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Abstract
A high-performance execution of programs predominately depends on the efficient 
scheduling of tasks. An application consists of a sequence of tasks that can be rep-
resented as a directed acyclic graph (DAG). The tasks in the DAG have precedence 
constraints between them and each task has a different timeline on different proces-
sors. In this paper, a new list-based scheduling algorithm is proposed which sched-
ules the tasks which are represented as a DAG structure. The main focus of this 
algorithm is to schedule the tasks to the suitable processing node in fog environment 
as the fog nodes have limited processing capacity. The assignment of tasks on the 
fog node should consider both the computation cost of the node and the execution 
finishing time of the node. The proposed algorithm has three phases. (1) the level 
sorting phase, where the independent tasks are identified (2) in the Task prioriti-
zation phase the proposed algorithm assigns priority to the task which has more 
successors so that more tasks in the next level can start their execution and (3) in 
the task selection phase a balanced combination of local optimal and global opti-
mal approach is considered to assign a task to a suitable processor which further 
enhances the processor selection phase results in minimizing both the makespan and 
overall computation cost of the processors. Extensive experiments are carried out 
using randomly generated graphs and graphs from the real-world to analyze the per-
formance of the proposed algorithm. The results show that the proposed algorithm 
outperforms all other well-known algorithms like predict earliest finish time, het-
erogeneous earliest finish time algorithm, minimal optimistic processing time, and 
SDBBATS in terms of performance matrices like average scheduling length ratio, 
speedup, and makespan.
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1 Introduction

With the realization of the internet of things, communications between smart 
devices to take predetermined actions/decisions have become easier. How-
ever, most of the actions/decisions are based on the processing of certain data 
provided by these smart devices. Due to the limited storage space and process-
ing capabilities of these smart devices, it is not possible to analyze the massive 
amount of data to produce instant results. So the data are transmitted to cloud 
computing for processing. Since cloud computing is normally providing service 
to individuals and is located at the provider’s convenient data centers, offload-
ing, and processing of all IoT data may cause additional communication costs 
and latency. Due to this limitation, cloud computing is unable to support millions 
of smart devices which are spread all over worldwide. This problem is alleviated 
by using smaller computing facilities that may not have large computing power 
but, can complete smaller tasks in a very short time and can provide informa-
tion to the smart devices quickly to act. Hence such computing facilities that can 
accept time-sensitive data from the smart devices, process, and return results are 
called fog computing. This term was first coined by Cisco [1] in the year 2012 to 
overcome the limitation of cloud computing. Fog computing is similar to Cloud 
Computing, but are closer to smart devices and provide time-sensitive services 
to the devices. Fog computing is also known as “cloud to the ground” which has 
been proposed to overcome the limitations of cloud computing. It serves as a vir-
tual layer between cloud data centers and end-users to provide computation, stor-
age, and network services. Fog computing does not replace cloud computing fur-
ther fog layer works for cloud layer to provide real-time services that upheld low 
latency, mobility, and geographical distribution.

Besides these advantages of fog computing, some challenges have to be 
addressed. Among them, scheduling of IoT applications in fog processing units is 
to be considered as an important issue. The IoT application consists of a set of com-
puting tasks with precedence constraints among them. This forms a workflow and 
can be modeled as a directed acyclic graph (DAG). The graph edges between the 
tasks represent the flow of data from producing tasks to consuming tasks. The main 
advantage of the DAG model is, it facilitates parallel execution of tasks which leads 
to further minimize the overall scheduling length. The key challenge is to decide 
how to schedule the tasks over fog processing unit to minimize the makespan and 
overall computation cost of the processors. Some of the issues to be considered 
while scheduling the tasks are (1) heterogeneity in computing systems introduces 
an additional degree of complexity to the scheduling problem, (2) precedence con-
straints should not be violated during the scheduling process, (3) the order of the 
tasks being processed plays a major role in a scheduling problem, (4) further while 
assigning the task to a processor, the scheduling technic should consider the execu-
tion cost of the processors since the fog nodes have limited processing capacities.

In this paper, a new algorithm is proposed to address the issues stated above. The 
proposed algorithm is based on a static list-based task scheduling problem in fog 
environment. The main contributions of this proposed algorithm are as follows:
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• A new model is being proposed which optimizes both the task prioritization 
phase and processor assignment phase.

• During the processor selection phase, a balanced decision is adapted which con-
cerns both the computation cost of the processors and the Execution finishing 
time of a task between n number of processors in fog layer.

• Efficient use of fog resources.

This paper is organized in the way such that the relevant literature papers are dis-
cussed in Sect. 2, fog architecture and system model are explained in Sect. 3, the 
proposed algorithm is elucidated in Sect. 4, followed by experiments and results are 
discussed in Sect. 5, and conclusions are given in Sect. 6.

2  Related work

The task scheduling problem is broadly classified as static scheduling and dynamic 
scheduling. In static scheduling, all the information about application tasks is known 
before whether in dynamic scheduling such information is known only at runtime. 
The static scheduling algorithms are classified into two types, namely heuristic-
based algorithms and guided random search-based algorithms. The heuristic-based 
algorithms are classified into list-based algorithms [4–9, 19, 20], clustering algo-
rithms [24–26], and task duplication–based algorithms[17, 21–23]. Some of the 
classification of static task-scheduling algorithms are given in Fig. 1

In this section, an elaborate survey of task scheduling algorithms, specifically 
List-based heuristics algorithms is presented. In comparison with clustering algo-
rithms, list scheduling algorithms have lower time complexity and generate high-
quality scheduling. Researchers have been developing many list scheduling algo-
rithms because scheduling in a heterogeneous environment is a highly challenging 
one. Most of the list scheduling algorithms have two phases: the prioritizing phase 
followed by the Processor selection phase. In the prioritizing phase, each task is 
given some priority based on their computation and communication cost, and in the 
processor selection phase, tasks are submitted to the suitable processor to minimize 
the makespan. If two or more tasks have the same priority, then a task is selected 
randomly to resolve the tie. Some of the list-based algorithms are discussed below.

Fig. 1  Classification of static task-scheduling algorithms
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Yu-Kwong Kwokis et al. [3] designed the dynamic critical path algorithm (DCP) 
algorithm and it is based on the modified critical path (MCP) algorithm. It has two 
phases namely the node selection phase and processor selection phase. Absolute ear-
liest start time (AEST) and absolute latest start time (ALST) are the two attributes of 
DCP. Based on those values the priority of the nodes is assigned. In the node selec-
tion phase, the priority of the nodes on the critical path changes dynamically. The 
main limitation of this approach is all the processors are homogeneous.

