
Computing (2020) 102:1743–1763
https://doi.org/10.1007/s00607-020-00814-9

REGULAR PAPER

A cache-basedmethod to improve query performance
of linked Open Data cloud

Usman Akhtar1 · Anita Sant’Anna2 · Chang-Ho Jihn3 ·
Muhammad Asif Razzaq1 · Jaehun Bang1 · Sungyoung Lee1

Received: 9 July 2019 / Accepted: 25 April 2020 / Published online: 14 May 2020
© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Abstract
The proliferation of semantic big data has resulted in a large amount of content pub-
lished over the Linked Open Data (LOD) cloud. Semantic Web applications consume
these data by issuing SPARQL queries. One of the main challenges faced by querying
the LOD web cloud on account of the inherent distributed nature of LOD is its high
search latency and lack of tools to connect the SPARQL endpoints. In this paper, we
propose an Adaptive Cache Replacement strategy (ACR) that aims to accelerate the
overall query processing of the LOD cloud. ACR alleviates the burden on SPARQL
endpoints by identifying subsequent queries learned from clients historical query pat-
terns and caching the result of these queries. For cache replacement, we propose an
exponential smoothing forecasting method to replace the less valuable cache content.
In the experimental study, we evaluate the performance of the proposed approach in
terms of hit rates, query time and overhead. The proposed approach is found to out-
perform existing state-of-the-art approaches, increase hit rates by 5.46%, and reduce
the query times by 6.34%.

Keywords Query performance · Cache Replacement · Linked Open Data · SPARQL

Mathematics Subject Classification 68P20

1 Introduction

The Linked Open Data (LOD) cloud provides a global information space with a
wealth of structured facts. The LOD cloud offers for example Geo-location facts1

and cross-domain information (e.g. DBpedia, YAGO [32] and WIKIdata). Currently,
it is estimated that more than thirty billion facts have been published over the LOD
[33] cloud. The data in the LOD cloud is represented using the Resource Descrip-

Extended author information available on the last page of the article

1 https://linkedgeodata.org/.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-020-00814-9&domain=pdf
http://orcid.org/0000-0003-4553-0550
https://linkedgeodata.org/

1744 U. Akhtar et al.

tion Framework (RDF)2 and RDF Query Language (SPARQL)3 is used as querying
language. The rapid expansion of LOD use in academia and industry evidences the
efficient retrieval of data as one of its major challenges. Although every LOD cloud
supports SPARQL queries to access data from its publicly available interfaces, a cen-
tral problem is the lack of trust regarding these endpoints due to network instability
and latency. Therefore, the typical solution is to dump the data locally and maintain
endpoints to process these data. Recent investigations [3,5,10,13,14,17] have shown
that the content of LOD is dynamic over time and continuously evolving. However,
the data stored at the local endpoints are not up-to-date and require constant updates,
therefore, accurately hosting the endpoints requires expensive infrastructure support.

In recent years, many efforts have been made to circumvent the problem of effec-
tively querying LOD [24,31,35], among these, caching [22,23] is the most popular
technique to reduce query time by serving the requests from a cache (also called
cache hits) [28]. In the literature, two types of caching have been proposed, client and
server-side caching. In client-side caching, requests are immediately served from the
nearest cache to reduce the latency and network traffic. However, client-side caching
is not fully explored [24] and is still in the early days of research. Server-side caching
is not flexible to support different querying patterns and design of server-side caching
usually depends on the database. As cache has limited space, it is important to fill it
with valuable content by replacing unnecessary content.Many cache replacement tech-
niques have been developed for relational databases, such as LRU [8] and LFU [18].
The underlying structure of theLOD is different from relational databases. The caching
algorithms designed for relational databases are not fully applicable in LOD scenarios
[21]. To the extent of our knowledge, we believe, there is very limited work addressing
the problemof efficiently querying and retrieving data fromLODcloud [22,29,36–38].

In this paper, we propose an Adaptive Cache Replacement strategy (ACR) in
order to accelerate overall query processing. ACR works as a proxy between the
querying agents and the SPARQL endpoint. We adopt client-side caching as it is a
domain-independent approach that does not require underlying knowledge of theLOD.
Typically, the queries issued by the end user are repetitive and follow similar patterns
that only differ in specific element. The major challenge of this task is to find similar
queries, as it is possible that two queries are structurally similar but may differ in con-
tent. To tackle this problem, we propose the use of a bottom-up matching approach to
find similar queries. For the structural similarity, we first compute the distance between
the triple patterns and prefetch the results of similar queries to be placed in cache. A
cache has limited space, therefore it is advantageous to replace it with frequently-
accessed data. In this work, our cache replacement utilizes exponential smoothing
forecasting to calculate the frequency of the accessed data and replace content based
on access frequencies. More specifically, we propose a full-record replacement strat-
egy, in which at every new query the hit frequency of accessed triples is calculated
using exponential smoothing and the cache is replaced with the highest access queries.
The motivation behind adaptive cache replacement is to improve the querying effi-
ciency and reduce the burden on the SPARQL endpoint. Repeated queries are cached

2 https://www.w3.org/RDF/.
3 https://www.w3.org/TR/rdf-sparql-query/.

123

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/

A cache-based method to improve query performance… 1745

locally, and the results of these queries are immediately answered to the user. Our
approach optimizes the results of predicted potential queries and less-valuable queries
are replaced from the cache.

We now summarize the key contributions of this paper.

– We propose a client-side caching that works as a proxy between the querying
agent and SPARQL endpoint. To accelerate the querying answering process, our
approach can either be deployed within SPARQL endpoint or querying agent to
eliminate the burden on these endpoint.

– Our approach introduces a distance-based query similarity metric, which consid-
ers both content-wise and structural similarities for more accurate comparison
between queries.

– We propose an exploratory prefetching to retrieve contents possibly requested at
the future queries by identifying the concepts of the previously issued queries and
issuing a single query for all required contents. Its benefit is to reduce the trans-
mission overhead and improve the hit rate and query time by retrieving contents
for future queries at once.

– We propose a frequency-based cache replacement method to rank each query
according to its estimated access frequency. The most frequently accessed queries
are kept in the cache. Thus, our work benefit the triple stores in replacing the cache.

– Comprehensive evaluation on real-world LOD datasets showcase the effectiveness
of our approach. The evaluation result outperforms the state-of-the-art approaches
such as (LRU) Least Recently Used, (LFU) Least Frequently Used and (SQC)
SPARQL Query Caching [24] in terms of higher hit rate, shorter query time, and
less overhead.

The remainder of this paper is organized as follows. Section 2 explains the back-
ground of representing and querying LOD and briefly explains the related work in
comparison to the proposed approach. Section 3 explains the main phases of the
approach to find similar-structured queries and perform cache replacement. The eval-
uation of the proposed approach is performed in Sect. 4. This article is concluded in
Sect. 5.

2 Background

In this section, we briefly discuss the background needed to understand LOD, which
includes the data representations and the querying of the LOD.Moreover, we also dis-
cuss an overview of related work in the area of semantic caching and query suggestion,
and highlight the differences of the proposed approach with respect to state-of-the-art.

2.1 Data representation

The Semantic Web [2] is an extension of the Web of Data [1]. As described by Tim
Berners-Lee [2], the SemanticWeb enables the machine in such a way that data can be
searched, interpreted and reused. LOD is another important concept in the Semantic

