
Computing (2020) 102:1941–1965
https://doi.org/10.1007/s00607-020-00827-4

REGULAR PAPER

GPU-basedmatrix-free finite element solver exploiting
symmetry of elemental matrices

Utpal Kiran1 · Sachin Singh Gautam1 · Deepak Sharma1

Received: 4 January 2020 / Accepted: 10 June 2020 / Published online: 24 June 2020
© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Abstract
Matrix-free solvers for finite element method (FEM) avoid assembly of elemental
matrices and replace sparse matrix-vector multiplication required in iterative solution
method by an element level dense matrix-vector product. In this paper, a novel matrix-
free strategy for FEM is proposedwhich computes element levelmatrix-vector product
by using only the symmetric part of the elemental matrices. The proposed strategy is
developed to take advantage of the massive parallelism of Graphics Processing Unit
(GPU). A unique data structure is also introduced which ensures localized and coa-
lesced memory access suitable for a GPU while storing only the symmetric part of the
elemental matrices. In addition, the proposed strategy emphasizes the efficient use of
register cache, uniform workload distribution, reducing thread synchronization, and
maintaining sufficient granularity to make the best use of GPU resources. The perfor-
mance of the proposed strategy is evaluated by solving elasticity and heat conduction
problems using 4-noded quadrilateral element with two degrees of freedom (DOFs)
and one DOF per node, respectively. The performance is compared with the matrix-
free solver strategies on GPU from the literature. It is found that a maximum speedup
of 4.9× is obtained for the elasticity problem and a maximum of 3.2× speedup for
the heat conduction problem. Further, the proposed strategy takes the least amount of
GPU memory as compared to the existing strategies.

Keywords Matrix-free solver · Finite element method · GPU · CUDA · Parallel
computing

B Deepak Sharma
dsharma@iitg.ac.in

Utpal Kiran
ukiran@iitg.ac.in

Sachin Singh Gautam
ssg@iitg.ac.in

1 Department of Mechanical Engineering, Indian Institute of Technology, Guwahati, Assam 781039,
India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-020-00827-4&domain=pdf
http://orcid.org/0000-0002-8939-9833

1942 U. Kiran et al.

Mathematics Subject Classification 74S05 · 65Y05

1 Introduction

Finite element method (FEM) is one of the most extensively used numerical methods
to solve real-world problems governed by ordinary/partial differential equations. The
popularity of FEM is primarily due to its ability to handle complex geometries, high
accuracy, and applicability to a wide range of problems. However, FEM can be com-
putationally expensive for complex real-life problems [3,19,22] that require a large
number of degrees of freedom (DOFs) to obtain desired solution. Although there has
been an exponential increase in computational resources, the computational cost of
FEM is still the main bottleneck for many large-scale problems.

In the literature, the high performance computing (HPC) techniques have been
used to handle expensive computation required in FEM [41,45]. Recently, Graphics
Processing Unit (GPU)-based computation has become immensely popular for HPC
implementation. The importance ofGPU forHPC applications can be understood from
the fact that many supercomputers in Top500 list have GPU on each of its node [42]. It
is because GPU is a massively-threaded many-core processor architecture that houses
a large number of computational units for efficiently handling parallel workload.

The HPC techniques can be used for FEM since the computation involved can be
done in parallel. However, FEM remains computationally expensive due to involve-
ment of various steps. In FEM, a mesh is first created by dividing the problem domain
into a number of polygon/polyhedra shaped entities known as elements. The governing
field equations are recast into integral form (called the “weak form”) and subsequent
approximation of the primary variable over each element leads to elemental stiffness
and force matrices respectively. The elemental matrices are then assembled into a
global matrix using the mesh connectivity matrix. After application of suitable bound-
ary conditions, the assembled matrix is solved using any suitable direct or iterative
linear solver to obtain the value of unknown field variables. Every step in FEM proce-
dure can incur significant computational overhead depending on the type of problem
being solved. The previous attempts to accelerate each step of FEM on GPU have
achieved a significant performance over single and multi-core CPU. The speedup of
several folds has been observed in the elemental matrix evaluation [25,31,38,46] and
its assembly [10,16,20,34,37,39] to the global matrix. However, it is found that the
elemental matrix evaluation and assembly consume smaller fraction of the total com-
putational time as compared to the solution of system of equations. Consequently, the
acceleration of linear solver on GPU has received more attention [2,5,24,35]. The iter-
ative solvers are more preferred for solution of a large system of equations. In addition
of beingmemory efficient, the iterative solvers provide abundant amount of parallelism
making them suitable for GPU. The main computational components of an iterative
solver are sparse matrix-vector product (SpMV), vector-dot product, scalar-vector
product and vector-vector addition/subtraction, respectively. Among these, SpMV is
the most computationally expensive operation [44]. Since efficient parallel implemen-
tation of operations like vector-dot product can be achieved easily, the performance of
an iterative solver directly depends on the performance of SpMV operation. A SpMV

123

GPU-based matrix-free finite element solver… 1943

operation performs multiplication of a sparse matrix stored in specialized formats
(like CSR, COO, ELL, etc. [7]) with a vector. These sparse storage formats reduces
the storage requirement of a sparse matrix. However, they introduce irregular memory
access pattern that prevents realization of true computational performance of a GPU
device. In spite of these challenges, the SpMV operation has benefited greatly by the
use of GPU acceleration [4,7,15].

Another way to improve the performance of an iterative solver is to replace SpMV
operation of a sparse matrix with a vector by a matrix-free approach. In this approach,
themultiplication is performed at the level of smaller dense constituentmatrices. Since
the elemental matrices are dense and of the same size, the matrix-free approach can
provide finer level of parallelism alongwith regularmemory access pattern suitable for
GPU. Thematrix-free approach was first introduced in [18] for the lowmemory vector
machines and primarily used for solving large FEM problems on microprocessor with
limited memory [9]. The recent revival of interest in the matrix-free approach can
be attributed to an introduction of massively parallel many-core architectures. Since
the advent of CUDA in 2006 the matrix-free approach has been actively pursued
by many researchers. GPU-based matrix-free FEM solver has been developed for
applications like elasticity [27], heat conduction [21], weather prediction [29], fluid
flow [14], and topology optimization [33] amongmany others. The elemental matrices
in the matrix-free solver can be precomputed for all elements in the mesh and stored as
densematrices or it can be recalculated on-the-fly [6,23] duringmatrix-vector product.
As shown in [34], the approach that recalculates elemental matrices becomes highly
compute bound for GPU implementation, whereas the best performance is achieved
by the local matrix approach for low-order FEM. The local matrix approach is also
found to perform better than the assembly-based solver [26,34]. Overall, the superior
performance of the matrix-free approach can be ascribed to lesser memory transfer,
better access pattern, and fine grain parallelism. However, the performance of the
matrix-free approach on GPU is still found to be limited by memory bandwidth.

To the best of author’s knowledge studies implementing the matrix-free approach
use full elemental matrices for matrix-vector product evaluation. The elemental
matrices obtained in FEM are symmetric for most of the problems. Implementing
matrix-vector product using the symmetric part of the elemental matrices can sig-
nificantly reduce the storage requirement as well as data transfer. On the memory
bound architectures like GPU reduction in data requirement is expected to improve
the performance of a kernel substantially. So far the matrix-free approach has not
been implemented on GPU using only the symmetric part of the elemental matrices.
Therefore, the main contributions of this paper are as follows.

