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Abstract

Modern services and applications need to react to changes in their context (e.g. loca-
tion, memory consumption, number of users) to improve the user’s experience. To
obtain this context, a monitoring infrastructure with adequate functionality and qual-
ity levels is required. But this monitoring infrastructure needs to react to the context as
well, raising the need for context-aware monitoring tools. Provide a generic solution
for context-aware monitoring able to effectively react to contextual changes. We have
designed CAMA, a service-oriented Context-Aware Monitoring Architecture that can
be easily configured, adapted and evolved according to contextual changes. CAMA
implements a decoupled architecture and manages a context domain ontology for
modelling the inputs, outputs and capabilities of monitoring tools. CAMA has been
demonstrated in three real use cases. We have also conducted different evaluations,
including an empirical study. The results of the evaluations show that (1) the overhead
introduced by the architecture does not degrade the behavior of the system, except
in extreme conditions; (2) the use of ontologies is not an impediment for practition-
ers, even when they have little knowledge about this concept; and (3) the reasoning
capabilities of CAMA enable context-aware adaptations. CAMA is a solution use-
ful for both researchers and practitioners. Researchers can use this architecture as a
baseline for providing different extensions or implementing new approaches on top of
CAMA that require context-aware monitoring. Practitioners may also use CAMA in
their projects in order to manage contextual changes in an effective way.
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1 Introduction

Context-awareness is a key feature in modern approaches and computer paradigms,
such as Pervasive Computing, Smart Cities and the Internet of Things. This feature
implies that services and applications must be aware of their changing contexts to
automatically adapt their functionality in order to improve the quality of experience
(QoE) of its users [16]. Context-awareness requires several components and processes
working together with the aim to accomplish the context life cycle, which embraces
context acquisition, modelling, reasoning and dissemination [19].

To illustrate this with an example, a video streaming service platform might be
interested to acquire the QoE reported by its end-users in Social Media as contex-
tual information for its services. For optimal performance, the configuration of the
monitoring tools needs to be aware and adapt to the context as well. For instance,
depending on the number of messages that users share in Social Media, the monitor-
ing tools could adapt the keywords and frequency of monitoring to adjust the amount
of messages collected. If an excessive amount of messages is obtained, it would be
adequate to use more restrictive keywords in order to improve precision in expense of
recall, whether if not many messages are obtained, it would be preferable to use less
restrictive keywords to improve recall in expense of precision.

In the context life cycle, the first of the phases, context acquisition, is responsible
for (1) gathering the context raw data from different entities (agents and resources)
and (2) disseminating the gathered data to the interested parties. Context acquisition is
implemented through monitoring tools that integrate software services and sensors as
data gathering instruments [33,40]. However, monitoring tools are software applica-
tions themselves; therefore, they also need to be aware of their own context to deliver
the best possible functionality with adequate quality [45].

In this paper, we are interested in context-aware monitoring, which basically raises
two main challenges to be solved related to the two aforementioned responsibilities
of context acquisition, namely data gathering and dissemination. First, context-
aware monitoring tools should support dynamic capabilities, i.e., reconfiguration and
adaptation to continuously obtain and provide reliable context information. This char-
acteristic is necessary to bind the behavior of the monitoring tool to the behavior of the
context-aware system under supervision [4]. If the system incorporates new features
or changes the behavior of existing ones, the monitoring tool needs to be able to gather
different data. In addition, a context-aware monitor needs to react automatically when
a source of data becomes temporarily unavailable. This challenge generates a first
research question (RQ):

@ Springer



A context-aware monitoring architecture for supporting... 1623

— RQI: In what way can we provide a context-aware monitoring tool with the
required reconfiguration and adaptation capabilities to face the constantly changing
situation of the services and applications that compose a context-aware system?

This RQ can be decomposed into the following sub-RQs, considering the typology of
events that may trigger a reconfiguration as explained above.

— RQI.1: In what way can a context-aware monitoring tool manage the supervision
of new features or entities?

— RQ1.2: In what way can a context-aware monitoring tool manage dynamic capa-
bilities (i.e., reconfiguration, adaptation and evolution) when new requirements or
changes in the context data, functions or quality features of an entity are detected?

— RQI1.3: In what way can a context-aware monitoring tool manage the failure of a
data gathering instrument?

Note that the sub-RQs are related to the reconfiguration capabilities of a context-aware
monitoring tool. However, RQ1.1 is more related to research the capability of adding
new monitors for monitoring new features or entities; RQ1.2 is related to research the
capability of reconfiguring monitors that are already deployed; and RQ1.3 investigates
the capability of detecting failures in a monitoring tool and replacing it.

Second, the gathered data needs to be classified according to a well-defined data
schema in order to avoid risks in data management, mainly in its dissemination and
storage, due to ambiguity, inconsistencies and poor integrity and characterization. This
challenge yields a second research question:

— RQ2: In what way can we structure, store and manage the data gathered by a
context-aware monitoring tool in order to be easily disseminated to other compo-
nents?

To the best of our knowledge, and as discussed later in the state of the art section,
none of the existing context-aware monitoring frameworks fully satisfy all the pre-
sented RQs. To cover such a gap, we propose CAMA, a Context-Aware Monitoring
Architecture. It is based on state of the art software patterns of service-oriented
architecture [34], enabling to plug and play different monitors that can be easily recon-
figured, evolved and adapted for supporting highly dynamic environments. CAMA
includes a component to handle a context ontology for conceptualizing the inputs,
outputs and capabilities of monitoring tools that can be useful to disseminate a unified
and representative schema of monitored data. The ontological approach proposed in
this paper includes the context ontology presented in [11] in the core of CAMA, and
proposes its extension in every instance of the architecture in a particular scenario,
yielding to scenario-specific context domain ontologies.

It is important to highlight the importance of using an ontology in the core of
CAMA against other alternatives. In a previous work [10], we discussed the context
modelling research, perspectives and formalism, and we found that one of the most
suitable context modelling techniques are ontologies, in spite of some of its weaknesses
and the existence of other popular techniques, such as key-value, mark-up scheme,
graphical, object oriented and logic-based approaches [35]. Nowadays, we find that
several authors working on context-aware computing choose ontologies for modelling
context information [2,3,37]. The main reasons are: ontologies enable the sharing of
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knowledge by open dynamic agents (e.g., web services), they supply semantics for
intelligent agents to reason about context information, they promote the interoperabil-
ity among devices and computational agents, they enable semantic interoperability
and provide common understanding of the structure of context information classes
among users, and they provide inference mechanisms for predicting user needs and
expectations, among others. CAMA could also be realized using one of the other
aforementioned alternative techniques, but due to the characteristics discussed above,
we considered the ontologies as the most suitable modelling technique in CAMA, as it
can also provide the semantic data structure that can be used for different data sources
(e.g., databases).

The feasibility of the proposed context-aware monitoring architecture has been
demonstrated through three specific use cases belonging to different domains: smart
city apps and services, a platform for saving home energy consumption, and a video
streaming service. This diversity shows that our proposed solution can be applied to dif-
ferent domains and software platforms. Those use cases have also helped us to identify
the requirements that such context-aware monitoring framework should have. Addi-
tionally, to demonstrate the feasibility of the proposed approach, we have performed
different evaluations, including an empirical study that focuses on the usability of the
proposed ontology that is managed by participants with different degrees of modeling
ontologies and monitoring expertise. The results of the evaluations show that:

— Extending our proposed ontology with new monitoring tools to supervise new
features or entities can be achieved in a timely and correct manner even with a low
expertise in ontologies and monitoring (RQ1.1).

— Multiple monitoring tools can be reconfigured in parallel with an adequate perfor-
mance (high frequency of reconfigurations and a low response time) (RQ1.2).

— Failing measure instruments can be replaced in parallel with an adequate perfor-
mance (high frequency of replacements and a low response time) (RQ1.3).

— The data gathered by the architecture can be easily structured, stored and managed
to be disseminated to other components (RQ?2).

