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Abstract
Software-defined networking (SDN) has evolved as an effective platform for future
Internet due to its capability of configuring the network dynamically with varying
requirements. It has been observed that the load and energy requirement of SDN
devices increase significantly with the growth of communication networks. There-
fore, there is a need for efficient modeling of SDN controller that can balance the
load as well as optimize the energy consumption by the devices. In this paper, we
present an energy-efficient load distribution framework; controller system model for
efficient load distribution and routing of traffic that objectively optimize the energy
consumption in the network. Our model balances load according to the heterogeneous
traffic demands as well as reduces energy consumption by introducing energy-efficient
routing algorithm selection procedure. The load balancing scheme is drifted by switch
migration technique for multiple controllers simultaneously, whereas the novelty of
energy-efficient routing lies on sleep and active mode of network devices. We present
interaction between load-balancing scheme and energy-efficient routing towards the
network’s performance enhancement. The efficacy of our proposed controller sys-
tem model is justified with extensive simulation results that show approximately 25%
reduction of energy consumption and approximately 20%performance increment. Our
proposedmodel is applicable to real-life network environment satisfying the standards
of green communication.
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1 Introduction

The large-scale digitization of data and the growth of the Internet in various
applications of enterprise domains, call significant changes in the communication
technologies and network platforms [1]. Software-defined networking (SDN) is an
emerging platform, unlike the traditional network, effectively manages heterogeneous
traffic depending on changes in requirements [2].

1.1 SDN overview

One of the important aspects of SDN is that it provides a structured software environ-
ment for evolving network-wide abstractions while potentially making the data plane
simple [3,4]. In SDN, a logically centralized control plane functionally manages the
network and abstracts the underlying network infrastructure to the applications [5].
SDNcontroller communicateswith the application layer using the northboundprotocol
to implement the application-level requirements, and southbound protocols generate
the flow tables [6,7]. Then the generated flow tables are assigned to the OpenFlow
switches for efficient and effective distribution of traffic in SDN [8]. By acquiring
network topology information, the SDN controller provides a global network view for
OpenFlow switches and implements the flexible network configuration with network
management functions [9].

1.2 Traditional network versus SDN

In comparison to the traditional network, the SDN platform can effectively solve
robustness by network function virtualization, and redundant implementation of the
network functions in the controller [10,11]. The potentiality of SDN lies in its capabil-
ity of reconfiguring the network with changes in network protocols, the inclusion of
new services and applications. Despite its advantages, there exist fewmajor challenges
in SDN such as dynamic traffic load distribution [12], optimizing energy consumption
[13], and performance enhancement [14].

1.3 Problem discussion

With the growth and usages of network applications; there is a need for managing
heterogeneous traffic in the network [15]. Therefore, one of the major challenges in
SDN is to distribute traffic among the controllers appropriately [16]. In other words,
it is necessary to do load balancing effectively among the controllers. We use, load
balancing and load distribution interchangeably in the rest of the paper. The problem
of effective load distribution in the SDN controllers can be solved using load balancing
techniqueswith other objectives such as efficient resource utilization [17], maximizing
the throughput [18], reducing the delay [19]. A highly loaded controller in a network
consumes more energy resulting in degradation of performance [20]. Also, in-efficient
route selection process may lead to the routing of traffic through the route that con-
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sumes high energy. The state-of-art research on load balancing techniques is mainly
on centralized [17], distributed [16], load informative based design [12], the trade-off
between switch migration cost and load balancing rate [18], and multiple controller-
switch migration [19]. However, none of these techniques describes the mapping of
an overloaded switch to the target controller under high load condition and about the
adjustment of the threshold value.

On the other hand, the researches on energy efficiency in SDN focuses on the
reduction of energy consumption in OpenFlow switches and link paths [21]. However,
they do not consider the energy consumption of the controllers, which is one of the
significant factors in calculating overall energy consumption in a network.

It has also been reported that network devices consume 50% of the total energy
consumption when the traffic is low [22]. The network, as a crucial component of
data center infrastructure, consumes a significant part of total energy (up to 20 %).
Therefore, energy-optimization has become a key challenge in performance evaluation
of SDN.

Energy-efficiency is a seamless integral part of load balancing. Because during
load balancing, the controllers communicate with each other through message pass-
ing. This, in turn,makes the devices and link paths active, causing energy consumption.
No state-of-art research in this domain highlighted the effect of load on energy con-
sumption and how they are related to green communication. The modern standards of
green communications mainly motivate our work of inducing energy efficiency in the
communication network for less carbon dioxide emission [14,23]. This motivates us
to formulate our current research problem with the following constraints.

(1) Generation of flow rules for heterogeneous real-time traffic versus performance
(2) An in-efficient distribution of load versus routing delays
(3) The routing of traffic under the load balancing process versus energy consumption

versus performance and resource utilization

1.4 Contributions

The main objective of this paper is to provide a controller system model (CSM) that
integrates load balancing and energy efficiency in SDN. The major contributions of
our work are as follows:

(1) An efficient load balancing scheme that effectively distributes the heterogeneous
traffic load among the controllers.

(2) (a) Implementation of sleep-active mode mechanism in devices for reducing
energy consumption.
(b) A heuristic-based routing algorithm called EERAS (energy-efficient route
selection) for efficient route selection with optimized energy consumption.

(3) Integration of load balancing and energy-efficient routing. The integration finds
a trade-off between performance and energy-optimization in the network.

(4) An extensive experimentation with varying network size to identify the efficacy
and usability of our proposed controller system model.

The rest of the paper is organized as follows. Section 2 presents the related works on
energy efficiency and load balancing of the SDN environment. In Sect. 3, we define
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the problem and present the motivation behind our work. We describe our proposed
controller systemmodel, including load balancing and energy-efficient routing frame-
work in Sect. 4. Section 5 presents the performance evaluation of our controller system
model with experimental analysis. We conclude with future work in Sect. 6.

2 Related work

In this section, we highlighted some important state-of-art works in both load bal-
ancing and energy efficiency domains of SDN. The first subsection explains existing
works in SDN control plane load balancing, and the second subsection explains energy
efficiency issues and their proposed solutions.