Haluk Topcuoglu et  al. [4] have proposed two heuristic-based list scheduling 
algorithms for a heterogeneous environment namely (1) critical path on a processor 
(CPOP) algorithm (2) heterogeneous earliest finish time algorithm (HEFT). In the 
CPOP algorithm author tried to minimize the overall scheduling length by mapping 
the critical tasks to the critical processors. All the critical tasks are assigned to the 
same processor, which may lead to load unbalance in the schedule among the pro-
cessors’ results in a further increase in the scheduling length. In the HEFT algorithm 
priority is assigned to the tasks based on their upward rank value. The task gets its 
execution on the processor which produces the least earliest finishing time (EFT) 
which fails to consider the computation cost of the processor to execite the assigned 
task as an account.

Ilavarasan et  al. [5] have formulated a performance effective task scheduling 
(PETS) algorithm. In this approach, the task with more successors gains higher pri-
ority comparatively. Then the task is assigned to the processor which has the least 
finishing time. Though this algorithm has a well-defined prioritization phase the 
task is assigned to the processor which has the least finishing time without consider-
ing the computation cost of the processors.

Bittencourt et  al. [6] have proposed four different approaches to enhance the 
HEFT algorithm with look-ahead information. They are (1) look-ahead, (2) look-
ahead with weighted average EFT, (3) look-ahead and priority list change, and (4) 
Look-ahead and priority list change with weighted average EFT. The authors con-
sider one-level Lookahead which doesn’t exhibit notable improvement in reducing 
overall scheduling length.

Shetti et  al. [7] have introduced heterogeneous earliest finish time-no cross 
(HEFT-NC) algorithm with a non-cross mechanism in the processor selection phase 
to reduce the makespan in the CPU-GPU environment. This algorithm introduced 
the composite ranking function which incorporates both the difference between the 
computation cost and the ratio of the computation cost. Based on the rank, the prior-
ity of the task is assigned. The authors tried to balance between local optimal and 
global optimal results to further minimize the maskspan. This approach fails to con-
sider the communication cost between the tasks while assigning the priorities. This 
algorithm can be applied between two processors only and the authors did not gen-
eralize the execution of their algorithm with N number of processors.

Arabnejad et al. [8] have introduced predict earliest finish time (PEFT) algorithm 
based on the look-ahead algorithm. The author effectively constructs an optimistic 
cost table (OCT) for every task. The OCT is a matrix in which the rows and columns 
indicate the number of tasks and the number of processors and elements of the OCT 
represents the shortest paths of a task t from entry node to exit node. Both the pri-
ority assigning and processor selection is based on the value of the OCT. The task 
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selection is based on the EFT value of the processor which doesn’t provide a glob-
ally optimal solution.

Hong et  al. [9] have implemented a module deployment algorithm (MDA) in 
fog environment, which dynamically pushes programs to the devices. They imple-
mented a real bed to evaluate the performance of the MDA algorithm. Even though 
the MDA algorithm produces a near-optimal solution, connecting smaller modules 
in dynamic flow is a critical issue.

Pham et  al.[10] formulated a heuristic-based task scheduling algorithm in a 
cloud-fog computing environment to achieve the balance between the makespan and 
monetary cost of cloud resources. This algorithm assigns priority to the tasks based 
on their upward ranks and schedules them to the node which has the least EFT fails 
to consider the computation cost of the node as an account.

Taneja et al. [11] have developed a module mapping algorithm for the effective 
utilization of resources in fog-cloud infrastructure for IoT-based applications. The 
working model of this algorithm arranges the application modules and network 
nodes in ascending order as per their requirement and capacity. A key-value param-
eter is created based on their requirements and at each iteration, the network node 
searches for the eligible node based on their requirements. The main focus of this 
approach is to reduce the usage of resources and doesn’t attempt to reduce latency.

Yang et al. [12] have proposed delay energy balance tasking scheduling (DEBTS) 
algorithm was proposed to address the energy and service delay problems in fog 
environment. Yang et  al. developed an across-layer analytical framework to effec-
tively handle the balance between energy consumption and service delay. The main 
limitation of this algorithm is that all the resources are homogeneous which doesn’t 
reflect the real-world problem.

Tejaswini et  al. [13] have introduced a three-layered architecture with an 
enhanced effective resource allocation (ERA) model. The authors elaborately 
described the queueing and priority models, priority assignment module, and the 
priority-based task scheduling algorithms to minimize overall response time and 
decrease the total cost in fog-cloud architecture.

Amir et al. [14] have presented a gravitational search algorithm (GSA) based on a 
meta-heuristic technique to optimize the distribution of the tasks over the resources 
to minimize the overall response time of the applications in fog environment. In this 
approach, the processing element (PE) in the IoT applications are modeled as DAG 
and each PE is distributed over the cloud-fog continuum.

Rezazadeh et al.[15] proposed a latency aware module placement (LAMP) algo-
rithm which explores the placement of the IoT application module into devices. This 
approach schedules the application modules to the nearest devices as possible and 
the rest of the modules are assigned to the neighbor devices which has the least 
latency among them. Since the neighbor devices are arranged in the ascending order 
of their latency, the first neighbor device is selected to place the module. The main 
limitation of this algorithm is it fails to prioritize the modules of an application.

Shahzad Arif et  al.[16] formulated the parental-based prioritization algorithm. 
Like other list scheduling algorithms it has two phases (1) tasks prioritization phase 
and (2) processor assigning phase. This algorithm facilitates the execution of suc-
cessor tasks at the lower level if their parents finished their execution if they have 
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fewer communication costs. But this idea will further delay the execution of the 
tasks at the current level.

Ijaz et al. [18] have proposed this algorithm namely minimal optimistic process-
ing time (MOPT). These tasks are prioritized base on the OPT values, the OPT is a 
task and processor matrix from which the shortest path can be calculated to assign 
a task to a processor. The MOPT has entry task duplication which may increase the 
workload on the devices.

Munir et  al. [19] have proposed standard deviation based algorithm for task 
scheduling (SDBATS). The tasks are prioritized based on the standard deviation 
values of their computation and communication costs. In the processor assignment 
phase, the tasks are assigned to the processor which has the least EFT. The limi-
tation of this algorithm is, it incorporates an entry-level task duplication strategy 
which may increase the workload on the processors.

