs from the instance I and
orders them in EDF order. Then, all the job segments of the EDF schedule are moved as
close to their deadline as possible so that no job misses its deadline in table 1. Then,
out of the total allocation so far, the algorithm allocates C; (LO) units of execution of
job jix in table 31 from the beginning of its slot and leaves the rest of the execution
time of j; unallocated in table ;.
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Algorithm 3 FT-TT-MERGE(Z, table 97,0, table )

Input : Table 1,0, table Ju1, I = {j1,J2,...,Jn}, where job j; =< a;, d;, xi, Ci(LO),
C(HD >.
Output : Sf 5, Siyp-

1: Copy table 71,0 and 311 to Lo and jHI, respectively;
Let D denote the maximum length among all the jobs of instance I: D :=

max(di,da,...,dn);

B

3: The length of table JpinaL is set to D;
4: t:=0;
5: while (¢t < D) do
6: if (JLolt] = NULL & Zii[t] = NULL) then
7 Search the tables 1,0 and simultaneously from the beginning to find the first
available job at time t; _ _
8: Let k be the first occurrence of a job j; in J1,0 or Jyy;
9: if (Both LO-criticality & Hl-criticality job are found) then
10: TrNaLlt] == Jiolkl;
11: Jolk] .= NULL;
12: else if (LO-criticality job is found) then
13: TrNALl] == Tuolk];
14: J1olk] := NULL;
15: else if (HI-criticality job is found) then
16: TFINALL = Tailk];
17: Jmilk] := NULL;
18: else if (NO job is found) then
19: TRINAL [t] ;= NULL
20: t:=t+1;
21: end if _ ~
22:  else if (J10[t] = NULL & Jui|[t] # NULL) then
23: =7~FINAL[t] = <J7H1[t];
24: Juilt] == NULL;
25: t:=t+1;
26:  else if (Z10[t] # NULL & Fini[t] = NULL) then
27: JriNaLlt] == Jolt];
28: JL0lt] ;= NULL;
29: t:i=1+1; ~
30:  else if (Jiolt] £ NULL & Fini[t] # NULL) then
31: Declare failure;
32:  endif

33: end while

34: Copy all the jobs from table St,o to table Syr;

35: Scan the table Sy from left to right:

36: for each Hl-criticality job j;, allocate an additional C;(HI) — C;(LO) time units imme-
diately after the rightmost segment of job j;, recursively pushing all the overlapping
HI-criticality job segments in Sgy (except those whose allocation time is same as in Ty1)
to the right and overwriting any LO-criticality jobs in the process.

37: Faulttolerant([,?Lo,E?HI,SLO,SHI);

Algorithm 3 constructs a general time-triggered scheduling table Spo which can
be used to dispatch jobs in a LO-criticality scenario without the presence of a fault.
Hence we call the function Faulttolerant(. % o, Z1,SL0) which constructs the schedul-
ing tables for LO-criticality and Hl-criticality scenario at the presence of a fault.
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Algorithm 4 Function Faulttolerant(I,71,0,7x1,SLo,Su1)

1: for each job j; in I do

2 Construct table SI’;O;

3:  Copy all the jobs from table Sy, to table S}io;

4:  Assign C;(LO) units of backup execution time in table S}  immediately after C;(LO)

units of primary execution time, by pushing all jobs to the right after job j;, such that

no job misses its finishing time in table Ty, ; /* xi is the
criticality level of job jip*/
if (job j; misses its finishing time in table 7y, ) then
Declare Failure;
end if

end for

: for each job j; in I do

Construct table Sﬁl?

11:  Copy all the jobs from table Sﬁo to table SIZLH;

12:  scan Sliﬂ from left to right;

13:  Assign an additional C;(HI) — C;(LO) time units of execution time immediately after
the rightmost backup segment of job j;, recursively pushing all the overlapping HI-
criticality job segments in Sﬁl (except those whose allocation time is same as in Typ) to
the right and overwriting any LO-criticality jobs in the process.