2.1 SDN control plane load balancing

There has been certain research work to address different issues in control plane load
balancing, starting from a centralized load balancing approach to distributed load
balancing and later on load informative strategy for load balancing. Some of them are
mentioned in this section.

In centralized load balancing approach [17], a single controller is responsible for
balancing the load. It periodically collects load from other controllers, informs the
overloaded controller to transfer some of its load to a lightly loaded controller. Then
it sends the load migration command to the target controller, followed by the switch’s
load migration to the controller with minimum load. The key issue in this approach
is latency, which includes the time elapsed since a controller gets highly loaded, due
to load collection by the master controller. Load on a controller changes dynamically,
and this load balancing strategy lags behind the real load on the target controller.

In the distributed load balancing approach, DALB [16] each controller balances its
load. Here, a threshold is defined for each controller, and no load balancing is required
until that value. When the load on a controller increases its threshold, it does load
collection, and then it may go for load balancing. In this case, most of the controllers
would collect load continuously because of their load more than the threshold. This
would consume bandwidth available for the data plane as a large number of controller
O(n2) message exchange between controllers.

In load informative strategy LI [12], each controller broadcasts its load, so one
particular controller does not require to do the load collection, which saves time and
does load balancing as quickly as possible. The load scale from 0 to threshold is
segmented into many pieces (V0 = 0, V1, V2,…Vn = Threshold), where segment size
decreases gradually that is |Vi − Vi−1| < |Vi−1 − Vi−2|. The load would be informed
only if previously informed load, and current load lies in two different segments.

SMDM based load balancing [18] proposed a trade-off between switch migration
cost and load balancing rate. However, the migration at the source controller leads
to another load migration at the target one, which is the vital reason for performance
degradation. In SMCLBRT load balancing scheme [19] multiple controllers migrate
their switches simultaneously depending on the response time of the target controller.
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One set contains the highly loaded controllers and another lightly loaded controllers.
In the first run of this scheme, controller-switch pairs are found, and in the second
phase, all the selected switches are migrated. This scheme consumes high network
bandwidth and introduces congestion due to simultaneous switch migration. A load-
balancing scheme on switch groups [20] proposed migration of a group of switches
to reduce the number of decisions. However, it increases load balancing time and
migration cost, which effectively reduces the performance of the network.

There exist some different research aspects of controller load balancing, such as
controller placement in SDN networks, load distribution over multi-path networks,
flow-assignment, and packet scheduling. Lange et al. [24] presented a framework
which shows operators with Pareto optimal placements concerning different perfor-
mance metrics and one heuristic approach, which helps in the analysis of the resulting
trade-off between time and accuracy. It also solves virtual functions placement prob-
lems in the context ofNetworkFunctionsVirtualization (NFV).Wuet al. [25] proposed
an adaptive flow assignment and packet scheduling framework which integrates the
channel resources in heterogeneous wireless networks to maximize the aggregate
goodput and spreads out the packet’s departures over multiple communication paths
within the delay constraint to mitigate burst losses.

However, each of the state-of-art techniques experiences a high network bandwidth
requirement and congestion, which leads to performance degradation.

2.2 Energy efficiency in SDN

Wei et al. [26] presented the energy-efficient traffic engineering problem in hybrid
SDN/IP networks. They formulated amathematical model considering SDN/IP hybrid
routing mode and proposed one algorithm to solve the energy-efficient traffic engi-
neering problem. Their algorithm considers the IP routers which perform the shortest
path routing using distribute OSPF link weight optimization based on neighbor-
ing region search and split the traffic at the SDN enabled switches by the global
controller.

Bolla et al. [27] proposed energymanagement primitives in the context of the emerg-
ing Software Defined Networking. It increases networking flexibility, the OpenFlow
Protocol to integrate the energy-aware capabilities offered by the Green Abstraction
Layer (GAL). It also proposes an analytic model for the management of a network
with these capabilities. In Nam et al. [28] a new energy-saving scheme that can flexibly
control and route traffic relying on the difference of network device’s energy-profile is
discussed. The energy-saving scheme using OpenFlowmakes use of the energy profile
of network devices and switch port under various link rates.

Cruz et al. [13] focused on energy consumption optimization in SDN switches and
links, their associated rates, the number of flow entries at each SDN switch. Alberto et
al. [29] proposed an energy-aware and policy-based system-oriented SDN paradigm,
which allows managing the mobile network dynamically at run time and on-demand
through policies. In their work, they reduced energy consumption by switching off the
unused devices.
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From the above-related works, we infer the following key observations:

(1) The current SDN state-of-art energy consumption reduction mechanism does
not address energy-optimization in controllers which decides flows of the SDN
switches and routers.

(2) Also, the existing energy-optimization solutions do not consider the effect of rout-
ing algorithms on energy consumption calculation. In real-time traffic scenario,
at the time of route generation for any packet, the controller may consider exist-
ing routing algorithms or create its routing algorithm. For executing each routing
algorithm, some energy is required, and that affects the energy consumption by
a controller and thus by SDN.

In summary, none of those mentioned works considers energy consumption reduction
through balancing controller load and selecting an efficient routing algorithm. In the
next section, we present the problem statement of this paperwith themotivation behind
our work.

3 Motivation and problem definition

Here in the first subsection, we describe the motivation of our work, and in the second
subsection, we present the problem statement.

3.1 Motivation

Today, a large number of heterogeneous applications are being executed in the back-
bone network of any organization or publicly accessible network [30]. Increase of
traffic with varying requirements trivially cause load balancing issues in the con-
trollers, which leads to performance degradation. To maintain and enhance network’s
performance, energy-efficient load balancing in SDN controllers, switches and links in
live networks with varying input is necessary. Here, we provide motivating examples
to demonstrate the significance of our research.

(1) Infrastructure less network for disaster: In the disaster scenario, public infras-
tructure network such as cellular and WiMAX network cannot work. However,
one or more local network elements like a mobile node can establish communi-
cation channels for other nodes. In such a case, it is beneficial to use a real-time
application such as VoIP to establish node-node communication. Therefore, there
is a need for continuous VoIP communication in the affected area. In this con-
text, the key requirements include Quality of Service (QoS), energy efficiency,
robustness, and reliability. Software-defined network with optimized energy con-
sumption may be a potential solution in this scenario.

