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Abstract
With growing heterogeneity and complexity in applications, demand to design an
energy-efficient and fast computing system in multi-core architecture has height-
ened. This paper presents a regression-based dynamic voltage frequency scaling
model which studies and utilizes workload characteristics to obtain optimal voltage–
frequency (v–f) settings. The proposed framework leverages the workload profile
information together with power constraints to compute the best-suited voltage–
frequency (v–f) settings to (a)maintain global power budget at chip-level, (b)maximize
performance while enforcing power constraints at the per-core level. The presented
algorithm works in conjunction with the workload characterizer and senses change
in application requirements and apply the knowledge to select the next setting for
the core. Our results when compared with two state-of-the-art algorithms MaxBIPS
and TPEq achieve the average power reduction of 33% and 25% respectively across
32-core architecture for PARSEC benchmarks.
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1 Introduction

There has been an upsurge in the demand for battery-operated devices due to their
widespread applications and increased usability across various sectors. Minimizing
power consumption and maximizing performance is rapidly becoming a fundamental
customer requirement. This has an added advantage of the improvement in chip’s
reliability and hence longer lifetime which has been an additional concern.

Dynamic voltage frequency scaling (DVFS) has been universally adopted as a
low-power technique while fulfilling the performance requirements. Modern-day
processors like Intel XScale, Transmeta Crusoe, and AMD Athlon are equipped
with in-built DVFS capability [1]. The main objective of DVFS is to supply “just
enough” circuit speed for processing system workload whilst attaining the desired
throughput and minimizing energy consumption simultaneously [2]. Since the power
consumption of a processor is cubically reliant on the operational frequency (E
α Capacitance×voltage2 × frequency×cycles), management of clock frequency
directly results in energy-savings. Figure 1 illustrates the effect of DVFS on power
consumption and execution time of a workload [3]. With no DVFS applied, let t1 be
the time a task takes to complete at the highest frequency ( f1). Let Psys f 1 represent
the power consumed by this task. Pidle f 1 signify the CPU/core power consumption
in idle state. When DVFS is applied ( f2 → f1), the power consumption is curtailed
to Psys f 2 while the task execution-time amplifies to t2. The new task completion time
t2 has an added component of tdelay which is a result of the reduction in operating
frequency ( f1 > f2) which directly influences the of power-savings. However, the
change in frequency does not have a straight forward impact on execution time, which
also depends on how the application utilizes the system resources.

Further breaking the system power consumption (Psys f 1 ) into CPU power (Pc f 1 )
and power consumed by other devices Pd at voltage-frequency setting f1, the energy-
savings due to DVFS implementation can be represented as Eq. 1:

EDV FS = Psys f 1 t1 + Pidle f 1 tdelay − Psys f 2(t1 + tdelay)

= (Psys f 1 − Psys f 2)t1 − (Psys f 2 − Pidle f 1)tdelay

Fig. 1 Impact of DVFS on power consumption and execution-times [3]
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= (Pc f 1 − Pc f 2)t1 − (Pc f 2 + Pd − Pcidle − Pdidle)tdelay

= (Pc f 1 − Pc f 2)t1 − ((Pc f 2 − Pcidle) + (Pd − Pdidle))tdelay

= ΔPCt1 − ΔPEtdelay
= ER − EE (1)

ΔPC = Pc f 1 - Pc f 2 ; represents the scale down in CPU power when frequency setting
is changed from f1 to f2.ΔPE = (Pc f 2−Pcidle)+(Pd−Pdidle ); represents the additional
energy budget that DVFS brings into the system. It is evident that this extra power can
be consumed at the CPU level (Pc) or device resource level (Pd ). For memory-driven
operations, the value of Pd − Pdidle is very high as the system makes frequent trips to
memory keeping CPU idle. On the contrary, this value is negligible for CPU-bound
workloads. For DVFS to provide energy savings, ER > EE is a necessary condition. If
this inequality is not satisfied, the energy dissipation of the system operating at f2 will
be greater than the energy consumption at the highest frequency of f1. This defeats
the purpose of DVFS and additionally results in performance overhead (tdelay).

Motivation: The main aim of our work is the joint optimization of IPC and Power
which are directly affected by frequency/voltage, thus, DVFS has been chosen. It is a
well-knownmechanism tomake the processor’s power to converge to a specified power
budget [26]. The applications are a combination of compute-intensive and memory-
intensive tasks. Offline analysis of the application misses the opportunity of energy-
savings [23]. A run-time workload classifier will be beneficial in adapting to workload
variations. A dynamically calculated metric indicating the change in workload will
ensure that frequency is scaled only when needed. Reading and evaluating dynamic
information from a monitoring system imposes performance overhead and should be
minimized. A predictionmodel can exploit the inherent similarities in the applications.
An offline-analysis of performance and power for all possible thread-core mapping
corresponding to varying v–f settings will help in identifying the repeated or similar
trends. A computationally-inexpensive prediction model such as linear regression is
desirable. It constructs a predictor which once trained through training data/programs
is capable of handling unseen programs and utilize runtime statistics efficiently. The
effectiveness of DVFS varies with the level of granularity. Per-chip DVFS has a single
control knob which diminishes the potency of frequency scaling and also restricts
extensibility. On the other hand, per-coreDVFS supports awide range of control knobs
which facilitate high flexibility but are difficult to design. Figure 2 gives a snapshot of
various power supply configurations which depict how granularity is handled in DVFS
[4]. The conventional design strategy is portrayed in Fig. 2a where a single control
knob is provided as an off-chip regulator. A 2-step voltage switching configuration is
sketched in Fig. 2b. To account for inherent degradation in conversions, the off-chip
regulator steps-down voltage from 3.7 V to 1.8 V. This 1.8V supply voltage wheels
the on-chip regulator which further steps down the voltage to a range of 0.6–1 V and
distributes it across the 4-cores. The last configuration (Fig. 2c) extends Fig. 2b by
providing individual on-chip regulators for each core. The first two configurations
are coarse-grained while the last one is fine-grained DVFS. It is observed that with
the augmentation in the number of cores, per-core DVFS holds the key to low-power
design in the future.
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Fig. 2 Power-supply organizations for a quad-core system [4]