123

1746 U. Akhtar et al.

Linked Datasets as of August 2014

Uniprot

Alexandria
Digital Library

Gazetteer

lobid
Organizations

chem2
bio2rdf

Multimedia
Lab University

Ghent

Open Data
Ecuador

Geo
Ecuador

Serendipity

UTPL
LOD

GovAgriBus
Denmark

DBpedia
live

URI
Burner

Linguistics

Social Networking

Life Sciences

Cross-Domain

Government

User-Generated Content

Publications

Geographic

Media

Identifiers

Eionet
RDF

lobid
Resources

Wiktionary
DBpedia

Viaf

Umthes

RKB
Explorer

Courseware

Opencyc

Olia

Gem.
Thesaurus

Audiovisuele
Archieven

Diseasome
FU-Berlin

Eurovoc
in

SKOS

DNB
GND

Cornetto

Bio2RDF
Pubmed

Bio2RDF
NDC

Bio2RDF
Mesh

IDS

Ontos
News
Portal

AEMET

ineverycrea

Linked
User

Feedback

Museos
Espania
GNOSS

Europeana

Nomenclator
Asturias

Red Uno
Internacional

GNOSS

Geo
Wordnet

Bio2RDF
HGNC

Ctic
Public

Dataset

Bio2RDF
Homologene

Bio2RDF
Affymetrix

Muninn
World War I

CKAN

Government
Web Integration

for
Linked
Data

Universidad
de Cuenca
Linkeddata

Freebase

Linklion

Ariadne

Organic
Edunet

Gene
Expression
Atlas RDF

Chembl
RDF

Biosamples
RDF

Identifiers
Org

Biomodels
RDF

Reactome
RDF

Disgenet

Semantic
Quran

IATI as
Linked Data

Dutch
Ships and

Sailors

Verrijktkoninkrijk

IServe

Arago-
dbpedia

Linked
TCGA

ABS
270a.info

RDF
License

Environmental
Applications

Reference
Thesaurus

Thist

JudaicaLink

BPR

OCD

Shoah
Victims
Names

Reload

Data for
Tourists in

Castilla y Leon

2001
Spanish
Census
to RDF

RKB
Explorer

Webscience

RKB
Explorer
Eprints
Harvest

NVS

EU Agencies
Bodies

EPO

Linked
NUTS

RKB
Explorer

Epsrc

Open
Mobile

Network

RKB
Explorer
Lisbon

RKB
Explorer

Italy

CE4R

Environment
Agency

Bathing Water
Quality

RKB
Explorer
Kaunas

Open
Data

Thesaurus

RKB
Explorer
Wordnet

RKB
Explorer

ECS

Austrian
Ski

Racers

Social-
semweb

Thesaurus

Data
Open
Ac Uk

RKB
Explorer

IEEE

RKB
Explorer

LAAS

RKB
Explorer

Wiki

RKB
Explorer

JISC

RKB
Explorer
Eprints

RKB
Explorer

Pisa

RKB
Explorer

Darmstadt

RKB
Explorer
unlocode

RKB
Explorer

Newcastle

RKB
Explorer

OS

RKB
Explorer

Curriculum

RKB
Explorer

Resex

RKB
Explorer

Roma

RKB
Explorer
Eurecom

RKB
Explorer

IBM

RKB
Explorer

NSF

RKB
Explorer

kisti

RKB
Explorer

DBLP

RKB
Explorer

ACM

RKB
Explorer
Citeseer

RKB
Explorer

Southampton

RKB
Explorer
Deepblue

RKB
Explorer
Deploy

RKB
Explorer

Risks

RKB
Explorer

ERA

RKB
Explorer

OAI

RKB
Explorer

FT

RKB
Explorer

Ulm

RKB
Explorer

Irit

RKB
Explorer
RAE2001

RKB
Explorer

Dotac

RKB
Explorer
Budapest

Swedish
Open Cultural

Heritage

Radatana

Courts
Thesaurus

German
Labor Law
Thesaurus

GovUK
Transport

Data

GovUK
Education

Data

Enakting
Mortality

Enakting
Energy

Enakting
Crime

Enakting
Population

Enakting
CO2Emission

Enakting
NHS

RKB
Explorer

Crime

RKB
Explorer
cordis

Govtrack

Geological
Survey of

Austria
Thesaurus

Geo
Linked
Data

Gesis
Thesoz

Bio2RDF
Pharmgkb

Bio2RDF
SabiorkBio2RDF

Ncbigene

Bio2RDF
Irefindex

Bio2RDF
Iproclass

Bio2RDF
GOA

Bio2RDF
Drugbank

Bio2RDF
CTD

Bio2RDF
Biomodels

Bio2RDF
DBSNP

Bio2RDF
Clinicaltrials

Bio2RDF
LSR

Bio2RDF
Orphanet

Bio2RDF
Wormbase

BIS
270a.info

DM2E

DBpedia
PT

DBpedia
ES

DBpedia
CS

DBnary

Alpino
RDF

YAGO

Pdev
Lemon

Lemonuby

Isocat

Ietflang

Core

KUPKB

Getty
AAT

Semantic
Web

Journal

OpenlinkSW
Dataspaces

MyOpenlink
Dataspaces

Jugem

Typepad

Aspire
Harper
Adams

NBN
Resolving

Worldcat

Bio2RDF

Bio2RDF
ECO

Taxon-
concept
Assets

Indymedia

GovUK
Societal

Wellbeing
Deprivation imd

Employment
Rank La 2010

GNU
Licenses

Greek
Wordnet

DBpedia

CIPFA

Yso.fi
Allars

Glottolog

StatusNet
Bonifaz

StatusNet
shnoulle

Revyu

StatusNet
Kathryl

Charging
Stations

Aspire
UCL

Tekord

Didactalia

Artenue
Vosmedios

GNOSS

Linked
Crunchbase

ESD
Standards

VIVO
University
of Florida

Bio2RDF
SGD

Resources

Product
Ontology

Datos
Bne.es

StatusNet
Mrblog

Bio2RDF
Dataset

EUNIS

GovUK
Housing
Market

LCSH

GovUK
Transparency
Impact ind.
Households

In temp.
Accom.

Uniprot
KB

StatusNet
Timttmy

Semantic
Web

Grundlagen

GovUK
Input ind.

Local Authority
Funding From
Government

Grant

StatusNet
Fcestrada

JITA

StatusNet
Somsants

StatusNet
Ilikefreedom

Drugbank
FU-Berlin

Semanlink

StatusNet
Dtdns

StatusNet
Status.net

DCS
Sheffield

Athelia
RFID

StatusNet
Tekk

Lista
Encabeza
Mientos
Materia

StatusNet
Fragdev

Morelab

DBTune
John Peel
Sessions

RDFize
last.fm

Open
Data

Euskadi

GovUK
Transparency

Input ind.
Local auth.
Funding f.

