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Abstract
Wepresent a novel heterogeneous parallel matrixmultiplication algorithm that utilizes
both central processing units (CPUs) and graphics processing units (GPUs) for large-
scale matrices. Based on Strassen’s method, we represent matrix multiplication work
as a set of matrix addition and multiplication tasks among their sub-matrices. Then,
we distribute the tasks to CPUs and GPUs while considering the characteristics of the
tasks and computing resources tominimize the data communication overhead and fully
utilize the available computing power. To handle a large matrix efficiently with limited
GPU memory, we also propose a block-based work decomposition method. We then
further improve the performance of our method by exploiting the concurrent execution
abilities of a heterogeneous parallel computing system. We implemented our method
on five different heterogeneous systems and applied it to matrices of various sizes.
Our method generally shows higher performance than the prior GPU-based matrix
multiplication methods. Moreover, compared with the state-of-the-art GPU matrix
multiplication library (i.e., CUBLAS), our method achieved up to 1.97 times higher
performance using the same GPUs and CPU cores. In some cases, our method using a
low-performance GPU (e.g., GTX 1060, 3GB) achieved performance comparable to
that of CUBLAS using a high-performance GPU (e.g., RTX 2080, 8GB). Also, our
method continually improves performance as we use more computing resources like
additional CPU cores and GPUs. We could achieve such high performance because
our approach fully utilized the capacities of the given heterogeneous parallel comput-
ing systems while employing the Strassen’s method, which has a lower asymptotic
complexity. These results demonstrate the efficiency and robustness of our algorithm.
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1 Introduction

Matrix multiplication is one of the most fundamental linear algebra operations, and
it is widely employed as an essential tool for various applications, including machine
learning, scientific computations, and data analysis. Recently, the data size in various
domains has increased continuously, and the demand for rapid matrix multiplication
of large matrices also has increased sharply.

Recent graphics processing units (GPUs) exploit massive parallelism for general-
purpose computing, not only for graphics applications. To meet the demands for fast
matrix multiplication, GPUs have been employed as accelerators, and the state-of-
the-art GPU-based matrix multiplication library (i.e., CUBLAS [5,20]) shows up to
hundreds or thousands times higher performance than using a central processing unit
(CPU) alone. However, the matrix size a GPU can handle efficiently is limited by
the relatively small GPU memory (i.e., device memory) compared with the CPU-side
(i.e., host memory). To handle a large matrix better with limited memory space, we
could employ a divide-and-conquer approach. Some of the well-designed divide-and-
conquer matrixmultiplication algorithms have even lower asymptotic complexity than
a classical O(N 3) method [7,29]. However, it is hard to get dramatic improvement in
performance, such as what is achieved with a GPU for matrices of adequate size. This
is because divide-and-conquer methods lead to much data communication between
host and device memories. Such data transfer overhead is a well-known performance
bottleneck for GPU-based algorithms [4,10,11,26,32].

One recent computing trend is the presence in most systems of both CPU-like and
GPU-like cores [15,25]. For example, recently, a workstation or a PC has bothmultiple
CPU cores and a GPU (or multiple GPUs). Now, not only workstation but also even
an embedded system (e.g., NVIDIA’s Jetson series [17] and AMD’s Ryzen embedded
family [1]) has both CPU and GPU chips.

However, prior GPU-based matrix multiplication algorithms do not fully utilize the
available computing power in such heterogeneous computing environments.

1.1 Contributions

In this paper, we present a novel Heterogeneous Parallel Matrix multiplication (×)
(HPMaX) framework that handles large matrix multiplication efficiently by utiliz-
ing both multiple GPUs and multi-core CPUs, which are also powerful computing
resources (Sect. 3.2). We first divide the matrix multiplication work into a set of
matrix addition and multiplication tasks based on Strassen’s matrix multiplication
method (Sect. 3.1). Then, we propose a heterogeneous parallel Strassen algorithm
(Sect. 4.1). This allows distribution of the tasks across multi-core CPUs and GPUs, in
ways that minimize the data communication overhead and fully utilize the available
computing power. Based on the divide-and-conquer strategy of Strassen’s method, our
heterogeneous parallel Strassen algorithm can handle a matrix up to four times larger
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than with the prior GPU-only method at once. To handle a matrix so large that our
heterogeneous parallel Strassen algorithm cannot handle it at once due to the device
memory limit, we propose a block-based work decomposition method (Sect. 4.2).
Then, we figure out the disjoint workspace property among the decomposed tasks,
and further improve the performance of our method by maximally overlapping com-
putations and data transfers with multiple streams to a GPU (Sect. 4.3). Finally, we
extend our framework to utilize multiple GPUs (Sect. 4.4).

We implemented our HPMaX framework on five different machine configurations
consisting of two octa-core CPUs and one or two GPUs. Then, we applied our frame-
work to various sizes of matrices (up to 131,072 × 131,072 in single and double
precisions) and compared the performance with four alternative methods based on
prior work (Sect. 5). Overall, our method showed higher performance than prior
methods, including GPU-based algorithms. Moreover, compared with the state-of-
the-art GPU-based matrix multiplication library (i.e., CUBLAS), our method achieves
up to 1.97 times higher performance when we use the same GPUs with multi-core
CPUs. Furthermore, in some cases, our method using a low-performance GPU (e.g.,
GTX 1060, 3GB) achieved performance comparable with that of CUBLAS using a
high-performance GPU (e.g., RTX 2080, 8GB). We could achieve such high perfor-
mance by utilizing fully the capacities of the given heterogeneous computing systems
while employing Strassen’s method to provide lower asymptotic complexity. We also
found that HPMaXcontinually achieves better performance aswe usemore computing
resources. These results demonstrate the efficiency and robustness of our approach.