The rest of this paper is structured as follows. Section 2 surveys the related work.
Section 3 presents the research method that has been used to define our proposed
solution. Section 4 describes the CAMA monitoring architecture. Section 5 provides
the details on the CAMA ontological basis. Section 6 provides implementation details
of the proposed architecture and ontology. Section 7 evaluates different features of
the monitoring architecture and the ontology proposed in this work. Finally, Sect. 8
presents the conclusions.

2 State of the art

In the last recent years, several research approaches have emerged in the field of
context-aware monitoring. Most of them are aligned with trending computer paradigms
(e.g., Pervasive Computing, Smart Cities and the Internet of Things).

We have conducted a literature review and evaluated the related work by analyzing
how they address the RQs defined in Sect. 1. The selection of papers has been conducted
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following some systematic principles. We have searched for papers containing the
keywords ‘“context” and “monitoring” using the Google Scholar database. Due to
the enormous amount of results, we picked the 25 most relevant papers according to
the database ranking. From these 25 results, 14 were discarded for being out scope,
leading to 11 papers to analyse. Then we conducted a backward snowballing process
to obtain additional relevant papers that the string-based search could have missed. We
included the works that were cited by more than one paper and were in the scope of
context monitoring. In this step, 4 new papers were added, yielding to 15 papers. Then
we grouped those papers that referred to the same proposal, leading to 13 proposal.
Finally, we applied forward snowballing techniques to obtain the last version of those
proposals.

The list of papers and its analysis is shown in Table 1 and described below.
RQI.1 - In what way can a context-aware monitoring tool manage the supervision
of new features or entities? Most of the approaches have an extensible architecture
capable of adding new monitoring tools to gather new metrics with a generic scope
and in an automatic manner (i.e., without manually recompiling or linking the code)
[12,21-23,26,27,29,30]. Other approaches can add new monitoring tools but their
scope is limited to just the healthcare environment [13], or to particular technologies,
like cellphone devices [25,28,38] or SOA governance platforms [42—44]. CARE [6]
and Esposito et al. [14] can handle multiple monitoring tools, but it is not clear if adding
one may require some manual intervention. Finally, CLAD [31,32] and CALM [20]
do not provide the capability to add new monitoring tools.

RQ1.2 - In what way can a context-aware monitoring tool manage dynamic capa-
bilities (i.e., reconfiguration, adaptation and evolution) when new requirements or
changes in the context data, functions or quality features of an entity are detected?
Some approaches include reconfiguration capabilities with a generic scope and in
an automatic manner [13,23,25,28,38,42—44]. Other approaches can reconfigure the
monitoring tools dynamically but are limited to a specific scope (e.g., they can just
activate/deactivate monitoring tools) [6,12,21,22,26,27,29-32]. Finally, CALM [20]
and Esposito et al. [14] do not support dynamic reconfigurations.

RQ1.3 - In what way can a context-aware monitoring tool manage the failure of a data
gathering instrument? Most of the contributions are not able to detect and replace a
failing monitoring tool [6,12—14,20-22,29,30,42—44]. Only CoMon [25,28], CLAD
[31,32] and Contory [38] have mechanisms to detect and replace failing monitoring
tools with a generic scope and low effort. MobiCon [26,27] and Orchestrator [23]
can detect when a monitoring tool is unavailable but other types of failures are not
investigated.

RQ?2 - In what way can we structure, store and manage the data gathered by a context-
aware monitoring tool in order to be easily disseminated to other components? Most
approaches provide an API with a rich query mechanism to gather data, but without
using an ontology [12,13,21-23,25-30,38,42-44]. The lack of an ontology hampers
the ability to integrate the data with other sources or tools in a richly manner, as
ontologies are well-known to be a powerful instrument that facilitates knowledge
and data sharing between different frameworks. Esposito et al. [14] present the only
approach that defines an ontology to provide semantics to the monitored data. CARE
[6] provides an architecture that would eventually interact with ontological reasoners,
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Fig.1 DSR knowledge contribution framework [15]

but this aspect was not addressed in the paper. Finally, some approaches provide just
a simple API to gather the monitored data without rich semantics [20,31,32].

Although all the approaches satisfy some of the RQs to a certain extent, none of
them fully satisfies all the presented RQs. As depicted in Table 1, none of the existing
approaches fully satisfies more than 2 out of 4 RQs.

Finally, it is worth to mention that context-aware monitoring is related to Appli-
cation Performance Management (APM). APM tools monitor and manage the
performance of complex software applications by supporting the detection, diagnosis
and resolution of performance problems [1,7,18,39]. However, APM tools are driven
by performance issues, whereas context-aware monitoring is driven by contextual
changes (which might include, but are not limited to, performance). Furthermore, to
the best of our knowledge, current APM tools do not have context-aware self-adaptive
capabilities.

To improve this state of the art, we have developed CAMA, a monitoring system
capable of adding new monitoring tools (RQ1.1), with reconfiguration capabilities
(RQ1.2), able to replace failing monitoring tools (RQ1.3) and able to provide access
to the monitored data by means of a rich semantics mechanism with the elements
structured and defined through an ontology (RQ2).

3 Research method
To address our RQs, we have applied the Design Science Research (DSR) method

[15]. DSR is a research methodology that offers guidelines to conduct research and is
usually applied in the fields of Engineering and Computer Science.
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Table 2 Contribution levels in DSR [15]

Contribution level

Example artifacts

More abstract, complete and mature knowledge

¢

More specific, limited, and less mature knowledge

Level 3.
Well-developed
design theory about
embedded
phenomena

Level 2. Nascent
design
theory—knowledge
as operational prin-
ciples/architecture

Level 1. Situated
implementation of
artifact

Design theories
(mid-range and
grand theories)

Constructs, methods,
models, design
principles,
technological rules

Instantiations
(software products
or implemented

processes)

Table 3 Contribution levels in our RQs

RQ Level 2 Level 1

RQ1 CAMA: A software architecture
for Context-aware monitoring

tools

An instantiation of CAMA by
adding a set of monitoring tools
for Social Network monitoring

An instantiation of CAMA by
extending the ontology with the
concepts of the Social Network
monitoring domain

RQ2 A domain context ontology for

CAMA

DSR defines 4 types of knowledge contributions depending on the maturity of
the problem (or application domain) and the maturity of the solutions in the existing
literature (see Fig. 1).

The contributions of this paper fit into the Improvement category. In this category,
the domain application is a well-known and established field of research (in our case,
the challenges in context-aware adaptive monitoring), whereas the existing solutions
do not fully satisfy the problems being addressed (as described in the previous section).

DSR contributions in the Improvement category provide their results in the form of
artifacts at one or more levels of abstraction (see Table 2).

In this work, we tackle the RQs by producing the needed artifacts at Level 1 and
Level 2 (see Table 3).

These artifacts are part of the results of the EU H2020 project SUPERSEDE.! Their
development has been conducted in an iterative manner. We first conducted several
interviews and on-site workshops with three use cases of the project, namely Siemens,
SEnerCon and ATOS to understand their needs related to context monitoring. Each use

1 http://www.supersede.eu.
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case belongs to a different domain, namely smart city apps and services, a platform
for saving home energy consumption, and a video streaming service, respectively.
The initial meetings with the use case providers were used to specify the purpose,
requirements and scope of the artifacts to be developed. Subsequent regular meetings
(both online and on-site) were conducted to assess that the development of CAMA
fulfilled the defined objectives.

4 CAMA: a software architecture for context-aware monitoring
4.1 Architecture (DSR Level 2)

We propose in this section CAMA, a Context-Aware Monitoring Architecture able
to integrate different individual monitoring tools. CAMA is intended to support the
constant changes in the context that characterize the situation of different entities
including not only the services and applications that conform the context-aware system
under supervision, but also its own components.

To design CAMA, we have considered several high-level requirements that we
identified with the help of the use cases involved. The four first ones derive from the
RQs presented in Sect. 1, whilst the latter four are necessary quality requirements
obtained from the use cases in order to make the resulting architecture usable in
practice:

— Reql: CAMA must provide the capability to add new monitoring tools with min-
imal effort. This requirement addresses RQ1.1.

— Req2: CAMA must provide the capability to reconfigure the monitoring tools
automatically. This requirement addresses RQ1.2.

— Req3: CAMA must provide the capability to replace a failing monitoring tool
automatically. This requirement addresses RQ1.3.