Gvmnt. Grant

MSC

Lexinfo

StatusNet
Equestriarp

Asn.us

GovUK
Societal

Wellbeing
Deprivation Imd
Health Rank la

2010

StatusNet
Macno

Oceandrilling
Borehole

Aspire
Qmul

GovUK
Impact

Indicators
Planning

Applications
Granted

Loius

Datahub.io

StatusNet
Maymay

Prospects
and

Trends
GNOSS

GovUK
Transparency

Impact Indicators
Energy Efficiency

new Builds

DBpedia
EU

Bio2RDF
Taxon

StatusNet
Tschlotfeldt

Jamendo
DBTune

Aspire
NTU

GovUK
Societal

Wellbeing
Deprivation Imd

Health Score
2010

Lotico
GNOSS

Uniprot
Metadata

Linked
Eurostat

Aspire
Sussex

Lexvo

Linked
Geo
Data

StatusNet
Spip

SORS

GovUK
Homeless-

ness
Accept. per

1000

TWC
IEEEvis

Aspire
Brunel

PlanetData
Project

Wiki

StatusNet
Freelish

Statistics
data.gov.uk

StatusNet
Mulestable

Enipedia

UK
Legislation

API

Linked
MDB

StatusNet
Qth

Sider
FU-Berlin

DBpedia
DE

GovUK
Households

Social lettings
General Needs

Lettings Prp
Number

Bedrooms

Agrovoc
Skos

My
Experiment

Proyecto
Apadrina

GovUK
Imd Crime
Rank 2010

SISVU

GovUK
Societal

Wellbeing
Deprivation Imd
Housing Rank la

2010

StatusNet
Uni

Siegen

Opendata
Scotland Simd

Education
Rank

StatusNet
Kaimi

GovUK
Households

Accommodated
per 1000

StatusNet
Planetlibre

DBpedia
EL

Sztaki
LOD

DBpedia
Lite

Drug
Interaction
Knowledge

Base

StatusNet
Qdnx

Amsterdam
Museum

AS EDN LOD

RDF
Ohloh

DBTune
artists
last.fm

Aspire
Uclan

Hellenic
Fire Brigade

Bibsonomy

Nottingham
Trent

Resource
Lists

Opendata
Scotland Simd
Income Rank

Randomness
Guide

London

Opendata
Scotland

Simd Health
Rank

Southampton
ECS Eprints

FRB
270a.info

StatusNet
Sebseb01

StatusNet
Bka

ESD
Toolkit

Hellenic
Police

StatusNet
Ced117

Open
Energy

Info Wiki

StatusNet
Lydiastench

Open
Data
RISP

Taxon-
concept

Occurences

Bio2RDF
SGD

UIS
270a.info

NYTimes
Linked Open

Data

Aspire
Keele

GovUK
Households
Projections
Population

W3C

Opendata
Scotland

Simd Housing
Rank

ZDB

StatusNet
1w6

StatusNet
Alexandre

Franke

Dewey
Decimal

Classification

StatusNet
Status

StatusNet
doomicile

Currency
Designators

StatusNet
Hiico

Linked
Edgar

GovUK
Households

2008

DOI

StatusNet
Pandaid

Brazilian
Politicians

NHS
Jargon

Theses.fr

Linked
Life
Data

Semantic Web
DogFood

UMBEL

Openly
Local

StatusNet
Ssweeny

Linked
Food

Interactive
Maps

GNOSS

OECD
270a.info

Sudoc.fr

Green
Competitive-

ness
GNOSS

StatusNet
Integralblue

WOLD

Linked
Stock
Index

Apache

KDATA

Linked
Open
Piracy

GovUK
Societal

Wellbeing
Deprv. Imd
Empl. Rank

La 2010

BBC
Music

StatusNet
Quitter

StatusNet
Scoffoni

Open
Election

Data
Project

Reference
data.gov.uk

StatusNet
Jonkman

Project
Gutenberg
FU-Berlin

DBTropes

StatusNet
Spraci

Libris

ECB
270a.info

StatusNet
Thelovebug

Icane

Greek
Administrative

Geography

Bio2RDF
OMIM

StatusNet
Orangeseeds

National
Diet Library

WEB NDL
Authorities

Uniprot
Taxonomy

DBpedia
NL

L3S
DBLP

FAO
Geopolitical

Ontology

GovUK
Impact

Indicators
Housing Starts

Deutsche
Biographie

StatusNet
ldnfai

StatusNet
Keuser

StatusNet
Russwurm

GovUK Societal
Wellbeing

Deprivation Imd
Crime Rank 2010

GovUK
Imd Income

Rank La
2010

StatusNet
Datenfahrt

StatusNet
Imirhil

Southampton
ac.uk

LOD2
Project

Wiki

DBpedia
KO

Dailymed
FU-Berlin

WALS

DBpedia
IT

StatusNet
Recit

Livejournal

StatusNet
Exdc

Elviajero

Aves3D

Open
Calais

Zaragoza
Turruta

Aspire
Manchester

Wordnet
(VU)

GovUK
Transparency

Impact Indicators
Neighbourhood

Plans

StatusNet
David

Haberthuer

B3Kat

Pub
Bielefeld

Prefix.cc

NALT

Vulnera-
pedia

GovUK
Impact

Indicators
Affordable

Housing Starts

GovUK
Wellbeing lsoa

Happy
Yesterday

Mean

Flickr
Wrappr

Yso.fi
YSA

Open
Library

Aspire
Plymouth

StatusNet
Johndrink

Water

StatusNet
Gomertronic

Tags2con
Delicious

StatusNet
tl1n

StatusNet
Progval

Testee

World
Factbook
FU-Berlin

DBpedia
JA

StatusNet
Cooleysekula

Product
DB

IMF
270a.info

StatusNet
Postblue

StatusNet
Skilledtests

Nextweb
GNOSS

Eurostat
FU-Berlin

GovUK
Households

Social Lettings
General Needs

Lettings Prp
Household

Composition

StatusNet
Fcac

DWS
Group

Opendata
Scotland

Graph
Simd Rank

DNB

Clean
Energy
Data

Reegle

Opendata
Scotland Simd
Employment

Rank

Chronicling
America

GovUK
Societal

Wellbeing
Deprivation

Imd Rank 2010

StatusNet
Belfalas

Aspire
MMU

StatusNet
Legadolibre

Bluk
BNB

StatusNet
Lebsanft

GADM
Geovocab

GovUK
Imd Score

2010

Semantic
XBRL

UK
Postcodes

Geo
Names

EEARod

Aspire
Roehampton

BFS
270a.info

Camera
Deputati
Linked
Data

Bio2RDF
GeneID

GovUK
Transparency

Impact Indicators
Planning

Applications
Granted

StatusNet
Sweetie

Belle

O'Reilly

GNI

City
Lichfield

GovUK
Imd

Rank 2010

Bible
Ontology

Idref.fr

StatusNet
Atari

Frosch

Dev8d

Nobel
Prizes

StatusNet
Soucy

Archiveshub
Linked
Data

Linked
Railway

Data
Project

FAO
270a.info

GovUK
Wellbeing

Worthwhile
Mean

Bibbase

Semantic-
web.org

British
Museum

Collection

GovUK
Dev Local
Authority
Services

Code
Haus

Lingvoj

Ordnance
Survey
Linked
Data

Wordpress

Eurostat
RDF

StatusNet
Kenzoid

GEMET

GovUK
Societal

Wellbeing
Deprv. imd
Score '10

Mis
Museos
GNOSS

GovUK
Households
Projections

total
Houseolds

StatusNet
20100

EEA

Ciard
Ring

Opendata
Scotland Graph

Education
Pupils by

School and
Datazone

VIVO
Indiana

University

Pokepedia

Transparency
270a.info

StatusNet
Glou

GovUK
Homelessness

Households
Accommodated

Temporary
Housing Types

STW
Thesaurus

for
Economics

Debian
Package
Tracking
System

DBTune
Magnatune

NUTS
Geo-
vocab

GovUK
Societal

Wellbeing
Deprivation Imd
Income Rank La

2010

BBC
Wildlife
Finder

StatusNet
Mystatus

Miguiad
Eviajes
GNOSS

Acorn
Sat

Data
Bnf.fr

GovUK
imd env.

rank 2010

StatusNet
Opensimchat

Open
Food
Facts

GovUK
Societal

Wellbeing
Deprivation Imd

Education Rank La
2010

LOD
ACBDLS

FOAF-
Profiles

StatusNet
Samnoble

GovUK
Transparency

Impact Indicators
Affordable

Housing Starts

StatusNet
CoreyavisEnel

Shops

DBpedia
FR

StatusNet
Rainbowdash

StatusNet
Mamalibre

Princeton
Library

Findingaids

WWW
Foundation

Bio2RDF
OMIM

Resources

Opendata
Scotland Simd

Geographic
Access Rank

Gutenberg

StatusNet
Otbm

ODCL
SOA

StatusNet
Ourcoffs

Colinda

Web
Nmasuno
Traveler

StatusNet
Hackerposse

LOV

Garnica
Plywood

GovUK
wellb. happy

yesterday
std. dev.

StatusNet
Ludost

BBC
Program-

mes

GovUK
Societal

Wellbeing
Deprivation Imd

Environment
Rank 2010

Bio2RDF
Taxonomy

Worldbank
270a.info

OSM

DBTune
Music-
brainz

Linked
Mark
Mail

StatusNet
Deuxpi

GovUK
Transparency

Impact
Indicators

Housing Starts

Bizkai
Sense

GovUK
impact

indicators energy
efficiency new

builds

StatusNet
Morphtown

GovUK
Transparency

Input indicators
Local authorities

Working w. tr.
Families

ISO 639
Oasis

Aspire
Portsmouth

Zaragoza
Datos

Abiertos

Opendata
Scotland

Simd
Crime Rank

Berlios

StatusNet
piana

GovUK
Net Add.
Dwellings

Bootsnall

StatusNet
chromic

Geospecies

linkedct

Wordnet
(W3C)

StatusNet
thornton2

StatusNet
mkuttner

StatusNet
linuxwrangling

Eurostat
Linked
Data

GovUK
societal

wellbeing
deprv. imd

rank '07

GovUK
societal

wellbeing
deprv. imd
rank la '10

Linked
Open Data

of
Ecology

StatusNet
chickenkiller

StatusNet
gegeweb

Deusto
Tech

StatusNet
schiessle

GovUK
transparency

impact
indicators
tr. families

Taxon
concept

GovUK
service

expenditure

GovUK
societal

wellbeing
deprivation imd

employment
score 2010

Fig. 1 Showing the LOD diagram containing interlinked data from multiple domains

Web, enabling the machine to browse the web, such as DBpedia.4 LOD is collabo-
ratively built from web corpus and represents knowledge in structured form. Facts
are stored inside the Knowledge Base (KB) and an inference engine is used to assert
conditions based on these facts. There are a number of different publicly available
KBs, such as Freebase [4], DBpedia [20] and Yago [32]. KBs are further categorized
into curated and open KBs. In curated KB, factual information is represented in the
form of entity-relationship (e.g. https://en.wikipedia.org). In an open KB, the facts
are automatically collected from web pages and are often linked together, e.g., by
using LOD. With the current evolution of the Semantic Web 3.0, the LOD enables
data to linked between sources, as shown in Fig. 1. The LOD cloud contains almost
570 datasets from different domains that are interlinked with each other.