2 Related work

Accelerating matrix multiplication has been widely studied for a long time, and we
can divide the most popular approaches into two categories: reduction of the number
of floating-point operations and employment of parallel computing architectures.

2.1 Lower asymptotic complexity

In 1969, Strassen first introduced a matrix multiplication algorithmwith lower asymp-
totic complexity O(N 2.81) than with the classical O(N 3)method [29]. This work led
to several following works, which further reduced the k of O(Nk) [23,24,28,30],
such as with the Coppersmith-Winograd algorithm with O(N 2.38) [7]. However, we
could utilize the benefits of those algorithms only with a large matrix because the
constant coefficients of the big O-notation are too big. Thus, Strassen’s method is still
the most widely used matrix multiplication acceleration algorithm in practice. Our
method employs Strassen’s approach, and in addition, we propose an efficient parallel
algorithm for use in heterogeneous computing environments.
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2.2 Parallel matrix multiplication algorithms

The recent trend for improving computing power is to put more cores in a chip rather
than to increase the clock frequency of a core. Current commodity CPUs have four
or eight cores, and the high-end CPUs have up to sixty-four cores (e.g., AMD’s
Threadripper). Moreover, hardware accelerators such as GPUs have thousands of pro-
cessing cores. Along with this architectural trend, researchers have proposed parallel
matrix multiplication algorithms. Some of them employ multi-core CPUs [13,27], and
others take advantage of the massive parallelism of GPUs [2,9,19,31,33,35]. Gener-
ally, GPU-based methods for matrix multiplication show much higher performance
than multi-core CPU-based algorithms because such multiplication is computation-
intensive, and GPU architecture is suited for it. Volkov and Demmel [33] showed that
a highly optimized matrix multiplication algorithm on a GPU achieved much higher
performance than with a CPU. This is known as the state-of-the-art GPU matrix mul-
tiplication algorithm and is widely used as part of the CUBLAS library [5,20].

Our HPMaX framework can benefit from such well-optimized GPU libraries
because it uses a classical matrix multiplication method for a multiplication task
between sub-matrices smaller than a threshold size (Sect. 3.2).

2.3 Parallel strassen algorithms

Lai et al. [16] proposed an efficient implementation of theStrassen algorithmon aGPU.
It achieved better performance than with the CUBLAS library and demonstrated that
a well-designed Strassen algorithm could improve matrix multiplication performance
on a GPU. They also proposed a method for prediction of threshold size (i.e., cutoff-
size) at which Strassen algorithm starts to show better performance than the classical
method. Ray et al. [25] compared the results of Strassen algorithm and the classical
matrix multiplication method run on both CPU and GPU. The results also showed that
a GPU with Strassen algorithm showed better performance for a large matrix (e.g.,
4000×4000).

One of the common points found in previous work is that the classical O(N 3)

method shows better performancewith a smallmatrix, and the threshold varies depend-
ing on the hardware. With our method, we also noted this observation and employed
a cutoff-size to define the block size that is the basic work unit of our heterogeneous
parallel Strassen algorithm.

AlthoughGPU-based algorithms show impressive performance, the relatively small
memory of such devices (e.g., 2–24GB) limits the maximum size of the matrix it
can handle efficiently at once, compared with the CPU-side memory (e.g., 16 GB-
1 TB). A feasible solution for the limited device memory problem is to use a divide-
and-conquer strategy that includes using host memory [26]. Yugopuspito et al. [34]
proposed a GPU-based Strassen algorithm that utilizes the host memory as auxiliary
space. Based on Strassen’s method, it divides the input matrices into sub-matrices
recursively with addition and subtraction kernels until it meets the threshold size.
Then, it launches multiplication kernel for the sub-matrices. The whole matrices are
maintained in the host memory, and it sends the required region of the matrices for
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the current kernel to the GPU at each time. Therefore, it could handle four times
larger matrices with the classical matrix multiplication method since only the required
data for a kernel is maintained in the device memory. However, such an out-of-core
approach requires much data communication between host and device memories, and
we found that it limits the performance improvement. But, they did not givemuch study
on minimizing data communication overhead. In addition, it does not fully utilize the
available computing capability of the CPU.

Like Yugopuspito et al., our method bases on Strassen’s method and mainly utilizes
GPU for computation. However, our heterogeneous parallel framework handles a large
matrix by using not only a GPU but also multi-core CPUs to reduce data communica-
tion overhead while exploiting the computing power of the CPUs at the same time. To
efficiently utilize both computing resources and handle large matrices, we use block-
based work decomposition method instead of recursive work decomposition used in
Yugopuspito et al. We also extend our method to utilize multiple GPUs different from
the prior work that used a single GPU.

Computing clusters were also employed to get more processing power for matrix
multiplication [6], and many of them also employed Strassen algorithm [3,12,18,22].
Karunadasa et al. [12] proposed a distributed parallel algorithm running on a small
GPU cluster. In their work, a master node divides the input matrices and sends the
sub-matrices to slave nodes having a GPU. Then, each slave node performs matrix
multiplication for given sub-matrices and returns the result to the master node. Finally,
the master node generates the final result. Peng et al. [35] gave investigation on the
benefit of using multiple GPUs for two matrix multiplication algorithms, including
classical and Strassen’s methods. They partitioned the result matrix into tiles and
distributed them to GPUs. Then, each GPU performed matrix multiplication for the
given tile. In their implementation of Strassen algorithm, it handles a tile by one-
level Strassen’s method. For both algorithms, they performed matrix additions on
CPU cores and multiplication operations on GPUs. They reported that, with a single
GPU, the Strassen algorithm achieved a little better performance than the classical
method. On the contrary, it showed lower performance than the classical one when
using multiple GPUs. They found that the Strassen algorithm requires a large number
of matrix additions at the beginning, and it becomes the performance bottleneck since
GPUs stay idle until CPU finished the addition operations.