(2) Data center network: Increasing amount of dynamic heterogeneous traffic creates
load imbalance and consume a high amount of electricity in data centers every
year to provide reliable and stable services (shown in Table 1, where the growth
of data centers are reducing). High energy cost has become one of the vital
concerns for large-scale data centers. The proportion is even rising due to the
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Table 1 Energy consumption by
global data centers

Year Energy consumption
(unit Twh)

Growth proportion (%)

2014 7202.9 16.8

2015 7998.3 14.3

2016 8842.7 13.8

2017 9102.9 12.6

rapid development of energy conservation technologies on servers and cooling
systems. Thus the energy-optimization framework is beneficial.

(3) Green communication: With the exponential growth of the Internet use, many
organizations use a large amount of energy to operate and control the cooling
system in backbone network infrastructures and thus produce a significant amount
of carbon waste. The Global e-Sustainability Initiative (GeSI) 2010 estimated
that network energy requirement in European telecom operator was about 21.4
terawatt-hours (TWh) and forecasted a figure of 35.8TWh in 2020 if no energy-
saving initiatives are adopted. There is a need for energy consumption reduction
to control carbon emission and make the environment green.

Considering the aforementioned application and deployment scenarios, the main
objective of ourwork is to develop an optimized energy-efficient load balancing frame-
work for SDN, which optimizes energy consumption by intelligently distributing the
load.

3.2 Problem definition

In any SDN topology, let Ci as the i th controller with the corresponding load CLi ,
which is defined as the sum of incoming packets from the connected switches. Given
M switches set S = {S1, S2, . . . , SM } with their load SLi and N controllers set C =
{C1,C2, . . . ,CN }. The objective is to uniformly distribute the load among all the
controllers present in the network with optimized energy consumption by the devices,
which leads to better performance and reduces the time complexity.

Every controller Ci has a potential switch set, and it can only control the flows
from that set of switches. To maintain the performance and manage the network,
each controller should finally have almost the same amount of load. Otherwise, some
controllers load increase and they will not be able to manage the switches from their
respective switch set. To more precisely define the problem we take base threshold
BT of each controller as our load limit, current load as CL and mathematically define
the load balancing condition in each controller as CLi < BT . If traffic flow increases
as the system are running, the load of the controller (CLi ) may increase rapidly and
make the previously mentioned condition as false, i.e., CLi > BT .

Here we need to migrate some highly loaded controllers load to other lightly loaded
controllers, to reduce its load and keep the total network traffic balanced. On the other
hand, if simultaneously load increases in most of the controllers, then increase of BT
value provides the best solution to accommodate more load. However, this condition
should be applicable up to a certain extent, depending upon the hardware limit of the

123



2080 M. Priyadarsini et al.

SALB

Start

Load_measurement

 Load_broadcast

Found ?

Migrate Load / Adjust
Threshold EERAS

Cal_Controller
module

Cal_Switch module

Cal_LinkPath module

Finish

NO Yes

Ci

Eci,
Esw,
Elink

Load_balancing

Find controller with
maximum load

Load_migration

Link_Reset Energy -optimization 
Framework

Load Balancing
Scheme

Control
Plane

Data
Plane

Openflow Switch
(OF1)

Openflow Switch
(OFn)

Openflow Switch
(OF2)

Packet 
processing

request

Openflow Switch
(OF3)

Openflow Switch
(OF4)

Generated
flow rules Packet processor

Other network control
functions

Eci

Eci,
Elink

Fig. 1 Functional architecture of proposed controller system model

controller. Also, the load on SDN controllers are dynamic and application-specific,
which leads to more energy consumption by the network devices. This leads to more
CO2 emission to the environment and affects the greenhouse gases.

To provide energy-efficient load distribution in the SDN environment, we need to
design a framework which not only balances network load but also provides minimum
energy consumption by the devices with suitable routing algorithm selection. In the
next section, we describe our proposed controller system model in detail.

4 Proposed controller systemmodel

In this section, we present the proposed controller system model (CSM), including a
load-balancing scheme and energy-optimization framework.

Our proposed model runs inside each controller present in the network. Whenever
the load is high on each controller, our model balances load using proposed self-
adaptive load balancing scheme (SALB). During load balancing, it needs to migrate
some of the switches from one controller to another. The migration requires efficient
routing algorithm selection and less energy consumption for better QoS and reliabil-
ity, the stability of the network. Our proposed energy computation model and EERAS
algorithm guarantee energy-efficient routing during the load balancing process. After
migration, the network is lightly loaded, consumes less energy, provides high perfor-
mance. Figure 1 shows the overall architecture of our proposed controller systemmodel
with the flow between different load balancing components and energy-optimization
framework.
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The key components of our load balancing scheme (SALB) includes: Load_
measurement , Load_broadcast , Load_balancing, Load_migration, and Link_
reset . On the other hand, our energy-optimization framework consists of the follow-
ing two components:(1) Energy computation model covering three modules namely,
Cal_Controller , Cal_Swi tch, Cal_LinkPath, and (2) EERAS algorithm for opti-
mizing energy consumption by the controllers and the links for efficient routing of
traffic. One of the key features of our optimized energy consumption model lies in
the introduction of two important modes of operation, namely, Sleep and Active. In
Active mode, the network devices receive OpenFlow messages without any delay
and subsequently process them. On the other hand, in Sleep mode, the devices store
the incoming packets in a queue and process them after a random interval of time. In
general, energy computation considers all the Active state devices only.