The related works discussed above concludes that there is an explicit need for a 
new algorithm that should address the limitations of the task scheduling problems. 
Some of the issues to be considered while scheduling the tasks are (1) Computation 
cost of a processing units should be considered while assigning a task. (2) Prec-
edency between the tasks should not be violated. (3) The rank of the tasks should 
reflect their significance. To resolve these issues a new list based static task schedul-
ing algorithm is proposed in this paper. The performance of the proposed algorithm 
is evaluated by conducting extensive experiments. The results show that the pro-
posed algorithm outperforms all other well-known algorithms.

3  Fog architecture

Figure 2 represents the architecture of fog computing model. The framework of fog 
computing consists of a three-level hierarchy where the bottom-most layer consists 
of smart devices which may be wireless sensors, smartphones, home appliances, etc. 

Fig. 2  Hierarchal architecture of Fog computing
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These smart devices produce a huge amount of data and these data which require 
time-sensitive execution are transmitted to the fog layer and the rest are transmit-
ted to the cloud layer for further analysis. The middle layer is the fog layer and it is 
between the terminal device layer and cloud computing layer. The fog devices are 
the primary component of the fog layer and are deployed on the edge of the network 
to provide faster execution of the user data. The devices can be routers, switches, 
gateways, etc. that can provide networking, computing, storage, and capabilities. 
They are also connected to cloud layer to get the benefits of their computing capa-
bilities for further processing of the data. The uppermost layer is the cloud layer, the 
cloud data center, cloud computing, and storage devices are deployed in the cloud 
layer to provide huge data storage capacity, high computing ability, and processing 
of a large variety of data. The hierarchal architecture of fog computing is given in 
Fig. 2.

3.1  Scheduling model

Some of the important terminologies used in the scheduling model are listed in 
Table 1 given below.

3.2  Application Model

An application can be represented by a Directed Acyclic Graph G = (N, E) as shown 
in Fig. 4, where, N represents a set of  ni nodes, where i = (1…n) and each node  ni 
ϵ N represents an application task which has different execution times on different 
processors and E represents the set of communication edges between the tasks. Each 
edge e(i,k) ϵ E has a non-negative weight 

−
c i,k which represents the amount of data 

transferred from task  ni to  nk. Data is a n x n matrix of communication data, where 

Table 1  The symbols and 
notations N Task set in the in graph G

ni Task i in N
e(i,k) Edge from ni to k in G
Wi, j The computation cost of  ni

Ci, j The communication cost of  ei, j

pi The ith processor in processor set P
nentry It is the entry task
nexit, It is the exit task
pred(ni) Predecessor set of  ni

succ(ni) Successor set of  ni

EST(ni,  pj) The earliest start time of task  ni on processor  Pj

EFT(ni,  pj), The earliest finish time of task  ni on processor  Pj

AFT Actual finishing time
Makespan The actual finishing time of the exit task
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data i, k is the amount of data required to be transferred from task  ni to task  nk. An 
application model of fog computing is shown in Fig. 3.

The target computing environment consists of a set of P = {pj: j = 0, m − 1} of m 
heterogeneous processors, each of which is a fog node. It is assumed that the nodes 
are fully connected. All the tasks in the given application are non-preemptive. W is 
a n × m computation cost matrix, where, n represents the number of tasks and m rep-
resents the number of processors in the system.  wi,j gives the computational time of 
the task  ni on the processor  pj. The matrix B has the size of m × m which stores the 
data transferring rates between the processors. The communication cost of transfer-
ring data from the task  ni to task  nk is through edge e(i, k) is given below

where,  datai,k is the amount of data required to be transferred from task  ni to task  nk, −

B represents the average transferring rate among the processors and  ci,k is assumed 
to be zero when both  ni and  nk are scheduled on the same processor. 

−

L represents 
average communication startup time. In this paper, both the communication cost and 
computation cost refer to the time of communication and time of computation.

Some of the important terminologies referred to in this paper are  nentry,  nexit, 
pred(ni), succ(ni), EST  (ni,pj), EFT  (ni,pj), AFT, and makespan. If a task in the 
Directed Acyclic Graph (DAG) has no predecessor task is called an entry task and 
it is represented as  nentry. If it has more than one entry node, a dummy node with 
zero weight and communication edge can be added to the graph. The task without 

(1)ci,k = L + (datai,k)∕B

Fig. 3  An application model of fog computing
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a successor task is called exit task and it is represented as  nexit. If a DAG has more 
than one exit node, then the same procedure which is followed in the entry task has 
to be followed. pred(ni) and succ(ni) represent immediate predecessors and succes-
sors of the task  ni. The entry node is the first node and the exit node is the last node 
that is, no predecessor for the entry node and no successor for the exit node.

EST  (ni,pj) represents the earliest starting time and EFT  (ni,pj) represents the ear-
liest finishing time of the task  ni, on processor  pj, respectively. For entry task

In Fig.  4, the entry task  n1 starts its execution from zero time. So the EST(n1, 
 p1) = 0.

From the entry node, EST and EFT values are calculated recursively using the 
formula given below

where avail [j] is the earliest available time on the processor  pj to execute the task  ni. 
Here the max refers to the maximum of the available time of all the data requested 
by the task  ni on the processor  pj from all its  predecessors. pred(ni) is a set of imme-
diate predecessor tasks of task  ni. The  cm, i is the communication cost between the 

(2)EST
(
nentry, pj

)
= 0,

(3)EST(ni, pj) = max{avail
[
j
]
, max
nm∈pred(ni)

(AFT(nm) + cm,i},

(4)EFT(ni, pj) = wi,j + EST(ni, pj),

Fig. 4  An example DAG diagram with ten tasks along with its communication cost [29]
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predecessor task to the task  ni. For example, in Fig. 4 the task  n8 can start its execu-
tion only if its immediate predecessor tasks  n2,  n4, and  n6 have finished their execu-
tion. The Earliest Start Time of task  n8 depends on the maximum of the finishing 
time of its predecessor along with its communication time and availability of the 
processor.

If the last task  nL is assigned to the processor  Pj, then the availability of the pro-
cessor is the execution time taken by the processor to finish that task. In Fig. 4, EST 
of the task  n1 is zero because task  n1 is the entry task and the execution time of task 
 n1on the processor  p3 is 9 ms. The Earliest Finishing Time of task  n1 is the summa-
tion of the execution time of task  n1 on the processor  p3 and Earliest Start Time of 
task  n1 on the processor  p3.