To ensure deadline-conformance, theDVFS technique should have prior knowledge
of tasks such as arrival time, execution time, priority, etc. This critical information is
relatively difficult to obtain and store in limited space-constrained embedded systems.
The proposed DVFS system is designed to control the selection of best suited v–f set-
ting (amongst the set of predefined values) based on task characteristics. The runtime
statistics of application and architecture are gathered to analyze the task model. The
algorithm is responsible to accurately characterize task behavior and then apply opti-
mal v–f values while accommodating the global power budget. The fine-grained power
manager provides modification at a per-core level while the coarse-grained allocator
ensures there is no power budget overshoot. The prediction-based controller chooses
to increase/decrease the frequency to the next specified value based on the prediction
model. Reduction in operational frequency leads to increment in the makespan of a
task, affecting the real-time performance of the system. Thus, achieving a balance
between energy and performance becomes essential while making DVFS decisions.

Section 2 highlights the road map of DVFS techniques explored in the past. It
also lists the paper contributions. Details of the methodology followed and the algo-
rithms used are explained in Sect. 3. Experimental implementation and analysis of the
obtained results are mentioned in Sect. 4. Finally, the paper is concluded in Sect. 5.

2 Related work and paper contribution

Low-power design techniques using DVFS and Dynamic power management (DPM)
have been an active research area in the past. Long-researched DVFS approaches can
be cataloged into three segments. The first section constitutes methods that perform
DVFS at either application-level or are complier-assisted. Since the operating system-
based techniques use varied heuristics, they can only provide control at the coarse-grain
level. A regression-based learningmodel is used in [5] tomap tasks on a heterogeneous
system. Based on the application performance requirement, it is dynamically allotted
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a computing resource. This technique performs an energy-performance tradeoff effi-
ciently but doesn’t consider task parallelism. Mapping in conjunction with DVFS
is considered jointly in [6] for a heterogeneous architecture. Applications with their
timing constraints are represented through the task-graph. It then performs probabilis-
tic task allocation and frequency scaling through heuristics. Since the approach uses
offline heuristics, it lacks run-time adjustment to the dynamic nature of the workload.

The second category consists of system-level DVFS techniques that don’t consider
task characteristics. These approaches depend on the runtime statistics provided by the
platform or architecture to replicate application characteristics. An IPC (Instruction
per cycle) guided DVFS technique is presented in [1]. A multivariate linear regression
model is used to predict IPC and accordingly perform voltage scaling. The algorithm
works at amicro-architectural level and chooses from various processor configurations
(pipeline gating, in-order, and out-of-order issue) in conformance with performance
requirements. To promote portability across applications, performance monitoring
counters (PMCs) built into the hardware architecture have been used in [7]. A multi-
nomial logistic regression (MLR) based controller makes thread packing and DVFS
control decisions. The inclusion of thread packing with DVFS improves the aver-
age power-range considerably. Reinforcement learning based DVFS method in [28]
presents power optimization in mobile devices. The method handles scalability by
maintaining two Q-tables and two corresponding update functions. This method pro-
vides an alternate to supervised learning, however suffers from overestimation.

The third category comprises of DVFS-techniques that use prior known informa-
tion on the application model to make control decisions. Choi et al. [8] proposed a
workload decomposition technique which uses performance counters to divide task
into on-chip and off-chip parts. The on-chip part represents the clock cycles needed
for a CPU operation while the off-chip segment signifies memory access. The DVFS
control manager reduces the operational frequency for memory-intensive jobs while
increasing it for CPU-intensive jobs. The technique can utilize workload characteris-
tics but doesn’t consider multi-tasking. Hardware performance counters utilizing the
clustering approach to handle large number of cores has been explored in [27]. This
approach facilitates scalability but does not correlate application characterstics with
observed hardware events. Weissel et al. in [9] use the performance monitoring unit
(PMU) to select optimal v–f settings while maintaining the performance. The PMU
captures memory access and cache hit & miss ratio statistics to model the dynamic
program behavior. Though this process considers multi-tasking, it fails to provide run-
time energy-performance tradeoff control. Extending on the same lines, Dhiman et.al
in [2] presented an online-learning based scheduling method using task characteriza-
tion. It verifies that CPU-intensive tasks suffer while memory-bound phases benefit
when executed at a lower frequency. Since the solution was implemented on a single-
core system it is unable to exploit the advantages of DVFS functionality. This paper
is an extension to [2] but takes global power budget and per-core power capping into
consideration. The regression-model takes the next interval IPC and Power prediction
value into consideration along with task characteristics to obtain optimal v–f settings.