In the proposed controller system model, we establish an interaction between opti-
mized energy consumption framework and the three components of the load balancing
scheme, i.e., Load_measurement , Load_broadcast , and Load_migration. The
energy-optimization framework is triggered by load measurement component to cal-
culate the energy consumption of the controller. Also, the load_broadcast component
activates the energy-optimization framework to calculate the energy consumption
of the switches, controllers and the link paths. Afterward, the Load_migration
component sends the selected controller-switch pair to the energy-optimization frame-
work. Then, the EERAS algorithm finds the energy optimized route between the
source and target controllers based on the results from its different modules, e.g.,
Cal_Controller , Cal_Swi tch, Cal_LinkPath. This energy-efficient route is com-
municated to the load_migration module. Finally the Link_reset component (LR)
resets the network state to its initial topology. This component runs periodically once
in a day to bring the network to its original state after a long run of the load balancing
process. Our proposed controller system model provides efficient traffic management
with the reduction of energy consumption by the network devices. The parameters
used throughout the paper are summarized in Table 2. The next subsection describes
our proposed load balancing scheme.

4.1 Self-adaptive load balancing scheme

In this subsection,we present our proposed self-adaptive load balancing schemeSALB
in detail with the functionality of all the components. Firstly, we introduce the basic ter-
minology used for the proposed scheme and their estimation process. Thenwe describe
the five components of the load-balancing scheme with flow diagrams and algorithms.
In our scheme,wemodel the base threshold of a controller as a function of three param-
eters namely clock, inBW , out BW and described as f (clock, inBW , out BW )where
clock is the time required by the controller to process one packet request, inBW is
the packet-in bandwidth to the controller and out BW is the packet-out bandwidth
from the controller in an average [31]. We derived the BT value for each controller by
varying the clock, inBW , and out BW . We model current threshold CT as α ∗ BT ,
where α measured as the ratio between CL and BT . The α is set to 1, and it varies
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Table 2 Notations used in
controller system model

Notation Description

CL Current load of controller

BT Base threshold

CT Current threshold

α Parameter used to calculate current threshold
= CL/BT

δ Maximum load error = 10% of BT

ρ Parameter used for threshold reset condition
= 20% of BT

β Parameter used for representation of high
load

N No. of controllers

LLC Set of lightly loaded controllers

HLC Set of highly loaded controllers

U Set of switches under highly loaded
controller

SL Switch load

k1, k2, k3 Weight parameters varies with network and
converges after certain limit

LT Latency of switch

Elink Active links energy consumption

Eswi Energy consumption by i th switch

Eci Energy consumption by i th controller

λ ∗ T Arrival rate of packets

Qsize Overall queue size of the network

E A
sw Energy consumption by switches when it

wake up itself

EN
sw Energy consumption by switches when it is

activated by neighbor

ESA Conversion energy from sleep to active mode

Es Sensing energy

W Weight of packet

Ebeacon Energy of beacon message; which uses
(1−3)% of device battery

Eoi Energy consumption by active port i

n no. of ports

α′ and β ′ =
{
1; swi tchisactive
0; swi tchisinsleepmode

CPUutil CPU utilization by controller due to different
types of packets

f (Ti ) f (Ti−1 + δ)

f (T0)

{
1; receive(p) ≥ 0
0; otherwise

receive(p) Function which receives no. of packets
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Table 2 continued Notation Description

expected time for
δ is E(δ)

δ ∗ pr (t = δ) initial δ= setup time

pr (t = δ) Probability of selecting time t =
1

N
and N is

the sample space

xi Total traffic of link i

ci Capacity of link i

with the load on the controller. The operational flow of our proposed load balancing
scheme with complete functionality of each component is shown in Fig. 2.

4.1.1 Load_measurement

This component periodically measures the load of each controller. We use packets
arrival rate from the connected switches to the controller as a measure of the load.
This is calculated as the cumulative sum of the received packets for each switch
connected to the controller. CLi = ∑

j SL j .

4.1.2 Load_broadcast

It broadcasts the load to other controllers so that each controller have global knowledge
about the network. The question here is how often we should broadcast the load? The
periodic broadcast would not be a good solution because it consumes bandwidth
available for the data plane. On the other hand, the high broadcasting period may lead
to a lack of updated information in the controllers. A controller broadcasts the current
load if and only if there is enough deviation from the previously informed load (PL).
The parameter δ indicates maximum load deviation, which is set as 10% of BT . Our
SALB scheme triggers load broadcast process if the deviation of CL and PL > δ. We
choose δ value as 10% of BT to avoid a large gap in broadcast time as well as frequent
broadcast message transfer between controllers. This is dynamically captured during
the selection of the switches to be migrated to the target controller so that it does not
trigger another load migration at the target controller. The highly loaded controllers
use a time out tw for receiving load broadcast information from other controllers
before executing the load balancing process. During this time period, if the highly
loaded controllers do not receive any broadcast message from specific controllers due
to packet drops, it discards the respective controller in the load balancing process.
Here, tw is set dynamically as the last sampled round trip time.

4.1.3 Load_balancing

After the Load_broadcast process as presented earlier, each controller has the infor-
mation about the current load (CL) and base threshold (BT ) of other controllers.
Using these values, each controller calculates the current threshold (CT ) for all other
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Fig. 2 The operational flow of the proposed load balancing scheme
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controllers. The controllers possess high load to execute the subsequent tasks of the
load balancing process. Now, there arise two possible cases. In the first case, the load
in the network is uniformly distributed across all the controllers. This occurs when
almost all the controllers in the network are heavily loaded. In the second case, the
load in the network is non-uniformly distributed. This essentially indicates that there
are some lightly loaded controllers in the network, which may be the potential target
for the load balancing process. Here, we consider a parameter βi for controller i which
is representative of high load and is calculated as CLi/BTi . The controllers having
high load execute the following tasks under these cases.
Case-1 In our approach, we dynamically increase the value of α and hence increase
the current threshold of a controller in high load condition. In case the load is uni-
formly distributed, our algorithm calculates the difference betweenCL andCT . If the
difference is greater than ρ, then it sets new α as CL/BT . This is to accommodate
more load in the controller. On the other hand, if the difference is less than ρ, it is not
possible to perform load balancing. It is trivial that we perform load balancing up to
a certain level, where the distribution is uniform. This is because a higher ρ or higher
threshold for all the controllers may lead to an unstable condition. Thus we choose
ρ to 20% of BT . This is derived experimentally considering the hardware capacity
of the controller and effective adjustment of CT . On the other hand, we reduce the
value of α under the lightly loaded condition and set it as CL/BT . Accordingly, other
controllers modify their α value. Again, our algorithm checks the value of α whenCL
is less than BT and subsequently set it to 1. Then the controller broadcasts this α to
all other controllers. As our scheme, increases the current threshold to accommodate
more load and decreases it when the load is low on the network, it clearly explains the
self-adaptiveness nature of the scheme.
Case-2 When the highly loaded controllers determine the load is non-uniformly dis-
tributed in the network, they procedurally select suitable controller-switch pairs and
subsequently trigger the migration of the load from source to target controller. Our
proposed load balancing process is described in Algorithm 1. The controller-switch
pair selection is one of the key tasks in the load balancing process, which is presented
in Algorithm 2. It iteratively compares the current load of all lightly loaded con-
trollers and objectively returns a controller-switch pair that possesses minimum load
and shortest route between the switch and target controller. The controller-switch pair
selection process maintains a list of lightly loaded controllers. The selection process
depends on different factors as listed below:

(a) The load of the migrated switch should not exceed CT of the target controller.
This is to avoid consecutive load migration at the target controller.

(b) The distance between the selected switch for migration and the target controller
should be minimized.

To achieve the requirement in (a) we have introduced one constraint in our proposed
switch-controller selection process which are presented as follows:

(CLi ′ + δ + SLk)/CTi ′ < βi (1)
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whereCLi ′ is target controller’s load, SLk is load of selected switch andCTi ′ is target
controller’s current threshold. Here Eq. 1 ensures that new β of target controller is less
than the present β of source controller, which may lead to another load migration and
introduces instability in the network. The load informed by target controllers may have
deviation maximum up to δ due to delay; hence, this has been taken into consideration
while the source controller calculates the new load of the target controller. There may
exist many switch-controller pairs for migration, but we need to select those pairs
which satisfy the constraint mentioned in (b). We record each mapping representing
the difference of hop count from the switch to the target controller and hop count
from the switch to the current controller. The difference in respective recorded hop
counts is captured, sorted in increasing order. A smaller or negative value of hop count
difference means the switch is closer to the target controller than the current controller.
If there exists more than one mapping having the same hop count difference, we
choose the mapping with maximum switch load. Briefly, the switch migration from
the source controller to target does not initiate another load migration at the target
controller, and distance of the selected switch should be geographically nearer to the
target ones.

After the selection of a suitable controller switch pair, it finds the energy-efficient
routing algorithm and the link path through which the migration can happen. Using
the selected energy-efficient path, switches load are migrated to the target controller,
which reduces the overall network load.

Proposed SALB scheme is applicable to multiple controller switch migration
at the same time. The load migration for more than one controller is possi-
ble considering the constraints mentioned above. The controllers with high load
can find their suitable controller-switch pair for load migration at the same time
and can migrate the overloaded switches control to the target ones. These migra-
tions do not affect the bandwidth utilization and increment of network traffic.
The Algorithm 2 also ensures that no more than one highly loaded controller
chooses the same controller as target, because the selected switch for every highly
loaded controller is not in the same hop count difference to the target one.

4.1.4 Load_migration

After suitable controller-switch pair selection, the controller with high load sends a
Role_Request message to the target controller. The target controller replies with
Role_Reply message after getting a confirmation from the selected switch and then
switch migration procedure starts. On the other hand, the controller with high load
first completes the unfinished work of the selected switch (if any) and then migrate
the corresponding switch’s load to the target controller with End_Migration com-
mand. The target controller updates its role and informs the migrated switch about
its role exchange. Finally, both the controllers update their switch connection table.
The load migration procedure does not create any impact in the data plane, as only
switch’s control is changed from one controller to another but its load remains same
as previous.
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Algorithm 1 LoadBalancing Algorithm
Input: CL , BT , CT , ρ, α
Output: α

for i= 1 to n do
if CLi > BT then

Procedure Send()
if Load Uniformly Distributed then

if ((CLi − CTi ) or (CTi − CLi ) > ρ) then
αi = CLi /BTi
BroadcastNewAlpha(αi )

end if
else

GetControllerSwitchPair();
EERAS();
LoadMigration(controller,switch,link);

end if
if αi > 1 then

αi = 1
BroadcastNewAlpha(αi )

end if
End Procedure

else
Procedure Receive()
receive (αi )
αmax = Findmax(αi )
CT= αmax × BT
End Procedure

end if
end for

4.1.5 Link_reset

This module helps in resetting the shuffled link to their initial condition (i.e, before
running the load migration algorithm). After long run of load balancing scheme some
switches are controlled by controllers that are not geographically close to them, even
if the network has less load. This leads to performance reduction of SDN network. In
order to overcome this challenge our Link_reset module resets the migrated switch’s
link to their initial condition. This module runs once in a day at a certain instance of
time. Here, for simulation purpose we set this module’s running time as 12AM each
day. This module runs only if finds the network is lightly loaded.

In the next section we describe our proposed energy-optimization framework with
detail functionality of its modules.

4.2 Energy-optimization framework

Our proposed energy-optimization framework consists of three functional modules
namely Cal_Controller , Cal_Swi tch, Cal_LinkPath. In addition, we proposed
energy-efficient Routing Selection (EERAS) algorithm for efficient route selection
that minimizes energy consumption by SDN devices and links. The design of these
three modules functions include the concept of Active and Sleep. In this subsection,
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we formally describe our energy optimized framework. We calculate the total energy
consumption of a network as follows:

E =
n∑

i=1

(e1i ∗ Eswi + e2i ∗ Eci + e3i ∗ L) + Elink (2)

Here, Eswi denotes energy consumption of i th switch along the selected path and Eci

represents the energy consumption of the i th controller. The latency of the network
is denoted by the parameter L that depends on λ, T , Qsize. The parameter Elink

represents the total energy consumption of all the active links in the network. We used
three normalizedweight parameters e1, e2 and e3 which are derived through simulation
run for a given time period. We consider all the active switches and controllers present
in the network for calculation of the parameters Esw and Ec. We model the latency,
L as follows:

L = f (Qsize, λ, T ) = λ ∗ T

Qsize
(3)

Here, Qsize is the queue size associated to each device (switch, controller) which is a
derived constant. The parameter L is calculated experimentally through simulation by
observing arrival of packets in the network. Here, λ denotes the arrival rate and T is the
time period. We consider latency in the energy consumption calculation, because due
to introduction of Sleep mode concept, the latency may increase and which degrades
network’s performance. The energy consumptionmodel of individual network devices
are presented as follows:

4.2.1 Switch energy consumption model (Cal_Switch)

This module calculates the energy consumption of all the switches present in the
network. When any switch is in sleep mode, then it can awake itself or it can be
awaken by its neighbor switches. Firstly, the switch checks its queue size periodically,
and if finds sufficient packets for processing, then it awakens itself. On the other hand,
it checks the next hop of the packet and awaken its neighboring switches if requires.
It is modelled as follows:

Esw = α ∗ E A
sw + (1 − α′) ∗ ES

sw (4)

E A
sw is the energy consumption when a switch awakes itself from Sleep to Active

mode and ES
sw is the energy consumption when the switch is activated by its neighbor

node. Here, α is set to one for active switch and is set to zero when the switch is in
sleep mode. E A

sw includes conversion energy from sleep to active mode (ESA), sensing
energy of the network (ES) when switch senses incoming packets in its queue and
energy consumed by active ports of the switch (Epi ). It is modelled as follows:

E A
sw = ESA +

n∑
i=1

Epi + f (T ) ∗ Es (5)
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The function f (T ) is initialized to one ( f (T )=1), when the switch receives packet for
processing and is initialized to zero ( f (T )=0), when the switch does not have enough
packets. Subsequently, we computed the function f (Ti ) as: f (Ti )= f (Ti−1+δ), where
δ is a random increment in time interval. The expected value of δ is calculated as E(δ)=
δ ∗ pr (t = δ), where pr (t = δ) is the probability of increment in time interval equals
to δ. This completes the computation of function f (t). The parameter ES

sw includes
ESA, Epi and Ebeacon . Here, Ebeacon is the energy consumed by beacon message that
is at most 1–3% of total battery energy. So, calculation of ES

sw is performed as follows:

ES
sw = ESA +

n∑
i=1

Epi + Ebeacon (6)

In our model, When a switch awakes itself it checks destination id of all incoming
packets in its flow table. The switch broadcasts a beacon message to all the neighbor
switches if any incoming packet requires activation of those neighbors. Then the
neighbor switches are activated. Our proposed switch energy consumption model has
been tested experimentally and found to be optimized.

Algorithm 2 GetControllerSwitchPair()
Input: CL , SL , CT , δ, β, LLC, HLC
Output: (Sk ,Ci ′ )

if LLC.size == 0 then
return -1;

end if
for k ∈ U do

for i ′ ∈ LLC and i ∈ HLC do
βi ′ = (CLi ′ + δ + SLk )/CTi ′
if βi ′ < βi && βi ′ < 1 then

hcd = hop_count(Sk ,Ci ′ ) - hop_count(Sk ,Ci )
mapping.push(hcd, Sk ,Ci ′ )

end if
end for

end for
if mapping.si ze == 0 then

return -1;
end if
sort(mapping)
pop(mapping)
return (Sk ,Ci ′ )

4.2.2 Controller energy consumption model (Cal_Controller)

This module calculates the energy consumption of controllers present in the network
and its operation is similar to the Cal_Swi tch module. It is modeled as follows:

Ec = β ∗ E A
c + (1 − β

′
) ∗ ES

C (7)
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where E A
c is the energy consumption when a controller awakes itself, and ES

c is the
energy consumption when the controller is activated by its neighbor. Here we set β to 1
when the controller is active and is set to 0 when the controller is in sleep mode. Here,
E A
c depends upon CPU utilization of different packets (CPUutili ), sensing energy

(ES), and conversion energy (ESA). So, the parameter ES
c is modeled as follows:

E A
C = ESA +

n∑
i=1

Wi ∗ CPUutili + f (T ) ∗ Es (8)

Here,W is the weight parameter that varies for different packets having different CPU
utilization. The function f (T ) is calculated in the same way as discussed before. The
parameter EN

c considers ESA, CPUutili and beacon message energy (Ebeacon) and
is modeled as:

EN
C = ESA +

n∑
i=1

Wi ∗ CPUutili + Ebeacon (9)

The energy consumption of controller plays an important role in optimizing the total
energy consumption of the network.

4.2.3 Active link energy consumption (Cal_linkpath)

This module finds the energy consumption by each active link present in the network
with an objective of minimizing the link path energy. It considers the total traffic (xi )
along the i th link and the capacity (ci ) of that link. In addition, it incorporates the
energy consumption of the respective source and destination switches associated to
the link. Therefore, the total energy consumption (Elink) of all the active links in the
network is modeled as follows:

Elink = min

(
n∑

i=1

Ei

)
+ Esrc

sw + Edst
sw

[
Ei = E

(
xi
ci

)]
(10)

Here, Esrc
sw and Edst

sw respectively denotes the source and destination devices energy
with respect to i th link. We ignore the energy consumption of a link with very less
traffic load and assume it as idle. An idle link is to be activated if high traffic load
arrives to it. In such case, the energy consumption of the respective link is calculated

as Ei = ESA + E

(
xi
ci

)
. This module functions for all the routes between different

controllers as well as the routes between SDN switches.
Next, we present our proposed (EERAS) algorithm, which uses the above mentioned
energy computation modules.