After finishing the last task the processor is ready to start to execute another task 
which is scheduled for that processor. The scheduling length of the graph will be the 
finishing time of the exit task and its equation is given below

where AFT referred to the actual finish time of the task. If all the tasks in the 
graphs are scheduled, then the makespan will be the actual time to finish the last 
task  nexit.

As it follows the insertion-based policy, the earliest ideal time slot between two 
already-scheduled tasks of the processors is effectively utilized to minimize the 
scheduling length. The tasks are selected based on priority. If a task has more than 
one predecessor task, then it has to wait until all the predecessors finish their execu-
tions. A sample application of 10 tasks with its communicational cost is given in 
Fig. 4. The tasks are represented as nodes and communications are represented as 
edges. The communication cost of task  n1 to its successor task  n2 is 18 ms and all 
other communication costs are given in Fig. 4. The computational costs of the tasks 
on different processors are given in Table 2 [29]. For example, if the task  n1 is sub-
mitted to the processor  p1, then the processor  p1 need 14 ms to finish its execution, 
on the other hand, if the task  n1 is submitted to the processor  p2, then the processor 
 p2 needs 16 ms to finish its execution.

4  The proposed algorithm

As it is based on the static scheduling problem, the communication cost, computa-
tion cost, and task dependencies are known in advance. Making use of this informa-
tion a new algorithm is being proposed and the objective function of the proposed 
algorithm is to minimize both the overall scheduling length of an application and the 
overall computation cost of the processors where the tasks are assigned to gets their 

EFT(n1, p3) = w1,3 + EST(n1, p3)

= 9 + 0

= 9ms

(5)Makespan = max
{
AFT

(
nexit

)}
.
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execution. The proposed algorithm has three phases. They are (1) the level sorting 
phase, (2) the task prioritization phase and (3) the processor selection phase. These 
phases are explained below.

4.1  The level sorting phase

The given DAG is traversed from top to bottom and the tasks which are independent 
of each other are sorted in each level so that the tasks at each level can be executed 
in parallel. In the given DAG G = (N, E), level l1 has entry task  n1. The tasks  nk in 
the level li, such that the edges e(j, k) represents the task  nj is in the level less than 
li-1. For example, the graph in Fig. 4 has an entry task is always in the level l1, next 
to the task  n2, task  n3, task  n4, task  n5, and task  n6 are in the level l2, task  n7, task  n8, 
task  n9, are in the level l3 and exit task  n10 is in the level l4. The tasks in each level 
are independent of each other so that they can be executed in parallel. On the other 
hand task,  n3 and  n7 cannot be executed in parallel as task  n7 dependent on the out-
come of task  n3.

4.2  Task prioritization phase

This is the second phase of the proposed algorithm. In this phase, the tasks are 
ordered according to their priority. The prioritization phase is the most significant 
phase of an algorithm, as the efficiency of the scheduling algorithm mostly depends 
on this phase. So in this phase, the available information is effectively utilized in 
assigning priority to a task to minimize the overall scheduling length of an applica-
tion. To calculate the priority of the tasks, the proposed algorithm considers three 
attributes: (1) cumulative execution cost (CEC), data transfer cost (DTC), and rank 
of predecessor task (RPT). Based on these attributes values, the tasks are prioritized 
and scheduled to the processors. 

Table 2  Computation time 
matrix of Fig. 5 (time in ms)

Task Processor  P1 Processor  P2 Processor P3

n1 14 16 9
n2 13 19 18
n3 11 13 19
n4 13 8 17
n5 12 13 10
n6 13 16 9
n7 16 15 11
n8 5 11 14
n9 18 12 20
n10 23 7 21
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To calculate the priority of a given task, first, the CEC(ni) is calculated for each 
task in the given graph. It is the summation of the execution cost of the processors 
for the given task. The CECn1 of a given task is defined in Eq. (6)

where,  wi, j represents the computation cost of the task  ni on the processor  pj.
The next attributes to be calculated are DTC and rank of predecessor task (RPT) 

[5]. These three attributes of a given task are summed up and assigned as the rank of 
that task. The idea behind adding these three attributes is, the task with more succes-
sors gets higher priority so that its successors need not have to wait for a longer time 
to start its execution.

The DTC is data transfer cost. The DTC of a task  ni is the amount of communi-
cation cost required to transfer the data from task  ni to all its immediate successor 
tasks. It is computed using Eq. (7) given below

where n is the number of immediate successors of a task  ni and DTC is zero for 
exit task.

The RPT of task  ni is calculated by taking the highest rank of all its immediate 
predecessor tasks.

where,  n1,n2…nh are the immediate predecessors of task  ni. As the entry task has 
no predecessor task its RTP value is considered as zero. To calculate the rank of a 
task, the maximum rank of predecessor tasks is considered as one of the parameters. 
Based on the values of the CEC, DTC, and RPT, the rank is calculated for each task 
 ni.

For example, to calculate the rank of the task  n1, CEC(ni)is calculated as shown 
in Eq. (7),

CEC(ni)=14 + 16 + 9  = 39. The DTC is the communication cost incurred to 
transfer data to their immediate successors that are from  n1 to  n2,  n3,  n4,  n5, and  n6. 
In this given example DTC of task  n1 is 64 that is (18 + 12 + 9 + 11 + 14) and RPT 
is the rank of the predecessor task, as task  n1 has no predecessor, its RPT value is 
0. The above-calculated values are summed up and assigned as the rank of the task 
 n1. The rank of the task  n1 is 103. Next, ranks of the tasks  n2,  n3,  n4,  n5, and  n6 are 
calculated using Eq.  (9). Now to calculate the rank of the task  n8 three attributes 
have to be summed up: (1) the CEC of the task  n8 − 30, (2) the DTC value of task  n8 
− 11, and (3) RPT value of the task  n8 − 232. To calculate the RPT value of task  n8, 
the highest rank of its immediate predecessor tasks should be considered. The task 