— Req4: CAMA must provide the capability to access the monitored data using arich
semantics method mechanism with the elements structured and defined through
an ontology. This requirement addresses RQ2.

— Req5: CAMA must facilitate its integration with other systems in order to support
activities that are built on top of context monitoring (e.g., decision-making, self-
healing, self-improvement,...).

— Req6: CAMA must allow the integration of several monitoring tools that monitor
different software components or devices, and are not limited to a particular scope
or technology.

— Req7: CAMA must be secure in terms of authentication and authorization in order
to grant access only to those who have the required permissions.

— Req8: CAMA must perform in such a manner that any malfunction or low per-
formance of any monitor does not affect the monitored system.

To satisfy these requirements, CAMA is structured as a loosely coupled architecture
that is organized as follows (see Fig. 2):

— Group of monitoring tools. This set of components represent the monitoring tools
that gather context-related data (e.g., number of tweets per second), supporting then
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Fig.2 Context-aware monitoring architecture

Req6. Each monitor component in the architecture represents a monitoring tool,
which is composed by one or more measure instruments that implement a specific
logic to gather data from software services, applications and physical devices
(channels in Fig. 2). The measure instruments’ perspective of the architecture is
useful when monitoring tools provide different APIs to retrieve different aspects
of software systems. Measure instruments send the gathered data as events to the
repository, following the event-driven messaging design pattern. Monitoring tools
and their measure instruments can be developed either from scratch or integrate
available (commercial and open source) monitors to collect the data.

— Monitoring orchestrator. This component is responsible for first registering, and
then orchestrating, the group of monitoring tools in the architecture. For these
tasks, the monitoring orchestrator provides an interface from which a developer or
system administrator (hereafter, sysAdmin) can register and integrate monitoring
tools into the architecture, satisfying Regl. Then, the orchestration starts with
the input of the developer/sysAdmin indicating “what to collect”, and based on
this information, the component executes actions at runtime over the monitoring
tools that have been integrated into the architecture (e.g., applying assignments,
changes, new configurations), allowing the monitoring tools to be reconfigured
automatically. Once the monitoring tools are configured, they run independently
of the orchestrator. In such a manner, a malfunction or bad performance of a mon-
itoring tool does not affect the whole system, satisfying RegS8. If the orchestrator
fails, only the (re)configurations would be unavailable. Nevertheless, for critical
systems, this can be mitigated by replicating and deploying more than one orches-
trator.

— Ontology manager. This component provides and manages an ontology that char-
acterizes the context of entities (agents or resources) through context information
(time, location, environment, etc.). Thus, each monitoring tool that can be consid-
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Table 4 Example of parameters to register the SocialMentionAPI monitoring tool in the ontology

Name SocialMentionAPI

Type Social networks monitor

Description It is a social media search and analysis platform that aggregates user
generated content from across the universe into a single stream of
information

Endpoint http://localhost:8080/SocialMentionAPI

Inputs {keywords, timeslot, confStatus, outputFormat}

Outputs {idOutput, author, message, link, timestamp }

ered as a resource is registered and conceptualized in the ontology by considering
the context information that the monitoring tool is able to supervise. The registra-
tion and conceptualization tasks start when the orchestrator receives a subscription
request of a new monitoring tool with the following parameters: name, type,
description, endpoint, inputs and outputs (Table 4 provides an example of such
parameters for the SocialMentionAPI monitoring tool). The ontology manager
maps such parameters into classes and properties (datatype and object properties)
or creates an instance if such type of monitoring tool has already been modelled.
From this perspective, the ontology knows the list of monitoring tools that have
been registered, the context information that a monitoring tool or mechanism is able
to retrieve and provide (e.g., in the scope of the social environment, the messages
of a certain social network), the operational and configuration capabilities of the
monitoring tools, their status (by means of self-monitoring), as well as the actions
that can be done over them. These actions that can be triggered by the reasoning
capabilities of the ontology and by external components that are responsible for
data analysis and decision-making have the aim of maintaining the health of both
the entire architecture and the entities that are being supervised. Such mechanisms
enable the detection and replacement of failing monitoring tools, and hence, sat-
isfying Reg3. The ontology also provides the data schema of monitored data for a
unified and structured dissemination, satisfying Reg4. To allow the dynamic addi-
tion of monitoring tools and provide the capability to deal with different monitored
elements of heterogeneous monitoring tools, the ontology has been designed to be
easily extensible and adaptable for each domain. More details about the ontology
are given in Sect. 5.

— Repository. This component is responsible for storing the output of each monitor-
ing tool that is structured by means of the data schema provided by the ontology
through the ontology manager. The monitoring tools know the structure of such
schema and can communicate with the repository through the interface provided
by this component, which in turn can be used by a sysAdmin or other external
component to collect the monitored data, also satisfying Reg4. The interface of
the repository component also provides the methods required for instantiating it
using different types of components. For instance, it can be instantiated with Kafka
for messaging systems to capture and publish data, or MySQL for data persistence,
among others.
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Fig.3 Sequence diagram to configure and run the monitors

The resulting architecture is a service-oriented architecture (SOA). We consider
that adopting and applying the SOA principles and patterns is the way to ensure Regq5.
Just to illustrate the consequences of such decision, the different APIs of the monitor-
ing tools should be wrapped as RESTful micro-services to provide highly decoupled
services performing small tasks. Such perspective allows the reconfiguration of moni-
toring tools, satisfying Req2. Finally, to avoid unauthorized access, the communication
among components can be done through an Enterprise Service Bus (ESB), which can
easily include a security module handling authentication and authorization, satisfy-
ing Req?7.

The sequence diagram to configure and run the monitoring tools is depicted in
Fig. 3. The operational process of CAMA starts when a user (a developer or sysAd-
min) requests from the monitoring orchestrator (Orchestrator) the context information
that should be collected. At this stage, the Orchestrator should be aware of the avail-
able monitoring tools (Monitor). Such task is supported by the ontology provided and
managed by the Ontology Manager, which is responsible for registering and mod-
elling inputs, outputs and configuration capabilities of the monitoring tools. With the
information provided by the ontology, the Orchestrator is able to perform different
(re)configuration operations over the monitoring tools. Therefore, if a Monitor fails
and there is another one able to supervise the same context information (which is
discovered thanks to the reasoning capabilities of the ontology), the failing Monitor
can be replaced. Once the available monitoring tools are identified, the Ontology Man-
ager will return them to the Orchestrator. The Orchestrator will then configure each
Monitor accordingly, which in turn will run the Measure Instruments that periodically
will gather and send the data to the Repository.

Concerning technological details, the Monitors to be plugged into the Orchestra-
tor should be wrapped as RESTful micro-services. Finally, all the context information
retrieved by the Monitors is stored in the repositories defined in the Repository compo-
nent (e.g., MySQL). To store and disseminate a unified and structured set of monitored
data, this component is also supported by the schema of the ontology that conceptualize
the outputs of the monitoring tools.

4.2 CAMA instantiated in a real use case (DSR Level 1)

In this section, we present a real use case where CAMA was applied. We use the
monitoring needs of three companies (Siemens, Atos and SEnerCon) that participated
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Fig.4 Monitoring architecture instantiated in a real use case

in the SUPERSEDE European project. These needs were basically aligned with the
state of the art as reported in Sect. 2. For instance, in an on-site workshop with the
companies’ representatives, we identified that their current technologies do not pro-
vide mechanisms to add new monitoring tools at runtime (e.g., to gather new context
information). In terms of concrete operational needs, the companies were interested
in monitoring: 1) user activity data, including page views, clicks, apps, ratings, etc.;
2) social networks activity, mainly when an event is being covered; 3) system stability
including RAM activity, hard disk, processes, etc.

To cope with these needs, we have implemented and deployed in CAMA four types
of monitoring tools for: App Marketplaces, Twitter, User events and IT infrastructure
(see Fig. 4).