1. A novel matrix-free solver for FEM is developed which uses only the symmetric
part of the elemental matrices.

2. In order to optimize the data access pattern, a unique data structure is developed
which ensures coalesced memory access for efficient GPU implementation while
storing only the upper triangular part of elemental matrices.

3. Comparative analysis of the proposed solver with the existing matrix-free methods
is presented on two test problems using linear quadrilateral elements over unstruc-
tured mesh generated through an FEM software package.

123

1944 U. Kiran et al.

The paper is organized as follows. Section 2 presents the existing and the most
common matrix-free solvers for FEM and discusses their GPU implementations. In
Sect. 3, the proposed matrix-free method is described along with the data structure and
access pattern. The performance evaluation and comparison are presented in Sect. 4.
Section 5 concludes the paper with scope of future work.

2 Background

2.1 Matrix-free FEM

The finite element discretization produces the global system of algebraic equations

KU = F, (1)

where K is the sparse global stiffness matrix, U is the unknown displacement vector
and F is the global extended force vector. The global stiffness matrix and nodal force
vector are assembled from the elemental matrices as

K = A
e∈E

Ke, (2)

F = A
e∈E

Fe, (3)

where Ke is the elemental tangent matrix, Fe is the elemental force vector, E is the
set of all elements in the mesh andA is the assembly operator. The iterative approach
to solve system of equations (Eq. (1)) requires the multiplication of sparse global
stiffness matrix K with a given vector y, in each iteration step. There are three major
strategies by which a matrix-free solver can be implemented on a GPU.

1. Node-by-Node (NbN)
2. Degrees-of-Freedom -by- Degrees-of-Freedom (DbD)
3. Element-by-Element (EbE)

2.2 NbN strategy

In the NbN strategy, the computation of matrix-vector product is performed by mov-
ing through each node of themesh. Every node has its corresponding rows in the global
stiffness matrix. The multiplication of each row is done with the given vector and the
result is accumulated into an array. Since the global stiffness matrix is not constructed
explicitly, each row corresponding to a node needs to be assembled before multiplica-
tion. To generate a row in a global stiffness matrix, contributions from all neighboring
elements are needed. In practice, first, the required entries in elemental matrices of
neighboring elements are multiplied with corresponding vector entries and then the
result is assembled [8,27], which is given as

p(n) =
∑

e∈E (n)

(Ke
nye), (4)

123

GPU-based matrix-free finite element solver… 1945

where E (n) is the set of elements connected to node n,Ke
n is the contribution of stiffness

matrix toward node n, p is the resultant vector and ye is the elemental sub-vector of
vector y with which the multiplication has to be done. The NbN strategy for two-
dimensional problem having two DOFs per node (Ndof) is shown in Algorithm 1.
Since the computation is performed by moving through each node, list of elements
connected to node n (E (n)) is computed in step 2 in terms of the Node connectivity
matrix. For each element in the node connectivity, the elemental connectivity matrix
(E(e)) is found alongwith the local position (q) of the node in the element. The element
stiffness matrix Ke is read on the basis of q. Finally, the required product is calculated
in steps 7 and 9 for all DOFs associated with the node.

Algorithm 1 Node-by-Node strategy.
1: for Node n = 1 toN do
2: Find Node connectivity E(n)

3: for element e ∈ E(n) do
4: E(e) ← ElementConnectivity() � Extract the element connectivity
5: y(e) ← y(E(e)) � Obtain the sub-vector for multiplication
6: for i = 1 to DOF-per-element do
7: val[0]+ = Ke[2 ∗ q][i] ∗ ye[i] � ‘2’ refers to Ndof = 2
8: val[1]+ = Ke[2 ∗ q + 1][i] ∗ ye[i]
9: end for
10: end for
11: end for

GPU parallelization is done over the nodes of the mesh. Single thread is assigned
to do computation for one node. The node connectivity array and local position array
can be reordered to read in a coalesced manner. The elemental stiffness matrices are
read from strided locations in the global memory and hence cannot be coalesced.
The elemental connectivity matrix is arranged column-wise for minimizing the global
memory transactions. The access to vector y is also not coalesced and it is read through
the read-only cache.

It can be observed that each node performs its computation independently and there-
fore, the problem of data race conditions [12] does not arise. This is a major advantage
of the NbN strategy since overhead associated with synchronization mechanism like
coloring can be avoided.

For an unstructured mesh, each node can have different number of neighboring
elements. This leads to an unequal amount of workload distribution on threads. AGPU
warp [12] remains active as long as any of its threads is working. This is not desirable
for an efficient utilization of GPU resources that leads to the major disadvantage of
the GPU-based NbN strategy.

2.3 DbD strategy

The DbD strategy performs the matrix-vector multiplication by moving through each
DOF of the system. Here, computation corresponding to each DOF associated with a
node is seen as an independent task. In the DbD strategy, computation ofmatrix-vector
product is implemented as [28]

123

1946 U. Kiran et al.

p(u) =
∑

e∈E (u)

Ke(m−1(u), :)ye, (5)

where Ke is the elemental stiffness matrix, m is the local to global mapping and E (u)

is the set of elements connected to DOF u. The DbD strategy is implemented in a
way similar to Algorithm 1. Single thread per DOF assignment is used to perform
the computation. Input data structure remains identical as Algorithm 1 but now the
same data is read by as many threads as the value of Ndof . Each thread performs its
own computation and accumulates the result into an array in a coalesced manner. This
strategy is also known as Row-by-Row solution method [43].

The GPU-based DbD strategy has finer level of granularity than the NbN strategy.
However, the input data requirement remains the same as that for the NbN strategy.
Moreover, since the same data is required for all the threads associatedwith a particular
node, either it can be read redundantly from the globalmemory or can be shared among
threads using the shared memory. The limited size of the shared memory restricts its
use to few cases and generally, data is read redundantly from the global memory. The
DbD strategy also suffers from the same load imbalance problem foundwith the NbN
strategy.

2.4 EbE strategy

In the EbE strategy, the computation of matrix-vector product takes place at the
elemental level. The obtained result is then assembled to get the final solution. This
can be expressed as

p = A
e∈E

(Keye) (6)

where Ke is the elemental stiffness matrix, ye is the multiplying vector transformed
to the elemental level, A is the assembly operator, E is the set of all elements in the
mesh and p is the resultant vector.

Algorithm 2 Element-by-Element strategy.
1: for element e = 1 to E do
2: for i = 1 to DOF-per-element do
3: for j = 1 to DOF-per-element do
4: global_id ← D(e, j)
5: vale[i]+ = Ke[i][j] ∗ y[global_id]
6: end for
7: end for
8: end for
9: p ← Assembly(val)

Algorithm 2 shows the implementation of the EbE strategy. The multiplication
of elemental stiffness matrix with vector y is performed by using the local to global

123

GPU-based matrix-free finite element solver… 1947

mappingD(e, j) in step 4 and the result is stored in vector val in step 5. The resultant
vector p is obtained by assembling val in step 9.