Our algorithm also employed both multi-core CPUs and GPUs while giving dedi-
cated tasks to them, similar to Karunadasa et al. and Peng et al. However, we aim to
design an efficient algorithm for heterogeneous computing environments in a node, dif-
ferent from the prior work that targeted computing cluster. Also, our method exploits
the concurrent execution ability of heterogeneous computing systems intensively, dif-
ferent from prior work that takes serialized steps among computing resources. As a
result, our method shows higher performance than the classical algorithm robustly
with a single GPU and multiple GPUs.
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3 Overview

In this section, we provide background on Strassen algorithm and then briefly describe
our HPMaX framework.

3.1 Strassen algorithm

Strassen algorithm runs in a divide-and-conquers manner [29]. Let C = AB where
A, B, and C are 2n × 2n matrices. If A and B are not of type 2n × 2n , the missing
rows and columns are filled with zeros. The three matrices are partitioned into equally
sized block matrices as in Eq. (1) with Ai j , Bi j ,Ci j ∈ R

2n−1×2n−1

A =
[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
,C =

[
C11 C12
C21 C22

]
(1)

Then, Ci j s are computed by

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22 (2)

In Strassen algorithm, new matrices are defined as follows

M1 = (A11 + A22)(B11 + B22)

M2 = (A21 + A22)B11 M5 = (A11 + A12)B22

M3 = A11(B12 − B22) M6 = (A21 − A11)(B11 + B12)

M4 = A22(B21 − B11) M7 = (A12 − A22)(B21 + B22) (3)

Finally the Ci j are expressed in terms of Mk like

C11 = M1 + M4 − M5 + M7 C21 = M2 + M4

C12 = M3 + M5 C22 = M1 − M2 + M3 + M6 (4)

As a result, we need only seven multiplications instead of the eight with the classic
method. This division process is repeated recursively until the sub-matrices degenerate
into numbers, and the time complexity becomes O(Nlog7), which is approximately
O(N 2.8074), where N = 2n .

3.2 HPMaX framework

As figured out in several previous works [16,34], we also found that the classical
O(N 3) method works similar to or better than the Strassen algorithm for matrices
with a size equal to or smaller than a given threshold (i.e., cutoff-size). Therefore,
when the input matrices were equal to or smaller than the cutoff-size, we use a GPU
with the classical method. We determined the cutoff-size for the target GPU according
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Fig. 1 Overview of our HPMaX framework

to the device memory size and the number of streams (Sects. 5 and 5.4). If the size
of the input matrices exceeded the cutoff-size, our HPMaX framework takes on the
matrix multiplication work.

Figure 1 shows an overview of our HPMaX framework. It consists of three main
components: (1) master worker, (2) slave workers, and (3) GPU(s). Themaster worker
manages the HPMaX framework. For given matrix multiplication work, the master
worker divides the input matrices and generated T (Ci j ) tasks, which represent compu-
tation forCi j in Eq. (2). This process is based on our block-based work decomposition
method (Sect. 4.2). Each slaveworker has two separate queues, incoming and outgoing
queues (Qin and Qout), by which to communicate with the master worker. The master
worker allocates the generated T (Ci j )s by pushing them to the incoming queues of the
slave workers evenly in a round-robin manner. Since the workspaces of T (Ci j )s are
independent, slave workers can process them concurrently without any synchroniza-
tion operations such as a lockingmechanism (Sect. 4.3). A slave worker takes a T (Ci j )

from the incoming queue and computes Ci j . According to our heterogeneous parallel
Strassen algorithm (Sect. 4.1), slave workers cooperate with the given the GPU(s).
When multiple GPUs are available, slave workers are evenly mapped to the GPUs.
Otherwise, all slaves share a GPU. Each slave worker has a dedicated stream to a GPU,
and all slaves run in parallel to utilize the computing capability of the heterogeneous
computing systems maximally. Once a slave worker gets the result of a T (Ci j ), it is
put into its outgoing queue. Finally, the result collector gathers the computed Ci j s
from slave workers and then creates the output matrix C .

4 Heterogeneous parallel matrix multiplication

In this section, we first explain our heterogeneous parallel Strassen algorithm
(Sect. 4.1). Then, we propose a work decomposition method for handling a matrix
so large that our heterogeneous parallel Strassen algorithm cannot handle it at once
due to lack of device memory (Sect. 4.2). Also, we explain how we maximize the
parallelism of our method with multiple streams (Sect. 4.3). Finally, we extend our
method to utilize multiple GPUs (Sect. 4.4).
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Table 1 Required device memory space and data communication overhead for three different methods
when the input matrix size is N × N

Classic GPU Strassen [34] Ours

GPU memory O(3N2) O( 34 N
2) O( 34 N

2)

# of transactions 3 47 21

Total Trans. size O(3N2) O( 474 N2) O( 214 N2)

4.1 Heterogeneous parallel strassen algorithm

When a slave worker takes a T (Ci j ) from the incoming queue, it generates two matrix
multiplication tasks according to Eq. (2). For example, it generates T (A11B11) and
T (A12B21) for T (C11). If the size of Ci j is smaller than the cutoff-size, two multi-
plication tasks are processed on the GPU using with the classical method, and the
slave worker sums them. Otherwise, a slave worker manages these tasks with its task
queue (Qtask) and processes themone-by-onewith our heterogeneous parallel Strassen
algorithm. Then, the slave worker gathers all the results and makes the final Ci j .