The data representation in curated KBs follows a predefined schema, entities and
relationships are modeled using a Resource Description Framework (RDF). The RDF
is considered the standard representation for a curated KB, where the relationships are
represented in many sets of triples, i.e., (subject, predicate and an object). These sets
of triples are a fundamental part of a KB and are also known as a knowledge graph.
The knowledge graph allows the sharing of data and the further linking of these data
sets in the LOD cloud. However, in an open KB, facts are also represented but they

4 https://wiki.dbpedia.org/.

123

https://en.wikipedia.org
https://wiki.dbpedia.org/

A cache-based method to improve query performance… 1747

Fig. 2 Showing the example of a SPARQL query

do not follow a strict schema, and these data are available in various formats, such as
N-triples and the turtle format.

2.2 SPARQL

SPARQL5 is awidely used graph based standard query language to retrieve andmanip-
ulate data that are stored in the RDF format. SPARQL is a structured query language
standardized by theW3C for queryingRDF triple stores.6 The syntax of SPARQL con-
tains different and disjoint query types such as SELECT , CONST RUCT , ASK
and DESCRI BE . To extract the values from the endpoints, SELECT is widely
used. As an example of SPARQL query illustrated in Fig. 2, the query pattern con-
tains SELECT statement that limit the projection to the certain variables used in the
query such as ?philosopher1 and ?philosopher2. This query used the UN I ON
and OPT I ON AL as a basic operations for modifying the content of SPARQL query.
LOD cloud also provides SPARQL endpoint for their datasets. However, querying
SPARQL endpoints is troublesome due to network instability, and the connection
to these endpoints can be temporarily lost, which affects the query efficiency. These
endpoints do not provide any information about dataset modification. Therefore, long-
running applications that use a cache must resubmit the queries to keep the local data
cache up-to-date.

2.3 Related work

A number of works have dealt with issuing related to query LOD. This section present
related work organized under two topics: (1) query suggestion, e.g., techniques to find
the similar-structured queries, (2) semantic caching, e.g., the main idea of semantic
caching is to maintain previously accessed data in a cache.We summarize the state-of-
the-art approaches and briefly discuss their advantages and disadvantages in Table 1.

5 https://www.w3.org/TR/sparql11-overview/.
6 http://www.w3.org/TR/rdf-sparql-query/.

123

https://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/rdf-sparql-query/

1748 U. Akhtar et al.

Ta
bl
e
1

A
co
m
pa
ri
so
n
of

re
la
te
d
w
or
k

W
or
k

A
dv
an
ta
ge
s

D
is
ad
va
nt
ag
es

M
et
ho
d

Q
ue
ry

si
m
ila
ri
ty

C
ac
he

re
pl
ac
em

en
t

Pr
e-
fe
tc
hi
ng

M
ar
tin

et
al
.[
24
]

C
ac
he

co
m
pl
et
e
tr
ip
le
s
qu

er
y

re
su
lts
;
in
tr
od

uc
ed

th
e
pr
ox

y
la
ye
r

be
tw
ee
n

th
e

ap
pl
ic
a-

tio
n
an
d
SP

A
R
Q
L
en
dp

oi
nt

to
ca
ch
e
re
pe
at
ed

qu
er
y
re
su
lts

O
nl
y

co
ns
id
er
s

re
pe
at
ed

qu
er
ie
s

St
ru
ct
ur
e-
ba
se
d
si
m
ila
ri
ty

–
�

–

C
hu

n
et
al
.[
6]

Pr
op
os
ed

m
ai
nt
en
an
ce

po
lic
y

th
at

up
da
te

th
e
ca
ch
e
pr
io
r
to

qu
er
y
ex
ec
ut
io
n

O
nl
y
up
da
te
th
e
lo
ca
lc
ac
he

at
th
e
sy
st
em

id
le
tim

e
C
on
te
nt
-b
as
ed

si
m
ila
ri
ty

–
�

–

G
od

fr
ey

et
al
.[
12
]

D
efi

ne
a
ge
ne
ra
l
fr
am

ew
or
k

in
lo
gi
c
fo
r
se
m
an
tic

qu
er
y

ca
ch
in
g

T
he

pr
op

os
ed

al
go

ri
th
m

ha
s

ex
po

ne
nt
ia
lt
im

e
co
m
pl
ex
ity

C
on
te
nt
-b
as
ed

si
m
ila
ri
ty

–
–

–

Y
an
g
et
al
.[
35
]

A
da
pt
iv
e
ca
ch
e
to

st
or
e
in
te
r-

m
ed
ia
te

re
su
lts

of
a
SP

A
R
Q
L

qu
er
y

N
o

ca
ch
e

po
lic
y

w
as

in
tr
o-

du
ce
d
in

th
ei
r
w
or
k

R
es
ul
t-
ba
se
d
si
m
ila
ri
ty

�
�

–

D
ar

et
al
.[
7]

Pr
op

os
ed

se
m
an
tic

re
gi
on

-
ba
se
d
ca
ch
in
g
an
d
a
di
st
an
ce

m
ea
su
re

to
up
da
te
ca
ch
e

O
nl
y

co
ns
id
er
s

a
se
m
an
tic

re
gi
on

ra
th
er

th
an

tu
pl
es

D
is
ta
nc
e-
ba
se
d
si
m
ila
ri
ty

–
�

–

123

A cache-based method to improve query performance… 1749

Ta
bl
e
1

co
nt
in
ue
d

W
or
k

A
dv
an
ta
ge
s

D
is
ad
va
nt
ag
es

M
et
ho
d

Q
ue
ry

si
m
ila
ri
ty

C
ac
he

re
pl
ac
em

en
t

Pr
e-
fe
tc
hi
ng

Sh
u
et
al
.[
31

]
In
tr
od

uc
ed

qu
er
y
co
nt
ai
nm

en
t

w
hi
ch

ev
al
ua
te
d

w
he
th
er

a
qu

er
y
ca
n
be

an
sw

er
ed

fr
om

th
e
ca
ch
e
or

no
t

C
on

ta
in
m
en
t
ch
ec
ki
ng

is
a

co
m
pu

ta
tio

na
lly

ex
pe
ns
iv
e

ta
sk

C
on
te
nt
-b
as
ed

si
m
ila
ri
ty

�
–

�

Pa
pa
ili
ou

et
al
.[
26
]

W
or
k-
lo
ad

ad
ap
tiv

e
ca
ch
in
g

to
re
du
ce

th
e
SP

A
R
Q
L
qu
er
y

re
sp
on
se

tim
e;

in
tr
od
uc
ed

ca
no
ni
ca
l
la
be
lli
ng

fo
r
op
ti-

m
al
jo
in

ex
ec
ut
io
n
pl
an

N
o
po
lic
y
fo
r
ca
ch
e
re
pl
ac
e-

m
en
t
w
as

in
tr
od

uc
ed

in
th
ei
r

w
or
k

R
es
ul
t-
ba
se
d
si
m
ila
ri
ty

�
–

–

L
eh
m
an

et
al
.[
19

]
Pr
op

os
ed

a
m
ac
hi
ne

le
ar
n-

in
g
ap
pr
oa
ch

to
le
ve
ra
ge

th
e

qu
er
y

pr
oc
es
si
ng

ov
er

K
B
s;

no
kn

ow
le
dg

e
of

un
de
rl
yi
ng

sc
he
m
a
is
re
qu
ir
ed

T
he

Fe
at
ur
e
m
od

el
in
g
m
et
ho

d
in
tr
od
uc
ed

in
th
ei
r
pa
pe
r
is

tim
e-
co
ns
um

in
g

St
ru
ct
ur
e-
ba
se
d
si
m
ila
ri
ty

–
–

�

Fe
rn
án
de
z
et
al
.[
10
]