As it can be seen in Fig. 4, the Marketplaces monitoring tool has been implemented
through three measure instruments: i7unesAPI, googlePlayAPI and appTweak. The
two first measure instruments use the official APIs to connect with the Marketplaces
of iTunes and Android, respectively; whereas the last measure instrument integrates a
popular tool used by more than 80000 apps for monitoring app reviews and comments.
Similarly, we have also deployed in the architecture of CAMA a monitoring tool for
Twitter, integrating two measure instruments to retrieve tweet’s information: Tivitter
API? and Social Mention APIL3 The former is the official Twitter API, whereas the
latter is a popular monitoring tool developed by socialmention.com. Marketplaces and
Twitter monitoring tools were implemented and deployed in the architecture of CAMA
with the aim of improving users’ QoE of applications deployed in marketplaces and
streaming services such as live webcasting of sport events. For instance, such streaming
service was used to stream the Olympic Games 2016, and the Twitter monitoring tool

2 https://dev.twitter.com/.

3 http://socialmention.com/.
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was able to retrieve 18,355 tweets, which were later used for analysis to improve the
QOoE of such service.

Other monitoring tools that we have implemented and deployed in CAMA are the
User events and IT infrastructure monitoring tools with the aim of improving users’
QokE through monitoring user events listening clickstreams and the IT infrastructure
(specifically, regarding hard disk monitoring). Such monitoring tools have been imple-
mented through a specific measure instrument called HTML clickstreams to retrieve
the user activity and Nagios API* to retrieve the disk information, respectively. For
instance, regarding the HTML clickstreams, we were able to collect 260,637 user
events in a period of 80 days.

During the execution of CAMA, the ontology handled by the ontology manager is
aware of the inputs, outputs and configuration capabilities of the mentioned monitoring
tools. With this information, the monitoring orchestrator can perform actions over the
monitoring tools. For instance, when the Twitter API fails, identified by means of
monitoring logs and the reasoning capabilities of the ontology, the orchestrator can
change the Twitter API by the Social Mention API, which can feed the same required
data in the monitoring infrastructure. Finally, the data collected by the instantiated
monitoring tools is sent to Kafka, which is a publish-subscribe messaging system, and
then such data is unified, structured and stored in a repository. At the end, a sysAdmin
can retrieve the collected monitored data from the repository by means of the interface
provided by the repository component.

5 Context ontology for CAMA

This section provides details on the context domain ontology managed by the ontology
manager.

One of the well-known problems of data management, storing and data character-
ization is the lack of semantics (schema-less) [17]. This should be overcome by the
definition of an ontology [10] that should link the inputs and outputs of monitoring
tools and data sources.

5.1 Domain context ontology (DSR Level 2)

The proposed domain context ontology for CAMA has been built by reusing an existing
generic ontology, which was presented in a previous work [11]. The main aim of such
generic ontology is to be easily reused, extended and adapted for specific or generic
purposes. These capabilities of the generic ontology follow three levels of abstraction:
upper, middle and lower levels. In general, these levels provide classes in different
levels of abstraction, being the classes of the middle level used for building domain-
specific ontologies.

The methodology for building the generic ontology with the three levels of abstrac-
tion is described below:

4 https://www.nagios.org/.
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— Upper-level ontology. It was built through a systematic mapping of different
ontologies allowing to retrieve and consolidate the most abstract classes of such
ontologies. In general, we applied a class hierarchy study for identifying the most
used abstract classes in the first and second levels of the hierarchies specified
in the studied ontologies. It allows to consolidate and define a generic structure
of abstract classes and that we called upper-level ontology. The building process
details are described in [10].

— Middle-level ontology. It was defined based on the upper-level ontology and struc-
tured in a modular way to enhance its reusability, following the integration process
method prescribed by Pinto and Martins [36]. In general, we applied a study of dif-
ferent ontologies related to the classes specified in the upper-level ontology (e.g.,
for the Time class we studied ontologies of time). It allows to consolidate and
reuse vocabulary of different ontologies in a modular way. The building process
details are described in [11].

— Lower-level ontology. It is the only level that depends on the domain and it is
created following a set of initial criteria and semantic principles given by the
middle and upper level ontologies and through functional requirements identified
by means of competence questions.

In this work, we focus on the development process of the lower-level ontology, as
this is the only level that requires to be tailored for each specific domain. The other
levels (middle and upper levels) have been integrated in CAMA without requiring any
modification.

We have selected the classes of the first two levels (upper and middle levels, with
a total of 20 classes) that lie in the heart of CAMA and are shared by all its possible
monitoring instances, providing a unifying view of the monitoring infrastructures.
In Fig. 5. those classes that can be reused to model any kind of monitoring tool are
depicted as grey and yellow rectangles with a continuous line.

It is also important to highlight the reuse capability of the ontologies presented in
the paper. Such reusability can be carried out at different levels of abstraction. For
example, in the case of CAMA, we have not started from scratch, but we have reused
the upper and middle levels of abstraction of the ontology and extended it with the
specific Domain-level (see Fig. 5). Starting a new knowledge without any basis may
cause re-building existing ontologies yielding significant cost and efforts.

5.2 Ontology instantiated in a real use case (DSR Level 1)

Considering the structure of the upper and middle levels of the proposed ontology
derived from the previous task, we build its lower level (domain-specific ontology).
Such third level (domain level; 5 classes) is scenario-dependent, meaning that every
particular instance of CAMA will present its own ontology; this is why it corresponds
to the concept of domain ontology [24]. The third level depicted in Fig. 5, represented
as dotted orange rectangles, corresponds to the social networks monitoring tools.
The proposed context ontology for CAMA, including the upper, middle and lower
levels, has the aim to fulfill certain functional requirements, including the conceptu-
alization of inputs, outputs and general capabilities of a monitoring tool. According
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Fig.5 Conceptualization of a monitoring tool through the CAMA ontology

to Uschold and Gruninger, the functional requirements of an ontology are defined
through competency questions that it should respond to, i.e., a type of questions that
the customer is expecting that the ontology answers [41]. In this regard, the competence
questions that can be queried in the proposed ontology are the following:

What kind of response format is given

What are the parameters that can be configured in a monitoring tool?
What kind of context information can be monitored by a monitoring tool?
What is the monitored data gathered by a specific monitoring tool?

by a certain configuration instance?

What instances of a monitoring tool or related configurations are activated?
What are the monitoring tools that can monitor a specific service or application

(e.g., retrieve all the monitoring tools that can monitor the Twitter or the CPU of

a system)?

As depicted in the ontology proposed for

CAMA (see Fig. 5), a monitoring tool has

been conceptualized to represent that “any monitoring tool is a monitoring program,
which in turn is, following the hierarchy of concepts, a computer program, a software
and a computational entity”. From this perspective, we can also represent that “any
instance of the SocialNetworksMonitoring class is related to one or more instances
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of the SocialNetworksMonitoringProfile class for describing its generic profile infor-
mation such as extended name, the endpoint where the monitoring service can be
accessed by the orchestrator of the architecture or by another client application, the
detailed description of the monitoring tool, etc.”. Such modelling can be applied to
any monitoring tool for representing its inputs, outputs and capabilities.

The input of the monitoring tool has been conceptualized to represent that “any
instance of the SocialNetworksMonitoring class has a status On or Off indicating if the
monitoring tool is activated or not”. Each instance of the SocialNetworksMonitoring
class can be related to one or more instances of the SocialNetworksMonitoringConf-
Prof class consisting of different parameters that can be configured, such as the
configuration status that represents if a certain configuration is activated or not, the
keywords that are going to be searched, the response format (json, xml or csv) and so
on. Note that these parameters represented as datatype properties in the ontology are
intended to be generic from any social network monitoring tool.

The output of a monitoring tool (monitored data) is modelled to indicate that:

“One or more instances of the SocialNetworksMonitoredData class is produced
by an instance of the SocialNetworksMonitoringConfProf class. Each instance of the
SocialNetworksMonitoredData class has a timestamp and one or more number of data
items (instances of the SocialNetworksDataltems class), each of them consisting of
different response properties such as id (unique hash id), message, link, timestamp,
image (story or item image), user (author’s username), user_image (author’s profile
image), user_link (author’s profile url), domain (the origin source’s domain), source
(the original source’s name), and type (blogs, microblogs, etc.)”.