14:  Assign C;(HI) — C;(LO) units of backup execution time in table Sj; immediately
after C;(HI) — C;(LO) units of primary execution time, by pushing all jobs to the right
job j;, such that no HI-criticality job misses its finishing time in table Tgr;

15:  if (a job misses its finishing time in table Tyr) then

LI

—_

16: Declare Failure;
17:  end if
18: end for

Algorithm 4 (Function Faulttolerant(/, 7y o, 7x1,SL0,SH1)) constructs a LO-criticality
and a Hl-criticality time-triggered fault-tolerant scheduling table for each job. The
algorithm is divided into two parts. In the first part, from line 1 to line 8, a LO-
criticality and HI-criticality time-triggered fault-tolerant scheduling table for each job
is constructed. Line 3 copies all the jobs in the table S o to table S£0' Then C; (LO)
units of back up execution time is allocated after C; (LO) units of primary execution
of the job j; in table S£0~ This is done by shifting all the jobs after the last segment
of job j; in table S]’;O such that no job misses its finishing time in table 7,,, where
Xk 1s the criticality level of job j;. Since jobs to the right of j; are shifted up to their
finishing time in table 7, , the back up copy of C; (LO) units of execution time of job
Ji may miss its finishing time in table 7, . In that case, our algorithm declares failure.

In the second part, from line 10 to line 18, a LO-criticality and HI-criticality time-
triggered fault-tolerant scheduling table for Hl-criticality job is constructed. In line
13, table SiH is constructed from table Sﬂo. This is the same process as the TT-Merge
algorithm. Once table S{_H is constructed, the algorithm allocates the backup time of
C;(HI) — C; (LO) units of execution time for the HI-criticality jobs in table Sﬁ1~ This
is done in the same process as in Line 4. If job j; misses its finishing time in table 7y,
then our algorithm declares failure. Now we explain the proposed algorithm with an
illustrative example.

Example 2 Consider the MC task set of 4 tasks given in Table 2.
The TT-Merge algorithm constructs table 7y o, 711, SLo and Sy as given in Fig. 3.
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Table 2 Instance for Example 2

Job Arrival time Deadline Criticality C;(LO) C; (HI)
J1 0 6 LO 2 2
3 1 12 HI 2 3
J3 2 14 LO 2 2
Ja 0 18 HI 2 4

0 9 11 14 16 18

TLo VE]

0 4 12 14 18

0 2 4 18

0 2 4 7 10 18

Fig.3 Tables constructed by the TT-Merge algorithm

Now we apply our algorithm to the tables Spo and Spr. We scan the table Spo
from the right and the first job found in table Sy is ji. So we need to construct
table S]io which will be the fault-tolerant table for job j;. To construct table 3110’ we
copy the table S o to Sﬁo. Then we allocate C1(LO) units of backup execution time
immediately after C1(LO) units of primary execution time. To allocate the backup
execution time we need to push all other jobs ji to their right till their finishing time
in table 7,, . The resulting table is given in Fig. 4.

In the same process, we construct tables for Sfo, Sﬁo and Sﬁo as given in Fig. 5.

Since job j; and j3 are LO-criticality jobs, they do not need backup time in the
Hl-criticality scenario. So the Hl-criticality tables S}j; and S; can be constructed in
the same way as the table Syy. The resulting table is given in Fig. 6.

We construct tables SIZ{I and Sf_‘H from tables SEO and Sﬁo, respectively. Here we
need to take care of the backup execution time of each job j; for its C; (HI) — C; (LO)
units of execution time in table SIi-H‘ As per the algorithm, we assign the C; (HI) —
C; (LO) units of backup execution time after the C; (HI) — C; (LO) units of primary
execution time. The resulting tables SEH and SfjH are given in Fig. 7. From Fig. 7, it
is clear that job jj is shifted to its right and 1 unit of extra backup execution time is
assigned for job j, in the interval [9, 10].
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Fig.4 Table S]

o
N
W~
o
oo
=
o
—
oo

1
SHI

Fig.6 Table Sy for jobs jj and j3
Sty
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o
-
—
—
—
w
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o

Fig.7 Table Sy for jobs jp and jg

3.1 Correctness proof

For correctness, we need to show that if the FF-TT-MERGE algorithm finds the
required scheduling tables S]io and Sﬁl for each job j;, then the jobs which are
dispatched according to these tables will give a correct scheduling strategy. We start
with the proof of some properties of the schedule. Since the TT-Merge algorithm is
already proven, we focus on the function Faulttolerant(!,.% o,-%411,SL0>SHI)-

