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Abstract
The rapid growth of social networks facilitates the exchange of information whereas 
malicious behaviors are also steadily increasing in these ecosystems. This results in 
a challenging situation for individuals to trust other parties. This paper studies the 
propagation of trust within a chain of trust relations to calculate the trust values of 
existing users. In this research, an approach for the precise selection of trustworthi-
ness paths as well as the integration of indirect trust values based on the most reli-
able routes is introduced. The presented approach fuses the ideas from the A* algo-
rithm and multi-criteria decision making approaches using (i.e. TOPSIS method) 
under fuzzy environments for finding the most reliable path. Moreover, for selecting 
the most appropriate middle node, a set of criteria such as topological similarity, 
profile similarity, Dunbar’s theorem, local trust, and contextual trust are considered. 
The evaluation results of the proposed approach demonstrate the propagated trust 
distance with the different average path lengths while preserving the accuracy of the 
inferred trust values between each unconnected pair of nodes. The evaluations are 
performed using the Facebook and Twitter networks having different topologies and 
the results are compared to the TidalTrust and the MoleTrust algorithms.
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1  Introduction

Social networks play a significant role in a diverse set of environments such as 
trade, biology, economics, marketing, and so forth [1]. With the existence of a 
massive amount of sensitive information on these networks, the identification 
and recognition of trustworthy users have turned into a big challenge. This was 
the initial motivation for the initiation of computational trust modeling research 
which aims to model the way humans trust each other in social domains and cre-
ate a mapping to the computational ones.

With the rapid growth of social networks, the number of interactions among 
anonymous users has increased significantly [2]. On the other hand, within online 
environments, the ability to assess the trustworthiness level of a user which is 
going to be the target of interaction is of much importance [3]. Social networks 
currently act as an enabling ecosystem for electronic commerce in which trust is 
believed to be one of the vital sources of decision making for end-users [4]. Since 
there is a sharp rise in the number of people engrossed in using social media, as 
well as the excessive propagation of information through it, trustworthy social 
networks whereby individuals can interact with each other without much concern 
for a potential malicious behavior is of significant importance. Assessing the trust 
value of two unconnected nodes seems to be a big challenge for the researchers 
as there are ample problems that need to be addressed. These problems include 
the correct recognition of trustworthy users for reliable path selection, select-
ing trustworthy routes based on trustworthy middle nodes, controlling the path 
lengths as well as integrating the final trust values of the selected nodes when 
there is no direct relationship between each pair of nodes.

When there is no direct relationship between two parties, their friends or 
even friend of friends can facilitate the establishment of a connection between them 
[2]. If there is no direct relationship between two people, they cannot trust each 
other unless there is at least a path existing in their friends’ network. It is a logical 
consequence of trust propagation based on the transitivity property of trust. This 
approach can prognosticate the trust value of the target node from the perspective 
of the source node based on the chain of trust relations between them [5]. Recently, 
researchers have applied different strategies for finding optimized trustworthy routes 
to guarantee the prediction of trust values with the highest accuracy. However, 
despite the importance of the subject and to the best of our knowledge, so far, there 
has never been a specific focus on finding the most trustworthy path in these net-
works [2]. Most of the previous studies suffer from a set of shortcomings. Using 
partial information from the graph structure, considering only the strong short paths 
which underestimates the potentially remarkable information of longer ones and 
vice versa, considering trust as a binary value, and finally processing all the possible 
routes in which even though it can increase the quality of inferred trust values but 
can considerably increase the time complexity of the method and lead to the expo-
nential complexity of the algorithms [2] are a few of these shortcomings.

Social network users have multiple choices for reaching the trustworthy 
destination and contradictory factors can potentially make this process more 
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challenging. This, in turn, creates a multi-criteria decision-making situation and 
the quality of the routes is determined by how middle nodes are chosen. There-
fore, this research takes advantage of a synthesized approach based on the A* 
algorithm and fuzzy TOPSIS multi-criteria decision making for selecting reliable 
middle nodes. This can be used for anticipating and assessing the indirect trust 
value amongst unconnected users within the social network. For the most part, 
one thing that makes the proposed approach different from the current literature 
is the simultaneous consideration of multiple factors for ranking the trustworthi-
ness value of middle nodes while taking into account the propagative, dynamic, 
and contextual properties of trust which in turn leads to more precise results. 
Compared to the prior studies, we have paid more attention to the structural and 
interactive information of graphs which is a combination of certain quantitative 
and qualitative factors. This is performed by taking into account a set of crite-
ria such as profile similarity, topological similarity, interaction rate among users, 
Dunbar’s theorem, as well as other factors such as local trust, contextual trust, 
and finally, the remaining steps between the middle nodes toward the destination. 
On the other hand, multi-criteria decision making approaches act as a powerful 
tool for a better decision making process. These approaches help the decision-
maker to evaluate and compare the results of the current alternative solutions [6]. 
Most of the time, the decision is performed by systematically taking into account 
three important parameters namely: (1) certainty, (2) risk, and (3) uncertainty. 
The ultimate goal is to find an optimal solution by considering these parameters 
[7, 8]. To this aim, fuzzy TOPSIS is used as a method for multi-criteria decision 
making to rank the trustworthiness level of each middle node between two uncon-
nected nodes. The power of fuzzy approaches especially in information aggrega-
tion with contradictory data having an associated uncertainty is demonstrated in 
a wide range of studies [8, 9]. Then, the A* heuristic algorithm is used for opting 
the most trustworthy path. It is worth mentioning that the A* algorithm is a well-
known algorithm that has been widely used in graph traversal and pathfinding due 
to its high performance and accuracy. It is a graph search algorithm based on an 
evaluation function used to sort nodes [10]. Another advantage of the proposed 
approach is the consideration of both certain and uncertain parameters for find-
ing the proper route and the sequence of middle nodes within the path. In other 
words, as opposed to other approaches, there is no restriction for choosing only 
short or long paths. However, we have given more weights to shorter paths in 
equal certainties, to control the path length. But, we have also given more weights 
to longer routes with higher certainty compared to shorter but uncertain ones.

The rest of the paper is organized as follows. The related work of this research 
is reviewed in Sect. 2. Section 3, gives a general introduction of the contextual 
trust and the trust properties as well as an introduction to the fuzzy TOPSIS 
multi-criteria decision-making followed by some preliminary description of the 
A* algorithm. Section 4 describes the proposed approach in more detail. This is 
followed by a numerical example in Sect.  5. Section  6 contains the simulation 
results of the proposed algorithm in which a comparison is drawn amongst the 
proposed approach and other existing models named TidalTrust and MoleTrust 
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evaluated with two different datasets namely the Facebook and Twitter datasets. 
Finally, Section 7 concludes the paper.

2 � Related work

Trust has always been a vital part of online social networks. Therefore, trust models 
play a significant role in the context of social trust. Inferring the trust level between 
two unknown parties is a challenging task. First, it is necessary to find the best pos-
sible routes between two target nodes. Second, integrating the trust value of nodes 
within each path should be performed. Many researchers have worked on the sub-
ject of propagation and the combination of trust values in social networks. Gener-
ally, trust has been categorized from three different perspectives: (1) trust informa-
tion gathering, (2) trust value evaluation, and (3) trust value propagation. Various 
techniques such as statistical methods, machine learning, heuristic methods, and 
behavior-based approaches have been presented. Machine learning and statisti-
cal approaches focus on mathematical trust models whereas heuristic methods aim 
at creating practical models for implementing core trust systems. Behavioral trust 
models study the behavior of users in society [11]. Many different sets of criteria 
have been suggested so far for calculating propagated trust values in social net-
works. They can be divided into two general categories: (1) the ones for assessing 
global trust and (2) the ones for assessing local trust. Regarding the global trust cal-
culation, all relations in the trust graph are taken into account. Then, global trust 
value is assigned to each node which is called reputation. Reputation refers to the 
trust level of the whole network towards a specific user. This inferential approach 
for expressing one’s belief regarding other users may not be the best and the most 
accurate technique. On the other hand, local trust metrics takes advantage of struc-
tural information defined by the individual’s trust network. These approaches define 
a specific node as the source and compute the trust value among that node and the 
destination. To put it another way, in terms of local trust calculation, the trust value 
of each node is computed based on its neighbors’ trust and the nodes connected to 
it, whereas, in the case of global trust evaluation, the complete graph information is 
required and this type of evaluation could be potentially more complicated. There-
fore, the local approach most of the time is the preferred choice amongst researchers 
[12, 13].

In a well-known research, Golbeck has suggested the TidalTrust algorithm for 
inferring trust in social networks. In this algorithm, the shorter the path, the more 
reliable it will be considered if there is no direct relation between the source and 
destination nodes. This approach looks for the shortest paths from the source node 
to the target node. If there is more than one similar short path, it will opt the strong-
est one. The results indicate that the longer the selected path, the weaker the approx-
imation of the trust values will be. It solely works fine in terms of short paths. Even 
though this approach has low time complexity, the biggest downside of this algo-
rithm is that it is not always efficient, as it overlooks the long routes which may con-
tain valuable information that should not be omitted [2, 5, 12, 14]. Another down-
side of the approach is the consideration of trust as a binary concept [11]. Also, the 
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approach is highly influenced by the density of the trust network. Hence, if there 
is a scattered trust network, finding possible routes could be a tough task [5]. In 
the proposed approach we have improved these shortcomings by also considering 
longer paths according to their certainty, considering the interaction rate of middle 
nodes along with the topological information, and using conflicting and fuzzy values 
containing uncertainty instead of assuming binary values. Also, because of using 
TOPSIS as the decision-making mechanism, more optimized trust paths are found in 
social networks with a scattered structure such as Facebook.