When a slaveworker takes a task from Qtask, it decomposes that into seven T (Mk)s,
k ∈ {1, 2, . . . , 7} representing the computation in Eq. (3). Each T (Mk) consists of
two sub-tasks, Tadd(Mk) and Tmul(Mk). In this case, Tadd(Mk) includes one or two
matrix addition(s) and makes two temporal matrices for Tmul(Mk). Then, Tmul(Mk)

multiplys the two temporal matrices and generates the final output (Mk).
A straightforward way to handle a large matrix using limited device memory is to

employ the hostmemory as auxiliarymemory space, as donebyYugopuspito et al. [34].
In this approach, the GPU performs both Tadd(Mk) and Tmul(Mk) while maintaining
only the necessary sub-matrices for each task in the device memory. Therefore, it can
handle a matrix four times larger than when using the classical method. However, it
requires much data communication between the host and the device memories (forty-
seven data transactions), and the total size is O( 474 N 2), compared with the classical
method requiring only three data transactions of which the total size is O(3N 2). This
communication overhead is a typical performance bottleneck that occurs when using
GPUs. In addition to the communication overhead, this approachwastes the computing
power of the multi-core CPUs, which are also powerful computing resources.

To reduce such data transfer overhead while fully utilizing the computing power of
multi-coreCPUs aswell, we letmulti-coreCPUs process Tadd(Mk). And,we send only
two temporal matrices to the GPU instead of four (or three) sub-matrices, and then the
GPU performs Tmul(Mk). This work distribution strategy is based on a well-known
architectural difference between CPU and GPU [14]. Taking additional memory space
for the temporal matrices is less burdensome for the host memory, which usually has
sufficient space compared with the device memory. In addition, the CPU architecture
has advanced features that support irregular memory access patterns, like a well-
organized cache hierarchy. This helps to access sub-matrices efficiently independent
of the data layout for the inputmatrices. On the other hand, although aGPUhas limited
memory, it outperforms multi-core CPUs for matrix multiplication computation since
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Fig. 2 Timeline that shows overlapping among computation of CPU andGPU and the data communications.
The last task of the CPU (yellow box) is the merge step in Eq. (4) (colour figure online)

a GPU has a highly optimized architecture for regular streaming floating-point oper-
ations. With this work distribution approach, we decrease data transfer overhead to
twenty-one data transactions, of which the total size is O( 214 N 2). Moreover, it requires
only 1/4 of the device memory space needed with the classical method (Table 1).

To further improve the performance of our method, we also exploit the concur-
rent execution ability of the heterogeneous parallel systems. Recent GPUs support
asynchronous processing with CPUs, and data transfer between host and device
memories also can be executed concurrently while CPUs and GPUs are doing their
computations [21]. Based on these concurrent execution capabilities, we increase the
utilization efficiency of the heterogeneous parallel computing resources. We found
that the workspace of Tmul(Mk) is independent from that of Tadd(Mk+l,l>0). Further-
more, getting back the Tmul(Mk) result from the device to the host memory can be
overlapped with transferring two temporal matrices for Tmul(Mk+l,l>0) from the host
to the device memory. Based on these observations, we overlap computations of the
CPUs and the GPU and data communication as much as possible. As a result, the
computation time of the GPU hides most of the CPU processing time. Figure 2 is an
example time-line, and it shows overlaps among the computations of CPU and GPU
and the data communication.

4.2 Block-based work decomposition

When the input matrices are too large to process using the heterogeneous parallel
Strassen algorithm (e.g., 3

4N
2 × 4 (or 8) bytes > device memory si ze), we adapt a

divide-and-conquer strategy. To do that, we first divide the matrices by a unit of block.
Each block is a sub-matrix of an input or output matrix, and we use (2 × cutoff-size)
as the length and height of a block. Then, we can represent the input and out matrices
as follows,

⎡
⎢⎣
A11 . . . A1p
...

. . .
...

An1 . . . Anp

⎤
⎥⎦ ×

⎡
⎢⎣
B11 . . . B1m
...

. . .
...

Bp1 . . . Bpm

⎤
⎥⎦ =

⎡
⎢⎣
C11 . . . C1m
...

. . .
...

Cn1 . . . Cnm

⎤
⎥⎦ , (5)
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Algorithm 1 Heterogeneous Parallel Strassen Algorithm
while Qin is not empty do

T (Ci j ) ← Qin
Qtask ← T (Aik Bk j ), ∀k ∈ {1, . . . , p} // Eq. 6
Ci j = zero matrix
while Qtask is not empty do

T (Aik Bk j ) ← Qtask
for id=1, ... ,7 do in parallel

Tadd (Mid ) → (Atmp, Btmp) // Eq. 3
send (Atmp, Btmp) to GPU
Mid = Tmul (Mid ) on GPU
receive Mid from GPU

end for
R = compute Aik Bk j with Mids // Eq. 4
Ci j = Ci j + R

end while
Qout ← Ci j

end while

where

Ci j =
p∑

k=1

Aik Bk j . (6)

Now, our problem is reduced to a set of T (Ci j )s in Eq. (6). The master worker dis-
tributes them to slave workers evenly, and each slave worker treats the given T (Ci j )s
with our heterogeneous parallel Strassen algorithm. The only change from the algo-
rithm in Sect. 4.1 is that a T (Ci j ) includes p multiplication tasks (i.e., T (Aik Bk j ))
instead of two. Finally, Algorithm 1 summarizes the detailed workflow of our hetero-
geneous parallel Strassen algorithm.

With our block-based decomposition method, we can handle any large-scale matri-
ces with O( 34 (|block|)2) device memory space. In our experiments, 8192–16,384 is a
generally good choice for the block size, and this requires only 192–768MB for matri-
ces with single-precision floating-point numbers (0.38–1.5GB for double-precision).
Please note that recent entry-level GPUs also have more than 2 GB device memory,
and our method efficiently utilizes such GPUs for matrix multiplication.