In GPU implementation, computation for each element is performed in parallel.
There are three prominent ways of distributing workload among threads which are as
follows.

1. Single thread per element: In single thread per element approach [21], one thread
is responsible for reading the input data, computing elemental matrix-vector prod-
uct, and accumulating calculated value to the resultant vector. This approach is the
simplest to implement. However, each element gets an amount of on-chip memo-
ries (shared memory and register) corresponding to a thread only. Therefore, this
approach suffers from poor utilization of fast on-chip memories.

2. Single thread per node: The single thread per node approach allocates as many
threads to an element as the number of nodes. Each thread performs computation
for all DOFs associated with the node.

3. Single thread per DOF: The finest level of granularity is achieved in the single
thread per DOF approach. Here, the number of threads equal to DOFs associ-
ated with an element is allocated [27,32]. The elemental matrix-vector product is
decomposed into several inner-vector products corresponding to each row of the
matrix. Each thread is assigned to do computation for one inner-vector product.
This approach also provides the highest amount of on-chip memory per element.

After the elemental matrix-vector product is obtained, it needs to be assembled
into a final global vector as shown in Algorithm 2. Each non-zero entry in the global
vector corresponds to a DOF of the system. Each boundary DOF is shared among
multiple elements of the mesh. During parallel assembly of elemental resultant vector,
multiple elements tend to put their calculated value to the same location in global
vector simultaneously. Such kind of memory operation leads to the problem of data
race condition. In the EbE strategy, the problem of race conditions must be addressed
by the use of suitable synchronization mechanism like coloring, atomics or using a
separate assembly kernel [27].

The EbE strategy, having single thread perDOF allocation, is found to have the best
performance [27]. Apart from providing the finest level of parallelism, the strategy
has simple data access pattern, balanced load distribution, and can provide better
utilization of on-chip memory. Along with the coloring method to handle data race
conditions, this strategy is used as a reference in this work.

3 Proposedmatrix-free strategy

3.1 Matrix-free solver exploiting symmetry of elemental matrices

The major steps involved in the GPU-based computation of matrix-vector product
Ky in a matrix-free manner can be seen in Fig. 1. The matrix-vector product can be
computed in three steps: (1) transformation of multiplying vector y to elemental vector
ye, (2) computation of dense matrix-vector product with elemental matrices, and (3)
assembly of computed results. The steps 1 and 3 primarily involve data scatter and

123

1948 U. Kiran et al.

Fig. 1 Major steps involved in
the matrix-free computation of
elemental matrix-vector product

p eK y K e y e y e

3 2 1

p= = y{ {{

eKy

{

}

Iterative solver

y e

K
e
sym

K
e

SYMV

y

p=p =p

Fig. 2 Illustration of the proposed EbEsym strategy

gather type operation with little arithmetic load. In step 2, the computation of dense
matrix-vector is performed for all elements which makes it computationally expensive
as compared to the other two steps. The efficient implementation of step 2 is therefore
crucial for better performance of the matrix-free solver.

In all existingmatrix-free strategies, the computation in step 2 of Fig. 1 is performed
by using full elemental stiffness matrices. The proposed strategy makes use of the fact
that the elemental matrices in linear FEM is symmetric in most of the cases. This
property can be used to perform the elemental dense matrix-vector product using
only the lower or upper triangular part of the matrix. The matrix-vector product in
the proposed strategy is implemented using only the symmetric part of the elemental
matrices as

p = A
e∈E

(Ke
symye), (7)

where Ke
sym is the symmetric part of elemental stiffness matrix. The proposed matrix-

free strategy for FEM is referred to as EbEsym and can be represented in the graphical
form as shown in Fig. 2. It can be seen that the dense matrix-vector product required in
thematrix-free solver is replaced by a dense symmetricmatrix-vector product (SYMV)
which requires only the symmetric part of the elemental matrices. In the proposed
strategy, all steps mentioned in Fig. 1 is implemented as a single computational kernel
with the coloring method to avoid data race conditions.

The computation of a SYMVoperation can be performed by followingAlgorithm3.
The multiplication of each row with vector ye is performed by looping over the total

123

GPU-based matrix-free finite element solver… 1949

number of rows Ksize, where the computation is performed first (step 3) for the upper
triangular part of the matrix. In step 7 of Algorithm 3, the computation of missing
symmetric part (lower triangular part) is performed where indices k and i to the matrix
Ke always refer to the values in the upper triangular part. This shows that the SYMV
computation can be implemented by storing only the upper or the lower triangular part
of the symmetric matrix.

Algorithm 3 Computation of symmetric matrix-vector product (SYMV)
1: for i = 1 to Ksize do
2: for j = i to Ksize do � Computation for symmetric part
3: pe[i]+ = Ke[i][j] ∗ ye[j]
4: end for
5: if (i �= 1) then � Computation for missing symmetric part
6: for k = (i − 1) to 1 do
7: pe[i]+ = Ke[k][i] ∗ ye[k]
8: end for
9: end if
10: end for

For GPU implementation, the storage of the symmetric part of the matrix can be
done in any suitable format which facilitates uniform memory access pattern during
computation. However, the same storage format may not be suitable for the computa-
tion of missing symmetric part. As shown in step 7 of Algorithm 3, values of matrix
Ke are accessed from the stored symmetric part in a strided and nonuniform manner.
Such kind of access pattern wastes the memory bandwidth of GPU and consequently
degrades the performance. The optimization of memory access pattern for a SYMV
operation on GPU is suggested by many authors [1,11,30]. These studies discuss the
strategies to compute the SYMV operation for moderate to large size matrices. How-
ever, the approaches available in the literature are either not applicable or not optimal
for small size matrices (less than 50) generally found in low-order FEM. Moreover, in
the current work, computation has to be performed in a batch for millions of elements.
Since matrix-vector product has very low arithmetic intensity, efficient handling of
memory overhead becomes indispensable for batch implementation of SYMV. For
better performance on GPU, it, thus, becomes extremely important to minimize the
data transfer and use coalesced and localized memory access pattern. The proposed
EbEsym strategy addresses all these issues by adopting a novel data structure which
ensures coalesced memory access while storing only the symmetric part of the ele-
mental matrices. In order to obtain the best performance, the EbEsym strategy seeks
to make an efficient use of register cache by using CUDA shuffle instruction. This
not only helps in relaxing the shared memory size restrictions but also avoids the data
movement to-and-fro from the shared memory. Single thread per node assignment
similar to EbE strategy (Sect. 2.4) is used to achieve balanced workload distribution.
Also, each thread performs its task independently so that no synchronization barrier
is required. In order to demonstrate the performance of the proposed strategy, quadri-
lateral element with linear basis function is considered.