Note that the specified response properties are an approximation of a response of
social networks monitoring tools; however, not all of them are mandatory. As depicted
inFig. 5, we are expecting generic information such as the id, message, author message,
timestamp and link of the monitored data.

5.3 Supporting material for building domain ontologies

In Fig. 5 we have conceptualized three levels of abstraction specifying the upper, mid-
dle and domain level classes of the CAMA ontology. For the domain level, we provide
as an example a new type of monitoring tool named SocialNetworksMonitoring that
may help the reader to analogously create a new type of monitoring tool. We describe
in Table 5 the input and output data needed by each specific-level class depicted in
Fig. 5. This information (hierarchy and glossary of terms) simulates the state that a
modeler interested in using this ontology would find as a starting point.

6 Implementation

A prototype of the framework has been implemented in Java 8 with RESTful ser-
vices built on JAX-RS and running under Apache Tomcat. The code, deployment
instructions and API documentation are available in Zenodo [8].

The monitoring tools currently implemented are:
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Table 5 Glossary of data

Class Parameter/data Description
SocialNetworks Monitoring idSNMTool Identifier of the monitoring tool
statusSNMTool Specifies if the monitoring tool is
running or not
SocialNetworks Monitoring Profile name Name of the monitoring tool
endpointSNMTool URI of the monitoring tool
description A short description of the monitoring
tool
SocialNetworks Monitoring idConf Identifier of a configuration
ConfProf
confStatus Status specifying whether the
configuration is up and running or
not
accounts Accounts that are going to be
monitored
keywords The keywords that we want to search
for
timeslot The timeslot between two monitoring
invocations
kafkatopic The topic that is used for storing the
monitored data in Kafka.
SocialNetworks Monitored Data idOutput Identifier of each output of the
monitoring tool
searchTimestamp Time in which the data has been
collected
numDataltems How many data items have been
collected
SocialNetworks Data Items idItem The identifier of the item
author The author of the social network
message
message The text of a social network message
link The link to the original message
timestamp The timestamp in which that message

was created

— Twitter — Twitter API: monitors in real-time the tweets that satisfy a specific
search criteria (e.g., keywords, accounts, etc.) and retrieves the messages and
some metadata (e.g., user, timestamp, tweetID, etc.). To obtain the tweets, this
component uses the Streaming API provided by Twitter.’

— Marketplaces — googlePlay API: monitors in real-time the feedback provided by
users to a specific app in GooglePlay and retrieves the messages, ratings and some

5 https://dev.twitter.com/streaming/overview.
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Table 6 List of evaluation objectives

RQ# Evaluation objective

RQI.1 Assess that CAMA provides the capability to add new monitoring tools
with minimal effort

RQI1.2 Assess that CAMA provides the capability to reconfigure the monitoring
tools automatically

RQI1.3 Assess that CAMA provides the capability to replace a failing monitoring
tool automatically

RQ2 Assess that CAMA provides the capability to access the monitored data
using a rich semantics method with structured elements defined by the
ontology

metadata (e.g., user, timestamp, etc.). To obtain the feedback, this component uses
the Google Play Developer API°

— Marketplaces — iTunes APIL: monitors in real-time the feedback provided by users
to a specific app in AppStore and retrieves the messages, ratings and some metadata
(e.g., user, timestamp, etc.). To obtain the feedback, this component uses the RSS
Feed Generator of iTunes.’

— Userevents — HTML clickstreams: monitors the clickstream of auserinan HTML
web page. To obtain the clickstream, this component uses JavaScript functions that
listen to the user events.

Regarding the implementation of the ontology, all the levels and modules of the
ontology and the social networks monitoring tools have been implemented separately
into the Protégé editor in OWL to facilitate the reuse of the proposed resources. The
implemented resources are available in Zenodo [8].

7 Evaluation

We have conducted a set of activities that evaluates how CAMA satisfies the different
RQs defined (see Table 6).

7.1 Evaluation of RQ1.1

This subsection describes the evaluation that assesses CAMA’s capability to add new
monitoring tools with minimal effort. Adding new monitoring tools does not require
any change in the code of the monitoring system, and only requires registering it with
its inputs and outputs in the ontology of CAMA.

To this aim, we have prepared an exercise to extend the ontology with a new
monitoring tool that was filled by different practitioners (see protocol below). We
assume that the new monitoring tool to be added already provides a web service

6 https://developers.google.com/android-publisher/.
7 https://rss.itunes.apple.com/.
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interface and, therefore, there is no need to programmatically implement a web service
wrapper (although it could be done if needed).

7.1.1 Protocol of the evaluation

To carry out this evaluation, we conducted the following tasks:

1. Definition of a scenario/exercise consisting of the development of a domain
ontology for conceptualizing monitoring tools where inputs, outputs and general
capabilities should be specified. The scenario was beta-tested by 2 researchers
whose feedback helped to make the instrument fit for purpose. Details of the sce-
nario/exercise are provided in [9].

2. Selection of the participants to run the exercise. To conduct this task, we recruited
18 researchers and practitioners from different research centers and companies
with different expertise and background on monitoring of services and applica-
tions, and/or ontologies (this information is included in Table 7).

3. Explanation to the participants of the aim of this practice, providing them the sup-
porting material described in Sect. 5.3, and also giving them general considerations
of the scenario.

4. Execution of the exercise by the participants.

5. Analysis of results, in terms of the time taken for them to build the ontology and
the quality of the result.

7.1.2 Results of the evaluation

The results of the activity are presented in Table 7 with the following variables:

Lev.Ont. Level of expertise in modelling ontologies (from 1-low to 5-high).

— Lev.Mon. Level of expertise in monitoring systems (from 1-low to 5-high).

T1. Time to read and understand the exercise and supporting material.

— T2. Time to elaborate and write down the solution.

Usability. Subjective opinion given by the participant stating whether the proposed
ontology is usable or not to conceptualize any monitoring tool.

— Correctness. Quality of the model designed by the participant and evaluated by
the researchers with possible values:

Excellent. All needed classes and properties that maintain the model consistent
were specified.

Very good. All needed classes were specified; however, some property (data
or object) was not specified.

— Fair. The model is not entirely wrong, but inconsistencies were found.

Poor. The model does not represent the classes and properties that we expected,
and several inconsistencies were found.

— Improvements. Subjective opinion through which the participant expressed
whether the abstract layer of the proposed ontology (upper and middle level classes)
should be improved.
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Table 7 Results for the evaluation of adding new monitoring tools in the ontology

ID Lev.Ont Lev.Mon Participants T1 (s) T2 (s) Usability Correctness Improvements Difficulties

P1 4 1 Researcher 390 853  Yes Very good No Yes
P2 4 1 Practitioner 300 1080 Yes Very good No No
P3 4 3 Practitioner 480 900  Yes Excellent  No No
P4 3 3 Researcher 335 932 Yes Very good No No
P5 3 1 Researcher 607 716  Yes Very good  Yes No
P6 3 1 Researcher 660 1320 Yes Very good  Yes No
P7 3 2 Researcher 252 559  Yes Excellent  Yes No
P8 3 2 Researcher 465 895  Yes Excellent  Yes Yes
PO 3 4 Researcher 490 900  Yes Excellent  No No
P10 3 3 Researcher 240 660  Yes Excellent  No No
P11 2 3 Practitioner 240 600  Yes Very good No No
P12 2 3 Researcher 885 1116 Yes Very good No No
P13 2 1 Researcher 457 1822 Yes Fair No No
P14 2 5 Researcher 476 749  Yes Excellent  No Yes
P15 1 1 Practitioner 921 840  Yes Very good No Yes
P16 1 2 Researcher 780 1020 Yes Very good No No
P17 1 3 Researcher 931 653  Yes Excellent  No No
P18 1 1 Practitioner 220 861  Yes Very good No Yes
(seconds)

2000 Lev. Lev. Lev. Lev.
1500 Ont. 4 Ont. 3 Ont. 2 Ont. 1

1000

= |||||I||||| ||||||||

Sl M h d LIl i1 N
PL P2 P3 P4 P5 PG P7 P8 P9

P10 P11 P12 P13 P14 P15 P16 P17 P18

Very Very Excel. Very Very Very Excel. Excel. Excel. Excel. Very Very Fair Excel. Excel. Very Excel. Very
Good  Good Good Good Good  (I) (D,1) Good  Good (D) (D) Good Good
(D) (1) (1) (D)

ET1 ®mT2 (I): Improvements, (D): Difficulties

Fig.6 Results for the evaluation of adding new monitoring tools grouped by Lev. Ont

— Difficulties. Subjective opinion in which the participant expressed whether s/he
had difficulties to understand the exercise and supporting material.