The operating system-based techniques use varied heuristics, they can only provide
control at the coarse-grain level and not at the fine-grain level. These techniques lack
exploiting the full capability of the DVFS technique. With increasing complexity in
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applications and variation in task characteristics unaccounted for, system-level DVFS
techniques are unable to adopt new applications. DVFS supervision at a fine-grain
level doesn’t take overall power consumption for the chip into consideration. Our
method addresses all these limitations by including both global and per-core budget
while considering workload variation collectively.

Further, the proposed method has been compared to two state-of-the-art meth-
ods: MaxBIPS [16] and TPEq [17] for power-reduction and performance degradation.
Similar to our work, Isci et al. [16] uses workload characteristics to obtain opti-
mal DVFS policy. To induce variation in workload, the method scales memory and
L2 access cycles and hard-wires the relations at design-time. Our method provides
a novel method for calculation of application characteristics. Unlike the presented
method, MaxBIPS only considers single-threaded applications, hence limiting the
practical feasibility. Additionally, our method evaluates 6 frequency modes contrary
toMaxBIPS which uses only 3 modes. TPEq is an improvement of MaxBIPS and uses
thread progress equalization (TPEq) to achieve a power-performance tradeoff. It uses
Cycles-per-instruction (CPI) to identify thread imbalance and utilizes it to dynam-
ically select voltage/frequency settings per core. Since the main aim of TPEq is to
reduce thread imbalance, it is inclined towards performance improvement rather than
reducing power consumption.

Following are the contributions made by this paper:

• Introduce a Global power allocator, which collects per-core power and perfor-
mance statistics at periodic intervals. It enforces adherence to the chip power
budget by assigning optimal operating voltage–frequency (v–f) levels.

• Develop a workload analyzer which characterizes the application-phase as CPU-
intensive or Memory-intensive. Since an application can have both these phases,
the value is calculated dynamically.

• The presented technique is divided into on-line and off-line phases, wherein the
offline phase machine learning technique (Multi-variate Linear Regression) is
used to develop models based on characterization data collected. The best-fitting
voltage-frequency settings for each core are determined dynamically using appli-
cation and architecture statistics.

• We demonstrate that the proposed method successfully reduces power con-
sumption and minimizes performance degradation under power capping. When
compared with MaxBIPS, 25% improvement in power-reduction and 33% with
TPEq is achieved.

3 Methodology

3.1 Architecture model

Considering a homogeneous architecture composed of m identical processors P =
P1, P2, . . . , Pm . All processors in P support DVFS and each processor can oper-
ate on different voltage/frequency which can be scaled independently. However, we
assume that the processor can select only amongst a finite number of discrete operat-
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ing frequencies. To understand the impact of frequency on the core’s utilization, we
must understand their relationship. Before formulating the problem, we introduce the
following notations:

• τi : i th task

• ei : Execution time of the i th task

• e∗
i : Task portion independent of core frequency

• e
′
i : Task portion dependent on core frequency

• di : Relative deadilne of the i th task

• Ui (k): Utilization of core Pi during kth DVFS epoch k

• fi (k): Operating frequency of core Pi during kth DVFS epoch

Utilization of Pi core at fixed frequency fi (k) is given by [10]:

Ui (k) =
Tasks∈k∑

τ j

e j
d j

=
Tasks∈k∑

τ j

e∗
j + e

′
j/ fi (k)

d j
(2)

Rewriting 2 in terms of frequency changes where Fj (k) is clock-period(1/ f j (k)).

Ui (k + 1) = Ui (k) + g j (k)XΔFj (k) (3)

where ΔFj (k) = Fj (k + 1) − Fj (k).
Equation 3 clearly shows that transition in the frequency has a significant effect on

the utilization of a core. Thus, if we have information about the next interval utilization
of Ui (k + 1) of the core, we can manipulate the operating frequency accordingly.

3.2 Applicationmodel

An application is a collection of tasks with its inherent properties. Throughput is
basically how quickly an application can run on a system. The benchmark selection is a
crucial step as it replicates the application model which is one of the input parameters.
The characteristics of the chosen workload should be closely related to real-time
applications. We have used industry-standard PARSEC benchmark [11] which has a
plethora of parallel,multithreaded applications. Table 1 lists the varying characteristics
and details of the benchmarks used. A baseline-study for each benchmark has been
conducted and detailed in Sect. 4.2.