123

1950 U. Kiran et al.

Fig. 3 Organization of the
elemental stiffness matrix for a
4-noded quadrilateral element
with two DOFs per node

*
*

*
*

D1 E1

** *

D2 E2

F 1 G1

* *

F 2 G2

*
**

**

**

1F

G1

*
*

A1

B1

*

A2

B2

*

A3

B3

*

A4

B4

*

1E

D1

*
*

N
ode #2

N
ode #3

N
ode #4

N
ode #1

Node #1 Node #2 Node #3 Node #4

3.2 Kernel design and data structure for EbEsym strategy

In the proposed strategy, the elemental stiffness matrix is divided into a number of sub-
matrices as shown in Fig. 3. The figure shows nonzero entries in the upper triangular
part of the elemental stiffnessmatrix for 4-noded quadrilateral element with Ndof = 2.
Each node is associated with as many rows and columns in the matrix as the value
of Ndof . The size of sub-matrices is kept equal to Ndof and it contains the values
corresponding to one node in row and one node in column. For example, the following
sub-matrix contains all the computed values between node 1 in row and node 2 in
column.

[
D1 E1
∗ ∗

]

Depending on the position in the matrix the sub-matrices are categorized into two
groups: diagonal and off-diagonal. The diagonal group contains all sub-matrices lying
on the diagonal of the elemental matrix, such as

[
A1 ∗
∗ B1

]
,

[
A2 ∗
∗ B2

]
, etc.

The off-diagonal group contains sub-matrices that are not unique. These sub-matrices
appear in the symmetric part also. In case of the diagonal group, all sub-matrices are
associated with only one node number (the rows and column nodes are same). In case
of the off-diagonal group, two such numbers exist, that is, one associated with the
row and other with the column. Therefore, each sub-matrix is identified with a nodal
index of the form Ke{n,m} which represents sub-matrix at nth node in row and mth

123

GPU-based matrix-free finite element solver… 1951

A 2
1 A 3

1 A 4
1 A 1

2 A 2
2 A 3

2 A n
1 2A n

3A n A 4
n

B 1
1 B 2

1 B 1
3 B 4

1
B 1

2 B 2
2

B
2
3 B 1

n
B 2

n
B 3

n B 4
n

A1
1

T 1 T 2 T 3 T 4

T 1 T 2 T 3 T 4

. . . .

. . . .

Fig. 4 Data access pattern for diagonal group

node in column. The row node number is used to find global DOF to store result of
multiplication, whereas the column node number is used to find global column indices
of vector y to perform multiplication.

The computation of symmetric matrix-vector product is divided into two stages.
In the first stage, the computation for the diagonal group is performed whereas in the
second stage, multiplication for the off-diagonal group is done.

The sub-matrices in the diagonal group are unique. Since computation is performed
in a node-wise manner, these sub-matrices contribute to the matrix-vector multiplica-
tion results for their respective node number. Thread assigned to each node reads all
the unique entries from its sub-matrix and performs multiplication with y vector. The
data access pattern for the diagonal group is shown in Fig. 4. It shows four threads
accessing the values marked as A and B (also shown in Fig. 3) from four sub-matrices
of the diagonal group. Here, in Fig. 4, superscript represents the element number and
the subscript denotes the sub-matrix position in the diagonal group. The other entries
of a sub-matrix are accessed in a similar way. In order to achieve coalesced access for
a warp, data for other elements are stored side by side. Once these values are read,
they get multiplied by the given vector and stored in the shared memory. Here, each
thread uses its global node number to read values from vector y through the read-only
cache. The read from y vector is not coalesced.

The off-diagonal entries in the symmetric matrix are not unique. The transpose of
sub-matrices in the off-diagonal group can be obtained if the row and column nodes
are interchanged, as shown in Fig. 3. It can be seen that the sub-matrix located at
Ke{1, 2} appears in its transposed form at Ke{2, 1}. This implies that the same sub-
matrix can be used to perform the computation for both node 1 and node 2. Similarly,
the sub-matrix at position Ke{1, 3} can be used for both node 1 and node 3. Thus,
for a 4-noded quadrilateral element, the computation for two sub-matrices can be
performed simultaneously. The computation for the off-diagonal group is implemented
such that each thread is assigned with an equal workload. Therefore, the sub-matrices
for simultaneous computation must be chosen judiciously. As shown in Fig. 3, the
sub-matrices having the same type of enclosing can be processed at the same time.
If chosen otherwise, any one thread can remain idle and others may have to do their
task.

123

1952 U. Kiran et al.

T1 T2 T3 T4 T5 T6 T7 T8

D1
1

D1
2

D 2
1

D
2
2 D

1
3 D

2
3 D

1
n D

2
n

T1 T2 T3 T4 T5 T6 T7 T8

F 1
1 F 1

2
F 2

1
F 2

2
F 3

1
F 3

2
F n

1
F n

2

. . .

. ..

Fig. 5 Data access pattern for off-diagonal group

Since the computation of matrix-vector product uses only the symmetric part of
the matrix, the sub-matrices in the missing part (lower triangular part in Fig. 3) must
be obtained separately or shared between two threads. Due to the limited size of the
shared memory, values in sub-matrices are read redundantly from the global memory.
However, data is arranged such that it results into a broadcast. The broadcast from
the global memory is although slower than the shared memory, it has lower overhead
than reading values separately. The data access pattern for the off-diagonal entries is
shown in Fig. 5. Here, D denotes the corresponding value in sub-matrices with same
type of enclosing (refer to Fig. 3) in which subscript indicates the sub-matrix within
an element and superscript indicates the element number. It can be seen that threads
T1 and T2, assigned to node 1 and 2, read the same D1

1 value whereas threads T3 and
T4 read D1

2 value which is required to perform computation of node 3 and node 4. The
F values are stored and read in a similar way, except the values are now required by
different set of threads. The data for all elements are kept beside each other to enable
coalesced access for a warp.

Once the data is read, it is multiplied with the corresponding values of vector ye.
The ye vector is extracted from y vector by using column indices of stiffness matrix
entries. In FEM, column indices of an elemental stiffness matrix can be obtained by
the global node numbers and Ndof . In particular, the column node numbers of each
sub-matrix can be used to obtain column indices of its entries. It can be observed
from Fig. 3 that threads working over a sub-matrix either contain row node number
or column node number of the sub-matrix. The row node number becomes column
node number for a sub-matrix after it gets transposed. Thus, the global node number
of two threads can be interchanged to get column node number of the sub-matrix. This
is achieved in the proposed strategy by using the warp-shuffle instruction. Using the
warp shuffle feature, the proposed strategy prevents the use of the shared memory as
well as the global memory access. The warp shuffle feature is found to be more faster
than the shared memory and leads to better utilization of register cache [20].

123

GPU-based matrix-free finite element solver… 1953

4 Results and discussion

The efficiency and performance of the proposed EbEsym strategy are evaluated by
solving elasticity and steady-state heat conduction equations in two dimensions (2D).
The elasticity equation is solved over cantilever and L-shaped beam, and the steady-
state heat equation is solved over a plate with multiple holes. Further, the performance
of the proposed strategy is compared with the existing matrix-free strategies discussed
in Sect. 2. In all the numerical problems, a symmetric positive-definite system of
equations is obtained due to finite element discretization. Since the conjugate gradient
(CG) solver is the most efficient and widely used iterative solver for the symmetric
positive-definite system [36,40], it is chosen as a solver in this work. It is important to
note that the proposed strategy is equally applicable to other iterative solvers including
multigrid [17]. Coloring method is used to handle data race conditions with the EbE
and EbEsym strategies. However, any data race condition is not observed with the
NbN and DbD strategies.