Golbeck and Kuter in another interesting research took advantage of the SUNNY 
algorithm for anticipating trust values. The main goal of this algorithm is to predict 
trust between unconnected nodes. Certainty criterion is used in this algorithm for 
assessing the trust level. It presents an explicit probabilistic definition for trust in 
social networks and utilizes a probabilistic approach for finding reliable sources. The 
results show higher performance compared to TidalTrust. This approach is amongst 
the first researches where certainty criterion has been used for inferring trust val-
ues. This algorithm uses a kind of probabilistic sampling for assessing certainty and 
calculates the certainty based on highly trustworthy information sources. In other 
words, it implements the trust inferring approach in a more reliable sub-network 
[2, 15]. A similar set of shortcomings to Tidal trust such as not considering longer 
paths, taking into account only the topological data, as well as lower accuracy in 
low-density graph structures, still exist in this work.

Avesani et  al. suggested an inferring trust algorithm called MoleTrust. In this 
algorithm and as the first step, all the shortest paths from the source node to the 
destination are identified. Then, the trust level of a path is calculated based on the 
weighted sum of the nodes. As an improvement, the users with trust levels less 
than 0.6 are not considered. In this algorithm, the importance of the user’s beliefs 
and suggestions is dependent on the certainty of the source node. It consists of two 
steps. First, the trust graph should be converted to a DAG (directed acyclic graph). 
Next, this DAG should be traversed while calculating the trust value of each visited 
node. Although this algorithm is also based on the shortest path, it solely takes into 
account nodes with trust level less or equal to the propagation trust horizon. Prop-
agation trust horizon/distance is the maximum distance from the source node in 
which the trust would be propagated  to independent of any users. One of the side 
effects of using this approach is its high time complexity [4, 14, 15]. In the pro-
posed work, many of these shortcomings are addressed. For example, bi-directed 
graph structures are assumed with different trust values for each direction. Also, the 
length of the trust paths are controlled by simultaneously considering several criteria 
in the fuzzy-TOPSIS and A* algorithm, Using the fuzzy-TOPSIS approach will be 
effective in reducing the time-complexity of the approach as well. This is because 
many of the branches will be removed from the A* algorithm’s open list due to high 
uncertainty.

Ziegler et  al. suggested the Appleseed algorithm for social networks. In this 
approach a node is selected as a core and energy E is surged into it. Then this energy 
is freed and is distributed between nodes close to the core. More energy will be 
transmitted to adjacent neighbors with higher weights. This approach works with 
partial graph information. In other words, in each step, it only needs the information 
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for nodes that preserve energy and not the whole graph. This is a well-known algo-
rithm in the trust research that assigns the global trust value to the members of a 
community. However, the biggest drawback is that global trust is not as accurate as 
local trust value [3, 12, 16]. A similarity existing between this work and the pro-
posed approach in this paper is the consideration of middle short paths. But the main 
differences between these two approaches are first, taking into account the longer 
paths with high certainty when shorter paths have low certainty values and second, 
the calculation of local trust values for the middle nodes which will result in more 
accurate calculations and hence the selection of more optimized paths.

Lesani and Montazeri have argued in their research that the inferential trust value 
for longer trust chains with more trustworthy median nodes could represent more 
accurate trust information. They take advantage of the fuzzy algorithm and cumula-
tive fuzzy techniques. The comparison of the cumulative fuzzy technique with exist-
ing cumulative approaches show the predominance of the fuzzy approach, especially 
in contradictory information gathering. However, this approach has a high computa-
tion cost as well as high time complexity which makes it a non-practical algorithm 
in real-world social networks [9]. The work of Lesani and Montazeri has a similarity 
with the proposed approach in this paper where both of these approaches consider 
qualitative and uncertain values for trust representation instead of a binary view-
point. But, the proposed approach has the advantage of considering both the shorter 
and longer paths according to their certainty value as well as taking into account a 
wide range of criteria including topological similarity, profile similarity, interaction 
rate, remaining nodes toward the destination, and so on for a more accurate trust 
calculation process. Also, using fuzzy-TOPSIS will result in the filtration of many 
paths with lower certainty values starting from the source node which in turn will 
reduce the time-complexity of the proposed approach.

Ghaemi and Shakeri have proposed a new method to improve the accuracy of 
trust propagation and calculation along different paths. In this approach, recom-
mended trust amongst nodes is approximated based on belief similarity. Then, the 
trust level will be calculated by the multiplication of trust value along the trust path. 
Although this approach could decrease uncertainty along the trust chain, it cannot 
solve the dispersion of the trust network [2, 17]. In another study, Hassan et al., have 
evaluated the performance and efficiency of repetitive multiplication in the trust 
chain whereby trust of a path is calculated by multiplication of trust values within 
the chain. The trust value for small intervals would be relatively small since the trust 
value of each node is a real number in the range of [0, 1]. That is why the efficiency 
of this approach is not considerable. Another weakness of this approach is that it 
does not work for trust values in other ranges such as (1, 5). It is shown that there is 
a strong positive linear correlation between direct trust values and trust propagation 
[3, 18].

Hamdi et al., have  introduced the TISoN algorithm for inferring trust in online 
social networks. Additionally, they have suggested a trust search algorithm called 
TPS and a trust inferring method named TIM. TPS algorithm identifies high priority 
adjacent nodes based on direct trust and trustworthy path while controlling the path 
length. In this algorithm, path selection is performed based on two criteria: (1) the 
maximum allowed path length and (2) the minimum threshold level for trust edges 
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within the path. Afterward, inferential trust is calculated based on the most trustwor-
thy path, the average of trusted edges along the path, the variance of path edges, and 
the weight of the path according to its length. TISoN computations have high expo-
nential complexity for massive data in the real world and the dynamic nature of trust 
is not considered as well [19]. This work is similar to the proposed approach con-
cerning the consideration of longer paths as well as inferring trust values between 
pairs of unconnected nodes. But, due to the filtration mechanism of fuzzy-TOPSIS, 
the time-complexity of the proposed approach would be better. Also, the considera-
tion of a wide range of parameters including the interaction rate of users instead of 
just considering the static topological info will result in more accurate calculations.

Ghavipour  et al., have proposed a local inference and propagation algorithm 
called DLatrust based on distributed learning automata for finding the most trust-
worthy paths and calculating the final trust value of a chain of nodes in a trust 
path. They studied three important areas namely (1) finding trustworthy paths, (2) 
trust path length calculation, and (3) an integration method for calculated trust val-
ues. The proposed method allocates a learning automaton to each node in the trust 
network. A new cumulative function based on standard cooperation filtering for inte-
grating trust values generated from different paths is also suggested. Experimental 
results based on real network data illustrate that the suggested algorithm can effec-
tively be used for trust inference compared to other trust propagation algorithms 
[15]. The proposed approach in this paper also focuses on these three aspects but 
the consideration of a larger and potentially conflicting set of criteria would result in 
more accurate trust calculations and thus more optimized paths.

A significant portion of the studied approaches have utilized partial trust infor-
mation and only a few factors for trust evaluation. Table 1 summarizes some of the 
well-known trust propagation methods currently existing in the social networks 
field.

3 � Background knowledge

Trust is a fundamental component of decision making. It has a significant role in daily 
interactions of people from interpersonal communications to vital decision making in 
e-commerce, as well as development, preserving, and keeping relations in society [20]. 
Trust is defined as a mental state of an individual in psychology [21] and is a dynamic, 
contextual, propagative, asymmetric, self-reinforcing concept [16, 22]. Approaches 
for computing and evaluation of trust can be divided into three categories: (1) topo-
logical trust models, (2) trust models based on users’ interactions, and (3) hybrid trust 
models which is a combination of two aforementioned models [16]. One of the appar-
ent characteristics of social networks is their dynamic nature. As time passes by, new 
relations are established [16, 21]. On the other hand, users in a social network do not 
have the entire information from their surrounding environment. Therefore, deciding 
on trusting/not trusting other users has turned into a big challenge. For the ones who 
have never been in direct contact, trust is inferred based on its propagative attribute. 
Such propagation will occur on at least one possible path which connects the source 



834	 N. Hamzelou et al.

1 3

Ta
bl

e 
1  

T
he

 c
om

pa
ris

on
 o

f w
el

l-k
no

w
n 

m
et

ho
ds

 in
 tr

us
t p

ro
pa

ga
tio

n 
m

od
el

s

A
lg

or
ith

m
 n

am
e

D
at

a
C

ha
ra

ct
er

ist
ic

s
D

ra
w

ba
ck

s

Ti
da

l T
ru

st
W

eb
 so

ci
al

 n
et

w
or

ks
1.

 T
ru

st 
of

 th
e 

sh
or

te
st 

pa
th

s
2.