(6)CEC
(
ni
)
=

m∑
j=1

wi,j

(7)DTC
(
ni
)
=

n∑
j=1

ci,j i < j

(8)RPT
(
ni
)
= Max{rank

(
n1
)
, rank

(
n2
)
… rank

(
nh
)
}

(9)rank
(
ni
)
= CEC

(
ni
)
+ DTC

(
ni
)
+ RPT

(
ni
)
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 n8 receives input from tasks  n2,  n4,  n6. The calculated rank of task  n2, task  n4, and 
task  n6 are 188, 191, and 156 respectively. The RPT is the maximum rank value of 
its immediate predecessors. Therefore, the RPT value of the task  n8-191, as the task 
 n4 has the maximum rank value when compared to the task  n2 and  n6. The ranks are 
arranged in descending order at each level and assigned, the task with the highest 
rank gets higher priority at each level. The scheduling order of the proposed algo-
rithm is {n1,  n4,  n2,  n3,  n6,  n5,  n9,  n8,  n7, and  n10}. The calculated values are shown in 
Table 3

4.3  Processor selection phase

In this phase, the tasks are assigned to their suitable processors to further minimize 
the overall scheduling length. The proposed algorithm follows the non-crossover 
technique [7] in phase for processor selection. This technique enhances the proces-
sor selection phase and facilitates reducing the makespan. Most of the list schedul-
ing algorithms do not follow the non-crossover technique. For example, the HEFT 
algorithm assigns the task to the processor which has the least EFT (local optimal). 
On the other hand, it doesn’t consider the computation cost of the processor. This 
leads to a cross-over of tasks from one processor to another processor to gets its 
execution, often resulted in increased makespan. This limitation can be overcome 
by the non-crossover approach. The non-crossover approach is a technique that will 
decide whether a task has been executed on the processor which has the least EFT 
(local optimal) or on the processor which has the least computation cost (global 
optimal) to further reduce the makespan. The non-crossover decision is made based 
on the cross-threshold value. The proposed algorithm assigns the cross_threshold 
value from 0.0 to 0.3 range of value as this value shows consistent performance over 
a huge variety of graphs [7]. If the cross_threshold value is fixed to 1, then the algo-
rithm resembles more like HEFT that is more cross over between processors on the 
other hand opting zero, no cross over between the processors.

The entry task is assigned to the processor which has the least EFT. After it fin-
ished its execution the task which has the next highest priority is taken from the 
ReadyTask-List and their EFT values for all the processors are calculated. Now the 
computation cost of that task on the processor which produces the least EFT is com-
pared with the computation cost of the same task on all other processors. If both 
the finishing time and the computation cost of a given task are low on the processor 
then the task is assigned to that processor. In contrast, the cross-threshold value is 
calculated. Based on the resulted value, cross-over the decision has to be made. If 
the cross_threshold value is between 0.0 and 0.3 then the task has to be executed on 
the processor which has the least EFT, otherwise, the task gets its execution on the 
processor which has the least computation cost.

 The Cross-Threshold value is the ratio of weight(ni) to weighabstract. The 
weight(ni) is calculated using Eq.  (10). It is the ratio of the absolute time differ-
ence of the computation cost of a given task on different processors to the speedup 
value of that task. The speedup value is the ratio of the execution time on the slower 
processor to the faster processor. The weightabstract is the ratio of the time difference 
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between the EFT values of the task on the processors to the speedup value of the 
EFT. The weightabstract is calculated as shown in Eq. (11).

Here w(ni, pj) is defined as the computation cost of task ni on processor pj.

Here EFT(ni,  pj) is defined as the earliest finishing time of task  ni on processor  pj.

(10)Weight
(
ni
)
=

w(ni, pj) − w(ni, pk)

w(ni, pj)∕w(ni, pk)

(11)Weightabstract =
EFT(ni, pj) − EFT(ni, pk)

EFT(ni, pj)∕EFT(ni, pk)

Fig. 5  Scheduling diagram of 
tasks  n1,  n4,  n2

Table 3  Prioritization of the 
tasks given in Fig. 4 by the 
proposed algorithm

Level (li) Task CEC(ni) DTC(ni) RPT(ni) rank(ni) Priority

1 n1 39 64 0 103 1
2 n2 50 35 103 188 2
2 n3 43 23 103 169 3
2 n4 38 50 103 191 1
2 n5 35 13 103 151 5
2 n6 38 15 103 156 4
3 n7 42 17 169 228 3
3 n8 3o 11 191 232 2
3 n9 50 13 191 254 1
4 n10 51 0 254 305 1
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Next, the cross-threshold value is computed based on the following equation 
given below.

The cross over of Tsk from one processor to another processor is based on the 
value of cross_threshold value.

The processor selection phase starts its execution from the entry task. A sam-
ple scheduling diagram is given in Fig. 5. As all the processors are available for 
execution the entry task starts its execution from zero. The EST value is calcu-
lated from Eq.  (3) and EFT value is calculated from Eq.  (4). The EFT value of 
the entry task on all three processors is calculated as, EFT  (n1,  p1) = 14 and EFT 
 (n1,  p2) = 16, and EFT(n1,  p2) = 9. Since the processor  p3 has the least EFT, Pro-
cessor  p3 is selected for executing task  n1. Now the next task to be executed in 
the priority list is task  n4 and its EST  (n4,  p1) = 18, EST  (n4,  p2) = 18, EST  (n4, 
 p3) = 9, EFT  (n4,  p1) = 31 and EFT  (n4,  p2) = 26 and EFT  (n4,  p3) = 26 values are 
calculated. Now the finishing time of both processors  p2 and  p3 are the same but 
the computation time of the  p2 is less when compared to  p3. so task  n4 is assigned 
to  p2. Since both the finishing time and execution time of processor  p1 is high 
when compared to  p2 and  p3,  p1 is not considered for execution. The next task in 
the priority queue is task  n2. To schedule, task  n2 its EST and EFT are calculated. 
They are EST  (n2,  p1) = 27, EST  (n2,  p2) = 27, EST  (n2,  p3) = 9, EFT  (n2,  p1) = 40, 
EFT  (n2,  p1) = 46 and EFT  (n2,  p3) = 27. Now the decision has to be made for 
assigning task  n2 on a suitable processor because  p3 has the least finishing time 
on the other hand  p1 has the least computation cost. The earliest finishing time of 
task  n2 on the processor  p3 is minimum when compared to the processor  p1, but 
the computation cost of the processor  p1 to execute the task  n2 is13 whereas the 
computation cost of the processor  p3 is 18. Even though the processor  p3 has the 
least EFT, its computation cost to execute task  n2 is high. Now the decision has 
to be made on which processor the task  n2 has to be executed, whether task  n2 is 
to be executed on the processor  p1or  p3. To make the decision Cross_Threshold 
value is calculated as shown in the Eq. (12)