Pr
op
os
ed

an
ar
ch
iv
in
g
sy
st
em

to
ef
fic
ie
nt
ly
re
tr
ie
ve

da
ta
fr
om

ev
ol
vi
ng

R
D
F

U
na
bl
e
to

re
pl
ac
e
th
e
ca
ch
e

du
ri
ng

sy
st
em

id
le
tim

e
St
ru
ct
ur
e-
ba
se
d
si
m
ila
ri
ty

–
�

–

Pr
op
os
ed

Pr
op
os
ed

an
ad
ap
tiv

e
ca
ch
e

re
pl
ac
em

en
t
th
at

ac
ce
le
ra
te
s

th
e

ov
er
al
l

pr
oc
es
si
ng

of
qu

er
yi
ng

ov
er

ea
rl
ie
r
w
or
ks

Pr
ef
et
ch
in
g

th
e

pr
ev
io
us
ly

is
su
ed

qu
er
ie
s

de
gr
ad
es

th
e

pe
rf
or
m
an
ce

of
th
e
sy
st
em

St
ru
ct
ur
e

an
d

co
nt
en
t-
ba
se
d

si
m
ila
ri
ty

�
�

�

123

1750 U. Akhtar et al.

2.3.1 Query suggestion

Recently, query suggestion has been introduced into SPARQL processing. It plays a
vital role in improving the overall processing of the query. The suggestion is made
based on the mining of similar queries from logs. Graph Edit Distance (GED) [30]
is normally applied to measure the structural similarity between SPARQL queries.
However, GED is very computationally expensive, and the use of structure similarity
is insufficient. It is possible that two SPARQLqueries are same but differ in their result.
To overcome this drawback, Shu et al. [31] proposed a content-aware approach that
utilized query containment to estimate whether the queries can be answered from the
caches. However, this approach is not widely utilized by the semantic web community
since the containment checking approach produces very significant overhead. Lorey
et al. [23] proposed a query augmentation approach to alter SPARQL queries to detect
frequently recurring patterns. The benefit of their approach is to answer the query
from the cache without accessing the LOD. However, the major limitation is that it
considers only the queries requested by the same agent and the hit rate of the template-
based approach is only 39% [15]. In contrast to the aforementioned query suggestion
methods, our approach considers both content-wise and structural similarities based
on a simple distance score, which results in a higher hit rates, shorter query time, and
less spatial overhead.

2.3.2 Semantic caching

Semantic caching was originally proposed for the Database Management System
(DBMS) [7,24] and the purpose of the DBMS is to reduce the overhead of retrieving
data from the cloud. Godfrey et al. [12] proposed the notion of semantic overlaps and
introduced a caching approach that utilized client-server systems. To extend this idea,
Dar et al. [7] proposed a semantic region-based caching technique and introduced a dis-
tancemetric to update the cache such that the cold (e.g., less frequently access) regions
are removed from the cache. Martin et al. [24] proposes to selectively invalidate cache
objects on updates of the knowledge base by identifying the affected query results.
However, their work does not consider query similarity for cache replacement. Yang
et al. [35] proposed server-side caching to decompose the query into the basic graph
patterns and cache their intermediate results. To prefetch similar-structured queries,
Lehman et al. [19] proposed a supervised machine learning approach that performed
analysis on the user’s previously issued queries. Their approach filters the range of
possible answers and utilizes a learning technique to ensure that no prior knowledge
of the underlying schema of LOD is required. Nishioka et al. [25] proposed a periodic
crawling strategy that predict whether the change occurs in RDF triples. However,
Lehman et al. [19] and Nishioka et al. [25] did not consider the system overhead as
their performance measure. Recently, a proactive policy for maintaining local cache
is proposed by Chun et al. [6] that alleviates the expensive job of copying the LOD at
idle time. In summary, only a few works have been reported to deal with the problems
related to the semantic caching for SPARQLqueries.We propose a client-side adaptive
strategy to utilize caching for SPARQL query processing. The goal of our research is

123

A cache-based method to improve query performance… 1751

to keep track of the access queries and evicts the less valuable content from the cache
in an overhead-efficient way and regardless of system idle time.

3 Proposedmethodology

Web-users increase the burden of SPARQLendpoints by issuing similar queries repeat-
edly and suffer high search latency due to the inherently distributed nature of LOD.
To alleviate the burden and latency, we propose a query similarity based caching
method and access frequency based cache replacement policy. In contrast to exist-
ing approaches [26,31], our proposed method is computationally efficient and more
versatile since the similarity measure utilizes a simple distance score and considers
content-wise similarity as well as structural similarity. These advantages are utilized
to propose our performance-effective and overhead-efficient prefecthing policy with
query template and offline processing. Based on our novel similarity metric, more
specifically, we utilize exploratory prefetching to search and gather contents possibly
requested at the future queries by identifying the concepts of the previously issued
queries.Our cache replacementmodule is adaptivewhen the number of queries reaches
a predefined limit, the cache replacement process is triggered, replacing infrequently
accessed data in the cache. Our replacement is effective as compared to the existing
approaches [6,24] in terms of less overhead and higher hit rates. Figure 3 illustrates
the architecture of the proposed overall client-side cache replacement approach. Our
methods are discussed in more detail in the following sections.

3.1 SPARQL query similarity

The existing approach [24] relies on the structural similarity of the query for improving
the performance of the triple stores. We argue that the structural similarity is based on
the ordering of the symbols and it is not sufficient as two queries may represent the
same structure of ordering but share a different content.

Query
Recording

Query is
cached?

Record
historical
queries

Fetch Query
Results

N N

Y

query
user

Client

Y

Query Similarity
Query

Matching
Query

Suggestion

Knowledge Bases

Cache Module

Replacement
Policy Cache

Query Results

Cache Query Results

Query Results

Fig. 3 Block diagram of the proposed approach

123

1752 U. Akhtar et al.

(a) (b)

Fig. 4 Showing the example of the structure similar SPARQL query

To overcome this drawback of existing methods, we propose a query similarity
metric considers both content-wise and structure similarity. Consider the two queries
illustrated in the Fig. 4. Twoqueries Q1 and Q2 have a similar-structured if the ordering
of their symbols is the same. To determine the similarity between two query patterns,
wefirst compute theLevenshtein distance between their query patterns.Where theLine
number 6, 7 and 8 shows the triple patterns exits in the query. Here, the most similar
triple patterns can be determined by computing the minimum distance between the
Δ(s1, s2),Δ(p1, p2), andΔ(o1, o2). The composition of the SPARQL query contains
a number of different patterns. To find the similarity between queries, we need to
decompose the SPARQL queries into subgraph patterns. The triple pattern distance
is the minimum number of edit operations, such as addition, deletion, and insertion,
to transform one graph to another. We introduce three functions AND, UN I ON
and OPT I ON AL . These patterns take the input graph and decomposed it into three
sets of non-empty patterns. As an example, consider the SPARQL query in Fig. 2
that contains the following graph patterns represented as QAND , QOPT I ON AL , and
QUN I ON and if no such triple patterns exist the result is ∅.

QAND =
{
?philisopher1 f oa f : name “AugusteComte′′ .

?philisopher1 ?relationshipWith : Paris .

}
(1)

QOPT I ON AL = {
?philisopher2 f oa f : givenName “ jean − Baptise_say′′ .

}
(2)

QUN I ON = {QAND, QOPT I ON AL } (3)

More formally, we defined a QueryDecomposi tion to deducewhether the decom-
position of query patterns exits, as shown in Eq. (4).

QueryDecomposi tion :=

⎧⎪⎨
⎪⎩

ΘUN I ON (Q) , i f f ΘUN I ON (Q) �= ∅
ΘOPT I ON AL (Q) , i f f ΘOPT I ON AL (Q) �= ∅
ΘAND (Q) , else.

(4)

To calculate the similarity between two query patterns, we use the Levenshtein
distance that is a string metric for assessing the difference between the two sequences.
For example, the Levenshtein distance [9] of the two similar-structured queries is in the
range of [0, 1]. The overall distance of the triple pattern is calculated by aggregating
the individual score of the subjects, predicates, and objects. The general formula for
the distance score is defined as:

123

A cache-based method to improve query performance… 1753

Distancescore :=

⎧⎪⎨
⎪⎩
0,

Levenshtein(Q1,Q2)
max(stringlength(Q1),stringlength(Q2))

1,

(5)

By using this distance score in Eq. (5), we can determine the matching between the
triples. Consider the triple matching between the two Basic Graph Patterns (BGP)
as shown in Fig. 4. Here the most similar patterns for L6, L7, L8 in BGP1 are
L7, L8, L6 in BGP2, respectively e.g., L represents the Line number correspond
to Fig. 4a, b. For example, the minimum value for the edit distance is calculated as
aggregating the individual distance score of subject, predicate and an object as fol-
lows: Δ(L6BGP1, L7BGP2) = (0 + 0 + 4

16) = 0.75. Complete matching is only
possible in the case of bipartite graphs, where triples occur with the same num-
ber as for the triples patterns. Maximum matching can be determined in polynomial
time. The matching of the triple is a computationally expensive process and existing
approaches [31,37] do not consider the cost while performing the matching between
two queries. In contrast, we use a cost threshold to cut off too expensive matching
and utilize the classical algorithm called Hungarian Method [39] to solve the max-
imum matching of triples with minimum cost. This algorithm compute an optimal
solution in a finite time. More specifically, we consider only contents of which the
minimum matching cost does not exceed one. Thus, the maximum matching of the
triples {(L6BGP1, L7BGP2), (L7BGP1, L8BGP2)} has a cost 0.75+∞

2 , which shows
that these BGP1 and BGP2 are unfit to match with each other.