 T
he

 to
po

lo
gi

ca
l g

ra
ph

 in
fo

rm
at

io
n

3.
 P

er
fo

rm
s a

 m
od

ifi
ed

 b
re

ad
th

-fi
rs

t s
ea

rc
h 

us
in

g 
lo

ca
l t

ru
st

1.
 L

on
ge

r b
ut

 p
os

si
bl

y 
va

lu
ab

le
 p

at
hs

 m
ig

ht
 b

e 
ov

er
lo

ok
ed

2.
 It

 is
 h

ig
hl

y 
in

flu
en

ce
d 

by
 th

e 
de

ns
ity

 o
f t

he
 tr

us
t 

w
eb

3.
 T

ru
st 

is
 d

efi
ne

d 
as

 a
 b

in
ar

y 
co

nc
ep

t
M

ol
eT

ru
st

Ep
in

io
ns

.c
om

1.
 U

si
ng

 lo
ca

l t
ru

st 
va

lu
es

2.
 T

he
 im

po
rta

nc
e 

of
 a

 su
gg

es
tio

n 
or

 b
el

ie
f i

s 
de

pe
nd

en
t o

n 
th

e 
so

ur
ce

 n
od

e

1.
 C

on
si

de
rin

g 
on

ly
 th

e 
sh

or
te

st 
pa

th
s

2.
 U

se
rs

 w
ith

 tr
us

t v
al

ue
s l

es
s t

ha
n 

0.
6 

ar
e 

re
m

ov
ed

3.
 H

ig
h 

tim
e 

co
m

pl
ex

ity
A

pp
le

se
ed

A
dv

og
at

o 
co

m
m

un
ity

 w
eb

 si
te

1.
 D

efi
ni

ng
 a

 c
or

e 
no

de
, s

ur
gi

ng
 e

ne
rg

y 
to

 it
, a

nd
 

di
str

ib
ut

in
g 

it 
to

 a
dj

ac
en

t n
ei

gh
bo

rs
2.

 M
or

e 
en

er
gy

 to
 c

lo
se

r n
od

es
 w

ith
 h

ig
he

r w
ei

gh
ts

3.
 U

si
ng

 g
lo

ba
l t

ru
st 

va
lu

e

1.
 U

til
iz

in
g 

gl
ob

al
 tr

us
t v

al
ue

 fo
r e

ac
h 

pe
er

 w
hi

ch
 is

 
no

t a
s a

cc
ur

at
e 

as
 lo

ca
l t

ru
st

2.
 P

ar
tia

l g
ra

ph
 in

fo
rm

at
io

n 
is

 re
qu

ire
d

3.
 T

he
 g

ra
ph

 is
 n

ot
 w

ei
gh

te
d

Ei
ge

nT
ru

st
Pe

er
-to

-p
ee

r s
ha

rin
g 

fil
es

G
lo

ba
l t

ru
st 

ca
lc

ul
at

io
n 

of
 e

ac
h 

pe
er

 b
as

ed
 o

n 
th

e 
up

lo
ad

 d
at

e 
of

 th
e 

fil
e

U
til

iz
in

g 
gl

ob
al

 tr
us

t v
al

ue
 fo

r e
ac

h 
pe

er
 w

hi
ch

 is
 

no
t a

s a
cc

ur
at

e 
as

 lo
ca

l t
ru

st
Sp

ec
ifi

ca
lly

 d
es

ig
ne

d 
fo

r p
ee

r-t
o-

pe
er

 n
et

w
or

ks
Ite

ra
tiv

e 
m

ul
tip

lic
at

io
n 

A
lg

or
ith

m
s f

or
 tr

us
t 

pr
op

ag
at

io
n

W
eb

 so
ci

al
 n

et
w

or
ks

1.
 P

ro
pa

ga
te

d 
tru

st 
is

 e
qu

al
 to

 th
e 

av
er

ag
e 

tru
st 

va
lu

es
 o

f a
ll 

pa
th

s
2.

 T
ru

st 
of

 a
 p

at
h 

is
 c

al
cu

la
te

d 
by

 m
ul

tip
lic

at
io

n 
of

 
tru

st 
va

lu
es

 w
ith

in
 th

e 
ch

ai
n

1.
 T

he
 m

or
e 

th
e 

ho
ps

 b
et

w
ee

n 
th

e 
so

ur
ce

 a
nd

 th
e 

de
sti

na
tio

n 
no

de
s, 

th
e 

le
ss

 th
e 

pr
op

ag
at

ed
 tr

us
t 

va
lu

e
2.

 If
 th

e 
tru

st 
le

ve
l o

f o
ne

 o
f t

he
 n

od
es

 in
 th

e 
pa

th
 is

 
lo

w
, e

ve
n 

th
ou

gh
 a

ll 
ot

he
r n

od
es

 h
ig

hl
y 

tru
st 

ea
ch

 
ot

he
r, 

th
e 

fin
al

 tr
us

t v
al

ue
 w

ill
 b

e 
ne

gl
ig

ib
le

Fu
zz

y 
tru

st 
ag

gr
eg

at
io

n
V

irt
ua

l m
ar

ke
tp

la
ce

s o
n 

th
e 

W
eb

Em
pl

oy
in

g 
lin

gu
ist

ic
 te

rm
s f

or
 tr

us
t s

pe
ci

fic
at

io
n.

 
C

or
re

sp
on

di
ng

 fu
zz

y 
se

ts
 a

re
 d

efi
ne

d 
fo

r t
ru

st 
lin

gu
ist

ic
 te

rm
s a

nd
 a

 fu
zz

y 
tru

st 
ag

gr
eg

at
io

n 
m

et
ho

d 
is

 a
ls

o 
pr

op
os

ed

Th
is

 a
pp

ro
ac

h 
ha

s a
 h

ig
h 

co
m

pu
ta

tio
n 

co
st 

as
 w

el
l 

as
 h

ig
h 

tim
e 

co
m

pl
ex

ity
 w

hi
ch

 m
ak

es
 it

 a
 n

on
-

pr
ac

tic
al

 a
lg

or
ith

m
 in

 re
al

-w
or

ld
 so

ci
al

 n
et

w
or

ks



835

1 3

A propagation trust model in social networks based on the A*…

and destination nodes [15]. Another advantage of this propagative nature is that users 
can find new friends and establish new connections [16].

It is argued in some studies that trust is a pseudo-transitive subject [22]. It is not 
completely transitive, and its value would decrease in a chain of relations [12, 16]. 
According to Fig. 1, if A trusts B and B trusts C, it can be concluded that A would trust 
node C up to a threshold based on its trust toward node B. This is called trust inference. 
Apparently, as there is no direct connection between A and C, A uses the trust informa-
tion of B toward the node C. However, when node A is directly connected to B, there 
is no need for any intermediate information to decide about the trustworthiness level 
of B. This is called direct trust, while the former situation is named referral trust [23]. 
In massive social networks, due to the existence of a huge volume of users, as well as 
the fact that not all of them are in close connection with each other, the propagative and 
referral nature of trust is a facilitating factor for computing the trust value of uncon-
nected nodes.

In Fig. 1, if node B is the only middle node in a path between node A and C, and 
node A trusts node B, then the trust level of A toward C can be easily inferred. However, 
when there are multiple chains of routes between nodes A and C, which in turn will 
increase the number of different middle nodes for deciding about trusting/distrusting 
the target node, decision making can get complicated. In this case, different parameters 
can have an impact on the final trust value. Some of these parameters are: (1) trust 
chain length, (2) local trust value, (3) context-based trust value of middle users, (4) 
topological structure, (5) interaction rate among users, and (6) different strategies for 
integrating middle values. This final attribute refers to the trust aggregation mechanism 
which is one of the core components of every computational trust model [16]. As men-
tioned earlier, investigating all the possible routes between two nodes would lead to 
exponential time complexity [2] which is not preferable. Therefore, selecting one or a 
few number of trustworthy paths with the least number of middle nodes seems to be an 
indispensable problem that needs to be addressed.

3.1 � Fuzzy TOPSIS multi‑criteria decision making

In the proposed approach we have used the fuzzy TOPSIS method one of the 
well-known techniques in the multi-criteria decision-making domain for facilitat-
ing the trust decision making [24]. Such usage is beneficial to the approach as a 
result of the existence of multiple routes and various sets of criteria influencing 
the final decision. Generally, multi-criteria decision-making models are used for 
selecting the best alternative amongst all the existing ones. In these techniques, 
all available options are ranked and categorized. The fuzzy TOPSIS method is 
one of the most efficient and well-known methods available for this aim. The 
general idea behind this technique is that considering all possible solutions, two 

Fig. 1   Direct and referral trust 
[23]
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hypothetical options are selected. One of them is the set of all the best values in 
the decision matrix which is called the positive ideal solution. On the other hand, 
we would have a negative ideal solution, comprising all the negative or worse 
options. Each criterion could have a positive or negative influence. Also, their 
measurement could be different. In this approach, options are categorized based 
on their similarity, so that the more an option is closer to the ideal solution, the 
more its rank would be [24, 25]. This decision-making technique is based on a 
sound mathematical framework and is comprised of 7 steps:

1.	 Decision matrix creation and assigning weights to each criterion.
2.	 Normalizing the matrix.
3.	 Generating a weighted fuzzy matrix.
4.	 Determining positive ideal and negative ideal fuzzy solutions.
5.	 Estimating how each option is far from the positive/negative ideal solutions.
6.	 Determining the similarity coefficient for each node and assessing the similarity 

index.
7.	 Finally, ranking options are based on the similarity ratio [24–26].

3.2 � The A* algorithm

In graph theory, finding the shortest path problem deals with finding a path 
between two nodes so that the sum of the weights of the paths between these 
nodes is minimized. For example, consider finding the quickest route to be trans-
ported from a point on a map to another. In this situation, edges symbolize the 
path between two nodes which are labeled based on the time required to pass 
through the path. Consider a weighted graph consisting of a set of nodes named 
V, as well as E edges and a weighting function F: E → R. Besides, assume two 
unconnected nodes such as C and A from the set V. The goal is to find a path like 
P from the node A to node C as the shortest path amongst all possible ones. The 
A* algorithm finds the shortest path by assigning a score to each square which is 
called the scoring path. In Eq. 1, g(n) is the real cost of reaching node N from the 
first node. In other words, this is the cost of finding the optimized path. The h(n) 
is the aggregated cost of reaching the target node through node N which requires 
heuristic information from various situations. How G and H are selected can be 
changed based on different circumstances.