If the resulted value is between 0.0 and 0.3 the task is assigned to the proces-
sor which has the least earlier finishing time. If the value is above 0.3, then the 
task is executed on the processor which has the least computational cost. The 
Cross_Threshold value of task  n2 = weight(ni)/weightabstract = 18−13(18∕13)

⎛⎜⎜⎝
40−27
40
27

⎞
⎟⎟⎠

 = 0.41. The 

calculated value is greater than 0.3 so. task  n2 gets its execution on the processor 
 p1 which has the least computation cost. The next task to be executed is task 
 n3.the EST  (t3,  p1) = 40, EST  (n3,  p2) = 26, EST  (n3,  p3) = 9, EFT  (n3,  p1) = 51 and 
EFT  (n3,  p2) = 39 and EFT  (n3,  p3) = 28. Now the decision has to be made on 
which processor task  n3 has to be executed to minimize the makespan. as the pro-
cessor  p1 has the least computation cost and processor  p3 has the earlier finishing 
time. The cross_threshold value of task  n3 = 19−11(19∕11)

51−28
(51∕28)

  = 0.36. The resulted value is 

(12)Cross_threshold =
weight

(
ni
)

weightabstract
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greater than 0.3 so the task  n3 can be assigned to processor  p1 which has the least 
computation cost. But the processor  p2 has the minimum earliest finishing time 
when compared to  p1 so the cross_threshold value between  p1 and  p2 is to be cal-
culated to finalize the decision. The cross_threshold value of the processor  p1 and 
 p2 is 0.18 (which is between 0.0 and 0.3) so the task  n3 is assigned to processor 
 p2. Following the same procedure rest of the tasks are scheduled to their suitable 
processor. As shown in Fig. 6 the tasks  n2 and  n8 are executed on the processor 
 p3, tasks  n4,  n3,  n7,  n9, and  nt10 are executed on the processor  p2, and task  n1,  n5, 
and  n6 are scheduled on processor  p3. Due to this balanced decision of assigning 
the task between the processors, the proposed algorithm gains the lowest makes-
pan, whereas the makespan of HEFT-80, makespan of PEFT-85, makespan of 
MOPT-85, and SDBATS-88. The processor selection is shown in Tables 4 and 5 
shows the total computation cost spent to execute all the tasks, the proposed algo-
rithm has the least Overall computation cost on processors, Overall computation 
cost of the proposed algorithm-92, HEFT-110, PEFT-128, SDBATS-154, and 
MOPT-176, respectively.

4.4  Flowchart of the proposed algorithm

See Fig. 7.

Fig. 6  Scheduling diagram for Fig. 4
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5  Simulation experiment and result discussion

The main purpose of this experiment is to verify the performance of the proposed 
algorithm with other existing algorithms like PEFT, HEFT, MOPT, and SDBATS.

5.1  Simulation environment

The proposed algorithm was implemented using iFogSim. iFogSim is a simula-
tion framework that enables us to simulate, model, and experiment with the fog 
system. The simulation environment consists of Nodes which are the processing 
nodes capable of executing the incoming tasks. The fog nodes are heterogene-
ous. Each fog node can perform the execution of tasks at the same can communi-
cate with other fog nodes. The fog nodes are connected with high-speed networks 
and all the tasks are non -preemptive on the nodes. The random graph generator 
is used to produce a huge variety of graphs that serve input to the fog nodes. 
The proposed algorithm was written in the Java programing language. It has been 
simulated on Intel Core i5 Processor, 2.3 GHz machine having 3 MB of L3 cache 
and 4 GB of RAM running Mac OS, Eclipse IDE, and iFogSim Toolkit.

5.2  Comparison metrics

Some of the performance metrics used in this experiment for comparing the algo-
rithms are given below.

Table 4  Processor selected by 
the proposed algorithm

Task rank(ni) Processor 
selected

Earliest start 
time (EST)

Earliest 
finish time 
(EFT)

n1 103 p1 0 9
n4 191 p2 18 26
n2 188 p3 27 40
n3 169 p2 26 39
n6 156 p1 9 18
n5 151 p1 18 28
n9 254 p2 56 68
n8 232 p1 53 58
n7 228 p2 39 54
n10 305 p2 69 76
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Fig. 7  Flow chart for the proposed algorithm
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5.2.1  Makespan

Makespan is the most likely expected metric in scheduling problems because 
using this value other metrics like SLR, Speeup ratio also calculated. Makespan 
in the execution finishing time of the exit task.

5.2.2  Scheduling length ratio (SLR)

It is the most preferable performance measure of a scheduling algorithm. Nor-
malizing the scheduling length to a lower bound is called scheduling length ratio 
(SLR). It is the ratio between the makespan and critical path including com-
munication (CPIC). The critical path is the longest path from the entry node to 
the exit node of the given DAG on the fastest processor. The makespan is the 
actual finish time of the exit node in the given DAG. Since the denominator is 
the lowest bound, the value of the SLR cannot be lower than 1. The task schedul-
ing algorithm, which has the least SLR value, is considered the best performing 
algorithm.

The denominator is the summation of the minimal computation cost of the 
tasks on the critical path(CP).

5.2.3  Speedup

It is the ratio between the sequential execution time to the parallel execution 
time. The sequential execution time is assigning all the tasks to a single processor 
which minimizes the overall cumulative computation costs. The parallel execu-
tion time is the makespan

5.2.4  Number of occurrences of better quality schedules

This is the count of the number of times an algorithm schedules better, equal, or 
worst when compared with other algorithms.

(13)SLR =
makespan∑

ni�CPMIN
minpj∈Q{wi,j}

(14)Speedup =
minpj∈Q{

∑
ni∈N

{wi,j}}

makespan
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5.2.5  Average running time of the algorithms

It refers to the execution time for obtaining the output schedule of a given DAG. 
The lower the values better the algorithm is.

5.3  Random graph generator (RGG)

This Random Graph Generator helps in generating a huge variety of graphs that help 
this experiment to test the algorithm in a more complex environment. Some of the 
inputs to the graphs are given below.

• n: total number of tasks in the graph(n);
• Shape (α): the shape of the graph depends upon the value of α, if the chosen α 

value is greater than 1.0 then a denser graph is generated or a longer graph by 
choosing the value α lesser than 1.0. The denser graph has a high degree of par-
allelism and a longer graph has a low degree of parallelism.

• Density: it indicates the number of out-degree from the given task. With varying 
the value of density the number of edges can be varied from few to large.