3.2 Query prefetching

Similar queries occur frequently in real-world SPARQL query logs. This has also been
reported previously [34]. The query prefetching approach is suitable for alleviating
the burden on SPARQL endpoints by extracting the results of subsequent queries.
In the common keyword-based search engines, the user is often not aware of the
most suitable keyword to optimally extract information from the resource. In several
iterations, the user is more likely to formulate their own keyword to find the correct
answer. Similarly, in a LOD user might query for additional details based on the initial
results, after making incremental changes the initial queries.

Definition 1 (Query cluster) To identify the similar-structured queries, we propose a
query cluster. Consider TQ = {Q1, Q2, . . . , Qn} be the set of the SPARQL queries
with corresponding query patterns {PQ1, PQ2, . . . , PQn}. A query cluster is defined
based on the pairwise matching with three constraints between the triple patterns such
as Δ(si , s j) ≤ 1, Δ(pi , p j) ≤ 1, and Δ(oi , o j) ≤ 1.

Given this definition, the query cluster only derived the query using parameter
Δmax = 0 that can only be derived if the two queries are identical. Therefore, a query
cluster consists of those query patterns that are structurally the same, based on the
corresponding mappingm � Θ (PQ1)× (PQ2). To represent the query patterns as a

123

1754 U. Akhtar et al.

Dist1 Dist2 Dist3 Distn

Cluster 2

Cluster 3

Query Cluster

Query
Similarity

Distance Calcula�on

TQ= {Q1,Q2,..Qn} Dist1

Dist2

Dist3

Cluster1

Template

Fig. 5 Showing the example of query cluster of similar-structured queries

(a) (b)

Fig. 6 Showing the example of the SPARQL query prefetching

feature, we first cluster queries based on the content-wise and structural similarities as
shown in Fig. 5 and distances between each pair of queries are computed by adopting
the k-medoids algorithm [27]. We use this algorithm to cluster the training data of
the query. This algorithm chooses the data points and allows us to utilize the distance
function. To calculate the query distance, we utilize the distance score in Eq. (5) and
define the similarity score of the query cluster as shown in the Eq. (6).

Similari t yScore(TQ, Qc) = 1

1 + Distancescore(TQ, Qc)
(6)

Furthermore, we introduce an exploratory prefetching. More specifically, we iden-
tify a query cluster that previously issued queries belong to and construct a query
template using all queries in the cluster. Then, we prefetch all contents that were
used to answer the queries in the template since those queries are more likely to be
requested by the same user in the future. This prefetching is completed by issuing one
single query which includes all queries in the template. For example, we modified
the content of the queries previously issued in Fig. 4 and retrieve all relevant con-
tents that are useful for the future queries as shown in the Fig. 6. This query retrieves
the additional information based on the central concept, instead of issuing the many

123

A cache-based method to improve query performance… 1755

Algorithm 1: Central Concept Fetching (CCF)
Input : TQ = {Q1, Q2, .., Qn}
Output: Occurrence of most frequent subject

1 S.Count← 0

2 foreach Qp ∈ T condition do
3 S ← Θ

(
PQi

)
4 while S �= 0 do
5 foreach Qp ∈ S do
6 if Θ

(
PQi

)
> 1 then

7 S ← S ∪ Θ
(
PQi

)
8

9 else
10 (S, P, O) ← Θ

(
PQi

)
11

12 if S ∈ S.Count then
13 S.Count.increasecount(S)
14 else
15 S.Count.put(S,1)
16 end

17 end
18 end
19 end
20 return getHighestCount();

similar-structured queries, prefetching retrieve all the relevant information by issuing
a single query.

For extracting the additional information for the specific resource, we propose an
Algorithm 1 called central Concept Fetching (CCF) to generate the central concept
from a query as shown in the Fig. 6a. In CCF algorithm, we first discovered the
frequency of the subjects in all query patterns in Line 7 and aggregate whether the
subject is already included in the S.Count. We further increase the count of the subject
and add to S.Count in Line 11 and analyzed all the triple patterns. This algorithm
will analyze all the triple and give a good indication of a common theme in all the
SPARQL queries.

3.3 Cache replacement

We propose an offline process for cache replacement to calculate the access frequency.
Logging every record produces themost accurate result, however, it is computationally
expensive. Existing approach [21] utilize forward scanning to identify record access
with a time slice

[
tn, tn+1

]
.

However, this is not an efficient process and decreases the system performance, as
it requires scanning and storage of the entire record. Moreover, the forward scanning
approach requires a significant amount of time to classify the record. To optimize this
process, we maintain partial records within a specific time period. We parallelize this
task by splitting the logs into n consecutive periods and use a hash function to store the

123

1756 U. Akhtar et al.

Q1, (R1,E1,tpre_1)

Q2, (R2,E2,tpre_2)

…….

Qn, (Rn,En,tpre_n)

Q1, R1

…….

Q2, R2

Qn, Rn

Records
(Hashmap)

Cache
(Hashmap)

R3

Log
tn

R1

R2

R4
R5

Forward Scanning (at �me tn)

Fig. 7 Showing working example of the ACR algorithm maintaining cache and query access frequency

Algorithm 2: Adaptive Cache Replacement (ACR)
Input : Query Log Q, Job Scheduler H
Output: List of added cache triples

1 tlatest ← max(L At ,CAt);
2 tearliest ← min(L At ,CAt);
3 Records ← get Records(tlatest , tearliest);
4 Function: Modi f iedForward Algo(Q, H);
5 if newTriples in Records then
6 max(estimation, cachedTripples);
7 Calculate(Frequency, L At);
8 update(Frequency, L At);
9 Remove = Leastaccessedtriples;

10 else
11 Triples not in Records;
12 Calculate(Frequency, L At);
13 Add(newAccessT riples;

14 return addnewAccessTriples ;

frequency estimation for each query as shown in Fig. 7.Where Q1 represents the query
and R1 denotes the results of the query. The estimation of the record is calculated by
Eq. (7) and this algorithm ranks each query by its access frequencies. The storage of
the access log is placed in a separate hash table. When each of the parallel executions
finishes, the results of the most highly accessed frequencies are returned immediately
and infrequently accessed queries are removed from the cache.

The overall flow of ACR is described in Algorithm 2, which explains the details of
updating the cache by analyzing the access logs. The ACR algorithm takes previously
access logs to calculate the access frequencies and provide the list of the updated cache
triple, where L At represents the last access time of the triple and CAt represents the
current access time. ACR algorithm scans the records and updates the frequency. In
the case of a cache miss, the algorithm first checks for the case of a record in the cache
and updates the L At . Based on the access frequency ACR decides whether the new
triples need to be added to the cache.

Wehave calculated the frequencyof the data access using the exponential smoothing
technique [11]. This method is widely utilized to predict economic data in financial

123

A cache-based method to improve query performance… 1757

applications. The traditional approach [22] contains all the accessed queries in the
cache. In our work, ACR serves each query according to the estimated frequency, the
query with the highest frequencies are kept in the cache for future access. The general
formula of exponential smoothing is as follows:

Et = α ∗ xt + (1 − α) ∗ Et−1 (7)

As shown in Eq. (7), where Et represents on exponentially moving average of
access frequencies up to time t and xt represents an access frequency observed at time
t in discrete time with the smoothing constant α ∈ (0, 1). The high value of α gives
significance to the new observations. By using the Eq. (7), we satisfies our requirement
of selecting the highly accessed queries. We further modified Eq. (7) to represent the
time of the last hit. In Eq. (8), tprev represents the time of the last query hit and Xtprev
represents the frequency estimate of the previous query at tprev . For example, assume
that α = 0.05, t = 12, tprev = 3, xt = 0.6, and xtprev = 0.5. The value of Et is
calculated by Et = 0.05 ∗ 0.6 + 0.05(1 − 0.05)12−3 ∗ 0.5 = 0.046.

Et = αxt + α(1 − α)t−tprev xtprev (8)

In case of the queries that are not similar to the previous ones stored in the cache,
the result of these queries is served from the LOD and ACR algorithm store the access
frequencies by using Eq. (8). When the cache becomes full, replacement is based
on the access score; the top queries are kept in cache and less-frequent queries are
removed from the cache.