4.3 Maximizing parallelismwith streams

Although we overlap computations and data communications as much as possible in
our heterogeneous parallel Strassen algorithm, there is still idle time on both the CPUs
and the GPU since it processes T (Mk) sequentially from M1 to M7. To minimize idle
time and improve the performance even more, we employ multiple slave workers
with multiple streams. A stream is a kind of work queue for utilizing a GPU, and
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operations (e.g., kernel launch or data transfer) in different streams can be launched
simultaneously on a GPU [21].

Disjoint property among T (Ci j )s To compute Ci j , we access the sub-matrices of
A and B. Then, we write the results to the sub-region of C . Read operations do not
change the data, and there is no problem even if multiple threads read the same region
on a matrix. Although write operations modify the data, accessing regions on C for
writing the results of each T (Ci j ) are totally independent. Therefore, the workspace
among T (Ci j )s are disjoint, and we can process them asynchronously.

Based on this disjoint property, multiple slave workers process T (Ci j )s in parallel.
Each slave worker runs independently on its dedicated threads. To process T (Ci j )s in
parallel, each slave worker has a private workspace on both the host memory and the
device memory for processing T (Mk) (e.g., space for Atmp, Btmp, and Mk). Conse-
quently, the required device memory space is O( 34 |block|2)× (# of slave workers).
Each slave worker also has a dedicated stream to a GPU and puts in requests for
processing Tmul(Mk) through the stream. The GPU fetches a request from one of the
streams when it has room to launch another kernel. Depending on the capability of
the GPU, one request from a stream or n (> 1) requests from multiple streams can be
processed simultaneously [21]. With multiple slave workers and a dedicated stream
for each worker, we can utilize the computing resources more intensively, and it boosts
the performance of our HPMaX framework.

Maximizing parallelism for a small matrix When the matrix size was smaller than (2
× cutoff-size), we had only one T (Ci j ) (i.e., T (C11) = T (C)). In this case, the master
worker distributes T (Mk)s in T (C11) to slave workers instead of T (Ci j )s. Each slave
worker handles the given T (Mk)s with the heterogeneous parallel Strassen algorithm
in Sect. 4.1 while using its own stream. Because the workspaces among T (Mk) are
also disjoint, we could process them in parallel. Each slave worker returns Mk through
Qout, the master worker collects and make the final result C depending on Eq. (4).

4.4 Multi-GPU extention

When multiple GPUs are available, we can simply extend our HPMaX framework
to utilized them simultaneously. Based on disjoint properties among T (Ci j )s, slave
workers can work with different GPU each other. Therefore, we can utilize multiple
GPUs by mapping slave workers to available GPUs, which means making streams
between them. More specifically, we map the same number of slave workers to avail-
able GPUs. Also, we select the number of slave workers according to the following
criterion.We use two slaveworkers for eachGPU if there are only four or fewer blocks,
which means that the matrix size is equal or less than (2 × cutoff-size). Otherwise,
we employ four slave workers per GPU while halving the number of threads for each
slave worker. This criterion bases on two underline observations. At first, although we
can generate more than four blocks by decreasing the cutoff-size for small size matri-
ces, such a small block is not enough to fully exploit the computing power of a GPU
and makes the communication overhead increase too. Second, using more workers
(streams) to a GPU leads to more overlapping between computation and communica-
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Algorithm 2Master-Slave Code Structure in OpenMP
Qins of slaves ← Block-based work decomposition // Master

#pragma omp parallel num_threads(the number of slaves) // Slaves
{ Heterogeneous Parallel Strassen Algorithm (Algorithm 1) }

Result collection ← Qout s of slaves // Master

tion. Therefore, when the matrix size is large enough to meet the required block size to
utilize GPUs efficiently, using four slave workers achieved higher performance (e.g.,
up to 19%) than two slave workers per GPU, even though the number of threads per
worker decreases.

5 Results and analysis

We implemented our HPMaX framework in five different heterogeneous systems con-
sisting of two octa-core CPUs and one or two GPU(s) (Table 2). We used OpenMP [8]
to implement the master and slave workers, including the parallel processing module
for Tadd(Mk) on multi-core CPUs. Since the master and slaves act synchronously,
we implemented it as a simple structure like Algorithm 2. Also, we implemented
the matrix multiplication kernel for Tmul(Mk) on GPU by using CUDA runtime API
and CUBLAS 9.0 library. Generally, we used four slave workers for each GPU, and
each of them had a dedicated stream to a GPU. The data communication between a
slave worker and a GPU is performed through the dedicated stream, and we handled
it explicitly with CUDA runtime APIs, including cudaMalloc(), cudaMallocHost(),
and cudaMemcpyAsync(). For single-precision, we used 4096, 8192, and 16,384
as the cutoff-size for GTX 1060 (Machine 1), RTX 2080 (Machine 2&3), and RTX
Titan (Machine 4&5), respectively. They requires 192 MB, 768 MB, and 3 GB device
memory per stream, respectively. Because each stream requires independent memory
space, Machine 1, Machine 2&3, and Machine 4&5 use 768 MB, 3 GB, and 12 GB
device memory space, respectively. Please note that we have two GPUs for Machine
3 and 5, and each GPU on the machines uses 3GB and 12GB device memory, respec-
tively. For double-precision, we used 8192 as the cutoff-size for RTX Titan (Machine
4&5) since it exceeds the device memory size when the cutoff-size is 16,384. For
other GPUs, we use the same cutoff-size with the single-precision case. Therefore, the
required device memory sizes are 1.5GB for Machine 1 and 6GB for others. To fully
utilize the computing power of the multi-core CPUs, we generally made the Tadd(Mk)

module utilize (p/(4 ∗ g)) threads on each slave worker, where p (e.g., 16 in our
experiments) is the number of physical cores in the systems and g is the number of
GPUs. As we describe in Sect. 4.4, we used two slaver workers per GPU for matrices
whose size is equal or smaller than (2 × cutoff-size), and each slaver worker utilizes
(p/(2 ∗ g)) threads.