The geometry of cantilever beam and L-shaped beam problems is relatively simple,
and hence, structured mesh is generated through an FEM software package called as
ABAQUS. However, the data structure generated by ABAQUS is unstructured and the
same is used in this work. All the strategies have been implemented by considering
the mesh as unstructured and do not use any simplification of the mesh to alter the
performance. The plate with multiple holes problem is solved with unstructured mesh
which is also generated through ABAQUS.

The hardware used consists ofNVIDIATeslaK40GPUand IntelXeon (R)E5-2650
CPU. The CPU consists of 12 physical cores clocked at 2.2 GHz and the GPU consists
of 2880 cores clocked at 745 MHz. The CUDA runtime version 9.2 is used. All the
numerical results are obtained using the double precision floating point arithmetic.

4.1 Elasticity problem

The following elasticity equation is considered over the domain Ω ,

∇ · σ + b = 0, ∀ x ∈ Ω, (8)

which is subjected to the following boundary conditions,

u(x) = u0, x ∈ Γu,

t(x) = t̄, x ∈ Γt ,

where σ is the Cauchy stress tensor, b is the body force per unit volume, u is the
unknown displacement variable, u0 is the specified displacement on the boundary
Γu and t̄ is the given traction on the boundary Γt . The elasticity equation is solved
for cantilever beam and L-shaped beam under plane stress condition and linear strain-
displacement relation. The problemgeometry alongwith the dimensions and boundary
conditions are shown inFigs. 6 and7 , respectively. Thematerial properties are taken as:
Young’smodulus (E) =210GPa andPoisson’s ratio (ν) = 0.3. The domain is discretized

123

1954 U. Kiran et al.

Fig. 6 A 2D cantilever beam
with end load. All dimensions
are in meters (m)

P = 10 5 N

10

1Ω

Γu

Fig. 7 L-shaped beam. All
dimensions are in meters (m)

P = 10 N5

30

50

10

10Ω

Γu

Table 1 Finite element mesh for
2D cantilever beam

Mesh Elements Nodes Degrees of freedom

C1 100,000 101,101 202,202

C2 400,000 402,201 804,402

C3 900,000 903,301 1,806,602

C4 1,600,000 1,604,401 3,208,802

C5 2,500,000 2,505,551 5,011,002

Table 2 Finite element mesh for
L-shaped beam

Mesh Elements Nodes Degrees of freedom

L1 1,750,000 1,754,001 3,508,002

L2 3,112,889 3,118,224 6,236,448

L3 4,480,000 4,486,401 8,972,802

L4 5,783,967 5,791,240 11,582,480

L5 7,000,000 7,008,001 14,016,002

using 4-noded quadrilateral elements having two DOFs per node. The problems are
solved for different level of mesh refinement to evaluate the performance at various
workload. Tables 1 and 2 present the mesh with different number of elements and
corresponding DOFs for 2D cantilever beam and L-shaped beam, respectively.

123

GPU-based matrix-free finite element solver… 1955

4010

40

10

5

5

Γq

Γg1

Γg2Γg2

Γg2Γg2

Ω

Fig. 8 A plate with multiple holes. All dimensions are in meters (m)

Table 3 Finite element mesh for
steady-state heat conduction
problem

Mesh Elements Degrees of freedom

H1 9,84,681 9,88,734

H2 1,938,537 1,944,226

H3 3,048,540 3,055,672

H4 4,215,044 4,223,429

H5 6,240,237 6,250,435

4.2 Steady-state heat conduction problem

The following steady-state heat conduction equation is solved over a plate with mul-
tiple holes as shown in Fig. 8.

∇ · (κ · ∇T (x)) = f (x), x ∈ Ω,

T (x) = g(x), x ∈ Γg,

n(x) · κ · ∇T (x) = 0, x ∈ Γq ,

Γg = Γg1 ∪ Γg2,

(9)

Here, T (x) is the unknown temperature field, f (x) = 0, g(x) = 200 on Γg2 and 10
on Γg1 and κ is the thermal conductivity matrix which is taken as identity. Table 3
lists the mesh with various level of refinement used in this analysis. The domain is
discretized with 4-noded quadrilateral element with single DOF per node.

123

1956 U. Kiran et al.

4.3 Performance results

The performance of the EbEsym strategy is assessed on the basis of the kernel time,
arithmetic throughput (GFLOP/s) and memory bandwidth. The kernel time is eval-
uated using the CUDA event function, whereas the GFLOP/s and bandwidth are
calculated by the metrics given by nvprof profiler. Here, the kernel time is referred
to as the execution time of CUDA kernel in one iteration of the CG solver. For the
NbN and DbD strategies only one kernel is launched per iteration but for the EbE
and EbEsym strategies separate kernel is launched for each color. Therefore, the ker-
nel time in case of the EbE and EbEsym strategies includes execution time for all
the colors. It is noted that the NbN and DbD strategies are equivalent in case of
steady-state heat transfer problem since each node has only one DOF. Hence, results
for the DbD strategy are not presented for the heat transfer problem.

Figure 9 shows the comparison of kernel time for different matrix-free strategies for
the elasticity and heat transfer problems. The NbN strategy takes the highest amount of
kernel time in all the test problems. It also has the highest amount of data requirement
as compared to all the other strategies. With the same data structure the DbD strategy
achieves better timings than the NbN strategy by just increasing the granularity of
computation. The redundant access of data in case of the DbD strategy does not seem
to have much overhead as the values are broadcasted to Ndof threads from the global
memory. Also, access to the elemental matrix requires lesser number of transactions
as compared to the NbN strategy as more number of threads now accesses the same
matrix. However, in both the NbN and DbD strategies, gather operation is performed
to read the elemental matrices in an uncoalesced manner. The elemental matrices
constitute the largest amount of data that a matrix-free solver needs to access. As
evident from less kernel time of the EbE strategy (Fig. 9) compared to the NbN and
DbD strategies, the uncoalesced access to the elemental matrices has a large impact
on the performance. In the EbE strategy, the elemental matrices are accessed in a
coalesced manner. Apart from better memory access pattern, the EbE strategy has
the finest level of granularity, less data requirement, and equally distributed workload
on each of the computational threads. With all these characteristics, the EbE strategy
overcome the overhead associated with race conditions handling and achieves the least
kernel time among the existing matrix-free strategies.

The proposed EbEsym strategy outperforms all the other strategies in every test
problem (refer to Fig. 9). Since the EbEsym strategy inherits the major characteristic
of the EbE strategy, a better performance compared to the NbN and DbD strategies
is expected. However, the superior performance compared to the EbE strategy can be
mainly attributed to the reduction in data movement due to use of only the symmetric
part of the elemental matrices. In elasticity problem, 4-noded quadrilateral elements
with two DOFs per node is used which gives the elemental matrix of size 8 × 8.
The implementation and optimization of matrix-vector product for such a smaller size
matrix in a batch mode is extremely challenging as it involves very low arithmetic load
compared to the required amount of data movement. The proposed EbEsym strategy
achieves better kernel time compared to the EbE strategy due to a unique data structure
that ensures localized and coalesced access pattern using only the symmetric part of the

123

GPU-based matrix-free finite element solver… 1957

C1 C2 C3 C4 C5
0

10
20
30
40
50
60
70
80
90

100

(a) Kernel time for the 2D cantilever beam problem.