4 Experimentation and results

This section is devoted to show the effectiveness of the proposed approach. We per-
formed an evaluation on real-world datasets. The major goal of the experiment is to
examine the hit rates and overhead comparison of the proposed approach with the
current state-of-the-art cache replacement approaches.

4.1 Experimental setup

We conducted the experiments on an OpenLink Virtuoso Server 07.10 with a 4x AMD
A8-7650K Radeon R7 graphics card, 64bit Ubuntu 16.04.2 LTS, and 32 GB of RAM.
We utilized the DBpedia3.6 and Linked Geo Data (LGD) query logs provided by the
USEWOD 2014 challenge.7 The query log contains a number of requests received by
the SPARQL endpoint. The log is formatted in the form of the Apache common log
format and contains the information about the query session that is used to retrieve
the data from the endpoint. It is possible that in a single query session, two queries

7 http://usewod.org/usewod2014.html.

123

http://usewod.org/usewod2014.html

1758 U. Akhtar et al.

Table 2 Showing the size of the query logs used in our evaluation

Source Total queries Valid queries Unique queries

DBpedia 2013 28, 423, 201 27, 563, 105 12, 326, 855

DBpedia 2014 4, 132, 742 3, 708, 727 1, 517, 002

DBpedia 2015 31, 345, 875 30, 245, 552 3, 258, 671

LGD 2013 1, 721, 770 1, 512, 785 247, 731

LGD 2014 1, 730, 770 1, 513, 895 517, 530

Total 67, 354, 358 64, 544, 064 17, 867, 789

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
95%

1.2% 2.2% 4.4%

89.3%

2.3% 1.3%
8.4%

Select Construct Descibe Ask
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 O

cc
ur

an
ce

s
(%

)

(a)
Select Construct Descibe Ask

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 O

cc
ur

an
ce

s
(%

)

(b)
ra

tio
 o

f q
ue

ry
 e

xe
cu

tio
ns

Equality
DBpedia
LGD

ratio of unique queries

(c)

Fig. 8 Showing the patterns of the queries in a DBpedia and b LinkedGeoData, c the Lorenz curve for the
impact of a unique query on query execution

are issued by the same user over time. The requests included in theDBpedia3.6 query
logs include the timestamp. The query log contains IP address, timestamp, query and
userID. The valid queries were extracted from the query logs and the syntax of the
query was checked according to the SPARQL1.1 specification.

The DBpedia3.6 dataset contain the structure information extracted from the
WIKIpedia and published over the LOD cloud. This dataset is obtained directly from
the USEWOD query logs for DBpedia 2013, 2014 and 2015 as shown in the Table 2.
The DBpedia3.6 KBs contain 3.0M entities about the general knowledge. We first
extracted the textual information from the log to get the previously issued queries then
parse each query using Apache Jena.8

The Linked Geo Data (LGD) dataset holds the geographic sensor information
mainly related to the OpenStreetMap and it is currently available as RDF format.
We utilized the LGD 2013 and 2014 that consist of more than 10 billion triples. From
the available LGD query logs, our evaluation contain repetitive and unique queries.

In both datasets, themajority of the queries are the SELECT queries in theDBpedia,
and LinkedGeodata logs and within these SELECT queries, we identified the occur-
rences of BGPS, as in Fig. 8, which shows SELECT, CONSTRUCT, DESCRIBE and
ASK. Most of the queries in both datasets are SELECT queries (95% in DBpedia
and 89.3% in LinkedGeoData) and the most widely used features are ASK (4.4% in
DBpedia and 8.4% in LinkedGeoData) followed by CONSTRUCT (1.2% in DBpedia
and 2.3 % in LinkedGeoData).

8 https://jena.apache.org/.

123

https://jena.apache.org/

A cache-based method to improve query performance… 1759

Figure 8c shows the impact of the unique query account for the query execution.
Our aim is to ascertain the impact of the unique and frequently executed queries on the
overall execution. We analyzed the execution using the DBpedia and LGD query logs.
In DBpedia, 70% of the unique queries account for 30% of the overall executions,
which shows that most of the execution instances involved the frequently accessed
queries. Similarly, the impact of the unique queries on the overall execution is low, as
almost 90% unique queries account for the 20% of the total query executions.

4.2 Performance evaluation

In this evaluation, we compare ACR with existing approaches, such as (LRU) Least
Recently Used [16], (LFU) Least Frequently Used [18], and (SQC) SPARQL Query
Caching [24] and measure the efficiency in terms of average hit rate and space over-
head.

We evaluate the impact of existing cache replacement algorithms to improve the
performance in terms of hit rates and overhead. Therefore, we compare ACR with
three well-known cache replacement approaches (1) LRU: to replace the cache Least
Recently Used (LRU) is applied to remove the items from the cache in order to provide
space for the new item. This approach is simple to implement, especially when the
objects are uniform. (2) LFU: with this method, the Least Frequently Used (LFU)
resources are removed from the cache and the cache item is replaced with a new
resource. However, LFU does not consider the size of the objects and CPU memory
utilization. (3) SQC: SPARQL Query Caching (SQC) [24] improves the performance
of triple stores by the selective invalidation of cache objects. This approach eliminates
the cache objects that do not contain the predefined timestamp.

Figure 9a shows the hit rates achieved by the existing approaches. This experiment
feeds the access logs of 3M to the ACR algorithm, whose job is to rank the access
frequencies of the queries based on the exponential smoothing technique. It is noted
that ACR outperforms existing approaches. However, the LFU technique remains
accurate for a cache with a small size. The choice of the α effects the performance
of the hit rate. We have set the value to 0.05 due to the higher accuracy of the results
obtained, as the optimal value of α is almost certainly inversely proportional to the
size of the cache, and perhaps related to the size of the database. If the cache is smaller,
α should probably be larger as shown in Fig. 9b. Upon varying the size of the cache,
our proposed approach outperform the other approaches, as shown in Fig. 9c. On
average, our approach outperforms existing approaches in terms of higher hit rates,
up to (80.65%).

Figure 10a depicts the space overhead used by the cache replacement algorithms for
varying data set sizes.Wemeasure the maximum space consumption of each approach
based on themaximumnumber of records that each algorithm stores. It is observed that
existing approaches consume more space to maintain the records. Figure 10b shows
the time overhead average of the proposedACR technique comparedwith state-of-the-
art solutions. The existing solutions take a long time; on average the hit checking time
of our approach takes (280ms), which is almost 10 times better than other approaches.

123

1760 U. Akhtar et al.

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M
0

10

20

30

40

50

60

70

80

90

100

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

(c)(b)(a)

H
it

R
at

es
 (%

)

Cache Size (%)

ACR
LFU
LRU
SQC

H
it

R
at

e
(%

)
Triples Processed

ACR
LFU
LRU
SQC

H
it

R
at

es
 (%

)

Triples Processed

Fig. 9 Hit Rate achieved by ACR as compared to the LRU, LFU and SQC algorithms

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

(b) Time Overhead(a) Space Overhead

M
ax

im
um

 R
ec

or
d

S
iz

e
(K

B
)

Queries log (%)

ACR
LFU
LRU
SQC

5 10 15 20 25 30 35 40 45 50
0

5x102

1x103

2x103

2x103

3x103

3x103

4x103

 C
ac

he
 H

it
C

he
ck

in
g

Ti
m

e
(m

s)

Queries log (%)

ACR
LFU
LRU
SQC

Fig. 10 Space and time overhead of existing as compared to ACR

5 Conclusion

In this paper, we proposed an Adaptive Cache Replacement (ACR) to improve
SPARQL query processing on the LOD cloud. ACR algorithm parallelizes the task to
calculate the access frequencies. To find similar queries, ACR utilizes the edit distance
to identify clients similar querying patterns and place the frequently accessed queries
in the cache to reduce the burden on SPARQL endpoints. Through experimental eval-
uation, we found that our approach outperforms the state-of-the-art approaches in
terms of better query response time and less space overhead without losing the cache
hit rate. This shows that on average, we achieve hit rates of 80.66%, which accelerates
the querying speed by 6.34%. Specifically, our ACR technique is capable of classify-
ing the access log with better space efficiency as compared to LFU, LRU, and SQC.
In the future, we plan to investigate the effect of prefetching on system performance,
this may lead to an improvement of ACR by parallelizing the algorithm to run on a
separate machine as an offline process during system idle time.