Lemma 1 IfAlgorithm 4 does not declare failure, then (a) each job ji receives Cy (LO)
units of execution and a job j; receives twice the amount of C; (LO) units of execution
in table 8£O and (b) each Hl-criticality job ji receives Cyx(HI) units of execution and
a job j; receives twice the amount of C;(HI) units of execution in table SIEH by its
deadline.
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Proof First, we show that each job ji receives Cy(LO) units of execution and a job
Ji receives twice the amount of C; (LO) units of execution in table S]io' We construct
table SI’;O from the table Spo. We know that all the jobs ji as well as job j; got
their stipulated C; (LO) units of execution in table Spo. In Line 4 of the function
Faulttolerant(/,.71 0, Z41,SL0,SH1), We assign C; (LO) units of execution immediately
after the right most segment of job j; in table Sﬂo by pushing all the jobs to their right.
In this process, no job can be pushed beyond its deadline and the extra C; (LO) units of
execution must be scheduled in between the finishing time of the last segment and the
finishing time of job j; in table 7,,. Hence if our algorithm does not declare failure,
then our algorithm will assign Cy(LO) units of execution for each job j; and twice
the amount of C; (LO) units of execution in table Sﬂo'

Second, we show that each job jji receives Cy(HI) units of execution and a job jj
receives twice the amount of C; (HI) units of execution in table Sliﬂ. The proof of this
part is the same as the proof of the first part of this lemma. O

Lemma 2 Arany time't, if a job j; is present in S{_n but not in S{O, then the job j; has
finished its LO-criticality execution before time t in S| 0.

Proof Here we follow the same order of jobs in Sﬂo to construct Sfﬂ. Initially we
allocate C;(LO) units of execution time of a Hl-criticality job in table Sy, then the
remaining execution time, i.e., C; (HI) — C; (LO) units of execution is allocated SHI.
We know that the HI-criticality jobs are preferred over the LO-criticality jobs in Sfy;,
i.e., a Hl-criticality job is chosen to be allocated in table Sli-[I if a LO-criticality job is
found in Sﬂo while allocating C; (HI) — C; (LO) units of execution in table Sﬁl. This
means each of the job segments present in table S{H is either at the same position in
Sio or to the right of it. When a job j; is present in S{_n and not in S{O at time t, it
means this has already completed its LO-criticality execution in S]io- O

Lemma 3 At any time t, when a scenario change occurs, each Hl-criticality job still
has C;(HI) — ¢; units of execution in Sy after time t to complete its gxecution, ifa
Sfault has already occurred and twice of C;(HI) units of execution in Sy after time t
to complete its execution, if a fault has not occurred, where c; is the execution time
already completed by job j; before time t in SLo.

Proof Suppose a scenario change occurs at time t. This means all the HI-criticality
jobs scheduled before time t have either signaled their completion or the current
HI-criticality job is the first one to complete its C;(LO) units of execution without
signaling its completion. We know that all the Hl-criticality jobs are allocated their
C;(HI) — C; (LO) units of execution in Sfﬂ after the completion of their C; (LO) units
of execution in both S]l;o and Sﬁl. At time t, there can be two possibilities, i.e., a fault
has already occurred and no fault has occurred.

(a) If a fault has already occurred, then the job j; has already executed twice of
C; (LO) units of execution in SI’;O. Hence it requires C; (HI) — C;(LO) units of time
to be completed in SI"{I. Because the system can tolerate at most one fault which has
already occurred. When job j; initiates the scenario change, this is the first job which
doesn’t signal its completion after completing its C; (LO) units of execution. Before
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time t, the scheduler uses the table Sﬂo to schedule the jobs, while subsequently the
scheduler uses table Sﬁl due to the scenario change. If a job j; has already executed its
¢; units of execution in Sio’ then it requires C; (HI) — ¢; units of time to be completed
in Sli{I its execution which is less than or equal to C; (HI) — C; (LO) units of time. We
know that the tables S{H and Sf;o have the same order and according to Lemmas 1
and 2, each job will get sufficient time to complete its C; (HI) units of execution.
Hence, each Hl-criticality job will get C; (HI) — ¢; units of time in S{_u to complete its
execution after the scenario change at time t.

(b) If a fault has not occurred till time t, then the job j; has already executed its
C; (LO) units of execution in S£o~ Hence it requires twice of C; (HI) units of time to
be completed in S{ﬂ. We know that the system can tolerate at most one fault. Hence all
other Hl-criticality jobs which have not completed their execution need to complete
their C; (HI) units of execution only. From Lemmas 1 and and 2, we know that each
job will get sufficient time to complete its C; (HI) units of execution. Hence, each HI-
criticality job will get twice of C; (HI) units of time in Sf_u to complete its execution
after the scenario change at time t. O

Lemma4 If a fault occurs for the job j; in table S, at any time t, then each job j;
still has Ci(x) — c; units of execution in Sj( to complete its execution, where c; is the
execution time already completed by job j; before time tin S, . Note that LO-criticality
jobs may not execute in HI-criticality tables.