3.3 DVFS-strategy

The overview of the DVFS framework is depicted in Fig. 3. The presented prediction
model uses Linear-regression [21] to predict the next interval IPC and Power values.
For analysis, we chose a linear regression model for its simplicity, low computational
overhead, and high accuracy even with a small population of data. Additionally, this
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Table 1 Characteristics of PARSEC benchmarks [11]

Benchmark name Working set Granularity Load balancing Locks Barriers Data usage

Sharing Exchange

Blackscholes Small Coarse Static No Low Low Low

Bodytrack Medium Medium Dynamic High High High Medium

Ferret Unbounded Medium – High No High High

Swaptions Medium Coarse Static Low No Low Low

x264 Medium Coarse – High No High High

model is relatively easier to scale when compared with other non-linear or probability-
based regression models. The offline-regression learning model uses performance
monitoring counters—IPC, Power consumption, and operational frequency as an input
parameter. Both IPC and power are directly related to clock rate (cycles per second,
given in Hz). IPC has a linear relation with frequency i.e. high frequency leads to
high IPC. Similarly, lowering the frequency leads to a reduction in energy dissipation.
Since IPC and Power counterbalance the effect of change in frequency, both need to be
evaluated jointly. The linear regression model predicts the next interval values for both
IPC and Power when considered simultaneously. This facilitates obtaining a solution
that optimizes both power and performance. Since frequency is the single control knob
for both the optimization parameters, the DVFS manager is chosen. The regression
algorithm calculates a function through training data which can predict the value of
a dependent variable through a set of independent variables (also known as features).
Consider a set of independent variables x1, x2, x3, . . . , xn and y as dependent variable.
Ordinary Least Squares (OLS) is used as the basis of the presented prediction model
and calculates the weights β for each feature x and error e using Eq. 4:

yi = β0 + β1x1i + β2x2i + · · · + βk xki + ei (4)

where yi , i th output (I PCpredicted or Powerpredicted ); x ji , j th feature (I PClastinterval

or Powerlastinterval and frequency f ) calculated at i th observation; ei , i th error; k,
number of features.

The goal is to obtain optimal values of weights/coefficients β1, β2, β3, . . . , βk such
that the variance between observed and estimated values is minimized.

At the start of the simulation, system configuration for Intel Gainstown (as per
Table 2) is set as a Python script in the Sniper simulator. The pre-defined voltage-
frequency values are set in the dvfs.py file. Benchmarks are run with no DVFS on
Sniper to generate core statistics and Power traces from McPAT. Additionally the
application statistics such L1 cycles stalled and busy cycles are passed to the python
scripted “Workload Characterizer”. Here the value of μ is calculated for each interval
per benchmark. The Linear regression prediction model is used to estimate continuous
value of next interval IPC (I PCpredicted ) and core-power (Powerpredicted ) [15]. To
reduce complexity, both IPC and Power values are divided into five bins which have
been determined according to their statistical distribution as performed in [14]. This
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Fig. 3 Overview of the proposed workload-aware DVFS framework

data is grouped as a vector and has been explained in Sect. 3.4. The DVFS power
manager decides to increase/decrease the next optimal voltage-frequency setting for
the core by taking inputs from Prediction Model and μ-analyzer. The component μ-
analyzer determines the change in application behavior and sets the flag according to
Algorithm 2.

At each explore epoch (500µs), the chip-wide global power manager is evoked.
During this period, the power and performance statistics for the current phase are
evaluated. This is to prevent budget overshoot at the chip-level.A coarse-grained power
allocator enforces budget adherence based on threshold power calculated dynamically
(Sect. 4.3). This chip-wide DVFS manager is light-weight and has low overhead as it
is operated at 1

5 th time interval as compared to DVFS epoch.
At each DVFS epoch (100µs), the implemented fine-grained power manager is

triggered. It is during this time, new power level request (following Algorithm 2) is
generated based on performance, core-level power and change in CPU-intensiveness
of the application. The termination condition is the completion of benchmark.
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The metrics used to envoke the designed Power level request algorithms are Gain
and change in μ which are defined in equations 5 and 6 respectively.

Gain = I PC ∗ Clockrate

Power
(5)

Δμ = μi (k + 1) − μi (k) (6)

Since IPC depends on the type of core, Gain represents instructions executed per unit
energy eliminating the effect of core-type from the evaluation. At every DVFS epoch,
first Algorithm 1 is called to identify change in application-behavior. As illustrated
in equation 3, any fluctuation in expected behavior will trigger frequency scaling.
Since the change in the value of μ is a computed value and not an estimated value, it
represents the real-time change in application requirement. The μ-analyzer calculates
change in workload behavior by comparing the value of μ of last interval (μ(k)) and
current interval (μ(k+1)). Based on these values a f lag is set to signify the change in
CPU-intensiveness, which in turn triggers the change in the v–f setting by the Power
Manager.

Algorithm 1 : CPU-intensiveness change
1: Input Variables : μi (k + 1), μi (k)

2: f lagi =

⎧
⎪⎨

⎪⎩

−1 if Δμi < 0 \\ Next phase Memory-intensive

= 0 if Δμi = 0 \\ No change

+1 if Δμi > 0 \\ Next phase CPU -intensive
3: If f lagi �= 0 , call Power level request \\ change in Δμi

The problem-statement has been illustrated in Algorithm 2. The suggested power
manager should be able to boost Gmax (Total gain) whilst ensuring chip-level budget
adherence (Pbudget ). The DVFS manager is subjected to two levels of constraints: (1)
Select either current power or predicted power under budget constraints; (2) Ensure
there is an increase in the expected throughput for the next interval.