• Jump: It references to the connection of edge can go from level i to level i + jump
• CCR (communication to computation ratio): It is the ratio of the sum of the 

weights of the edges to the sum of the weights of the nodes. If CCR = 0.1 then it 
is a computationally intensive application. If CCR = 10.0 then is a data-intensive 
application.

• β: This value indicates the heterogeneity factor of the processors. It is the range 
percentage of the computation costs on the processors. By varying the β value, 
the heterogeneity factor of the tasks can be varied. For a high β value, graph with 
the huge difference in computing cost among the tasks are generated and for a 
lower β value, the tasks with the same computing cost are generated

In this experiment around 5000 graphs are generated and the algorithms are 
implemented and results are observed. Different varieties of graphs were generated 
by setting the parameters in different combinations given below.

v = {10, 30, 50, 100, 200, 300, 500, 1000}
α = {0.1, 0.5, 1.0, 2.0}
density = { 1, 2, 3, 4, 5}
jump = {1, 2, 4}
CCR = {0.1, 0.5,1.0, 5.0, 10.0}
β = {0.1, 0.5, 1, 2}
P = {2, 4, 12, 24}
By varying the parameters mentioned above about 9000 graphs can be generated. 

To conduct this experiment about 10 DAG for each set with different tasks and edge 
weights are generated so a total of 90,000 different graphs set are generated and 
scheduling algorithms are executed. The performance metrics are calculated for all 
the stated algorithms and finally, the results are compared among them.
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5.4  Performance results

This section of this paper deals with the performance comparison of the proposed 
algorithm with other algorithms like HEFT, PEFT, MOPT, and SDBATS concern-
ing various graph characteristics like SLR, Speedup, Makespan, and algorithm run-
ning time.

5.4.1  Average scheduling length ratio

The denominator of the SLR is the lowest computation cost of the tasks in the criti-
cal path. The makespan is always greater than the denominator of the SLR equation 
so the algorithm with a lower SLR value is the best. As the SLR is the key factor 
in deciding the performance of an algorithm, this experiment is carried out against 
different factors like different task sets, CCR, and heterogeneity factor. To assess the 
performance of the proposed algorithm a huge variety of graphs with different task 
sets (10, 30, 50, 100, 200, 300, 500, 1000) are generated and the obtained average 
SLR values for all the algorithms are plotted and are shown in Fig. 8.

The next experiment is concerning various CCR values. The graphs with 0.1, 
0.5, 1.0, 5.0, 10.0 values of CCR are generated and the outcome results for all the 
algorithms are noted. It is observed that the proposed algorithm consistently outper-
forms all other algorithms. Figure 9 shows the average SLR value against different 
CCR values for all the algorithms. The results show that the proposed algorithm 
has the lowest average SLR value for all the CCR values. For the CCR value of 0.1 
the proposed algorithm is 6% better than PEFT, 13% better than HEFT, 26% better 
than MOPT, and 39% better than SDBATS algorithms. For a CCR Value of 10, the 

Fig. 8  Average SLR for the different task set
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Fig. 9  Average SLR for various CCR 

Fig. 10  Average SLR for various heterogeneous factors
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proposed algorithm performs better than PEFT by 7%, HEFT by 17%, MOPT by 
27%, and SDBATS by 30%. It is noticed that the increase in the CCR value didn’t 
affect the performance of the proposed.

Another experiment is conducted to measure the quality of scheduling of the pro-
posed algorithm against the heterogeneity factor of the graph. The varying value of 
β will affect the heterogeneity of a graph. A greater value of β will generate a high 
heterogeneous graph. In this experiment, four different values of β are taken (0.1, 
0.5, 1, and 2). It is observed that for β = 0.1, the proposed algorithm is better than 
the PEFT algorithm by 7%, the HEFT algorithm by 15%, the MOPT algorithm by 
30%, and the SDBATS algorithm by 39%. For β, = 0.2, the proposed algorithm is 
better than the PEFT algorithm by 21%, the HEFT algorithm by 25%, the MOPT 
algorithm by 38%, and the SDBATS algorithm by 47%. For all the four values of 
β, the proposed algorithm outperforms all other algorithms as shown in Fig.  10. 
The proposed algorithm produced the lowest value of SLR when compared to other 
stated algorithm is due to the balanced decision of cross over technique followed 
by it. Even though the SDBATS algorithm follows an entry-level task duplication 
policy, comparatively it has the highest value of SLR.

The Speedup is also one of the performance deciding factors of an algorithm. The 
speedup is the ratio of sequential executing time to the parallel execution time. The 
sequential execution time is the cumulative computation time taken by the tasks on 
the fastest processor. The speedup value of a good algorithm should be always high. 
To evaluate the proposed algorithm in terms of speedup this experiment is being 
conducted. For this, a huge variety of graphs with task sets varied from 10 to 1000 
are generated and all the stated algorithms are executed. The speedup value for all 
the stated algorithms is computed and it is shown in Fig. 11. The results show that 

Fig. 11  Average speedup value for the different task set
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the proposed algorithm is better than the PEFT algorithm by 11%, HEFT algorithm 
by 13%, SDBATS algorithm by 17% MOPT algorithm by 20%.

Figure  12 shows the speedup value concerning various CCR values. For the 
value, CCR = 0.1 the proposed algorithm shows improvement in speedup value by 

Fig. 12  Average Speedup value for various CCR 

Fig. 13  Average speedup for various heterogeneity factors
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11% for PEFT, 15% for HEFT, 20% for MOPT, and 24% for SDBATS. The results 
show that the Proposed algorithm has the highest speedup value when compared 
to all other mention algorithms. This improvement in the performance in speedup 
value against CCR is due to the restriction in the number of the crossover which lim-
its the data transferred between the processors.

The next experiment is being conducted concerning the heterogeneity of the 
graphs. The graphs with different heterogeneity (β) are generated and the speedup 
value of all the stated scheduling algorithms is calculated and is shown in Fig. 13. 
The speedup value of the proposed algorithm is noticeably high when compared to 
all other algorithms. It is 13 better than PEFT, 26% better than HEFT, 33% better 
than MOPT, and 40% better than SDBATS.

The outcome makespan of a scheduling algorithm should be always expected to 
be low because all other performance metrics depend on the makespan. The makes-
pan is the overall scheduling length of the tasks. Figure 14 shows the average makes-
pan concerning different task sets. The proposed algorithm has the lowest makespan 
when compared to all other algorithms. For the task set of 1000, the proposed algo-
rithm performs better than PEFT by 9%, HEFT by 15, MOPT by 17%, and SDBATS 
by 33%. The gain in makespan is due to the optimized prioritizing phase of the pro-
posed algorithm.