L1 L2 L3 L4 L5
0

10
20
30
40
50
60
70
80
90

100

(b) Kernel time for the L-shaped beam problem.

H1 H2 H3 H4 H5
0

10
20
30
40
50
60
70
80
90

100

(c) Kernel time for the steady-state heat conduction problem
over a plate.

Fig. 9 Comparison of kernel time for test problems

elemental matrices. The reduction in data requirement helps in maintaining a higher
computation to data movement ratio than the EbE strategy which is favorable for
GPU implementation. Moreover, the EbEsym strategy also achieves better execution
times for the heat transfer problem (Fig. 9c) which uses the elemental matrices of size
4 × 4.

123

1958 U. Kiran et al.

C1 C2 C3 C4 C5
0
1
2
3
4
5
6
7
8

(a) Speedup for the 2D cantilever beam problem.

L1 L2 L3 L4 L5
0
1
2
3
4
5
6
7
8

(b) Speedup for the L-shaped beam problem.

H1 H2 H3 H4 H5
0
1
2
3
4
5
6
7
8

(c) Speedup for the steady-state heat conduction problem.

Fig. 10 Speedup achieved by EbEsym strategy over the other matrix-free strategies

The speedup obtained by the EbEsym strategy over the other strategies for matrix-
free solver is shown in Fig. 10. In all the three problems, a consistent speedup is
observed which suggests that the EbEsym strategy is able to scale well with increas-
ing problem size. With respect to the NbN strategy, approximately 5× speedup is
observed for both cantilever and L-shaped beam problems. In the case of the DbD
strategy, approximately 2.8× speedup is observed for elasticity problems. Relatively

123

GPU-based matrix-free finite element solver… 1959

C1 C2 C3 C4 C5
100
200
400
600
800

1000
1200
1400
1600
1800

(a) GPU memory utilization for the 2D cantilever beam problem.

L1 L2 L3 L4 L5
500

1000
1500
2000
2500
3000
3500
4000
4500

(b) GPU memory utilization for the L-shaped beam problem.

H1 H2 H3 H4 H5
0

200

400

600

800

1000

1200

1450

(c) GPU memory utilization for the steady-state heat conduction
problem over a plate.

Fig. 11 GPU memory utilization by various strategies

lower speedup is observed for the case of heat transfer problem because smaller ele-
mental matrices have less memory overhead in the case of the NbN or DbD strategy.
The proposed strategy could achieve 1.4× speedup over the EbE strategy for elas-
ticity problems and 1.3× speedup in the case of the heat transfer problem. Here, a
similar speedup in both the cases illustrates the suitability of the proposed strategy for
extremely small size elemental matrices.

123

1960 U. Kiran et al.

Figure 11 shows the amount of GPU memory occupied by different strategies as a
function of the problem size. It can be observed that the proposed EbEsym matrix-free
strategy consumes the least amount of GPUmemory. This suggests that a much larger
problem can be solved by the proposed strategy on a given GPU card in lesser amount
of time. The NbN and DbD strategies occupy the highest amount of memory in all
the numerical problems. This is due to the dependency of these strategies on arrays
like node connectivity and local position of nodes in each element in addition to the
elemental connectivity and the elemental matrices. The EbE strategy only stores the
elemental connectivity and the elementalmatrices onGPUand therefore requires lesser
memory than the NbN and DbD strategies. The least amount ofmemory consumption
by the EbEsym strategy is due to the storage of only the symmetric part of elemental
matrices. For elemental matrix of size 8 × 8 and 4 × 4 the EbEsym strategy uses
only 36 and 10 number of entries respectively to perform computation. This leads to
1.7× and 1.4× reduction in data at the elemental level. Overall, the EbEsym strategy
requires 1.5× lessmemory in elasticity problem and 1.3× lessmemory in heat transfer
problem (refer Fig. 11) than the EbE strategy. The ratio of total number of entries to
unique entries in a symmetric matrix is given by

2n

n + 1
, (10)

where n is the size of matrix. As the size of matrix increases, this ratio tends to move
closer to two. Thus, for higher order finite elements where the elemental matrix size is
large use of the symmetric part of the matrix can save up to 50% of the data required
in the EbE strategy. Furthermore, the performance of the EbEsym strategy relative to
the EbE strategy can also become better for larger matrix size.

A deeper insight into the performance of various matrix-free strategies can be
obtained by looking into arithmetic throughput and effective memory bandwidth
achieved by them. Figure 12 shows the GFLOP/s achieved by the different matrix-
free strategies as a function of mesh size. The arithmetic throughput of the proposed
EbEsym strategy having the least kernel time is found to be the highest in all the test
problems. The EbE strategy shows significant improvement in GFLOP/s as compared
to the NbN and DbD strategies. Compared to the EbE strategy, 1.5× and 1.3× better
throughput are observed by the EbEsym strategy in case of elasticity and heat trans-
fer problems. However, GFLOP/s achieved by all the strategies is found to be much
lower than the peak value of the device. The maximum value achieved by the EbEsym

strategy reaches approximately 3% of the peak value of NVIDIA Tesla K40.
The comparison of effective memory bandwidth achieved by various strategies is

shown in Fig. 13. The memory bandwidth by all the strategies is found to be on the
higher side indicating memory bound nature of the matrix-free solvers. The NbN and
DbD strategies are found to have relatively lesser bandwidth than the EbE strategy.
The EbE strategy achieves 212 GB/s for the case of elasticity problems and 208 GB/s
in heat transfer problem. The proposed EbEsym strategy shows small improvement
over the EbE strategy and achieves bandwidth of 215 GB/s and 209 GB/s in elasticity
and heat transfer problems, respectively. The maximum bandwidth achieved by the
EbEsym strategy is found to be approximately 74% of the theoretical peak value of

123

GPU-based matrix-free finite element solver… 1961

C1 C2 C3 C4 C5
0
5

10
15
20
25
30
35
40
45
50
55
60

(a) GFLOP/s for the 2D cantilever beam problem.

L1 L2 L3 L4 L5
0
5

10
15
20
25
30
35
40
45
50
55
60

(b) GFLOP/s for the L-shaped beam problem.

H1 H2 H3 H4 H5
0
5

10
15
20
25
30
35
40
45
50
55
60

(c) GFLOP/s for the steady-state heat conduction problem
over a plate.

Fig. 12 GFLOP/s achieved by various matrix-free strategies

123

1962 U. Kiran et al.

C1 C2 C3 C4 C5
50
75

100
125
150
175
200
225
250
275
300

(a) Memory bandwidth for the 2D cantilever beam problem.

L1 L2 L3 L4 L5

100
125
150
175
200
225
250
275
300

(b) Memory bandwidth for the L-shaped beam problem.

H1 H2 H3 H4 H5

100
125
150
175
200
225
250
275
300

(c) Memory bandwidth for the heat conduction problem.