Two lists are required in the A* algorithm. One, for listing all possible squares 
that are presumed to be the shortest path, which is called the open list. While the 
closed list is used for listing all the squares which are not required to be evaluated 

(1)f (n) = g(n) + h(n)
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anymore [10]. Indeed, this algorithm is an extension of the Dijkstra’s algorithm [27]. 
This algorithm takes advantage of the best-first search and finds the shortest path 
between two given nodes based on middle nodes. The A* algorithm is represented 
as Algorithm 1 below: 
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4 � Proposed approach

In social networks, when a source node is not directly connected to the destination 
node, one of the existing challenges is to calculate the trust between them and also 
find the most trustable path connecting them. One of the shortcomings of most of the 
existing approaches is that the accuracy of trust calculation significantly decreases 
when the path lengths become larger. Because of this issue, many of the existing 
approaches limit their calculation only to shorter paths and completely ignore the 
longer ones which will reduce their accuracy to a great extent. In the few cases 
where the trust information of all possible paths is considered, the time-complexity 
of the approach becomes a major issue.

To improve upon these shortcomings, in the proposed approach, the util-
ity function of each node (representing the trust value) is calculated based on a 
fuzzy-TOPSIS decision-making process. This will allow the model to consider a 
wide range of qualitative, uncertain, and potentially conflicting criteria for trust 
calculation (7 parameters are considered in this paper). Using fuzzy-TOPSIS 
helps in both reaching more accurate trust calculations for middle-nodes as well 
as acts as a pre-filtration mechanism for the next step where nodes with lower 
trust and certainty values will be discarded resulting in a lower time-complex-
ity compared to approaches where nodes in all the existing paths are considered. 
Also, the approach uses an extended version of the A* algorithm which results in 
the selection of a combination of shorter and longer paths but with high certainty 
values. This in turn will increase the accuracy of the proposed approach com-
pared to the approaches where the trust information of only the shorter paths is 
taken into account.

By considering the social network as a graph, each user can be considered as a 
node in the graph, and all nodes existing between two unconnected source and target 
nodes are middle nodes. In this case, the value of g(n) and h(n) could be calculated 
based on a set of criteria including topological similarity, profile similarity, Dun-
bar’s theorem, interaction rates between the source node and middle node, contex-
tual and local characteristics of trust, and finally the remaining steps from a middle 
node to the target. Final trust as a utility function is used for ranking each option. 
Middle nodes with the largest final trust values in each step are added to the open 
list. Respectively, the ones with the lowest final trust values will be inserted into the 
closed list. In the end, similar to the A* algorithm, traversing edges with large final 
trust (i.e. routes with high certainty from the source node to the destination) is the 
ultimate goal of the proposed approach. Figure 2, represents how the A* algorithm 
is extended in this approach. The direction of the edges determines the trust direc-
tion. For example, if node A trusts node B, the edge direction will be represented as 
A→B. On the other hand, we know that due to the asymmetric nature of trust, when 
A trusts B, it is not mandatory that B trusts A as well.
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When both parties trust each other (i.e. A↔B), the trust value could be differ-
ent depending on their perspective and previous interactions [12, 16]. Assume 
that the trust relationships are established as represented in Fig. 3. The ultimate 
goal is to find the most trustworthy path for inferring the trustworthiness level of 
C from the viewpoint of node A. For this purpose, it is first required to find the 
reliable middle nodes connecting these two nodes. According to Fig. 4, all these 
nodes should be ranked based on a set of criteria. The following steps will be per-
formed by the proposed approach:

1.	 For each unconnected pair of nodes, all the reliable middle nodes within the trust 
chain should be identified. The nodes’ trustworthiness value should be calculated 

Fig. 2   An extension of the A* algorithm for ranking middle nodes

Fig. 3   C1 to C7 criteria and utility function (F) for assessing A’s trust toward C
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based on the combination of different factors such as profile similarity, topological 
similarity, and interaction rate among users [16].

2.	 Bearing in mind the contextual characteristic of trust [16, 28], trustworthy users 
should be selected in the trust chain and based on the specified context.

3.	 Since trust highly depends on an individual’s mental status [16, 21], for preventing 
the unintended biased negative feedback, local trust value between each uncon-
nected pair of nodes within the trust chain should be calculated and be considered 
while deciding on the middle users for finding the trustworthy path.

4.	 Dunbar says people have the ability to keep their connection with at most 150 
different parties and the higher the number of connections the lower the quality 
of the relationships [23, 29, 30]. Therefore, another efficient factor for ranking 
middle nodes is giving more weights to the nodes that have fewer connections.

5.	 As the last deciding factor in the decision-making process, the remaining steps 
toward the destination is calculated. This is to select the shortest possible path 
amongst the available trusted nodes.

6.	 The final trust value would be calculated by utilizing the fuzzy TOPIS method.
7.	 Finally, for traversing the graph between the source and the destination, the nodes 

with the highest final trust values will be chosen based on the A* algorithm.

Fig. 4   Users’ criteria for decision making in a social network
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Because in each traversed path a large set of viable candidates may exist and a 
large set of criteria should be analyzed, the decision-making process is not a trivial 
task. In addition, a combination of concrete and fuzzy numbers, as well as positive 
and negative factors with different measurement units may exist in various contexts. 
Forming the decision matrix is considered to be the first step in all multi-criteria 
decision making approaches. This is a matrix for the evaluation of multiple options 
based on a set of established criteria. In other words, in this matrix, each option is 
ranked based on different factors. A decision matrix is a matrix for appraising m 
options based on n criteria. So, as an initial step, a decision matrix from the perspec-
tive of node A in the sample social network’s graph presented in Fig. 3 should be 
created. This matrix will be used for ranking options B, D, E, F, and G based on the 
criteria represented in Fig. 4.

What is crucially important during this matrix formation is the weight or type 
(i.e. positive/negative) of each criterion. Also, if there were some uncertain values 
amongst the ones that form the decision matrix, an appropriate range and definition 
should be used so that the fuzzy TOPSIS technique could be applied. The overall 
algorithm of the proposed approach is provided as Algorithm 2. In the following, 
each criterion will be discussed in more detail.

4.1 � Profile similarity criterion

The first criterion we have considered for the trust calculation of middle nodes in 
the paths existing between source and destination nodes, is the profile similarity. 
Researches proved that those who trust each other are more likely to be similar [1]. 
In social networks, users can find their classmates, colleagues, old friends, and so 
forth based on their profile similarity. Figure 3 is a slice of a massive social network. 
Suppose that the trust values labeled on each edge and the ranking of each middle 
node (B, D, F, E, G) are computed solely based on the profile similarity of users. 
Now if another set of criteria such as the topological similarity, or the number of 
remaining nodes from a middle node toward the target node would be considered, 
each edge’s trust value and therefore, the node A’s decision for choosing the middle 
nodes would differ entirely. 

According to Fig. 3, A should find its most trustworthy adjacent neighbors next to 
the trustworthy path to reach node C (i.e. target). The main idea behind calculating 
trust based on similarity lies in the fact that trust is built based on social similarities 
[31]. People tend to create groups based on their similar interests [32]. This is the 
main reason that trust based on profile similarity is chosen as an initial criterion of 
the fuzzy TOPSIS technique in this paper. However, people reveal their interests at 
various levels depending on the activity type in social networks. For example, they 
show their movie or music tastes much more than their political orientation. Here, 
Eq. 2 shows how more weights are assigned to more specific interests based on pro-
file similarity definition of trust.
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where w(i) is equal to 1

log(N)
 and N, is the number of users who are interested in i . In 

other words, the more people are interested in an activity, the less its weight would 
be. While IA and IB are the number of interests of user A and B respectively, IAB is 
the number of similar interests. If IB = 0 or IA = 0, this means that no interest is cited 
in their profile. It is worth mentioning that this criterion will be considered as a posi-
tive criterion in the source node A ‘s decision matrix.

4.2 � Topological similarity criterion

Since users may not reveal all their interests thoroughly and explicitly, estimating 
trust based on interest’s similarity is not always applicable. Hence, as it is shown in 
Eq. 3, another method for approximating trust based on the topological similarity of 
node A with each middle node B, D, E, F, and G using the Jaccard index [33] is sug-
gested. The calculated value using this method is added to the decision matrix as a 
second criterion (CTS).

Here, fA and fB refer to the number of friends and acquaintances of A and B 
respectively.

4.3 � Users’ interaction rate criterion

Although studies have shown that homophily is formed amongst people who trust 
each other, this does not mean that homophily would necessarily lead to trust [34]. 
That’s why the interaction rate amongst users is added as a third criterion to the two 
aforementioned criteria in the decision matrix according to Eq. 4.

where N
(
userA,MiddleNode

)
 is the number of interactions between A and the 

MiddleNode like B, and WN  is the weight of each transaction between a directed 
pair of nodes like AF, AG, and so on. For example, transactions such as liking a 
post, sending a message, commenting on a post, each can have different weights in a 
social network.