Figure  15 shows the average makespan concerning different CCR values. The 
proposed algorithm has the lowest makespan when compared to all other algo-
rithms. For the highest CCR value = 10 the proposed algorithm is better than PEFT 
by 12%, HEFT by 10%, MOPT by 13%, and SDBATS by 21%. The proposed algo-
rithm yields minimal makespan when compared to all other stated algorithms.

Fig. 14  Average makespans for the different task set
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Fig. 15  Average makespan for different value of CCR 

Fig. 16  Average running time for the different task set
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The average running time of the algorithms is observed and plotted in the graph 
shown in Fig. 16. It is observed that the proposed algorithm is the fastest one when 
compared to other algorithms. The set of 1000 tasks are executed and the result 
shows that the proposed algorithm performs better than PEFT by 10%, HEFT by 
14%, MOPT by 12%, and SDBATS by 24%.

5.4.2  Performance comparison of real‑world scientific workflow

To further evaluate the performance of the proposed algorithm, the application of 
real-world problems like Gaussian elimination (GE), montage, epigenomic and 
are considered. In real-world applications, the structure of the application graph 
is known, other parameters like Shape parameters, out-degree, and density are not 
required. The same value of CCR and heterogeneity specified in Sect. 5.3 are con-
sidered for this experiment. On the other hand, a new parameter, matrix size(m) is 
used to calculate the number of tasks. The total number of tasks in the GE graphs is 
equal to m

2+m−2

2
 . In this experiment, the matrix size of 5 to 15 is considered. So that 

the graph with 14–119 task sets is considered to conduct the experiments. The aver-
age SLR as the function of matrix size is shown in Fig. 17. The proposed algorithm 
has the lowest SLR when compared to all other reported algorithms. For matrix size 
of 15 the proposed algorithm performs 5% better than the PEFT algorithm, 15% bet-
ter than the HEFT algorithm, 22% better than the MOPT algorithm, and 35% better 
than the SDBATS algorithm.

Figure 18 shows the average SLR value against various CCR values is calculated. 
It is observed that the proposed algorithm outruns all other stated algorithms for all 
the values of CCR.

Fig. 17  Gaussian elimination application workflow: average SLR value for different matrix size
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Montage is another real-world application that is used to custom an astronom-
ical image mosaic of the sky. The Montage of 23,50,100 tasks is used in this 
experiment. Figure 19 shows the average SLR value as the function for different 

Fig. 18  Gaussian elimination application workflow: average SLR value for different CCR 

Fig. 19  Montage workflow: average SLR value against various CCR 
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Fig. 20  Montage workflow: average SLR value against different heterogeneity factors

Fig. 21  Montage workflow: average makespan
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Fig. 22  Epigenomic workflow: average SLR for different CCR values

Fig. 23  Epigenomic workflow: SLR for various heterogeneity factor
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CCR values. For CCR = 10 the average SLR value of the proposed algorithm is 
better than PEFT by 20%, HEFT by 2%, MOPT by 22%, and SDBATS by 31%.

The results in Fig. 20 show the obtained average SLR value against different 
heterogeneity parameters. When β = 2 the proposed algorithm performs better 
than PEFT by 20%, HEFT by 10%, MOPT by 20%, and SDBATS by 80%.

In the next experiment average makespan is calculated for different montage 
task sets. The proposed algorithm has reduced schedules when all other algo-
rithms are shown in Fig. 21. This reduced makespan is due to the balanced cross-
over decision of the proposed algorithm.

Epigenomic Workflow is another real application workflow. It is used to com-
pare the genetic performance of human cells on genome range. Like other real-
time applications, the structure is known and different CCR, heterogeneity, and 
number of nodes are considered. Figure  22 shows for the CCR value of 10 the 
proposed algorithm is 42% better than PEFT, 29% better than HEFT, 42% better 
than MOPT, and 55% are better than SDBATS.

The average SLR value concerning various heterogeneity is shown in Fig. 23 
respectively. For heterogenety = 2, the proposed algorithm is 6% better than 
PEFT, 13% better than HEFT, 20% better than MOPT, and 26% than SDBATS.

The final experiment is based on a cyber shake task graph. This workflow is 
used to characterize the earthquake hazard. Figure 24 shows the average makes-
pan for various task sets. The proposed algorithm outruns all other algorithms 
with reduced scheduling time.

Figure  25 shows the average SSR results for various CCR values, for CCR 
value = 10 the proposed algorithm is 42% better than PEFT, 29% better than 
HEFT, 68% better than MOPT, and 55% better than SDBATS.

Fig. 24  Cyber shake workflow: SLR for the different task set
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Fig. 25  Cyber shake workflow: SLR for various CCR factor

Fig. 26  Cybershake workflow: SLR for various Heterogeneity factor
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The final experiment finding average SLR for various heterogeneity factors. Fig-
ure 26 shows the performance results of all the algorithms. The proposed algorithm 
outperforms all other stated algorithms.

From all the above experiments it is observed that the proposed algorithm exhib-
its sustainable performance improvement. Some significant feature of this algorithm 
is

• Tasks are prioritized accurately based on their significant.
• The balanced decision between local optimal and globally optimal.
• Restricted cross-over between processors.
• The computation cost of the processor is accessed while assigning a task.

Following these strategies, the proposed algorithm can effectively schedule the 
tasks in the workflow and can produce good performance matrices when compared 
to all other mention algorithms.

6  Conclusion and future work

In this paper, a new list-based task scheduling algorithm is proposed to schedule 
the DAG structured task in fog environment. This algorithm has three phases. The 
first phase facilitates the execution of tasks that are independent of each other and 
in the second phase, the task with more successor tasks is given higher priority so 
that more tasks in the next level need not have to wait. In the final phase decision 
between local optima and global optimal is balanced to further minimize the makes-
pan and overall computation cost of the processors. To evaluate the performance 
of the algorithms random graph generator is used to produce more complex graph 
structures is also used. The experiment results show that the proposed algorithm is 
better than all other stated algorithms in terms of performance matrices. The com-
plexity of this algorithm is O (n + e) (p + log n), where n is the number of tasks 
and p is the number of processors. Further, as future work, this approach can be 
extended for a dynamic network.
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