4.2.4 Energy-efficient routing algorithm selection

Energy-efficient Routing Algorithm Selection, EERAS is a heuristic energy-
optimization algorithm that selects efficient route with an objective of minimizing
energy consumption by controllers, switches and link paths.
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The EERAS algorithm takes two stacks of state-of-art routing algorithms as input
and provides the energy-efficient efficient routing algorithm and the energy consumed
by the respective controllers, the link paths as the output. The stack1 consists of
3 Hierarchical routing protocols namely Leach, Teen, Apteen where as, the stack2
consists of hybrid protocols such as EIGRP, CEDAR, ZRP. The hierarchical routing
protocols reduce the size of routing tables providing better scalability. Similarly, hybrid
protocols return the most efficient route consuming minimum energy. Our EERAS
algorithm first computes the energy of controller Ec and active links Elink in the
network, under each routing protocol in stack1. These data is stored in a matrix
called Eng_mat . Then for each protocol, our algorithm checks if the controller energy
consumption Ec is belowapredefined threshold T h. Afterwards, it returns the protocol
having the minimum link energy Elink . In addition, it outputs the values of Ec and
Elink in the network under that protocol. This is done by traversing the data stored
in the matrix Eng_mat . On the other hand, if the controller energy Ec is more than
the predefined threshold Th value under all the protocol in stack1 our algorithm
objectively selects an efficient hybrid protocol from stack2. The selection process
of hybrid protocol from stack2 is similar to the selection process used on stack1.
Finally, our algorithm returns the selected protocol that provides optimized energy
consumption and the associated values of Ec, Elink . The details of EERAS algorithm
is presented in Algorithm 3.

Algorithm 3 EERAS Algorithm
1: while !empty(stack1) do
2: protocoli ← pop(stack1);
3: for i=1 to n do
4: Eng_mat ← compute_energy(protocoli );
5: end for
6: if Ei

c ≤ Th then
7: min_cost ← Ei

link ;
8: for all i=2 to n do
9: if Ei

link < min_cost then

10: min_cost ← Ei
link ;

11: end if
12: end for
13: end if
14: end while
15: if min_cost �= 0 then
16: P= protocoli ;
17: else
18: Process Stack2
19: Repeat step-6 to step-10;
20: end if
21: Return P , Ei

c and Ei
link ;

Our EERAS algorithm invokes compute_energy function for computing energy
consumption of controller and links for efficient selection of routing algorithms. This
procedure is presented in Algorithm 4. It determines the energy computation of each
protocol from both the stacks. In first step, a controller sends a broadcast message to

123



2092 M. Priyadarsini et al.

all its neighbor neigh(c) and subsequently the neighbors update their link states. The
link state of a device is represented as matrix, LS(node, li ), where node denotes the
neighbour node and li is the respective link cost. The update link state (Update_LS)
procedure takes the link weight and connectivity matrix as input and finds the min-
imum cost route. Finally the neighboring controllers send the updated link state LS
to the initiating controller. Then the controller computes its energy consumption Ec

as aggregation of the energy consumption of Broadcast message and link state LS
update procedure. After wards, the initiating controller updates its link state and finds
the optimal route R < c, n1, n2, . . . nk, destination > to the destination. Then, the
controller computes the link energy Elink as aggregation of energy consumption of all
the links in the route R. This completes the energy computation for a chosen routing
protocol. Our EERAS algorithm uses this result to select an effective routing protocol
(P) that involves minimum energy consumption for controller (Ec) and link (Elink).

Algorithm 4 compute_energy function
1: Start a timer t;
2: Controller c broadcasts beacon message to neighbors: Broadcast(beacon, neigh(c));
3: for all neigh(c) do
4: Update link state matrix: Update_LS;
5: end for
6: Controller C receives updated link states,LS;
7: Find the optimal route R <c,n1,n2,…nk ,destination> using LS
8: End timer t;
9: Calculate Ec: Ec = EBroadcast + EUpdate_LS ;
10: for all li ∈ R do
11: Calculate Ei ;
12: end for
13: compute Elink ;
14: Return Ec and Elink ;

5 Experimental results and evaluation

We evaluate our controller systemmodel in three stages. Firstly, we analyze the perfor-
mance of our model considering different load conditions. Secondly, we evaluate the
characteristics of our controller systemmodel towards its usability in real life network
applications. Finally, we verify the accuracy of our model.

5.1 Methodology

For simulation experiment setup, we take Floodlight [32] as the SDN controller. We
simulate the real Internet service topology,BTAsia Pacific (20 nodes) from the Internet
Topology Zoo [33] to make this implementation more similar to the real life scenario.
Out of those 20 nodes, we choose five as controllers (Floodlight controller) and rest
nodes are OpenFlow switches. The switches are assigned to the five controllers for
their flowmanagement and inject incoming packets to their corresponding controllers.
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Table 3 Performance metrics values using proposed controller system model

Throughput Packet drops Load balancing time Control overhead

Controller system model 5768 # packets/s 5 # packets/s 3 s 3% of # M

More packets are generated by the end hosts using themininet platform to create a high
load on the controllers and to measure the efficiency of our proposed load balancing
scheme SALB. For the purpose of our analysis, we create different test cases and
calculate the energy consumption in the network using our EERAS algorithm. Our
test cases cover following three traffic load conditions in the network: 1) high load
(CL > CT ), 2) low load (CL < CT ) and 3) load= threshold (CL = CT ). We also
measure the network performance in terms of throughput, load balancing time, packet
drops and control overhead.

5.2 Performance evaluation:

We test our integrate controller system model with real-world traffic applications like
Telnet, VoIP- G.711, G.723, G.729, voice activity detection (tested on voice samples
available on SndLib library), compressed RTP-DNS, and network games. We vary
the queue size (Qsize) between 500 and 2000 over all these applications. Then, we
measure the network performance in terms of throughput, packet drops, load balancing
time, control overhead. Here, the control overhead is measured as the number of the
messages exchanged during the load balancing process. Table 3 shows the performance
results of our controller system model.

We observe the performance results as an average of over fifty simulation runs with
heterogeneous traffic flows. The result shows that the control overhead is 3% of the
total number of the message exchanged (M), which is reasonable for running real-life
network applications. Figure 3a and b show the load distribution in two scenarios con-
sidering the three load conditions respectively. In Fig.3a; without any load balancing
schemes, loads of highly loaded controllers keep on increasing. However, in Fig. 3b;
with CSM the switches of highly loaded controllers C1 and C2 are migrated to lightly
loaded controllers C4 and C5 respectively before 110 s and the load of C1 and C2 are
stabilized before 115s. It also shows the energy consumption by our proposed CSM
with time in an average. The result presents that the load balancing process consumes
more energy under heavy load condition before the network stabilizes.