(2)

Criteria(Pr ofile − similarity)1 =

�
TrustPS

�
SourceNodeA,MiddleNodeB

�
=

∑
i∈IAB

w(i)√
IA∗

√
IB

0 < TrustPS(A,B) ≤ 1

(3)

Criteria(Topoghraphy − similarity)2 =

{
trustTS

(
SourceNodeA,MiddleNodeB

)
=

|fA∩fB|
|fA∪fB|

0 < TrustTS ≤ 1

(4)

Criteria(TranscationRate)3 =

∑
N∈Activityset(SourceNodeA)

wN ∗ N
�
SourceNodeA,MiddleNodeB

�
∑

N∈Activityset(SourceNodeA)
WN
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4.4 � Local trust criterion

Figure 5 represents a small trust network. As there is no direct connection between 
node A as the source and node C as the target node, A needs the trust value of mid-
dle nodes B and D for inferring the trust value of the target node. Node A trusts both 
nodes B and D equally. On the other hand, B trusts C, so it is capable of transferring 
its trust value to A. However, node D does not trust C, and so it would send negative 
feedback regarding C to A which creates a complex situation. In this case, we check 
the local trust level of recommenders and see how they are trustable from the per-
spective of their neighbors based on previous interactions they had with each other. 
Suppose node D has been recognized as an untrustworthy node in its local trust 
group while B has developed a good reputation in its locality. In this case, the infor-
mation provided by node B is more reliable and authentic. Now, if the trusted net-
work gets expanded and the number of middle nodes between A and C increases, the 
path crossing node D will not be a proper option for A to decide whether to trust C 
or not. Therefore, in the suggested approach, each middle user will be ranked based 
on its reputation and the history of its former performance in the social network.

Some algorithms such as TidalTrust use binary values [0, 1] for expressing the 
trust level of users towards each other. However, in complex social networks as a 

Fig. 5   The impact of the B and 
D’s local trust on how A would 
find node C trustworthy
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Table 2   Triangular 5-level 
fuzzy numbers

Linguistic variable Attribute grade Corresponding 
triangular fuzzy 
number

Very poor (VL) 1 (0, 1, 3)
Poor (L) 2 (1, 3, 5)
Fair (M) 3 (3, 5, 7)
Good (H) 4 (5, 7, 9)
Very Good (VH) 5 (7, 9, 10)

result of an inadequate amount of certain and accurate information, this form of trust 
definition is not suggested [11]. By this definition, there is no way to distinguish 
completely untrustworthy nodes from partially untrustworthy ones. Fuzzy logic is 
a multipurpose logic. Therefore, the uncertainty and ambiguity in different subjects 
define the necessity of applying fuzzy techniques for modeling qualitative aspects of 
the problem. Having a set A, the membership function of x is defined according to 
Eq. 5 [35, 36]:

If x does not belong to A, then �A(X) = 0 . If x partially exists in A, then 
�A(X) ∶ X → [0, 1] and x is a fuzzy member. In this case, a membership function is a 
real number and an object could partially be an instance of a set.

In fuzzy logic, the membership of set members is defined based on the U(X) func-
tion where X represents a specific member and U is a fuzzy function that determines 
the membership degree of X in the set and its value is a real number between 0 to 
1. A fuzzy number can be defined either in the triangular or trapezoidal form [25, 
36]. In triangular form, the desired number is represented as M = (a, b, c) , where 
a, b, and c parameters are referring to the minimum, most likely, and the maximum 
amount of the target value. This value can be changed within the scope of (a, c). In 
the proposed approach, the local trustworthiness level of each middle node in its 
trust group is considered to be a fuzzy set. For defining the membership degree of 
each middle node, 5-level triangular fuzzy numbers according to Table 2 are used.

Equivalent fuzzy numbers for each linguistic variable defined in Table  2 are 
formulated by Eq. 6 and it is set as the fourth criterion in the local trust decision 
matrix. Therefore, the local trust value of the middle nodes B, D, E, F, and G 
should be defined based on this equation. For calculating this value, its interac-
tion rate with its connected nodes in its trust group, as well as its interaction rates 
in previous time windows should be used.

(5)�A(X) =

{
1 x ∈ A

0 x ∉ A
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where xi is the number of recent interactions, and xi−1 is the number of interactions 
that occurred between a middle node like B with its connected nodes in a previous 
time window. Trust value can be enhanced or decreased as time passes by as a result 
of new experiences. Generally, new experiences are much more important than the 
old ones and a good trust model should pay less attention to old interactions [16]. 
According to Eq. 6, if the interaction rate is less than 1, poor or very poor linguistic 
variables are used. If there is no change in interaction rates from the previous time 
window, fair is a good choice as a linguistic variable and if this rate is more than 
1, then we could use either good or very good. Then, based on Table 2, triangular 
fuzzy numbers equivalent to each linguistic variable can be substituted.

4.5 � Context‑based trust criterion

As mentioned earlier, one of the important features of trust is its contextual prop-
erty [16]. In social networks, individuals within a trust chain could be trustworthy 
in one or multiple contexts, but this does not mean that they are trustworthy in 
all domains. This could impact the trust propagation in the trust chain. As trust 
is highly dependent on context, it could result in uncertainty in some situations 
and so it is crucial to consider the desired context as a significant criterion when 
calculating the trust level. Here, another 5-level triangular fuzzy number based on 
Table 3 is used for demonstrating how a middle user is evaluated as an expert in a 
specific context.

(6)Criteria(LocalTrust)4 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

TransctionIntensitya
MiddleNodeB

=
a∑
i=1

�
NTRi

NTRi
−1

�
> 1

TransctionIntensitya
MiddleNodeB

=
a∑
i=1

�
NTRi

NTRi
−1

�
= 1

TransctionIntensitya
MiddleNodeB

=
a∑
i=1

�
NTRi

NTRi
−1

�
< 1

Table 3   5-level fuzzy numbers 
for evaluating the expertise of a 
node in a given context

Linguistic variable Attribute grades Corresponding 
triangular fuzzy 
number

Very Low (VL) 1 (0, 0, 0.25)
Low (L) 2 (0, 0.25, 0.5)
Medium (M) 3 (0.25, 0.5, 0.75)
High (H) 4 (0.5, 0.75, 1)
Very High (VH) 5 (0.75, 1, 1)
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Fig. 6   A large number of B’s 
friends in a sample trust graph

4.6 � Dunbar criterion

Based on the Dunbar theorem, individuals cannot keep a large set of social relations 
in mind and their cognitive capacity will limit the number of social connections they 
have at each moment in time. Each individual has the intrinsic capability of catego-
rizing her/his social relations. Dunbar stated that people can manage and preserve 
between 100 to 250 relations with an average of 150 [23, 29, 30]. The less the num-
ber of friends of a node, the more selective they would be based on Dunbar’s theo-
rem. The reason we have considered this criterion in the decision matrix is to con-
sider the maximum number of effective relations for the middle nodes and give more 
weight to nodes with fewer but more focused and effective relations as opposed to 
nodes with large but weak and ineffective connections. This criterion is formulated 
based on Eq. 7. According to Fig. 6, the larger the degree of each node, the smaller 
score it would have based on this Equation. This is considered as the sixth criterion 
and as a positive ideal one in the decision matrix.

In the above Equation, the numerator shows the number of mutual friends, while 
the denominator is the maximum number of friends of A and B. The more the num-
ber of friends, the less the final score will be.

4.7 � Remained path calculation criterion

Golbeck and many other scientists have argued that short paths can provide better 
and more accurate trust information between the source node and the destination 
one [2, 3, 15]. In this paper, according to their argument, we have tried to control 
the path length and have an estimate on the remaining hops. So, the remaining hops 
are considered as a negative ideal factor along with other mentioned criteria in the 
decision matrix. It is considered a negative criterion as it will result in a higher cost 
in longer paths.

(7)Criteria(Dunbar − theorem(SourceNodeA,MiddleNodeB))6 =
||fA ∩ fB

||
max

{
kA, kB

}
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Therefore, for each middle node, the remaining path is another factor in the deci-
sion matrix. For example, in Fig. 3, the remaining path from node B to C is 2 hops, 
while it is 3, 1, 5, and finally 2 hops in the case of nodes D, E, F, and G respectively. 
It is worth mentioning that in assessing the remaining path, the nodes counted in 
previous rounds are not taken into account again. This is the same parameter used in 
Eq. 1 and by the A* algorithm.

4.8 � Calculating the final trust value based on the fuzzy TOPSIS

The first step in fuzzy TOPSIS is forming the decision matrix. Then, steps such as 
finding all possible alternatives, defining a set of criteria for a special source node 
such as A, determining positivity or negativity of each criterion as well as represent-
ing it as concrete or qualitative comes next. Each element of the decision matrix for 
node A is represented by Xij . For instance, x11 is the evaluation of node B based on 
the  C1 criterion which can be either a concrete number or a qualitative one.

((SourceNodeA) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Criteria(MiddleNodes)

MNB

MND

MNE

MNF

MNG

⎡⎢⎢⎢⎢⎢⎢⎣

cPS cTP cTR cLT cCT cDT cRP
x11 x12 x13 x14 x15 x16 x17
x21 x22 x23 x24 x25 x26 x27
x31 x32 x33 x34 x35 x36 x37
x41 x42 x43 x44 x45 x46 x47
x51 x52 x53 x54 x55 x56 x57

⎤⎥⎥⎥⎥⎥⎥⎦

.