Algorithm 2 : Power Level Request
1: Input Variables : Pcurrent , Ppredicted , Pbudget
2: Output Variable : Pchange

3: xi =
{
0 Pcurrent
1 Ppredicted

4: Maximize Gmax =
∑
j
Gnext ( j).X j + ∑

j
Gcurrent ( j).(1 − X j )

5: Subject to :
∑
j
Ppredicted ( j).X j + ∑

j
Pcurrent ( j).(1 − X j ) ≤ Pbudget

and I PCcurrent ( j) < I PCpredicted ( j)
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3.4 Data collection

Each benchmark is run for combinations of pre-defined discrete voltage-frequency
levels and the number of active cores. The data-collection program scripted in Python
gathers core statistics, power estimates, and application statistics (parameters required
for calculation of μ). This constitutes of the training data which represents different
core behavior and safeguards the predictive model from any bias.

The data gathered is grouped in onematrix per frequency with the following values:

1. Core Power (Static+Dynamic) [in Watts]
2. Core IPC (Instructions per cycle)
3. CPU-intensiveness (μ)

Core IPC and Power (in Watts) are extracted from Snipersim along with McPAT. The
value of CPU-intensiveness (μ) is calculated as follows [14]:

μi = 1 − number of L1 stalled

number of busy cycles
(7)

It has been observed that discretization gives improved prediction accuracy [24]. Dis-
cretized features provide stability and prevent overfitting. The value ofμ is discretized
in 3 bins (0, 0.5, 1) where μ = 0 depicts memory-intensive while μ = 1 signifies
CPU-intensive. For a benchmark with μ = 0.5, it shows it has both memory and
CPU-demanding phases. We only need to identify that the new task is compute-
intensive/memory-intensive/mixed, 3 levels were chosen. Discretizing the value of
μ into more levels will result in additional computation without any significant
improvement in precision. However, since a task can have varying memory-bound
and CPU-intensive phases, the value of μ has to be calculated dynamically. A work-
load characterizer to calculate the value of μ has been implemented in Python and is
called at every DVFS epoch (taken as 100µs). The calculated value is one of the input
parameters of the regression learning model.
The data is grouped according to the operating frequency. The data matrix looks like:
(Core ID, IPC, Power, CPU-intensiveness): (i, I PCi , Pow(i, V Fi ), μi (k))
where i ∈ (1, 32), I PCi and pow(i, V Fi ) denotes IPC and Power respectively at core
i when operating at V Fi voltage-frequency level.μi (k) represents CPU-intensiveness
of the application in the current DVFS epoch k.

For each benchmark, we obtain 62 data points per frequency. The total data set of
1860 (62 * 6 * 5) points is partitioned in the ratio of 7:3 to obtain training- set and
test-data respectively.

4 Experimental evaluation and results

4.1 Experimental setup

The effectiveness of the proposed technique has been implemented on the Sniper sim-
ulator which provides core statistics and power consumption (Dynamic+Static). The
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Table 2 Simulated architecture
configuration Number of cores 2, 4, 8, 16, 32

Architecture Intel Processor Gainestown

Technology node 45nm

L1-I/D Cache 32KB, 4-way,LRU

L2 Cache 256KB, 8-way, LRU

L3 Cache 8MB, 16-way, LRU

Frequency levels (GHz) 1, 1.4, 1.8, 2.1, 2.7, 3.3

Voltage (V) 0.8, 0.9, 1.1, 1.2, 1.4, 1.6

Explore epoch 500 µs

DVFS epoch 100 µs

simulated configuration is mentioned in Table 2. The presented method is designed,
but not limited to the 45nm technology node. It provides the groundwork for future
technology nodes (such as 32nm, 22nm, etc.) and can be extrapolated.However, future
process technologies (under 22nm) will be severely power and thermal constrained.
Thus, thermal balancing should be considered in next-generation designs [26]. The
voltage-frequency settings have been extracted from the datasheet of Xeon 5550 pro-
cessor [18] and have been set in dvfs.py script in Sniper. Due to theMcPAT constraint,
the lowest frequency chosen is 1000 MHz. The data-collection program, regression
model, and workload analyzer are created in Python script and integrated to Snipersim
through API.

In an ideal scenario, DVFS should instantaneously transition from one frequency
to another. But in reality, due to internal PLL(phase lock loop), locking times, and
capacitances there is a context-switching time. The Intel Xeon processor has a switch-
ing latency of 70 µs at 1600 MHz for a 4-core system [19]. Additionally, we need to
consider the DVFS overheads which are approximately 100 µs for a 1 GHz system
[16]. Taking both the factors into account, we have chosen the DVFS epoch which can
accommodate both switching latency and DVFS overhead.

4.2 Workload characterizer

Cores react differently to low- voltage operation due to process variation [22]. To
incorporate varying task characteristics, we are using parallel, multi-threaded applica-
tions from PARSEC benchmark suite [11]. To construct the experimental framework,
workload characteristics of applications are gathered on Intel’s Sniper simulator [12]
andMcPAT [13]. Half an hour-long traces of each benchmark were run to generate uti-
lization and power profiles. Simulations conducted for the benchmarks (blackscholes,
bodytrack, swaptions, ferret, x264) running on a 4-core MPSoC are shown in Fig. 4.
The power consumption and execution time plots form the baseline of the analysis.