To check the efficiency and robustness of our heterogeneous parallel algorithm, we
also implemented four alternative methods:

123



HPMaX: heterogeneous parallel matrix multiplication… 2619

Table 2 Configurations of the five heterogeneous computing systems used in our experiments

Machine CPU Memory GPU

1 384GB GeForce GTX 1060 (3GB)

2 GeForce RTX 2080 (8GB)

3 Two Intel Xeon CPUs
(Octa-core, 2.10GHz)

Two GeForce RTX 2080s (8GB)

4 TiTan RTX (24GB)

5 Two TiTan RTXs (24GB)

• CPUclassic is a parallel version of the classical O(N 3) matrix multiplication
method. In this method, it divides the region of the output matrix evenly depending
on the number of threads and distributes them to each thread. It utilizes p threads
(i.e., CPU cores).

• CUBLAS-Ext (GPUclassic) is an extended version of the CUBLAS library [20].
When the matrix is small enough to process in the device memory at once, it
uses CUBLAS directly. If the matrix is larger than the capability of the device
memory or there are multiple GPUs, it divides them with our block-based work
distribution method. However, different from our method, it performs Aik Bk j in
Eq. (6) by CUBLAS while adding the results to Ci j in the GPU too. Because this
requires four times larger memory space, we used a single stream per GPU for this
method.

• CPUstrassen is an implementation of aCPU-basedStrassen algorithm that processes
both Tadd(Mk) and Tmul(Mk) on the multi-core CPUs.

• GPUstrassen is an extended implementation of Yugopuspito et al. [34]. In this
method, the basic work-flow is similar to our method, and it uses multiple streams.
However, it performs all the computations on the GPU(s). Instead of sending two
temporal matrices (i.e., Atmp and Btmp), it sends four (or three) sub-matrices for
computingMk (Eq. (3)) and performs both Tadd(Mk) and Tmul(Mk) on theGPU(s).
When the matrix is small enough (e.g., 8192 × 8192) to handle it in the device
memory, it sends all the input matrices to the device memory. And, it performs
one-level Strassen’s matrix multiplication without any communication with the
host.

CUBLAS-Extwithmultiple streamsWealso implemented another version ofCUBLAS-
Ext that used four streams while halving the block size to hide the data transfer time.
However, it showed performance lower or similar to that with the single-streamversion
of CUBLAS-Ext. We found that the multiple stream version incurred more data trans-
actions, which led to higher data transfer overhead. We also found that the CUBLAS
library shows better performance with larger blocks, from the perspective of the ele-
ments per time for matrix multiplication.

Optimization for sub-matrix transfer on CUBLAS-Ext and GPUstrassen Because the
memory layout of a sub-matrix (e.g., Aik or Bkj ) is not continuous, special care is
required to send the sub-matrices to the GPU efficiently. We tested three versions of
sub-matrix transfermethods. (1) The firstmethodwas a row-by-row transfer.We found
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that this method required a large number of API calls (i.e., the number of rows), and
each of them had a specific amount of calling cost. Therefore, it became a bottleneck
for sending the sub-matrices. (2) As the second approach, we employed a special
memory copy API in CUDA, cudaMemcpy2D(), designed to transfer a sub-matrix
by an API call. It showed much better performance (e.g., 3–7 times higher) than the
manual row-by-row transfer. (3) The final one was making a copy of the sub-matrix in
the host memory so that it has a fully continuous memory layout and then sending it
by one data transfer API. Although this approach requires an additional copy step in
the host memory, it showed up to two times faster performance compared with using
the cudaMemcpy2D(). Therefore, we used the third method when we measured the
performance of CUBLAS-Ext and GPUstrassen.

Benchmarks To measure the performance of different methods, we generated a set of
matrices having different sizes and densities. We randomly generated floating-point
numbers for each element of the matrices in single- and double-precision. The size
of the input matrices varied from 8192 × 8192 to 131,072 × 131,072, and we also
differentiate the ratio of zeros (e.g., 10%, 40%, and 70%) for each matrix size. Since
we found that the ratio of zeros had little effect on the processing time, we focused
on the size of the matrix for performance analysis. As the input matrices, we used
eight different combinations of those matrices, including non-square matrices.1 For
each combination, we ran test ten times, then average the results for comparison and
analysis.

5.1 Results

Table 3 shows the processing time of five different algorithms, including ours, on five
machine configurations (Table 2) for eight different matrix sizes. For the CPU-based
algorithms, CPUstrassen took less processing time about 15% for single-precision and
16% for double-precision on average independent of thematrix size, respectively. This
result validates the benefit of Strassen’s method from the perspective of computational
cost. However, both CPU algorithms showed a considerable gap in performance (e.g.,
up to about a thousand times) with other methods that use a GPU.

Single-precision matrix multiplication Figure 3a compares the performance of two
GPU-based methods and our heterogeneous parallel algorithm on single-precision
matrix multiplication. For matrices small enough to handle in an in-core manner with
a GPU (e.g., up to 8192 × 8192 for Machine 1, 16,384×16,384 for Machine 2, and
32,768×32,768 for Machine 4), GPUstrassen showed about 25% (on average) higher
performance than CUBLAS-Ext. On the other hand, CUBLAS-Ext showed about 14%
(on average) higher performance on average for large matrices processed in an out-of-
core manner. This is because, although GPUstrassen has low asymptotic complexity, it
requires additional data communication to compute Tadd(Mk).

Our HPMaX generally showed better performance than the other two GPU-based
algorithms. On Machine 1, 2, and 4, our method achieved up to 1.61, 1.76, and 1.97
times (1.39, 1.55, and 1.53 times on average) higher performance than CUBLAS-Ext.