Every alternative is assigned a score in a triangular fuzzy number based on all the 
existing criteria in the fuzzy TOPSIS decision matrix. A triangular fuzzy number is 
represented in the form of X̃ =

(
aij,bij , cij

)
 where X̃ indicates the performance of 

alternative i where i = (1, 2,… ,m) relative to the criterion j where j = (1, 2,… , n) . 
The next step is defining the importance weight of each criterion represented by 
�W =

[
W̃1, W̃2, W̃3

]
.

Each criterion can have a different priority from the viewpoint of each node 
based on that node’s preferences. In this approach, for the sake of simplicity, 
default values according to Table  4 are assigned to the selected set of criteria. 
The second phase of fuzzy TOPSIS is the normalization of the decision matrix. 
If x shows each element of the decision matrix and n indicates a normal matrix 
element, then the normalization could be performed based on Eq. 8. It is worth 

Table 4   Triangular fuzzy numbers for the criteria’s importance

Linguistic variable Attribute grade Corresponding triangular 
fuzzy number

Assumed attribute 
grade for the 
criteria

Very Low (VL) 1 (0, 0.1, 0.3) CDT

Low (L) 2 (0.1, 0.3, 0.5) CLT

Medium (M) 3 (0.3, 0.5, 0.7) CPS,CTS

High (H) 4 (0.5, 0.7, 0.9) CCT, CRP

Very High (VH) 5 (0.7, 0.9, 1) CTR
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mentioning that all criteria except the remaining path are positive factors. While 
Eq. 8 must be applied to the positive factors and negative ones.

where C̃+

j
= max

i

{
Cij

}
 is for the benefitcriteria and �a−

j
= min

i

{
ãij
}
is for the 

costcriteria . In the third step, a free scale harmonic fuzzy matrix should be formed. 
Equations 9 and 10 transforms matrix N to a scale-free harmonic fuzzy matrix Ṽ .

where W̃j is the importance weight of Cj criterion. A fuzzy weighted decision matrix 
is generated by multiplying the importance weight of each criterion to the scale-free 
fuzzy matrix. In the fourth step, positive ideal (A+) and negative ideal (A−) must be 
calculated by Eqs. 11 and 12 respectively. In this step, the positive and negative ide-
als are the biggest and smallest elements in each criterion column respectively.

In the above equations, the A+ and A− options denote the best and the worst 
cases. The sum of the distances of each element from the fuzzy positive and neg-
ative ideals is calculated based on Eqs. 13 and 14 in the next step. This distance is 
calculated based on the Euclidean distance [37] as below:

where D is the distance between two fuzzy numbers. If M1 =
(
a1, b1, c1

)
 and 

M2 =
(
a2, b2, c2

)
 are two triangular fuzzy numbers, then their distance could be calcu-

lated based on Eq. 15. The closer the distance to 1, the more ideal the result would be.

(8)

⎧
⎪⎨⎪⎩

ñ(sourceNodeA)ij =

�
aij

C+

j

,
bij

C+

j

,
cij

C+

j

�
, C+

j
= max

i

�
Cij

�
; for benefit criteria

ñ(sourceNodeA)ij =
�

a−
j

Cij

,
a−
j

bij
,
a−
j

aij

�
, �a−

j
= min

i

�
ãij
�
; for cost criteria

(9)Ṽ(sourceNodeA) =
[
ṽij
]
mn
, i = 1, 2,… ,m; j = 1, 2,… , n

(10)Ṽ(sourceNodeA)ij = ñ(sourceNodeA)ij∗W̃j

(11)
A+ =

(
ṽ+
1
, ṽ+

2
,… , ṽ+

n

)
where ṽ+

j
=

(
C̃+

MNj
, C̃+

MNj
, C̃+

MNj

)
and C̃+

j
= max

i

{
CMNij

}

(12)
A− =

(
ṽ−
1
, ṽ−

2
,… , ṽ−

n

)
where ṽ−

j
=

(
ã−
MNj

, ã−
MNj

, ã−
MNj

)
and ã−

j
= min

i

{
ãMNij

}

(13)d+
i
(SourceNodeA) =

n∑
j=1

d
(
ṽij, ṽ

+

j

)
, i = 1, 2,… ,m j = 1, 2,… , n

(14)d−
i
(SourceNodeA) =

n∑
j=1

d
(
ṽij, ṽ

−

j

)
, i = 1, 2,… ,m j = 1, 2,… , n

(15)D
(
M1,M2

)
(SourceNodeÃ)

=

√
1

3

[(
a1 − a2

)2
+
(
b1 − b2

)2
+
(
c1 − c2

)2]
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As the next step, the similarity index to CCi should be calculated based on Eq. 16.

Finally, nodes will be sorted based on CCi which will be the indicator of the 
final trust value and utility function. The node with the highest trust value will be 
selected as the next node. Afterward, the decision matrix and the ranking of middle 
nodes will be repeated again. In each step, after ranking all available alternatives 
based on the fuzzy TOPSIS method, the nodes with the highest utility function will 
be inserted in the open list according to the A* algorithm. On the other hand, middle 
nodes with the least utility function will be inserted in the closed list. Now, in each 
step from the source node to the destination, the nodes with the highest utility func-
tion for traversing the most trustworthy path should be selected. The final step in 
the proposed approach is inferring the trust value between each unconnected pair of 
nodes in the trust network based on the selected trustworthy paths. This aim can be 
fulfilled by taking advantage of Eq. 17.

It is worth noting that in the A* algorithm the F function is evaluated using 
Eq. 1, while here, F as the final trust value is calculated by using the fuzzy TOPSIS 
approach.

5 � Numerical example

Consider Fig. 3 as a slice of a trust graph network. Node A as the source node should 
decide on trusting or not trusting node C. As there is no direct connection between A 
and C, the most trustworthy path between these two nodes should be selected based 
on a combination of the A* algorithm and fuzzy TOPSIS multi-criteria decision 
making to infer the trust value. Node A is connected to nodes B, D, E, F, and G and 
hence it should infer the trust level of node C based on the information generated by 
its neighbors. However, for selecting the most trustworthy middle node, it should 
take advantage of the defined set of criteria. Table 5 illustrates the default value of 
each of these sets of criteria. As qualitative evaluations are estimates of our subjec-
tive opinions [25], in this work, we have considered qualitative variables using trian-
gular fuzzy numbers to express such subjectivity toward middle users.

As mentioned previously, the second phase of the fuzzy TOPSIS method is the 
decision matrix normalization based on Eq.  8 for positive and negative criteria. 
Table 6 shows the results for the second phase of the fuzzy TOPSIS.

In the third step, based on Eqs. 9 and 10, the weighted fuzzy decision matrix will 
be generated based on the weight of each criterion. Table 7 is the weighted fuzzy 
decision matrix of Table 5. In the fourth step, the positive ideal ( A+ ) and negative 

(16)CC(FinaTrust−MiddleNodes)i =
d−
i
(SourceNodeA)

d−
i
(SourceNodeA) + d+

i
(SourceNodeA)

(17)FinalTrustA,C =

{ FTu1,u2+FTu2,u3⋯+FT
u(npath−1),un

npath

0 < FinalTrustA,C ≤ 1
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ideal ( A− ) should be calculated based on Eqs. 11 and 12. As mentioned earlier, in 
this step, the positive ideal is equivalent to the greatest element in each criterion col-
umn and the negative ideal is the smallest one. Table 8 demonstrates the numerically 
calculated results of these parameters.

As for the fifth step, the sum of intervals for each element from the positive and 
negative ideals based on Eqs. 13, 14, and 15 is calculated. The results are shown in 
Tables 9 and 10.

Similarity index to the ideal alternative ( CCi ) should be assessed based on Eq. 16 
as the sixth step and this should be followed by a ranking of middle nodes. The simi-
larity index and the trustworthiness grade of all these alternatives are presented in 
Table 11.

According to the calculated results in Table 11, the utility function of all middle 
nodes from the perspective of A is calculated. The score of node F is considerably 
higher than other nodes (B, D, E, and G). These values are calculated based on all 

Table 9   The sum of interval for each element from the fuzzy positive ideal

Distance from 
Positive ideal

C1-SP C2-ST C3-TR C4-LT C5-CT C6-DU C7-RP d + 

B 0.3 0.3 0.3 0.4 0.7 0.2 0.3 2.5
D 0.4 0.3 0.2 0.4 0.3 0.3 0.7 2.5
E 0.5 0.7 1 0.3 0.6 0.3 0.3 3.6
F 0.3 0.3 0.2 0.3 0.3 0.2 0.8 2.3
G 0.4 0.7 1 0.3 0.8 0.2 0.6 4

Table 10   The sum of intervals for each element from the fuzzy negative ideal

Distance from 
Negative ideal

C1-SP C2-ST C3-TR C4-LT C5-CT C6-DU C7-RP d−

B 0.4 0.5 0.8 0.1 0.3 0.1 0.6 2.7
D 0.3 0.5 0.8 0.2 0.7 0.1 0.1 2.6
E 0.1 0 0 0.2 0.4 0 0.6 1.4
F 0.4 0.5 0.9 0.3 0.7 0.2 0.1 3.1
G 0.2 0 0 0.3 0.1 0.1 0.3 1

Table 11   The similarity index 
and trust score of all alternatives 
for the  source node A

Result CCi Score

F 0.5753 1
B 0.5149 2
D 0.5131 3
E 0.2853 4
G 0.2072 5
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the criteria stated previously and through the fuzzy TOPSIS method which is differ-
ent from the case where only one criterion is considered. Node A can assess its trust 
value toward node C based on the results of Table 11 and the calculated final trust 
values in Fig. 7. Even though the remaining path length of nodes E and G toward 
the destination is just 1 and 2 respectively, their final trust is amongst the lowest 
values. Therefore, their closeness to the target node does not have any impact on A’s 
decision and both of these nodes would be omitted from the open decision list of A. 
Now, three other nodes B, D, and F are remaining. The utility function of B and D 
is 0.5149 and 0.5131 respectively which is roughly equal. However, the remaining 
path length from B is 2, while this is 3 in the case of D as a source node. Note that 
although the path (D-E-C) is shorter than (D-H-J-C), since the utility function of 
node E (i.e. one of the middle nodes of the former path) is the lowest value, this path 
is removed from the open list of A.