From the graph, it is evident that ferret which is highly CPU-intensive contin-
uously burns CPU cycles without accessing memory locations. To achieve better
performance, it requires higher processing power. On the other hand, blackscholes and
swaptions which are memory-intensive applications with minimum communication
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Fig. 4 PARSEC benchmark suite when run for one thread on a 4-core system with simsmall input

execute faster and are energy-efficient. Both x264 and bodytrack are medium-coarse
but x264 requires higher power to overcome its lock-barrier. Since bodytrack has an
inherent load balancing feature, the execution time and power dissipation across cores
don’t show variation.

4.3 Chip-wide DVFS

Apower-allocator program is implemented in Python and acts as a Global-powerman-
ager. At first, the power budget corresponding to each core configuration (2/4/8/16/32)
is collected. Since the threshold power budget varies with the number of cores and
operating frequency, we calculate it dynamically. To obtain this value, we run each
benchmark (without DVFS) for each combination of active core configuration and
frequency values. The data is collected for all the pre-defined frequency values ( Refer
Table 2). Illustrating the data collection process, consider operational frequency as
1200 MHz. swaptions benchmark is executed for a 2-core, 4-core, 8-core, 16-core,
and 32-core architecture separately where each core is operating at 1200 MHz. The

123



1760 M. Gupta et al.

Fig. 5 Boxplots of power consumption (W) with frequency (MHz) at pre-defined DVFS levels

power consumed by each core is collected corresponding to the operational frequency.
The same process is repeated for all 6 pre-defined operational frequencies and each
benchmark independently. The power consumption is collated per frequency and ana-
lyzed through box plots (Fig. 5). A threshold value is set for each of the selected
frequency levels (Table 3) and is calculated by taking the median of power consump-
tion for every frequency.

The box plots corresponding to each frequency value have been charted in Fig. 5
for further analysis and calculation. The power consumption value between the third
quartile and median have been used as threshold. This method makes the power-
consumption dependent only on frequency thus, making the proposed technique
benchmark and core configuration agnostic. However, the main purpose of this value
is to provide safety against budget-overshoot as the global manager will not scale
frequency if the core has the potential of reaching the power budget. Based on this
data, the power threshold for each frequency has been tabulated in Table 3.

The actual power range for Xeon 5550 is not available for more than 4 cores. The
collected data, when compared with the actual power range of 95W for 4 cores [18], is
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Table 3 Power threshold
(per-core)

Frequency level (MHz) Power threshold (W)

1000 2.5

1400 4.4

1800 11.2

2100 19.8

2700 24.2

3300 33.6

fairly accurate. Since 3300MHz is the “Turbo-boost” mode in Xeon it is implemented
to study the impact of over-clocking in the system.

Theproposedglobal power allocator is triggered at explore epoch.At this instant, the
power manager gathers the core statistics to identify any potential budget overshoot.
This is to ensure that any increase in the frequency of a core by the fine-grained
manager in the lastDVFS epoch has not led to impractical power values. Each explore
epoch consists of system profiling and calculates cumulative chip power consumption.
During the profiling phase, any transition in core frequency ormemory access is halted
and PLLs and DLLs are resynchronized. During the core frequency transition, the
core does not execute instructions while the other cores operate normally. This leads
to the core transition overhead of the order of tens of microseconds. This penalty is
necessary to avoid the oscillation and over-correction of frequency. Since the chip-
wide manager is called at every 500µs while the per-core manager at every 100 μs
the effect of transition overhead is diminished.

4.4 Per-core DVFS

The DVFS power manager gathers application and architecture statistics through the
data collection program. The fine-grained power manager uses linear regression to
predict the next interval IPC and Power values corresponding to each operating fre-
quency. Distinct regressionmodels have been developed to estimate continuous values
of I PCpredicted and Powerpredicted for the next interval. The obtained continuous
values have been discretized to reduce complexity as mentioned in Sect. 3.4. At every
DVFS epoch(k), the remaining budget per-core (deltabudget ) is calculated. The cores
with the highest deltabudget are arranged in max heap-sort. Inclusion of this step has
two-fold benefits: (1) Arranging tuples in maximum heap-sort facilitates quick iden-
tification of core(s) which have the maximum potential for frequency scaling and; (2)
in case there is no change in frequency, the system doesn’t need to recalculate the
statistics for all cores and can simply pick the next child-node from the graph.

The Power and performancemodels are generated as a function of PMU ( frequency,
I PClastinterval , Powerlastinterval , μlastinterval . The value of Powerbudget is passed
by the global manager. The power manager ensures that the total power allocated
doesn’t exceed the power budget. The residual power budget signifies the available
power for the DVFS assignment. The core with the highest deltabudget is identified
fromheap-sort. Themanager verifies variation in the value ofμ and triggers the change
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Table 4 Root mean square error Frequency level (MHz) Root mean square error

IPC Power

1000 0.32 0.458

1400 0.35 0.576

1800 0.41 0.651

2100 0.44 0.87

2700 0.50 1.36

3300 0.82 2.38

in voltage-frequency requests. Based on predicted values of IPC and Power for the
next interval, new voltage-frequency settings are assigned.

An indicator of the accuracy of the predictive model is Root Mean Square Error
(RMSE) which is defined as in equation 8. RMSE represents the deviation between the
observed and estimated/predicted values. It is desirable to have lower RMSE values
which are indicative of an accurate model.