1 Available at https://sites.google.com/view/hpclab/ip/datasets.
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GPU-Strassen CUBLAS-Ext HPMaX
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(b) Double-precision

Fig. 3 These graphs show the processing time of three different algorithms on the five machine configu-
rations for eight different combinations of matrices, in single- and double-precision. The matrix sizes are
marked as n × k × m where sizes of the matrices A, B, and C are n × k, k × m, and n × m, respectively
(AB = C)

Our method has less computational cost thanCUBLAS-Ext since it bases on Strassen’s
method, and it utilizes both multi-core CPUs and a GPU, distinct from other GPU-
based methods. Moreover, our method requires less data transfer between host and
device memories (different from GPUstrassen) while efficiently hiding the commu-
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nication overhead with multiple streams. As a result, we achieved such impressive
performance, and these results demonstrate the benefit of our approach.

Interestingly, our method using a low-performance GPU (GTX 1060, 3GB)
achieved comparable performancewith that ofCUBLAS-Ext using a high-performance
GPU (RTX 2080, 8GB) for relatively small matrices (e.g., up to 16,384×16,384).
Also, ourmethod onMachine 2 having anRTX2080generally showed similar or rather
higher performance compared with CUBLAS-Ext on Machine 4 having the high-end
GPU (Titan RTX, 24GB).We found that the scalability for a high-performance GPU is
relatively low for small matrices compared with large matrices. On the other hand, the
contribution of multi-core CPUs is stable, independent of the problem size. Therefore,
we were able to get such interesting results, and it demonstrates the robustness of our
heterogeneous parallel computing approach.

Double-precision matrix multiplication Figure 3b shows the processing time of three
different GPU-based algorithms on double-precision matrix multiplication. Similar to
the single-precision case, our HPMaX generally shows higher performance than the
other twoGPU-basedmethods. ComparedwithCUBLAS-Ext, ourmethod achieved up
to 1.18, 1.24, and1.24 times (1.13, 1.17, and1.19 times on average) higher performance
on Machine 1, 2, and 4, respectively.

On the other hand, different from the single-precision case, GPUstrassen showed
up to 1.27 times (1.12 times on average) higher performance than CUBLAS-Ext and
achieved a compatible performancewithHPMaX.We found thatTmul(Mk)has anover-
whelming workload than Tadd(Mk) and data communication time in double-precision
matrix multiplication. Therefore, Tadd(Mk) computation and data communication
overhead affect just a little to the entire performance. Also, the processing time of
Tmul(Mk)s hides most of the data communication overhead. Please see Sect. 5.2 for
the detailed analysis. Nonetheless, HPMaX showed up to 10% (5% on average) higher
performance than GPUstrassen, and this validates the robustness of our approach.

Using multiple GPUs To check the scalability of our HPMaX framework, we added
one more identical GPU to Machine 2 and 4, then set Machine 3 and 5. With the
additional GPU, all the GPU-based algorithms achieve almost two times of perfor-
mance improvement (Fig. 3a, b). However, for small size (e.g., less than 16,384 ×
16,384) and single-precision matrices, they got performance improvement lower than
two times since the workload is not enough to utilize two GPUs fully. Independent of
the matrix size and precision, HPMaX generally showed the best performance among
three GPU-based algorithms, like up to 1.35 and 1.23 times (1.22 and 1.15 times
on average) higher performance than CUBLAS-Ext in the single and double preci-
sion cases, respectively. These results demonstrate the high scalability of our HPMaX
framework for additional GPUs.

5.2 Performance analysis

To check the benefit of employing multi-core CPUs over GPUStrassen, we mea-
sured the processing times for Tadd(Mk) and Tmul(Mk), and data transfer times, using
GPUStrassen and our HPMaX framework. For this profiling, we used the 65,536 ×
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Fig. 4 These figures show the total processing time for each task type and data communication time on
GPUStrassen and our method. For this analysis, we used Machine 4 and 65,536 × 65,536 matrices in
single- and double-precision

65,536 matrix and Machine 4. Also, we ran each task one-by-one synchronously to
check the workload of each of them. Figure 4 are the stacked column charts that show
the total time consumed for processing each task type. Since GPUStrassen performs
Tadd(Mk) on the GPU, it has to get sub-matrices for Tadd(Mk) from the host memory
and requires much more data communication between host and device memories. As
mentioned in the paragraph of optimization for sub-matrix transfer, this process also
includes generating a copy of the sub-matrix in the host memory (the gray region in
Fig. 4) to minimize the communication overhead. On the other hand, HPMaX per-
forms Tadd(Mk) on the CPUs, and only sends two temporal matrices for Tmul(Mk)

to the device memory. Therefore, HPMaX had much less communication overhead
and took less time overall than GPUStrassen even though processing Tadd(Mk) is much
faster on the GPU than on the multi-core CPUs.

As shown in Table 3, our method took 35.93 s for the 65,536 × 65,536 single-
precision matrix, while the summation of times for all tasks was 64.33 s (Fig. 4a). This
means that our HPMaX framework made about half of the whole process overlap.
For double-precision (Fig. 4b), the summation time is 1036.50 s, while our method
took 916.02 s. Although there is less overlap than the single-precision case due to
the dominant portion of Tmul(Mk), we found that 13% of the whole process overlaps
in the double-precision case too. These results demonstrate that our approach takes
advantage of the concurrent execution ability of the heterogeneous computing systems
well.