Visual representations of the results are depicted in Figs. 6 and 7, grouping the
results by Lev. Ont. and Lev. Mon., respectively.

The analysis of the results obtained from the empirical study are described and
classified as follows, considering the most relevant findings of Table 7:

— T1 vs Lev.Ont and Lev.Mon. We have analyzed the time to read and understand
the exercise and supporting material (T1) in a two-way between-subjects ANOVA,
with level of expertise in modelling ontologies (Lev.Ont) and level of expertise in
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Fig.7 Results for the evaluation of adding new monitoring tools grouped by Lev. Mon

Table 8 Results of ANOVA Test—T]1 versus Lev.Ont and Lev.Mon

Df Sum Sq Mean Sq F value Pr(>F)
Lev.Ont 3 246750 82250 1.015 0.449
Lev.Mon 3 5486 1829 0.023 0.995
Lev.Ont:Lev.Mon 5 245730 49146 0.606 0.700
Residuals 6 486365 81061

monitoring (Lev.Mon) as a between-subjects variables. This ANOVA (see Table 8)
tests whether there are (1) any differences between the T1’s means for each level
of Lev.Ont, (2) any differences between the T1’s means for each level of Lev.Mon,
and (3) any interaction between Lev.Ont and Lev.Mon. Results show that:

— The main effect of Lev.Ont on T1 was not significant, F (3, 6) = 1.015, p =
0.449. Thus, the time to read and understand the exercise and supporting mate-
rial is independent from the level of expertise in modelling ontologies.

— The main effect of Lev.Mon on T1 was not significant, F (3, 6) = 0.023, p =
0.995. Thus, the time to read and understand the exercise and supporting mate-
rial is independent from the level of expertise in monitoring.

— The Lev.Ont:Lev.Mon interaction was not significant, F'(5, 6) = 0.606, p =
0.700. Thus, the effects of levels of expertise in modelling ontologies and
levels of expertise in monitoring combined differentially do not affect the time
to read and understand the exercise and supporting material.

However, given the small number of observations, we have to be careful with

drawing conclusions from these results.

— T2 vs Lev.Ont and Lev.Mon. We have analyzed the time to elaborate and write
the solution (T2) in a two-way between-subjects ANOVA, with level of expertise
in modelling ontologies (Lev.Ont) and level of expertise in monitoring (Lev.Mon)
as a between-subjects variables. This ANOVA (see Table 9) tests whether there
are (1) any differences between the T2’s means for each level of Lev.Ont, (2)
any differences between the T2’s means for each level of Lev.Mon, and (3) any
interaction between Lev.Ont and Lev.Mon. Results show that:
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— The main effect of Lev.Ont on T2 was not significant, F (3, 6) = 0.675, p =
0.598. Thus, the time to elaborate and write down the solution did not differ
between the different levels of expertise in modelling ontologies.

— The main effect of Lev.Mon on T2 was not significant, F' (3, 6) = 1.693, p =
0.267. Thus, the time to elaborate and write down the solution did not differ
between the different levels of expertise in monitoring.

— The Lev.Ont:Lev.Mon interaction was not significant, F (5, 6) = 1.563, p =
0.307. Thus, the effects of levels of expertise in modelling ontologies and
levels of expertise in monitoring combined differentially do not affect the time
to elaborate and write down the solution.

However, given the small number of observations, we have to be careful with
drawing conclusions from these results.

— Correctness vs. difficulties. We have evaluated the correlation between the qual-
ity level of the model designed by the participants (correctness) and the difficulties
that they perceived while reading the exercise and supporting material. In this
case, as correctness and difficulties are categorical variables, we conduct a Pear-
son’s Chi-Square test of independence to examine the relation between correctness
and difficulties (see Table 10). Results show that the relation between these vari-
ables was not significant, X2(2, N = 18) = 0.41143, p = 0.8141. There is
no correlation between the quality level of the model designed by the participants
(correctness) and the difficulties that they perceived while reading the exercise and
supporting material. Additionally, as it can be seen in the correctness criterion,
the level of expertise in modelling ontologies (Lev.Ont) and monitoring systems
(Lev.Mon) was not an important factor to impact negatively on the correctness
of the models. In fact, only one participant (with Lev.Ont=2 and Lev.Mon=1)
provided a solution that was not considered very good or of excellent quality.
Although the model was not entirely wrong, some inconsistencies were found in
his solution. These results allow us to conclude that the ontology is easy to extend
and the resulting extended ontology is, in most cases, of very high quality.

— Usability. The findings based on the results of usability show that 100% of the
participants, regardless of their expertise, found the proposed ontology useful,
easily extensible and reusable, providing the concepts and relationships needed to
conceptualize any monitoring tool. Beyond the aid of the instructions and support-
ing material that we have made available to the participants, we consider that this
satisfactory result is due to the different features offered by the proposed ontology
highlighting the intuitive and easy representation of entities and context informa-
tion to characterize a monitoring tool, the precise and concise primitives needed
to represent a monitoring tool, the short size that makes it easy to handle, and the
three-level approach taken in a previous work [11] for abstracting the primitives
and facilitate the extension of the model.

In addition to the quantitative analysis, we conducted a qualitative analysis asking
participants to provide feedback on how the presented ontology could be improved.
Four participants (22%) provided a suggestion to improve the proposed model. Some
suggestions were about adding more attributes (i.e., data type properties) to describe
this kind of monitoring tools. However, this suggestion does not affect the proposed
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Table 9 Results of ANOVA Test—T?2 versus Lev.Ont and Lev.Mon

Df Sum Sq Mean Sq F value Pr(>F)
Lev.Ont 3 146872 48957 0.675 0.598
Lev.Mon 3 368212 122737 1.693 0.267
Lev.Ont:Lev.Mon 5 555589 111118 1.533 0.307
Residuals 6 434961 72494

Table 10 Results of Pearson’s Chi-square test - correctness vs difficulties

Pearson’s Chi-squared test

data: COvsDItable
X-squared=0.41143, df =2, p value=0.8141

ontology since it depends on the scenario and the modeler to include more or less
attributes. Another suggestion was the creation of a middle level class named “Mar-
ketplaceService” as a subclass of “CompService” since a participant did not consider
a marketplace service a type of “SocialNetworkingServices”. We consider that such
suggestion manifest the reusability capabilities of the proposed ontology to model any
type of monitoring tool. It is worth noting that we considered correct both solutions
(the proposed model and the suggested improvement) as long as this differentiation
remains consistent with the rest of the model.

7.2 Evaluation of RQ1.2

This subsection describes the evaluation that assesses CAMA’s capability to recon-
figure the monitoring tools automatically. It is worth to remark that the analysis and
decision-making process that would trigger the adaptation is out of the scope of this
work. Here we evaluate how CAMA enacts a reconfiguration assuming that an exter-
nal component has already conducted an analysis and decision-making process that
has resulted in a reconfiguration need.

The use case selected for this evaluation is related to COVID-19. In particular, the
reconfiguration of monitors to gather COVID-19 related messages shared in social
media, and the reconfiguration of monitors that gather reviews of mobile apps related
to COVID-19.

7.2.1 Protocol of the evaluation

The protocol of this evaluation is as follows:

1. Selection of monitoring tools: The monitoring tools selected for this evaluation
are the ones already implemented which had reconfiguration capabilities. Namely,
Twitter, GooglePlay and AppStore (as introduced in Sect. 4). In contrast, the mon-
itoring tool of HTML clickstreams was not tested, as in its current implementation,
this monitoring tool does not provide any parameters to reconfigure.