Fig. 13 Memory bandwidth achieved by various matrix-free strategies

NVIDIATeslaK40GPUwhich is close to the achievable bandwidth of the device [13].
Since the maximum arithmetic throughput is found to be close to 3% of theoretical
peak throughput, it can be concluded that the performance of the proposed strategy is
limited by memory bandwidth.

123

GPU-based matrix-free finite element solver… 1963

5 Conclusions

A new GPU-based matrix-free strategy (EbEsym) for FEM has been proposed. The
developed strategy was based on an element-by-element FE solver which replaced the
SpMV operation in an iterative solution method by an element level dense matrix-
vector product. A new approach to compute the elemental matrix-vector product was
developed which used only the symmetric part of the elemental matrices. The per-
formance of the proposed solver was evaluated by solving the elasticity and the heat
transfer problems on unstructured mesh using 4-noded quadrilateral element and the
comparison was made with the existing GPU-based matrix-free solvers. For the elas-
ticity problems (two DOFs per node), approximately 5× speedup was observed over
the node based (NbN), 2.8× over the DOF based (DbD) and 1.4× over the ele-
ment based (EbE) matrix-free strategies. In heat conduction problem (single DOF
per node), 3× speedup over the NbN strategy and 1.3× speedup over the EbE strat-
egy were obtained. As a consequence of using the symmetric part of the elemental
matrices the overall memory footprint of the proposed EbEsym strategy was reduced
by 1.5× for the elasticity and 1.3× for the heat conduction problems over the state-of-
the-art EbE strategy. The obtained results suggest that the proposed strategy can be
used to solve problems of bigger sizes on a given GPU card in lesser time. Also, the
proposed strategy is applicable where the symmetric elemental matrices are generated
by FEM. In future, the proposed strategy can be applied to various element types
including higher order and three-dimensional elements to study its performance and
identify the limitations, if any. The outcome of the future work is expected tomake this
strategy more generic and applicable to a broader class of problems in FEM. More-
over, the proposed strategy can also be used to develop kernel for batched symmetric
matrix-vector product using small size matrices for linear algebra applications.

Acknowledgements The authors are grateful to the SERB, DST for supporting this research under Project
SR/FTP/ETA-0008/2014.

References

1. AbdelfattahA,Dongarra J,KeyesD,LtaiefH (2012)Optimizingmemory-boundSYMVkernel onGPU
hardware accelerators. In: International conference on high performance computing for computational
science. Springer, pp 72–79

2. Ahamed AKC, Magoulès F (2017) Conjugate gradient method with graphics processing unit acceler-
ation: CUDA vs OpenCL. Adv Eng Softw 111:32–42. https://doi.org/10.1016/j.advengsoft.2016.10.
002

3. Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of
heat sinks cooled by natural convection. Int J Heat Mass Transf 100:876–891. https://doi.org/10.1016/
j.ijheatmasstransfer.2016.05.013

4. Altinkaynak A (2017) An efficient sparse matrix-vector multiplication on CUDA-enabled graphic
processing units for finite element method simulations. Int J Numer Methods Eng 110(1):57–78.
https://doi.org/10.1002/nme.5346

5. Anzt H, Gates M, Dongarra J, Kreutzer M,Wellein G, Köhler M (2017) Preconditioned Krylov solvers
on GPUs. Parallel Comput 68:32–44

6. Bauer S, Drzisga D, Mohr M, Rüde U, Waluga C, Wohlmuth B (2018) A stencil scaling approach
for accelerating matrix-free finite element implementations. SIAM J Sci Comput 40(6):C748–C778.
https://doi.org/10.1137/17M1148384

123

https://doi.org/10.1016/j.advengsoft.2016.10.002
https://doi.org/10.1016/j.advengsoft.2016.10.002
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.013
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.013
https://doi.org/10.1002/nme.5346
https://doi.org/10.1137/17M1148384

1964 U. Kiran et al.

7. Bell N, Garland M (2009) Implementing sparse matrix-vector multiplication on throughput-oriented
processors. In: Proceedings of the conference on high performance computing networking, storage
and analysis, ACM, p 18

8. Cai Y, Li G, Wang H (2013) A parallel node-based solution scheme for implicit finite element method
using GPU. Proc Eng 61:318–324. https://doi.org/10.1016/j.proeng.2013.08.022

9. Carey GF, Jiang BN (1986) Element-by-element linear and nonlinear solution schemes. Int J Numer
Methods Biomed Eng 2(2):145–153

10. Cecka C, Lew AJ, Darve E (2011) Assembly of finite element methods on graphics processors. Int J
Numer Methods Eng 85(5):640–669

11. Charara A, Keyes D, Ltaief H (2019) Batched triangular dense linear algebra kernels for very small
matrix sizes on GPUs. ACM Trans Math Softw TOMS 45(2):15:1–15:28. https://doi.org/10.1145/
3267101

12. Corporation NVIDIA (2019) CUDA C programming guide. Version 10
13. DeakinT,McIntosh-Smith S (2015)GPU-STREAM: benchmarking the achievablememory bandwidth

of graphics processing units. In: SuperComputing, IEEE/ACM, Austin, USA
14. Fehn N, Wall WA, Kronbichler M (2019) A matrix-free high-order discontinuous Galerkin compress-

ibleNavier–Stokes solver: a performance comparison of compressible and incompressible formulations
for turbulent incompressible flows. Int J NumerMethods Fluids 89(3):71–102. https://doi.org/10.1002/
fld.4683

15. Filippone S, Cardellini V, Barbieri D, Fanfarillo A (2017) Sparse matrix-vector multiplication on
GPGPUs. ACM Trans Math Softw TOMS 43(4):30

16. Fu Z, Lewis TJ, Kirby RM, Whitaker RT (2014) Architecting the finite element method pipeline for
the GPU. J Comput Appl Math 257:195–211. https://doi.org/10.1016/j.cam.2013.09.001

17. Göddeke D (2011) Fast and accurate finite-element multigrid solvers for PDE simulations on GPU
clusters. Logos Verlag Berlin GmbH

18. Hughes TJR, Levit I, Winget J (1983) An element-by-element solution algorithm for problems of
structural and solid mechanics. Comput Methods Appl Mech Eng 36(2):241–254. https://doi.org/10.
1016/0045-7825(83)90115-9

19. Joldes GR, Wittek A, Miller K (2010) Real-time nonlinear finite element computations on GPU-
application to neurosurgical simulation. Comput Methods Appl Mech Eng 199(49–52):3305–3314

20. Kiran U, Sharma D, Gautam SS (2019) GPU-warp based finite element matrices generation and
assembly using coloring method. J Comput Des Eng 6(4):705–718. https://doi.org/10.1016/j.jcde.
2018.11.001

21. Kiss I, Gyimothy S, Badics Z, Pavo J (2012) Parallel realization of the element-by-element FEM
technique by CUDA. Magn IEEE Trans 48(2):507–510

22. KomatitschD,MichéaD,ErlebacherG (2009) Porting a high-order finite-element earthquakemodeling
application to NVIDIA graphics cards using CUDA. J Parallel Distrib Comput 69(5):451–460

23. KronbichlerM,KormannK (2019) Fastmatrix-free evaluation of discontinuousGalerkin finite element
operators. ACM Trans Math Softw. https://doi.org/10.1145/3325864