In the rest of this section,wemainly compare our controller systemmodelwith state-
of-art load balancing schemes; DALB [16], LI [12], SMDM [18], SMCLBRT [19],
and energy-efficient frameworks; HEATE [26], heuristic algorithm [13]. We simulate
the same test environment (BT Asia Pacific) for all the schemes and frameworks and
run each for 5min. We observe the load distribution and energy consumption changes
for the five controllers continuously by increasing the packet arrival rates. Figure 4a
shows the load distribution of 5 controllers for the five load balancing schemes. For
our controller system model, the load balancing time starts at 102 s and ends at 105s.
However, the start time for DALB, LI, SMDM, SMCLBRT are 111 s, 107 s, 107
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Fig. 3 Load distribution and energy consumption of five controllers

Fig. 4 Load distribution and energy consumption under different schemes and frameworks

s, 105 s and the end time are 122 s, 116 s, 115 s, 110 s respectively. Figure 4b
shows the energy consumption comparison of CSM, HEATE, heuristic algorithm. We
observe that our controller systemmodel reduces the total energy consumption, which
is approximately 587MJ for large scale network lies below 700MJ (Threshold energy
consumption value for real-life SDN applications) [34].

Our model runs the energy-optimized framework and EERAS algorithm for the
highly loaded controllers. EERAS algorithm selects the shortest distance with min-
imum energy consumption for the switch migration. After that, the load balancing
module again finds the minimum hop count distance of the selected switch from
source and target controller for optimal route selection. Our module consumes less
energy than other frameworks for sleep and active mode of devices and optimal rout-
ing algorithm selection. As multiple switches from multiple controllers are migrated
simultaneously and dynamic threshold adjustment for different load conditions, CSM
takes less time as compared to other schemes.

We also compare the load distribution ratio of different load balancing schemes
as shown in Fig. 5a and energy consumption ratio of various frameworks shown in
Fig. 5b for efficient performance analysis. the load distribution ratio is calculated as
follows:

Load_ratio = LoadCi

Load
(11)
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Fig. 5 Load distribution and energy consumption ratio of five controllers

where LoadCi is the load of controller Ci and Load presents the average load of 5
controllers. Similarly energy consumption ratio is calculated as:

energy_ratio = energyCi

energy
(12)

where energyCi is the energy consumption of controller Ci and energy presents the
average energy consumption of 5 controllers.

The time complexity of our proposed EERAS heuristic algorithm is O(n), where
n is the number of nodes present in the network. The energy consumption associated
with EERAS algorithm is negligible as it is invoked occasionally at the time of load
balancing requirements. On the other hand, the controller-switch pair selection process
involves time complexity O(n). This justifies the total execution time of our controller
system model is linear on network size.

5.3 Characteristics analysis

We analyze the impact of our load balancing scheme on overall energy consumption
in the network. Here, we consider the energy requirement of OpenFlow switches,
controllers, and link paths. It is trivial that the energy consumption in a network is
proportional to the overall load on the network, especially for running load balancing
process. Our approach requires migration of control of switches from source to target
controller avoiding the complexity of data plane. These characteristics play major
roles in reducing energy consumption with our controller system model. In addition,
we have calculated the amount of CO2 emission as a function of energy consumption
in the network. It is calculated as follows:

CE =
n∑

i=1

ECi ∗ CEEi (13)
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Table 4 Output (partial) of WireShark

Output without controller system model

3C-95-09-14-A1-95 (hp) consumes 722 MJ

68-b5-99-fc-d1-df, 00-01-2a-43-ab-c2 consume 600, 598 MJ respectively

Output with controller system model

3C-95-09-14-A1-95 (hp) consumes 589 MJ

68-b5-99-fc-d1-df, 00-01-2a-43-ab-c2 consume 561, 476 MJ respectively

Here,CE is the amount ofCO2 emission, EC is the energy consumption,CEE is the
CO2 emission per unit energy [23]. We have observed the reduction in carbon dioxide
emission to the environment using our model, which ensures it can be effectively
deployed in real life network implementations.

5.4 Accuracy verification

We run our proposed controller system model in EstiNet-emulation platform with
BT Asia Pacific network to verify the accuracy. Here we introduce 15 number of
MT198T switches to forward the heterogeneous traffic generated by D-ITG over a
network of 200 hosts and five controllers. The hardware set upwas built inside different
laboratories in our institute with 500 links to connect the network. The link capacity
varies between 500 Mbps-1 Gbps according to the network requirement. We install
WireShark in each network device to find out energy consumption by them. Then, we
calculate the average energy consumption in the network under our proposed controller
systemmodel. The result is presented in Table 4.We noticed that our controller system
model successfully balances the load in the network with reasonably less time. We
observe that the network consumes approximately 590MJ under our controller system
model. This shows the accuracy of our controller system model in the SDN network
testbed and thereby can be effectively deployed in practical network applications.
Besides, our controller system model improves different performance metric that, in
turn, provides better QoS and scalability.

Our proposed load balancing approach objectively reduces the no. of broadcastmes-
sages between the controllers, which essentially enhances the throughput. In addition,
our approach converges in all possible load conditions in the controllers, that is one of
the unique features of our approach. While evaluating the state-of-art load balancing
approach, we found that energy consumption during load balancing process by the
SDN devices is significantly high, which is one of the major limitations. Therefore,
we introduce a heuristic-based EERAS algorithm in integration with load balancing
as our proposed controller system model. This justifies the efficacy and usability of
our proposed model.

6 Conclusion

Here, we present a controller system model for SDN controllers consisting of a new
load balancing technique SALB and an energy-optimization framework. The interac-
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tion between these two components effectively allows the controller to balance the
network traffic load with the reduction in energy consumption. We observed that this
reduction in energy consumption is approximately 25% in large scale network with
heterogeneous applications. Besides, our proposed controller system model enhances
the performance of the network in terms of throughput, packet drops, and load bal-
ancing time. This work can be extended to design a new efficient routing protocol
for SDN controller that inherently use energy consumption as one of the metrics for
routing decision.
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