5.3 The number of CPU threads

To check the benefit of using additional CPU cores, we measured the processing
time of our method with different numbers of CPU threads. We varied the number
of threads from four to sixteen because we used four streams, and our systems have
two octa-core CPUs. As shown in Table 4, it generally took less time when using
more CPU threads. One interesting observation is that the effect of employing more
threads dropped considerably after a specific point (e.g., after eight threads).We found
that the workloads of the CPUs (i.e., Tadd(Mk)) and the GPU (i.e., Tmul(Mk)) for the
overlapping region almost match at that point. From this point, the processing time of
CPUs becomes shorter than the processing time of the GPU. It means that the process-
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Table 4 This table shows the
single-precision matrix
multiplication time (in seconds)
of HPMaX with different
numbers of CPU threads

Matrix size 81922 16,3842 32,7682 65,5362

Machine 1

4 threads 0.42 2.73 21.84 184.15

8 threads 0.40 2.17 17.92 156.56

12 threads 0.41 2.17 17.26 151.63

16 threads 0.42 2.12 16.93 147.63

Machine 2

4 threads 0.33 1.44 10.51 71.45

8 threads 0.30 1.20 7.49 58.33

12 threads 0.29 1.19 7.21 55.92

16 threads 0.28 1.19 7.02 55.31

Machine 3

8 threads 0.21 0.88 5.72 39.75

16 threads 0.20 0.87 5.36 32.83

Machine 4

4 threads 0.28 1.16 6.68 48.59

8 threads 0.25 0.97 6.20 37.76

12 threads 0.25 0.94 6.07 36.67

16 threads 0.22 0.92 5.94 35.93

Machine 5

8 threads 0.21 0.84 4.09 34.78

16 threads 0.17 0.75 3.96 24.52

For Machine 3 and 5, we measured only two cases (eight and sixteen
threads) since they have two GPUs, and each GPU uses two or four
slave workers
Bold values indicate the best performance among using the different
number of threads

ing time of the GPU determines the total running time, and that contribution of the
additional CPU threads becomes invisible. Nonetheless, more CPU threads achieved
better performance since they reduced processing time for the non-overlapping region
such as Tadd(M1) and for the result collecting process. In the double-precision case, it
also shows a similar trend with the single-precision case. However, the effect of using
more threads is less noticeable because the workload on the Tmul(Mk) is dominant.
We found that using sixteen threads improves the performance of double-precision
matrix multiplication by up to 3% (1% on average) compared with using four threads.

5.4 Cutoff-size and the number of streams

Since each stream requires an independent workspace in the device memory, the
maximum cutoff-size is decreased as the number of streams (or # of slave workers)
increased. Table 5 shows the matrix multiplication time when using different combi-
nations of the number of streams and cutoff-sizes. Generally, using multiple streams
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Table 5 This table shows the processing time and device memory usage with the different configurations
for the number of streams and cutoff-sizes

# of Stream 1 2 4 8

Machine 1

Cutoff size 8,192 8,192 4,096 4,096

Processing time (seconds) 195.70 161.57 147.63 153.35

Device memory usage (GB) 0.75 1.50 0.75 1.50

Machine 2

Cutoff size 16,384 16,384 8,192 8,192

Processing time (seconds) 74.25 55.00 55.93 51.56

Device memory usage (GB) 3.00 6.00 3.00 6.00

Machine 4

Cutoff size 32,768 16,384 16,384 8,192

Processing time (seconds) 373.34 312.33 289.21 300.94

Device memory usage (GB) 12.00 6.00 12.00 6.00

We used the 65,536 × 65,536 single-precision matrix for this analysis

achieved better performance than using single-stream since more than one stream is
needed to exploit the concurrent execution ability of heterogeneous computing sys-
tems. However, more streams did not always guarantee better performance. This is
because the smaller cutoff-size leads to more data communication between the host
and device memories even though this could increase the concurrency with more
streams. We found that the combination of four streams and the associated largest
cutoff-size generally showed a good performance while using less memory space than
other configurations showing comparable performance. This conclusion is consistent
with the observation of Sunitha et al. that four-way concurrency is the best in most
cases [32].

6 Conclusions

We presented a novel heterogeneous parallel matrix multiplication (HPMaX) frame-
work that efficiently handles a large matrix by utilizing both multi-core CPUs and
GPUs. Based on Strassen’s method and our block-based work decomposition, we rep-
resented the work of matrix multiplication for a large matrix as a set of matrix addition
and multiplication tasks among its sub-matrices. Then, depending on the character-
istics of each task type and computing resources, our method processes them by
allocating the addition tasks to CPUs and multiplication tasks to GPUs. Moreover, our
HPMaX framework exploits the concurrent execution ability of heterogeneous com-
puting systems for further performance improvement. We implemented our method
on five different heterogeneous systems and applied it to various sizes of matrices.
Overall, our method achieved higher performance than prior GPU-based approaches,
including CUBLAS, which is the state-of-the-art GPU matrix multiplication library.
More interestingly, ourHPMaXusing a lower-performanceGPU andmulti-core CPUs
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achieved performance comparable with that of CUBLAS using a higher-performance
GPU. Also, our HPMaX framework showed better performance continually when
employing more computing resources like CPU cores and GPUs. These results vali-
date the advantages of our approach.

6.1 Limitations and future work

We achieved impressive performance gains by employing multi-core CPUs compared
with GPU-only methods. However, after a specific point, the benefit of employing
more CPU cores is less noticeable due to the workload imbalance between CPUs and
GPUs (Sect. 5.3). Such workload balancing problems should become more critical in
a system having higher heterogeneity, such as a workstation having multiple different
GPUs. In this direction, we have a plan to design a scheduling algorithm that finds
optimal work distribution achieving the best performance for an arbitrary combination
of computing resources. Based on the scheduling algorithm, we would like to extend
our framework so that it is generally applicable to various types of heterogeneous
parallel computing environments. At second, we targeted large-scale matrices, and we
designed it to handle matrices smaller than the cutoff-size with the classical method
on a GPU. As future work, we would like to improve our HPMaX frame to utilize
heterogeneous computing resources for small matrices too. Finally, we would like
to apply our HPMaX framework to various applications like machine learning and
computer-generated holography.
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