J (θ) = 1

m

√√√√
m∑

j=1

(hθ (x ( j)) − y( j))2 (8)

where m, training samples statistic; x ( j), jth value of predictor variables; y( j), jth
measured value; hθ (x ( j)), jth predicted value.

The average value of RMSE corresponding to different operating frequencies is
tabulated in Table4.

We observe that the prediction models work fairly for both IPC and Power estima-
tion. For Dual-core and quad-core systems, the RMSE is very small as the applications
behave expectedly. The power allocation algorithm can adapt to changes in workload
behavior. At the start of the simulation, high RMSE values were encountered espe-
cially since the model was in the learning phase. However, the model shows a large
deviation for higher frequency. This is attributed to the fact that power and frequency
are not linearly related. Thus, a non-linear or probability-based model may give better
results in the future. Since the suggested model is fairly able to predict IPC for the
next interval, it prevents performance degradation.

4.5 Results and analysis

The proposed method has been compared with two state-of-the-art algorithms:
MaxBIPS and TPEq. Below, we briefly describe our implementation of thesemethods:
The algorithm MaxBIPS [16] uses three power modes: Turbo, Efficient 1(Eff1) and
Efficient 2(Eff2). In Turbo mode, the system works on the highest frequency and
neglects power savings. The Eff1 and Eff2 mode aims to achieve energy-performance
tradeoff in different proportions in terms of power-savings and performance degrada-
tion. The method targets a 3:1 power/performance tradeoff. Unlike MaxBIPS which
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uses 3 modes, this work considers 6 frequency levels providing greater fine-tuning.
The 3300 MHz setting can be considered equivalent to ‘Turbo’ mode of MaxBIPS.
Although MaxBIPS has been implemented only for up to 8 cores, we have scaled it
to 32 cores for the comparison. Since bodytrack needs at least a 4-core system (as it
has 2 extra threads), its 2-core comparison has not been included.

TPEq algorithm [17] focusses on multi-thread workloads with barrier and/or lock
synchronization. It defines a metric ‘progress’ which is inversely related to the
weighted CPI of each thread and helps to establish the most lagging thread. The core
configuration for this thread is changed to improve the progress metric while abiding
the power and performance constraints. Both MaxBIPS and the proposed method use
DVFS epoch as 500µs while TPEq uses 1ms as epoch length which reduces the gran-
ularity of temporal adaptation of the thread. The default power settings for MaxBIPS
are 90% of power budget while TPEq starts with the lowest frequency level. However,
our method initiates the system with the highest frequency under capping constraints.

Considering that the main aim of this method is to achieve joint optimization
of power and makespan, we evaluate the proposed technique for both reductions in
power consumption and performance degradation. The metric used to calculate power
reduction/energy-savings is given by equation 9 and have been plotted in Fig. 6:

mean(PowernoDV FS) − mean(Powermethod)

mean(PowernoDV FS)
(9)

Here PowernoDV FS signifies the power consumption of each benchmark in normal
execution, without any DVFS. Powermethod represents power values for either the
proposed solution or state-of-the-art algorithm (MaxBIPS or TPEq). Another metric
used to estimate throughput is Performance degradation. It is quantified with elapsed
execution time for individual benchmarks [16] and the normalized performance degra-
dation (with respect to MaxBIPS) is plotted in Fig. 7.

Power Reduction: At the outset it is visible from Fig. 6, both MaxBIPS/ TPEq and
the prospective method can achieve similar energy-savings for a 2-core system. How-
ever, for computationally-intensive tasks like ferret and x264, the presented solution
shows better results. ferret shows the highest power reduction across all the cores
because it has both CPU and memory-demanding phases. The proposed method can
adapt better than MaxBIPS which only relies on the precision of V 2 f rule. Inef-
ficient power actions in TPEq lead to lower energy savings. Since swaptions is a
no-barrier workload, the power manager is easily able to predict its characteristics
and hence make suitable decisions. As a memory-intensive, medium-sized workload
the suggested algorithm can utilize the newly added cores and thus improve energy-
efficiency. Since it is a low-lock application with very few unexpected fluctuations,
all the methods show comparable results.

However, blackscholes which is a small scale, the balanced workload does not
benefit much from power balancing techniques especially for a lower number of cores.
However, as the cores scaleblackscholes improves in energy-efficiency.This is because
it relies on neighboring cores that consume lower power by borrowing from their
power budgets. bodytrack being compute-intensive shows significant power reduction
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Fig. 6 Average power-reduction (%) achieved across benchmarks

Fig. 7 Normalized performance degradation across benchmarks (with respect to MaxBIPS)

especially for cores greater than8.This is attributed to lowcommunication andmedium
granularity of workload which translates to higher energy-efficiency.