Proof This proof follows from Lemmas 1 and 2. O

Theorem 2 Ifthe scheduler dispatches the jobs according to S]io and Sli_u, then it will
be a correct scheduling strategy in the presence of a fault.

Proof We have already shown that all the jobs can be correctly scheduled in a LO-
criticality scenario with the presence of at most one fault. We use the table Sy to
schedule the jobs as proved in Lemma 1. Again in Lemma 1, we prove that all the
HI-criticality jobs get sufficient units of execution time in table Syy to complete their
execution with the presence of at most one fault. In Lemma 3, we have proved that
when the scenario change occurs at time t, all the HI-criticality jobs can be scheduled
without missing their deadline. In Lemma 4, we show that the table change occur due
to the occurrence of a fault will be executed successfully. So from Lemmas 1, 3 and
4, it is clear that if the scheduler uses the tables Sf;o and S{_H to dispatch the jobs then
it will be a correct scheduling strategy. O

Theorem 3 The proposed time-triggered fault-tolerant algorithm for mixed-criticality
systems under the TT-Merge algorithm dominates all the existing time-triggered
scheduling algorithms for mixed-criticality systems.

Proof We know that the TT-Merge algorithm dominates all the existing time-triggered
scheduling algorithms for mixed-criticality systems in terms of scheduling number
of instances. In other words, any instance which can be scheduled by the existing
time-triggered scheduling algorithm for mixed-criticality systems is also scheduled
by the TT-Merge algorithm. Apart from this, TT-Merge also schedules some instances
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which are not scheduled by the existing algorithms. From the above facts, we infer
that any fault-tolerant algorithm based on a time-triggered scheduling algorithm for
mixed-criticality systems other than TT-Merge will schedule less number of instances
than the proposed fault-tolerant algorithm based on TT-Merge. Hence the theorem is
proved. O

4 Results and discussion

Here we present the experiments conducted to evaluate our algorithm. The experiments
show the impact of our algorithm in various settings. The comparison is done over a
large number of instances with randomly generated parameters. The job generation
policy may have significant effect on the experiments. The details of the job generation
policy are as follows.

— The utilization (u;) of the jobs of instance I are generated according to the UUni-
Fast algorithm [8].

We use the exponential distribution proposed by Davis et al [12] to generate the
deadline (d;) of the jobs of instance /.

The C; (LO) units of execution time of the jobs are calculated as u; x d;.

— The C;(HI) units of execution time of the jobs are calculated as C; (HI) = CF x
C;(LO) where CF is the criticality factor which varies between 2 and 6 for each
HI-criticality job j;.

Each instance I contains at least one Hl-criticality job and one LO-criticality job.
For each point on the X-axis, we have plotted the average result of 10,000 runs.

Since the proposed algorithm is the first time-triggered fault-tolerant algorithm
of mixed-criticality systems, we compared the proposed algorithm with the existing
time-triggered algorithms applying the same technique as the proposed algorithm.

For the first experiment, we fix the utilization at LO-criticality level of each instance
at 0.9 and let the deadline of the jobs vary between 1 and 2000. Apart from this, the
percentage of Hl-criticality jobs in an instance is fixed to 60% and the number of jobs
in each instance is set to 10.

From the graph in Fig. 8, it is clear that the proposed algorithm schedules more
instances successfully than both the OCBP-based algorithm and the MCEDF algorithm
using the same techniques as the proposed algorithm. It can be seen from Fig. 8 for
utilization of 0.9, about 400 instances out of 1000 instances can tolerate at most one
fault over the hyper-period and successfully scheduled by our algorithm, which is four
times more than the OCBP-based algorithm and 1.5 times more than the MCEDF
algorithm. As the number of instances increases, the success ratio is more or less
stable.