@ Springer



A context-aware monitoring architecture for supporting... 1645

2. Number of reconfiguration executions: For each monitoring tool, we need to
execute n different random reconfigurations at runtime, being n the number of
executions required for statistical significance. To obtain such n, we used the
following formula [5]:

ZZNpq
n—=
e2(N = 1)+ ZZpq

where:

— n: is the sample size needed. In our case, it is the number of reconfiguration
executions required.

— Zg:1saconstant that depends on the confidence level desired in the experiment.
For a typically used 95% of confidence, Z, is 1.96.

— N:is the population size. In our case, the total number of reconfigurations that
could be executed is unconstrained. Hence, N = +00.

— e: is the sample error accepted for the evaluation. In our experiment, we con-
sidered 0.1.

— p and g: are the probability of success and failure respectively. We used the
typical value of 0.5 for each of them.

Since the value of N is +00, the formula results in a +00/—o0, which is undeter-
mined. To resolve such indetermination we applied limit theory.

. ZzNpq Zzpq
lim =
N->+oc e2(N — 1) + Z2pg e2

o

=96.04

The resulting number of reconfigurations to execute is 96.04. We decided to round
that number up to 100.

3. Frequency of reconfigurations: We have executed the experiment in several
iterations, where every iteration consists of the 100 reconfigurations per monitor-
ing tool previously mentioned. In each iteration we used a different frequency of
reconfiguration. In the first iteration, we started with a frequency of one reconfig-
uration per second for the Twitter monitoring tool, and one reconfiguration every
250 ms for the GooglePlay and AppStore monitoring tools. On each iteration, we
reduced the time slot, until reaching 1 reconfiguration every 100 ms for Twitter,
and 1 reconfiguration every 50 ms for GooglePlay and AppStore.

4. Number of monitoring tools: We have executed the experiment in several itera-
tions (on top of the iterations previously described), using in each of these iterations
a different number of monitoring tools running in parallel. In the first iteration, we
started the experiment with 5 running monitoring tools (i.e., 5 monitoring tools
being reconfigured in parallel 100 times, leading to 500 reconfigurations in the first
iteration). On each iteration, we increased the number of running monitoring tools
by 5, hence, subsequent iterations had 10, 15, 20, etc. monitoring tools running in
parallel.

5. Parameters to reconfigure: Each reconfiguration changes all the parameters that
can be reconfigured for that monitoring tool. For the Twitter monitoring tool, they
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Fig.8 Average response times to reconfigure Twitter monitoring tools

are the timeslot and keywords. For GooglePlay and AppStore monitoring tools,
they are the timeslot and App IDs. To set up 100 randomly generated configu-
rations, we generated the time slots randomly from 1 to 10s (i.e. the time slot
of the monitors to gather the data, not to be confused with the time slot of the
reconfigurations in the experiment). For the Twitter monitoring tool, the keywords
were obtained from the list of keywords used by Twitter in the official COVID-19
stream endpoint, which consists of 564 keywords related to COVID-19.8 Finally,
for the GooglePlay and AppStore monitoring tools, the apps were obtained from a
list of official contact tracing apps of different countries. The detailed list of apps
is available at [9].

6. Measurements: For each reconfiguration, we measure the time it takes to com-
plete.

7. Participants conducting the experiment: The evaluation was executed by the
first two authors of this paper guided by their supervisors (the last two authors of
the paper).

8. Infrastructure: We deployed the monitoring tools in a virtual machine with 2.46
GHz CPU (x2), 4 GB RAM and 200 GB HDD.

The details and fine-grained data of this experiment is located at [9].
7.2.2 Results of the evaluation

Here we present the results of the evaluation following the protocol described pre-
viously. We present the average response times to reconfigure the monitors for each
time slot and number of monitoring tools being reconfigured in parallel.

The results of reconfiguring the Twitter monitoring tools is presented in Fig. 8. The
results show that CAMA is able to reconfigure simultaneously up to 15 monitors with

8 https://developer.twitter.com/en/docs/labs/covid19-stream/filtering-rules.
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Fig.9 Average response times to reconfigure GooglePlay monitoring tools
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Fig. 10 Average response times to reconfigure AppStore monitoring tools

a time slot of 100 ms smoothly. Between 20 and 25 monitors being reconfigured at
the same time, the shortest time slot for smooth reconfigurations is at 200 ms. With
30 monitors, the limit is at 300 ms, whereas between 35 and 45 monitors, such limit is
at 400 ms. With 50 parallel monitors, CAMA can handle reconfigurations with a time
slot of up to 600ms (i.e., it is able to reconfigure 50 monitors simultaneously every
600 ms).

The results of reconfiguring the GooglePlay and AppStore monitoring tools are
presented in Figs. 9 and 10 respectively. For the GooglePlay monitoring tools, CAMA
is able to reconfigure up to 20 monitors simultaneously with a time slot of 50 ms.
Between 25 and 45 monitors, CAMA is able to reconfigure them smoothly with a

@ Springer



1648 0. Cabrera et al.

time slot of 100 ms, whereas with 50 monitors, the response time starts to increase
significantly. For the AppStore monitoring tools, CAMA can reconfigure up to 30
monitors simultaneously with a time slot of 50 ms. Between 35 and 40 monitors,
CAMAA is able to reconfigure them with a time slot of 100 ms. Finally, with 45 or more
monitors, the response time starts to increase significantly.

Finally, it is worth to remark that, if needed, the performance limitations can be
mitigated by running the system in a more powerful machine or in multiple servers
applying load balancing techniques.

7.3 Evaluation of RQ1.3

In this subsection, we describe the evaluation that assesses CAMA’s capability to
replace a failing monitoring tool automatically. It is worth to remark that the analysis
on whether a monitoring tool is failing or not is out of scope of this evaluation. Here
we evaluate how CAMA switches from one monitoring tool to another, assuming that
an external component has detected a failing monitoring tool.

7.3.1 Protocol of the evaluation

The protocol of this evaluation is as follows:

1. Selection of monitoring tools: The monitoring tools used to replace their measure
instruments are the ones for GooglePlay and AppStore, as these two monitoring
tools are the only ones that have more than one measure instrument at the current
state of implementation. The measure instruments for GooglePlay are appTweak
and googlePlay API, whereas the measure instruments for AppStore are appTweak
and iTunesAPI.

2. Number of reconfiguration executions: As in the previous experiment, the num-
ber of required executions for statistical significance are 100. For each monitoring
tool, we execute 100 replacements from a measure instrument to its alternative.

3. Frequency of reconfigurations: As in the previous experiment, we have exe-
cuted several iterations using a different frequency for the measure instrument
replacements in each iteration. We started from one measure instrument replace-
ment every 250 ms and reduced the time slot on every iteration until reaching one
measure instrument replacement every 50 ms.

4. Number of monitoring tools: We have executed the experiment in several
iterations (on top of the iterations previously described), using in each of these
iterations a different number of monitoring tools with their measure instruments
being replaced in parallel, starting from 5 until reaching 50.

5. Parameters to reconfigure: We replace the measure instruments from the original
measure instrument to the alternative, and vice versa. Since such replacements
need to take place in a running configuration we use the same randomly generated
configurations used in the previous experiment.
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time slot

Fig. 11 Average response times to replace a Measure Instrument of the GooglePlay monitoring tool

6. Measurements: For each replacement, we measure the time to complete the
replacement.

7. Participants conducting the experiment: As in the previous experiment, the eval-
uation is executed by the first two authors of this paper guided by their supervisors
(the last two authors of the paper).

8. Infrastructure: As in the previous experiment, we deployed the monitoring tools
in a virtual machine with 2.46 GHz CPU (x2), 4 GB RAM and 200 GB HDD.

The details and fine-grained data of this experiment is located at [9].

7.3.2 Results of the evaluation

Here we present the results of the evaluation following the protocol described previ-
ously.

The results of replacing a measure instrument is presented in Fig. 11 for the Google-
Play monitoring tool and Fig. 12 for the AppStore.

For the GooglePlay monitoring tool, the results show that CAMA is capable of
replacing the measure instrument of up to 15 monitoring tools in parallel every 50
ms. For 20 to 50 monitoring tools, CAMA is capable of replacing all their measure
instruments in parallel every 100ms with an adequate response time.