Performance Degradation: Since this work aims adaptation to workload char-
acteristics, performance degradation becomes an important criterion. This metric
demonstrates the prediction capability of the per-core manager. Lower value shows
the precision of the decision strategy. blackscholes being a balanced workload requires
an almost equal amount of power across cores. It has inherent static load balancing
due to which it can maintain the throughput. With the augmentation of the cores, it is
unable to fully utilize the additional processing capacity hence fails in performance
improvement. Since it is a no-lock and low-barrier workload, simply increasing the

123



Dynamic workload-aware DVFS for multicore systems using… 1765

number of cores does not translate into higher performance. bodytrack performs better
than blackscholes in terms of performance degradation. The high-lock, high-barrier
aspect of bodytrack prevents the manager from reaching low-performance values.As
the number of cores increase, the built-in dynamic load balancing ensures that all the
additional processing capacity is converted to higher performance. Thus, for 16 and 32
core configuration the performance degradation remains almost constant. Our predic-
tor can accomplish comparable results with TPEq and outperform MaxBIPS even for
higher core configurations. Both ferret and x264 don’t have load balancing capability
and are computationally expensive. ferret exhibits lower performance degradation in
proposed method as opposed to MaxBIPS. This is because our technique dynamically
calculatesworkload phaseswhileMaxBIPS achieves it through scaling ofmemory and
cache.x264 is similar to ferret but has a smaller working set which facilitates higher
performance without any significant loss. swaptions works as per expectations up to
8-core configuration. However, for a higher number of cores, it shows an increase in
performance degradation as the static load balancing is unable to match the augmen-
tation. TPEq outperforms the presented method by around 15% for a 16-core system
and 18 % for a 32-core configuration.

Budget overshoot accuracy It is essential to evaluate that the power consumed by
each method is constrained by the global power budget. It is observed that a good
power budgeting and balancing method can lower processor temperature gradient
without degrading the performance of the system [26]. Table 5 displays the accuracy
of each algorithm in selecting v–f setting within a fixed power constraint. We studied
the accuracy of matching the power budget (pb) for each benchmark for two fixed
values –130W and 140W. The tabulated accuracies reflect the fraction of intervals for
which the power consumption at optimal setting selected, matched/stayed below than
the alloted power budget.

Our technique outperforms both MaxBIPS and TPEq in maintaing power capping
while selecting v–f levels. As MaxBIPS aims to achieve high performance it conti-
nously pushes towards power budget while considering the dynamic characterstics
of the application. Thus, the accuracy suffers for benchmarks like blackscholes and
swaptions. While TPEq, favors balanced benchmarks such as bodytrack. Since x264
is compute-intensive and requires high power, both MaxBIPS and TPEq can perform
identical to our method. Our method performs better for lower budgets thus keeping
the power consumption further minimized.

We summarize the observations as follows:
(1) For a dual-core system, the proposed method works identical to the state-of-the-

art algorithms. (2) As the cores are augmented from 4 to 8, performance degradation
decreases as global budgeting becomes effective. (3) The benefit of power and perfor-
mance prediction becomes dominant with the scaling of cores. From Figs. 6 and 7, it is
clear that the proposed approach can identify and handle changes in application char-
acteristics better thanMaxBIPS and TPEq. The power reduction result shows that the
implemented per-core manager can identify variations in application. For compute-
intensive tasks (ferret and x264) we are able to reduce power by 30% and improve
performance degradation by 35%.(4) The presented approach can adapt well with
a boost in the number of cores and increase overall power reduction by 33% from
MaxBIPS and 25% from TPEq while minimizing performance degradation across
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applications and configurations. Additionally, the proposed method can keep oper-
ating power under power budget and prevent overshoot more efficiently than both
MaxBIPS and TPEq.

Further analyzing the complexity and overhead associated , we examine the con-
sidered method in contrast with bothMaxBIPS and TPEq. The algorithm complexity
in MaxBIPS is O(N .αN ) where α signifies the number of VF levels as it employs
exhaustive search to find optimal v–f values. The presented method and TPEq employ
heap-sort with respect to IPC value, hence has complexity O(N .log(N )) in the worst
case. In the proposed method , the linear regression-based model augments the com-
plexity by O(mn2

p + n3
p + n2log(p)) where p is number of cores [20]. Thus, a fast,

scalable learning-based model has been identified as future work which has a limited
number of features (n) and learning samples (m).

5 Conclusion

This paper presents a novel perspective on the dynamic power management technique
inmulti-core systems. The presented approach demonstrates an efficient performance-
energy tradeoff technique that incorporates application behavior in decision strategy
while capping power at both the chip and per-core level. The presented DVFS control
algorithm allocates the power budget at a coarse granularity. At the fine-grain level,
suitable voltage-frequency settings for each core are determined using workload char-
acteristics while maximizing the performance. This work also explores the usage of
using two-different control times (explore epoch and DVFS epoch) for chip-wide and
per-core manager respectively. This inclusion reduces the overhead for global budget
allocator by 5X.

The prospective approach evaluated for various configurations (2–32 cores),
achieves 33%and 25%power reduction compared toMaxBIPS andTPEq respectively.
It can consistently minimize performance degradation giving overall 23% improve-
ment. The advantage of workload analyzer is visible for CPU-intensive applications
where the energy savings increase by 30% and performance degradation diminishes
by 35%. The method shows the potential of combining learning-based DVFS with
workload characteristics of an application. Though there are unexplored aspects of
a task behavior like deadline, priority, etc. , this method gives a baseline to analyze
aggressive scaling strategies. Additionally, the applicability of our method for differ-
ent processor designs such as 22nm die size or single-ISA heterogeneous multi-core
architecture [25] may be explored in the future.
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