For the next experiment, we fix the number of jobs per instance at 10 and let
the deadline of the jobs vary between 1 and 2000. Apart from this, the percentage
of HI-criticality jobs in an instance is fixed to 60%. The graph in Fig. 9 shows the
comparison between the number of schedulable instances those tolerate at most one
fault over the hyperperiod from the randomly generated instances where the utilization
at LO-criticality level of each instance is varied between 0.5 and 0.9.
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Fig. 9 Comparison of number of fault-tolerant MC-schedulable instances with different utilizations

From the graph in Fig. 9, we can conclude that the success rate for all the algorithms
is decreasing with the increase in LO-criticality level utilization. The graph in Fig. 9
shows the comparison between the number of schedulable instances that tolerate at
most one fault over the hyper-period from the randomly generated instances. In Fig. 9,
we can easily verify that the proposed algorithm schedules almost 750 instances out
of 1000 instances when the utilization of an instance is 0.5. On the other hand, The
OCBP-based time-triggered scheduling algorithm and MCEDF schedule 600 and 400
instances, respectively. As the utilization of instances increases, the number of suc-
cessful fault-tolerant MC-schedulable instances decreases. This happens because the
load in a hyper-period and the reservation time for the Hl-criticality jobs increases
with the increase in the utilization of an instance. Apart from this, the number of
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Fig. 10 Comparison of number of fault-tolerant MC-schedulable instances with different number of jobs
per instance

successful instances decreases due to the availability of less time to tolerate at most
one fault over the hyper-period for each instance. It can be easily verified that the
proposed algorithm dominates the existing algorithms in the above settings where our
algorithm schedules more number of instances those can tolerate at most one fault
than the existing algorithms.

Now we fix the utilization at the LO-criticality level of each instance to 0.9 and the
deadline of each job in the instance is varied between 1 and 2000. Apart from this, the
percentage of Hl-criticality jobs in an instance is fixed to 60%. The graph in Fig. 10
shows the comparison between the number of schedulable instances those can tolerate
at most one fault over the hyperperiod from the randomly generated instances where
the number of jobs per instance is varied between 10 and 100.

From the graph in Fig. 10, we clearly see that the success rate for all the algorithms
is marginally decreasing with the increase in the number of jobs per instance. More
utilization means more execution time of the jobs. That means there is significantly
less time to re-execute a job in the hyper-period. Apart from this, the reservation time
to schedule the Hl-criticality jobs is more as the number of Hl-criticality jobs in an
instance is fixed to 60%. In Fig. 10, it is clear that our algorithm schedules significantly
more (by a factor of 4) instances successfully those can tolerate at most one fault over
the hyper-period than the OCBP-based algorithm and also schedules 1.3 times more
instances than the MCEDF algorithm.

For the next experiment, we fix the number of jobs per instance at 10 and let the
deadline of the jobs vary between 1 and 2000. Apart from this, the utilization at the LO-
criticality level of an instance is fixed to 0.9. The graph in Fig. 11 shows the comparison
between the number of schedulable instances those tolerate at most one fault over the
hyperperiod from the randomly generated instances where the Hl-criticality jobs in
each instance is varied between 50% and 90%.
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Fig. 11 Comparison of number of fault-tolerant MC-schedulable instances at different percentages of HI-
criticality jobs in an instance

In Fig. 11 it is clear that our algorithm successfully schedules significantly more
(by a factor of 1.5) instances that can tolerate at most one fault over the hyper-period
than the OCBP-based algorithm and also schedules more instances than the MCEDF
algorithm. Also, we infer that the success rate of all the algorithms gradually decreases
with the increase in the number of Hl-criticality jobs in an instance. This is because
of the reserve time requirements for the Hl-criticality jobs.

5 Conclusion

This paper discusses the general mixed-criticality scheduling problem and its impor-
tance in great detail with respect to various aspects like fault tolerance. Then we have
done an extensive literature survey for the work done in fault-tolerant scheduling
theory concerning the mixed-criticality systems. We discover a new problem in the
scheduling theory of mixed-criticality systems with respect to fault-tolerance and time-
triggered systems. We propose a new fault-tolerant algorithm for the time-triggered
scheduling of mixed-criticality systems, which can tolerate at most one fault over the
hyper-period, where the HI-criticality jobs must meet their deadlines. We also justify
the above assumption. We proved that our fault-tolerant algorithm based on TT-Merge
would schedule a bigger set of instances than the existing algorithms. We have also
validated the proposed facts using extensive experiments on the randomly generated
instances. We plan to extend this algorithm for multiprocessor systems and dependent
job instances as a part of future work. We also plan to the fault-tolerant aspect in the
presence of resource sharing among jobs in an instance.
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