Acknowledgements This researchwas supported by theMSIT (Ministry of Science and ICT), Korea, under
the ITRC (Information Technology Research Center) support program (IITP-2017-0-01629) supervised by

123

A cache-based method to improve query performance… 1761

the IITP (Institute for Information & communications Technology Promotion). This work was supported by
the Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea
government (MSIT) (No. 2017-0-00655), NRF-2016K1A3A7A03951968 & NRF-2019R1A2C2090504.

References

1. Basu A (2019) Semantic web, ontology, and linked data. In: Web services: concepts, methodologies,
tools, and applications, IGI Global, pp 127–148

2. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5):34–43
3. Bizer C, Heath T, Berners-Lee T (2009) Linked data-the story so far. Int J Semant Web Inf Syst

5(3):1–22
4. Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph

database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD international
conference on management of data, ACM, pp 1247–1250

5. Cho J,Garcia-MolinaH (2003)Estimating frequencyof change.ACMTrans InternetTechnol 3(3):256–
290

6. Chun S, Jung J, Lee KH (2019) Proactive policy for efficiently updating join views on continuous
queries over data streams and linked data. IEEE Access 7:86226–86241

7. Dar S, Franklin MJ, Jonsson BT, Srivastava D, Tan M et al (1996) Semantic data caching and replace-
ment. VLDB 96:330–341

8. Denning PJ (1968) The working set model for program behavior. Commun ACM 11(5):323–333
9. DividinoRQ,GrönerG (2013)Which of the following SPARQLqueries are similar?why? In: LD4IE@

ISWC
10. Fernández JD, Umbrich J, Polleres A, Knuth M (2019) Evaluating query and storage strategies for

RDF archives. Semant Web 10(2):247–291
11. Gardner ES Jr (2006) Exponential smoothing: the state of the art–part ii. Int J Forecast 22(4):637–666
12. Godfrey P, Gryz J (1999) Answering queries by semantic caches. In: International conference on

database and expert systems applications, Springer, pp 485–498
13. Gottron T (2016) Measuring the accuracy of linked data indices. arXiv preprint arXiv:1603.06068
14. Gottron T, Knauf M, Scherp A (2015) Analysis of schema structures in the linked open data graph

based on unique subject uris, pay-level domains, and vocabulary usage. Distrib Parallel Databases
33(4):515–553

15. Hasan R (2014) Predicting SPARQL query performance and explaining linked data. In: European
semantic web conference, Springer, pp 795–805

16. Jelenković P, Radovanović A (2003) Optimizing the LRU algorithm for web caching. Charzinski J,
Lehnert R, Tran-Gia P (eds) Teletraffic science and engineering, vol 5. Elsevier, pp 191–200, ISSN
1388–3437, ISBN 9780444514554

17. Konrath M, Gottron T, Staab S, Scherp A (2012) Schemex–efficient construction of a data catalogue
by stream-based indexing of linked data. Web Semant Sci Serv Agents World Wide Web 16:52–58

18. Lee D, Choi J, Kim JH, Noh SH, Min SL, Cho Y, Kim CS (2001) LRFU: a spectrum of policies that
subsumes the least recently used and least frequently used policies. IEEE Trans Comput 50(12):1352–
1361

19. Lehmann J,BühmannL (2011)Autosparql: let users query your knowledge base. In: Extended semantic
web conference, Springer, pp 63–79

20. Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes PN, Hellmann S, Morsey M,
Van Kleef P, Auer S et al (2015) Dbpedia-a large-scale, multilingual knowledge base extracted from
wikipedia. Semant Web 6(2):167–195

21. Levandoski JJ, Larson PÅ, Stoica R (2013) Identifying hot and cold data in main-memory databases.
In: 2013 IEEE 29th international conference on data engineering (ICDE), IEEE, pp 26–37

22. Lorey J, Naumann F (2013) Caching and prefetching strategies for SPARQL queries. In: Extended
semantic web conference, Springer, pp 46–65

23. Lorey J, Naumann F (2013) Detecting SPARQL query templates for data prefetching. In: Extended
semantic web conference, Springer, pp 124–139

24. Martin M, Unbehauen J, Auer S (2010) Improving the performance of semantic web applications with
SPARQL query caching. In: Extended semantic web conference, Springer, pp 304–318

123

http://arxiv.org/abs/1603.06068

1762 U. Akhtar et al.

25. Nishioka C, Scherp A (2017) Keeping linked open data caches up-to-date by predicting the life-time
of RDF triples. In: Proceedings of the international conference on web intelligence, ACM, pp 73–80

26. Papailiou N, Tsoumakos D, Karras P, Koziris N (2015) Graph-aware, workload-adaptive SPARQL
query caching. In: Proceedings of the 2015 ACM SIGMOD international conference on management
of data, ACM, pp 1777–1792

27. Park HS, Jun CH (2009) A simple and fast algorithm for k-medoids clustering. Expert Syst Appl
36(2):3336–3341

28. Podlipnig S, Böszörmenyi L (2003) A survey of web cache replacement strategies. ACMComput Surv
35(4):374–398

29. Ren Q, Dunham MH, Kumar V (2003) Semantic caching and query processing. IEEE Trans Knowl
Data Eng 15(1):192–210

30. Sanfeliu A, Fu KS (1983) A distance measure between attributed relational graphs for pattern recog-
nition. IEEE Trans Syst Man Cybern 3:353–362

31. Shu Y, Compton M, Müller H, Taylor K (2013) Towards content-aware SPARQL query caching for
semantic web applications. In: International conference on web information systems engineering,
Springer, pp 320–329

32. Suchanek FM, Kasneci G, Weikum G (2007) YAGO: a core of semantic knowledge. In: Proceedings
of the 16th international conference on World Wide Web, ACM, pp 697–706

33. Umbrich J, Karnstedt M, Hogan A, Parreira JX (2012) Hybrid SPARQL queries: fresh versus fast
results. In: International semantic web conference, Springer, pp 608–624

34. Yan L,Ma R, Li D, Cheng J (2017) RDF approximate queries based on semantic similarity. Computing
99(5):481–491

35. Yang M, Wu G (2011) Caching intermediate result of SPARQL queries. In: Proceedings of the 20th
international conference companion on World wide web, ACM, pp 159–160

36. Zhang WE, Sheng QZ, Qin Y, Yao L, Shemshadi A, Taylor K (2016) SECF: Improving SPARQL
querying performance with proactive fetching and caching. In: Proceedings of the 31st annual ACM
symposium on applied computing, ACM, pp 362–367

37. Zhang WE, Sheng QZ, Taylor K, Qin Y (2015) Identifying and caching hot triples for efficient RDF
query processing. In: International conference on database systems for advanced applications, Springer,
pp 259–274

38. Zhang WE, Sheng QZ, Yao L, Taylor K, Shemshadi A, Qin Y (2018) A learning-based framework
for improving querying on web interfaces of curated knowledge bases. ACM Trans Internet Technol
18(3):35

39. Zheng W, Zou L, Peng W, Yan X, Song S, Zhao D (2016) Semantic SPARQL similarity search over
RDF knowledge graphs. Proc VLDB Endow 9(11):840–851

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Usman Akhtar1 · Anita Sant’Anna2 · Chang-Ho Jihn3 ·
Muhammad Asif Razzaq1 · Jaehun Bang1 · Sungyoung Lee1

B Jaehun Bang
jhb@oslab.khu.ac.kr

B Sungyoung Lee
sylee@oslab.khu.ac.kr

Usman Akhtar
usman@oslab.khu.ac.kr

Anita Sant’Anna
anita@viniam.se

123

http://orcid.org/0000-0003-4553-0550

A cache-based method to improve query performance… 1763

Chang-Ho Jihn
jihn@khu.ac.kr

Muhammad Asif Razzaq
asif.razzaq@oslab.khu.ac.kr

1 Department of Computer Science and Engineering, Kyung Hee University, Seocheon-dong,
Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea

2 Viniam Consulting AB, Halmstad, Sweden

3 Department of Industrial and Management System Engineering, Kyung Hee University,
Yongin-si, South Korea

123

	A cache-based method to improve query performance of linked Open Data cloud
	Abstract
	1 Introduction
	2 Background
	2.1 Data representation
	2.2 SPARQL
	2.3 Related work
	2.3.1 Query suggestion
	2.3.2 Semantic caching

	3 Proposed methodology
	3.1 SPARQL query similarity
	3.2 Query prefetching
	3.3 Cache replacement

	4 Experimentation and results
	4.1 Experimental setup
	4.2 Performance evaluation

	5 Conclusion
	Acknowledgements
	References