Although node F has the highest utility value amongst (B, D, and F), the 
remaining path to the target from this node is 5, which is the longest possible 
path. Again, notice that the path (F-I-E-C) is removed from the open list, since 
E, one of the middle nodes has the lowest utility value. Now, A should choose 
between B with final trust value equal to 0.5149 and the shortest trust chain 
(A-B-P–C), D with the final trust value equal to 0.5131, or F with the final trust 
value equal to 0.58 but with the longest trust chain. In this case, a threshold of 
0.6 is considered as the minimum acceptable value in the local trust chain. Of 
course, this is a parameter and can be adjusted in the model. Suppose that the 
utility function of one of these local chains of middle nodes is in this range. 
In this stage, choosing a middle node with a local trust value greater than the 
uncertainty range is the ultimate goal. So, in this step, again, all the 7 steps of 
the fuzzy TOPSIS should be repeated to rank the utility function of all middle 
nodes to find the most trustworthy trust chain for node A. These steps have been 

Fig. 7   Middle users ranking using the fuzzy-TOPSIS MCDM approach
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performed for these 3 middle nodes and the results are shown in Fig.  7. The 
local trust chain of F has two hops less than the uncertainty range. The utility 
function of the local trust chain of B is BP = 0.2 and PC = 0.32, and is less than 
the uncertainty range. However, the utility function of the local trust chain origi-
nating from node D is greater than 0.6 and it would be selected as the most trust-
worthy path. Therefore, selecting middle nodes with high utility values while 
having control over the remaining path length is the suggested approach based 
on the A* algorithm. After selecting the trustworthy path, the trust between 
unconnected nodes should be inferred. The inferential trust value could be cal-
culated based on Eq. 17 as follows.

In the proposed approach, longer paths with higher utility values are preferred 
to shorter paths with lower utility values as they indicate the existence of more 
stable trust chains.

6 � Evaluations and comparisons

The purpose of this section is to evaluate the performance and correctness of the 
proposed approach. To this aim, the proposed approach is simulated alongside well-
known algorithms such as TidalTrust and MoleTrust using the Facebook and Twitter 
datasets. The evaluation metrics are (1) the average trustworthy path length selected 
by the algorithms between two unconnected nodes, and (2) the correctness of pre-
dicted inferred trust values by using the stated datasets. In what follows, first, the 
simulation setup is discussed and then evaluation scenarios are given.

6.1 � Simulation setup

We have used Facebook and Twitter datasets [23] for the evaluation of the pro-
posed approach. Table 12 shows the topological structure of these datasets which is 

TrustA,C =
0.51 + 0.65 + 0.74 + 0.85

4
= 0.68

Table 12   The topological 
structure of the Facebook and 
Twitter datasets

Type of data Facebooks Twitter

Number of nodes 786 1970
Number of edges 28,048 17,620
Modularity 0.571 0.269
Number of communities 9 2
Network density 0.045 0.005
Network diameter 10 5
Average path length 3.042 2.289
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generated by the Gephi network visualization tool [38]. Figures 8 and 9 show Twit-
ter and Facebook’s topological structures respectively.

The diameter of a network is defined as the longest of all the calculated shortest 
paths between nodes and shows the extent of the network. The diameter of a network 
is the shortest path length between two nodes and indicates how readily individuals 
in this network are accessible [39]. Path length refers to the efficient length of the 
network. Average path-length shows the distance between a pair of nodes which is a 
criterion of how much close the nodes are together. The average path length in many 
complicated networks is too short which is known as the small-world phenomenon. 
A network is defined as small if the path length between every two random nodes 

Fig. 9   Facebook dataset topology

Fig. 8   Twitter dataset topology
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in a graph never exceeds 6 steps [40]. Based on Figs. 10 and 11 and Table 12, it 
can be easily seen that the Facebook network data is more scattered and its density 
is much higher compared to the Twitter dataset with a few nodes and dense edges. 
Modularity in social networks is used to identify communities [41]. Such modules 
are represented in the figures with different colors. For topological visualization of 
these networks, Yifan Hu’s algorithm is applied. This algorithm has high accuracy 
and low time complexity, and it is suitable for massive networks [42]. The simula-
tion is implemented in Java and visualization of the output of the simulation is per-
formed with Gephi. Java is selected for the implementation of simulation scenarios 
as Gephi is an open-source tool implemented using Java and based on the NetBeans 
framework [38]. As both TidalTrust and MoleTrust evaluated their algorithms based 
on these two datasets, here again, Facebook and Twitter datasets are selected. Also, 
as the aim of those aforementioned algorithms is too close to the one suggested in 
this paper, their results seem to be a good metric for the evaluation [2, 3, and 15]. 
In addition, both of these algorithms as well as the proposed algorithm in this paper 
are local algorithms which is another reason to be selected for comparisons. The 
simulations are repeated ten times for the Twitter dataset and in each step, a dif-
ferent number of unconnected nodes (10, 100, 200, 300, 400, 500, 600, 700, 800, 
and 900) is considered. The simulation repetition number for the Facebook dataset 
is eight and the number of unconnected nodes in each step is as follows: (10, 50, 
100, 150, 200, 250, 300, and 350). The reason for considering a different number of 
unconnected nodes in each step of the algorithms is the difference in the maximum 
number of nodes in each dataset.

Fig. 10   Trust propagation length comparison in the Twitter network
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The simulation is performed based on the trust propagation distance amongst 
unconnected nodes for the three algorithms. The result of each simulation round for 
the three algorithms is visualized by Gephi and are shown in Figs. 10 and 11. The 
calculated average path lengths are saved and then averaged. Another evaluation 
factor of the simulation is the accuracy of inferential trust value anticipation. The 
results show that the suggested approach works much better than the other two algo-
rithms in this case. Table 13 shows the results for the accuracy of inferential trust 
values using these three algorithms.

6.2 � Simulation scenarios

The first important factor for the evaluation is the comparison between the lengths 
of the selected paths between pairs of unconnected nodes in the network. This 
evaluation is performed with different sets of unconnected nodes over two different 
datasets with different topological structures. The second factor is the importance 
of considering a wider range of fuzzy and potentially conflicting trustworthiness 

Table 13   MAE results based on the Facebook and Twitter datasets

Dataset Number of users TidalTrust MoleTrust Proposed 
approach

Twitter 1970 0.38 0.34 0.16
Facebook 786 0.52 0.41 0.21

Fig. 11   Propagation level comparison in the Facebook network
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criteria for the trust calculation of middle nodes resulting in smaller and more trust-
worthy paths between the source and destination nodes. Most of the previous stud-
ies have used partial information for finding trustworthy paths and inferring trust 
in social networks. For example, the TidalTrust algorithm has used topological 
similarity, Adali et  al. focused on trust behavioral information and the connection 
time between users [43], and Zhan et  al. utilized the profile similarity, reliability 
of the information, and social comments [44]. None of them have considered all 
the important criteria suggested in the proposed approach simultaneously. Hence, 
our aim in this evaluation scenario is to show the accuracy of the calculated trust 
values and demonstrate the importance of considering the set of criteria selected in 
this work. The simulation results are shown based on two modes A and B to do the 
comparison in two different formats for the topological network structure (i.e. partial 
graph information) and a combination of topological graph structure and interac-
tion rates (i.e. comprehensive graph information). Mode A is used for the simulation 
of the suggested algorithm and studying how topological network structure could 
make a difference by considering only three metrics for profile similarity, topologi-
cal similarity, and the remaining steps toward the target node. Mode B is defined for 
the simulation of the suggested algorithm for investigating how a combination of 
similarity criteria between users and interaction rates by considering all the afore-
mentioned set of criteria is compatible with Fig. 4.

When an algorithm uses partial graph information and just one or two criteria for 
trust evaluation, pair comparison of nodes based on the values labeled on the edges 
is reasonable. However, in this approach for enhancing the accuracy of trust, a set of 
criteria simultaneously are considered for evaluating the final trust value and rank-
ing each middle node. Therefore, for selecting trust chains between unconnected 
nodes, a utility function with threshold 0.6 is used for each local chain. Also, mid-
dle nodes with high values are selected as middle trustworthy users for traversing 
the trust path. As the first step, by considering a different number of middle nodes 
for selecting the trustworthy paths, propagation trust lengths in both networks with 
two different scattered and wave-like topological networks are studied. These prop-
agation trust lengths are compared with the average path length between selected 
unconnected nodes. Figures 10 and 11 are representing the accuracy of the inferred 
trust values against the Twitter and Facebook datasets compared with the TidalTrust 
and MoleTrust algorithms. Moreover, the A and B modes of the suggested algorithm 
are visualized by the Gephi software.