For the AppStore monitoring tool, CAMA has been able to replace the measure
instruments of up to 30 monitoring tools in parallel every 50 ms. For 35 to 45 monitor-
ing tools, CAMA is capable of replacing all their measure instruments every 100ms,
whereas with 50 monitors, the response time starts to degrade quickly. Nevertheless,
we argue that in an environment where this amount of replacements are required, the
system can be deployed in multiple servers applying load balancing techniques.
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time slot

Fig. 12 Average response times to replace a Measure Instrument of the AppStore monitoring tool

7.4 Evaluation of RQ2

In this subsection, we summarize the evaluation that assesses CAMA’s capability to
access the monitored data using a rich semantics method with the elements structured
and defined through an ontology.

We evaluate that the knowledge represented in the ontology is consistent with
its scope, i.e., that the ontology has enough information to answer the competence
questions specified in Sect. 5. The expected results should demonstrate that the levels
and modules, the extension of the ontology, and the conceptualization of the domain
ontology are correct and consistent. After applying such evaluation, the results showed
that the definition of the domain ontology was correct and consistent with the required
functional requirements. The reader may refer to the annex [9] for more details about
the protocol and results of the evaluation, which have been omitted due to space
limitations.

The ontology of CAMA has mainly two roles: the role of responding the competence
questions defined in Sect. 5.2 through queries in SPARQL, and the role of reasoning
for deducing new context knowledge. In the first role, CAMA triggers a SPARQL
query automatically through its monitoring orchestrator component when a Devel-
oper/SysAdmin makes a request of what to collect. Humans also can carry out such
role manually outside the architecture of CAMA, i.e., SPARQL queries can be done
manually directly to the ontology by using ontology editors (e.g., Protege). Whereas
the second role can be executed only automatically by the internal rules, semantics
and reasoner engines implemented in the ontology. For instance, the SPARQL query
showed in Table 11 can be executed manually by humans or automatically by CAMA
to retrieve the list of monitors registered in the ontology, the monitored services related
to the list of monitors, the monitoring instances with their status (i.e., if an instance
of a monitor is working or not) and the list of apps monitored by the instances. In the
second role, the ontology can automatically detect if a monitoring tool of the Social-
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Table 11 SPARQL query for retrieving the list of monitors and their status by configuration

SPARQL query:

SELECT ?MonitorsList ?MServices ?MonitoringInstances ?Status
?AppIDs

WHERE {

?MonitorsList e:isMonitoringToolOf ?SocialNetworkingServices .
?MonitorsList e:isMonitoringToolOf ?MServices .

?MonitorsList e:hasConfigurationProfile ?MonitoringInstances .
?MonitoringlInstances e:confStatus ?Status .

?MonitoringlInstances e:appID ?ApplDs

}

MonitorsList MServices MonitoringInstances Status AppIDs
GooglePlayAPI MarketPlaces GooglePlayConfProf1 On be.sciensano. coronalert
GooglePlayAPI MarketPlaces GooglePlayConfProf2 Off com.NIC. covid19
GooglePlayAPI MarketPlaces GooglePlayConfProf3 On cz.covid19cz. erouska
GooglePlayAPI MarketPlaces GooglePlayConfProf4 On com.gha. covid.tracker
SocialMentionAPI Twitter SocialMentionConfProf1 On

TwitterAPI Twitter TwitterConfProf1 Off

TwitterAPI Twitter TwitterConfProf2 On

AppTweakAPI MarketPlaces AppTweakConfProf1 On com. hamagen
AppTweakAPI MarketPlaces AppTweakConfProf2 On com.moc.gh
AppTweakAPI MarketPlaces AppTweakConfProf3 Off 1503717224
iTunesAPI MarketPlaces iTunesConfProf1 On 1499780720
iTunesAPI MarketPlaces iTunesConfProf2 On 1511740371

NetworksMonitoring class is not working properly (e.g., by detecting if the data items
retrieved by a specific instance of the SocialNetworksMonitoringConfProf class are
null), or if a reconfiguration of the keywords are needed because there are too many
data items being collected.

7.5 Threats to validity

In this section we discuss the threats to validity of our evaluation and the actions we
have taken to mitigate them.

1. Internal validity. The internal validity of the evaluation concerns our ability to
draw conclusions from the conducted experiments and the outcomes observed.
To mitigate such threat we applied several statistical methods. In the evaluation
of RQ1.1, we applied ANOVA and Chi-square tests to assess if the differences
observed were statistically significant. In the evaluation of RQ1.2 and RQ1.3,
we used statistical methods to compute the required number of executions for
statistical significance, and executed our experiments accordingly.
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2. Construct validity. In the evaluation of RQ1.1, there could be a potential bias of
the study participants when answering the questions. To mitigate such risk, study
participants were not limited to members of the EU project SUPERSEDE, but
other researchers and practitioners from outside the consortium participated also.
On the other hand, results of the evaluation were not part of any deliverable or
document of the project, assessing that there were no conflicts of interest by the
participants belonging to the consortium. In the evaluation of RQ1.2 and RQ1.3,
we generated and executed the reconfigurations parameters randomly, to avoid any
possible bias on the characteristics of such reconfigurations.

3. Conclusion validity. As remarked in the evaluation of RQ1.1, due to the small
number of observations, we have to be careful with drawing conclusions from the
results of the evaluation of such RQ. RQ1.2 and RQ1.3 do not present this threat.

4. External validity. External validity refers to the generalizability of our conclu-
sions. In RQ1.1, we have evaluated how participants could extend the ontology to
model other monitoring tools, such as a marketplace monitoring tool. Extending
the ontology for other monitoring tools would be analogous, but further work is
required to assess that extending the ontology to other monitoring tools would pro-
vide similar results. For RQ1.2 and RQ1.3 we have executed our experiments for
the GooglePlay and AppStore monitoring tools, as they are the only ones that have
more than one measure instrument at the current state of implementation. Further
experiments with more monitoring tools and measure instruments are needed to
ensure the external validity of our proposal. In any case, for large-scale systems
demanding high amount of resources, we could apply load-balancing techniques
to prevent overloads.

8 Conclusions

In this paper, we have presented CAMA, a context-aware monitoring architecture
for context acquisition, which builds upon a context ontology for modelling inputs,
outputs and capabilities of monitoring tools, and data management. Such contribution
has been developed for supporting highly dynamic environments that affect different
entities including the monitoring infrastructure, services and applications. For this
purpose, CAMA answers the research questions of the paper as follows:

RQ1. CAMA provides the capabilities of replacing, adding, reconfiguring and adapt-
ing monitoring tools by means of a decoupled architecture based on services, which can
be orchestrated with the support of an ontology that includes the reasoning capabilities
and the provisioning of a clear schema of parameters to configure each monitoring tool
integrated in the architecture. CAMA follows SOA principles, enabling extensions to
the architecture to obtain, process and store the data through different methods and
techniques.

RQ2. CAMA provides the capability to access the monitored data using a rich seman-
tics method by means of a context domain ontology. Such ontology provides a unified
and representative schema of the monitored data produced by the monitoring tools
and their related configuration instances.
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To demonstrate the feasibility and potential of the proposed approach, we investigated
on real requirements from three companies. On top of that, we evaluated the feasibility
of the proposed ontology of CAMA by means of an empirical study where different
criteria were evaluated. We concluded that the time consumed by different participants
for modelling monitoring tools is really low. Furthermore, the level of expertise in both
modelling ontologies and monitoring systems was not an important variable to manage
the proposed ontology and supporting material.

One of the main limitations of context-aware monitoring is that it is not possible
to know a priori all the possible contexts in which it might be used. To tackle this
limitation, we have designed the architecture of CAMA and its ontology in the most
generic way possible. On the one hand, the architecture can add new monitoring tools
by means of a decoupled architecture. On the other hand, the ontology can be extended
by using different levels of abstraction. Nevertheless, the current implementation has
only been tested for Social Network monitoring and further validation is needed.

As future work, we will integrate more types of physical and logical monitoring
tools, considering complex scenarios of Smart Cities and Internet of Things. Addition-
ally, we are planning to support different context-aware scenarios including ranking
and adaptation of services and applications; evolution and adaptation of personalized
software; and improving the QoE of the user.
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