24. LiR,SaadY(2013)GPU-acceleratedpreconditioned iterative linear solvers. J Supercomput 63(2):443–
466

25. Macioł P, Płaszewski P, Banaś K (2010) 3Dfinite element numerical integration onGPUs. ProcComput
Sci 1(1):1093–1100

26. Markall G, Slemmer A, Ham D, Kelly P, Cantwell C, Sherwin S (2013) Finite element assembly
strategies on multi-core and many-core architectures. Int J Numer Methods Fluids 71(1):80–97

27. Martínez-Frutos J, Martínez-Castejón PJ, Herrero-Pérez D (2015) Fine-grained GPU implementation
of assembly-free iterative solver for finite element problems. Comput Struct 157:9–18

28. Martínez-Frutos J, Herrero-Pérez D (2015) Efficient matrix-free GPU implementation of fixed grid
finite element analysis. Finite Elem Anal Des 104:61–71. https://doi.org/10.1016/j.finel.2015.06.005

29. Müller E, Guo X, Scheichl R, Shi S (2013) Matrix-free GPU implementation of a preconditioned
conjugate gradient solver for anisotropic elliptic PDEs. Comput Vis Sci 16(2):41–58. https://doi.org/
10.1007/s00791-014-0223-x

30. Nath R, Tomov S, Dong TT, Dongarra J (2011) Optimizing symmetric dense matrix-vector multipli-
cation on GPUs. In: Proceedings of 2011 international conference for high performance computing,
networking, storage and analysis. ACM, New York, NY, USA, SC ’11, pp 6:1–6:10. https://doi.org/
10.1145/2063384.2063392

123

https://doi.org/10.1016/j.proeng.2013.08.022
https://doi.org/10.1145/3267101
https://doi.org/10.1145/3267101
https://doi.org/10.1002/fld.4683
https://doi.org/10.1002/fld.4683
https://doi.org/10.1016/j.cam.2013.09.001
https://doi.org/10.1016/0045-7825(83)90115-9
https://doi.org/10.1016/0045-7825(83)90115-9
https://doi.org/10.1016/j.jcde.2018.11.001
https://doi.org/10.1016/j.jcde.2018.11.001
https://doi.org/10.1145/3325864
https://doi.org/10.1016/j.finel.2015.06.005
https://doi.org/10.1007/s00791-014-0223-x
https://doi.org/10.1007/s00791-014-0223-x
https://doi.org/10.1145/2063384.2063392
https://doi.org/10.1145/2063384.2063392

GPU-based matrix-free finite element solver… 1965

31. Ohshima S, Hayashi M, Katagiri T, Nakajima K (2013) Implementation and evaluation of 3D finite
element method application for CUDA. In: DaydéM,Marques O, Nakajima K (eds) High performance
computing for computational science—VECPAR 2012. Springer, Berlin, Heidelberg, pp 140–148

32. Pikle NK, Sathe SR, Vyavahare AY (2018) High performance iterative elemental product strategy in
assembly-free FEM on GPU with improved occupancy. Computing 100(12):1273–1297. https://doi.
org/10.1007/s00607-018-0613-x

33. Ram L, Sharma D (2017) Evolutionary and GPU computing for topology optimization of structures.
Swarm Evolut Comput 35:1–13

34. Reguly I, Giles M (2013) Finite element algorithms and data structures on graphical processing units.
Int J Parallel Progr 43(2):203–239

35. Rupp K, Weinbub J, Jüngel A, Grasser T (2016) Pipelined iterative solvers with kernel fusion for
graphics processing units. ACM Trans Math Softw TOMS 43(2):11:1–11:27. https://doi.org/10.1145/
2907944

36. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied
Mathematics, Philadelphia. https://doi.org/10.1137/1.9780898718003

37. Sanfui S, SharmaD (2017)A two-kernel based strategy for performing assembly in FEAon the graphics
processing unit. In: 2017 international conference on advances in mechanical, industrial, automation
and management systems (AMIAMS), IEEE, pp 1–9

38. Sanfui S, Sharma D (2019) Exploiting symmetry in elemental computation and assembly stage of
GPU-accelerated FEA. In: Proceedings at the 10th international conference on computational methods
(ICCM2019). ScienTech Publisher, pp 641–651

39. Sanfui S, Sharma D (2020) A three-stage gpu-based fea matrix generation strategy for unstructured
meshes. International Journal of Numerical Methods in Engineering. (in press). https://doi.org/10.
1002/nme.6383

40. Shewchuk JR (1994) An introduction to the conjugate gradient method without the agonizing pain.
Tech. Rep, Pittsburgh

41. Tezduyar T, Aliabadi S, Behr M, Mittal S (1994) Massively parallel finite element simulation of
compressible and incompressible flows. Comput Methods Appl Mech Eng 119(1):157–177. https://
doi.org/10.1016/0045-7825(94)00082-4

42. Top500 Supercomputers (2019). https://www.top500.org. Accessed 2 Jan 2020
43. van Rietbergen B, Weinans H, Huiskes R, Polman B (1996) Computational strategies for iterative

solutions of large FEM applications employing voxel data. Int J Numer Methods Eng 39(16):2743–
2767

44. Wong J, Kuhl E, Darve E (2015) A new sparse matrix vector multiplication graphics processing unit
algorithm designed for finite element problems. Int J NumerMethods Eng 102(12):1784–1814. https://
doi.org/10.1002/nme.4865

45. Yagawa G, Soneda N, Yoshimura S (1991) A large scale finite element analysis using domain decom-
position method on a parallel computer. Comput Struct 38(5):615–625. https://doi.org/10.1016/0045-
7949(91)90013-C

46. Zhang J, Shen D (2013) GPU-based implementation of finite element method for elasticity using
CUDA. In: 2013 IEEE 10th international conference on high performance computing and communi-
cations, 2013 IEEE international conference on embedded and ubiquitous computing, pp 1003–1008.
https://doi.org/10.1109/HPCC.and.EUC.2013.142

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s00607-018-0613-x
https://doi.org/10.1007/s00607-018-0613-x
https://doi.org/10.1145/2907944
https://doi.org/10.1145/2907944
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1002/nme.6383
https://doi.org/10.1002/nme.6383
https://doi.org/10.1016/0045-7825(94)00082-4
https://doi.org/10.1016/0045-7825(94)00082-4
https://www.top500.org
https://doi.org/10.1002/nme.4865
https://doi.org/10.1002/nme.4865
https://doi.org/10.1016/0045-7949(91)90013-C
https://doi.org/10.1016/0045-7949(91)90013-C
https://doi.org/10.1109/HPCC.and.EUC.2013.142

	GPU-based matrix-free finite element solver exploiting symmetry of elemental matrices
	Abstract
	1 Introduction
	2 Background
	2.1 Matrix-free FEM
	2.2 NbN strategy
	2.3 DbD strategy
	2.4 EbE strategy

	3 Proposed matrix-free strategy
	3.1 Matrix-free solver exploiting symmetry of elemental matrices
	3.2 Kernel design and data structure for strategy

	4 Results and discussion
	4.1 Elasticity problem
	4.2 Steady-state heat conduction problem
	4.3 Performance results

	5 Conclusions
	Acknowledgements
	References