According to Fig. 10, as the main idea of both TidalTrust and MoralTrust algo-
rithms is to find the shortest trustworthy paths, a large majority of reliable paths 
in the TidalTrust and MoleTrust algorithms are from the same society and in the 
center of the vicinity of those selected nodes. A large portion of these trustworthy 
paths is in the range of nodes with high-density edges. This is mainly because 
both these two algorithms focus on the topological structure. So they find the 
selected paths when there is a high density of edges and the number of mutual 
friends to the total number of friends is higher. The mode B results of the sug-
gested algorithm in this figure represents a great performance improvement in 
trust propagation. Also, it shows a higher number of reliable longer paths with 
even greater utility function due to considering a set of criteria simultaneously 
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compared to mode A of this algorithm which only takes into account two criteria 
of profile and topological similarity. The ultimate goal of the proposed algorithm 
is not only selecting the short reliable paths. It is selecting middle users with high 
utility functions and finding local trust chains with threshold values higher than 
0.6 whether in shorter paths or longer ones. Various trust properties considered in 
this approach such as being context-dependent and calculating local trust facili-
tates the propagation of trust to further distances.

It is worth mentioning that for each of the datasets, to show the better perfor-
mance of the proposed approach especially in higher scales, more unconnected 
pairs are selected for every iteration of the simulation. In each iteration, the 
average path distances between pairs of unconnected nodes are calculated. The 
selected paths in the proposed approach are either trust paths with shorter dis-
tances or longer ones but with higher certainty values especially when the nodes 
are selected from the same communities. Contrary, by considering partial graph 
information and confining themselves to only the shortest possible paths, similar 
approaches such as TidalTrust and MoleTrust can only recognize the trustworthy 
paths in a very limited domain and scope.

As Fig. 11 illustrates, TidalTrust faces more difficulty in finding the trustworthy 
path and middle nodes as the scattered Facebook network grows. The primary cause 
might be related to just considering the shortest possible paths. Moreover, as it is 
highly dependent on the trust web’s density, the number of detectable trustworthy 
paths are larger in high population density networks compared to low-density ones.

When a pair of nodes are selected in communities with larger distance, the 
accuracy of trust calculations significantly decreases, especially in the Face-
book’s sparse network structure. This is due to the reliance on just the network’s 
topological data rather than the local trust calculation.

Albeit, the accuracy of the MoleTrust algorithm is better than the TidalTrust, 
its time complexity is higher than the later. Surprisingly, the simulation result 
for the mode B of the proposed algorithm demonstrates a significant accuracy 
improvement compared to its counterpart approaches. This is due to the consid-
eration of various trustworthiness criteria and especially local trust information 
for the trust calculation of middle-nodes.

It also shows more capability in trust propagation to further distances and 
other societies with higher accuracy. The first phase of the evaluations focused 
on comparing the proposed approach with similar approaches using two different 
datasets. In the second phase, based on the mean absolute error metric given in 
Eq. 18, the accuracy of the suggested approach is evaluated according to both the 
Facebook and Twitter datasets.

where Trustij is the direct trust of nodes i and j and T̃rustij is the calculated trust of 
nodes i and j based on the proposed algorithm. Table 13 shows the calculated values 
for all of these three algorithms.

(18)MAE =

√
Trustij − T̃rustij

N
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Fig. 12   Propagation trust distance of two disconnected nodes from the same or different modularities in 
the Twitter network

As shown, Table 13 demonstrates how the proposed approach is more accurate 
compared to its counterparts even with the existence of longer distances and fur-
ther trust propagation distances. The distinguishing feature of the proposed approach 
which makes it potentially more accurate is the consideration of longer possible 
routes and a comprehensive set of criteria for decision making using simultaneously 
the quantitative and qualitative parameters based on the multi-criteria decision-mak-
ing approaches. Another advantage of this approach is its simplicity together with its 
high performance as the result of taking advantage of the fuzzy TOPSIS technique 
which leads to considerable time complexity reduction.

The time complexity for the A* algorithm majorly depends on the selected heu-
ristic function and in worst-case it has a o

(
bd
)
 complexity. Here, b is the branching 

factor and d is the depth of the optimum solution. The number of nodes that are vis-
ited in the A* algorithm can be calculated using the following formula:

where b∗ is the effective branching factor. Because in the proposed approach, fuzzy 
TOPSIS is used many of the branches from the source node will be assigned to the 
closed list due to their lower appropriateness. This will result in the reduction of 
the number of nodes that are placed in the open list and are thus visited. On the 
other hand, in this context, d is the depth of the social network. Based on the prin-
ciple of six degrees of separation [45] we know that this depth on average will not 
exceed 6 in the domain of social networks. Both of these characteristics will result 
in a significant improvement in terms of time complexity compared to the classic A* 
algorithm.

Figures 12 and 13 represent the propagated trust distance and the correctness of 
the inferred trust values of the proposed approach compared with the TidalTrust 
and MoleTrust algorithms respectively in the Twitter and Facebook networks. The 
simulations are performed for the cases where the pairs of unconnected nodes are 
selected either from the same modularity with high density and lower path lengths 
or from different modularities with lower density and higher path lengths. In the 

N + 1 = 1 + b∗ + (b∗)
2
+⋯ + (b∗)

d
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first simulation, where the pairs of unconnected nodes are selected from the same 
modularity with lower path lengths, because the Tidaltrust and Moletrust algorithms 
only consider the topological information of the network, in all the three algorithms, 
the focus is more on lower trust path lengths. In the Twitter network, because the 
density of the network is high (i.e. smaller number of nodes with larger degrees) the 
propagated trust distance is lower and the error in all the three algorithms is smaller 
compared to the Facebook network.

In the second and third iteration, where the pairs of unconnected nodes are 
selected from different modularities and with higher average path length, it is evi-
dent from the results that the accuracy of the TidalTrust and MoleTrust algorithms 
decreases. This is more noticeable in the sparser Facebook network. In these cases, 
the accuracy of the proposed approach is not significantly affected and the differ-
ence between the TidalTrust and MoleTrust algorithms and the proposed approach 
becomes more significant.

7 � Conclusions

Finding efficient and trustworthy paths within massive social networks has always 
been a big challenge for researchers. The accuracy of trust values on directed 
edges and inferential trust value between two unconnected pair of nodes is highly 
dependent on a set of criteria used for assessing trust. In this paper, the fuzzy 
TOPSIS multi-criteria decision-making method along with the A* algorithm is 
utilized for opting the most trustworthy middle users, computing the trust level of 
each middle user (i.e. utility function) and finally selecting the proper trustworthy 
path. The ultimate goal of the suggested algorithm is to find trustworthy middle 
nodes and as a result of that the most trustworthy path while having control over 
trust paths’ length. This is performed by considering a wide range of criteria in 
calculating the trust value and recognizing reliable routes amongst unconnected 
pairs of nodes with high certainty. The proposed method’s performance for find-
ing relatively longer but more certain reliable paths has been compared against 

Fig. 13   Propagation trust distance of two disconnected nodes from the same or different modularities in 
the Facebook network



865

1 3

A propagation trust model in social networks based on the A*…

two of the well-known algorithms proposed before namely the TidalTrust and 
MoleTrust algorithms according to the scattered Facebook dataset and wave-like 
Twitter networks respectively. It is worth mentioning that the more the trust prop-
agation distance will be while preserving the accuracy of inferential trust between 
unconnected pairs of nodes, the more expansion of users’ relations will occur. 
Also, the trust information propagation in the social network will be quicker as 
well.

The A* algorithm with its great flexibility, accuracy and high performance can 
readily be implemented in complex networks and it has been used in various sci-
ence majors. Its implementation could be altered based on environmental situa-
tions. For example, utilizing the A* algorithm in the game development domain 
could be a process-intensive task as it requires very complicated computations. 
However, here, the A* algorithm is used in the field of social networks. The non-
existence of either complicated parameters or sudden rotations as a result of fac-
ing insuperable obstacles in an environment which are the main contributing fac-
tors in the complexity of the pathfinding process makes it a perfect choice to be 
used for our purpose. In other words, the simplicity of social networks in which 
users are the only obstacles within the path could significantly increase the per-
formance and simplicity of the algorithm. Notice that one of the main shortcom-
ings of the A* algorithm is the high memory requirement as it needs to preserve 
the information of all available nodes. Besides, trust is defined as a fuzzy subject 
and the selection of one path amongst the existing ones is performed by using the 
fuzzy-TOPSIS multi-criteria decision-making approach. Many paths are omitted 
due to the lack of certainty which can decrease the complexity of the algorithm.

As for the future works of this research, it is intended to expand the suggested 
approach by utilizing more efficient versions of the A* which requires less mem-
ory with more massive data and larger data sets. It is worth mentioning that a 
disadvantage of the classic A* algorithm is the exponential memory requirement 
due to using a priority queue as well as the need to keep all the traversed nodes 
in memory. Extensions of this algorithm such as the iterative deepening A* (i.e. 
IDA*) as well as simplified memory bounded A* (i.e. SMA*) are introduced spe-
cifically to reduce the memory requirements of the A* algorithm [46]. Evaluating 
the proposed approach by using these types of extensions can be considered as an 
interesting future research to consider which makes the approach more suitable 
to denser networks and hence more real-world applicable. Additionally, due to 
the dynamic nature of trust, it would be a beneficial addition to also consider the 
time criterion amongst the set of criteria for the multi-criteria decision-making 
approach. In this way, the decay of trust through time and the different weights 
that trust values over a time period may have can be taken into account. Finally, 
examining other fuzzy multi-criteria decision making approaches such as VIKOR 
or TODIM [47] may create interesting results with their unique strengths.
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