
Computing (2020) 102:977–1003
https://doi.org/10.1007/s00607-019-00744-1

A review of CUDA optimization techniques and tools
for structured grid computing

Mayez A. Al-Mouhamed1 · Ayaz H. Khan2 · Nazeeruddin Mohammad3

Received: 18 March 2019 / Accepted: 13 July 2019 / Published online: 26 July 2019
© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Abstract
Recent advances in GPUs opened a new opportunity in harnessing their comput-
ing power for general purpose computing. CUDA, an extension to C programming,
is developed for programming NVIDIA GPUs. However, efficiently programming
GPUs using CUDA is very tedious and error prone even for the expert programmers.
Programmer has to optimize the resource occupancy and manage the data transfers
between host and GPU, and across the memory system. This paper presents the basic
architectural optimizations and explore their implementations in research and indus-
try compilers. The focus of the presented review is on accelerating computational
science applications such as the class of structured grid computation (SGC). It also
discusses the mismatch between current compiler techniques and the requirements
for implementing efficient iterative linear solvers. It explores the approaches used
by computational scientists to program SGCs. Finally, a set of tools with the main
optimization functionalities for an integrated library are proposed to ease the process
of defining complex SGC data structure and optimizing solver code using intelligent
high-level interface and domain specific annotations.

Keywords Scientific simulations · Structured grid computing (SGC) · CUDA ·
Massively parallel programming · Kernel optimizations

B Ayaz H. Khan
ayaz.hassan@pafkiet.edu.pk

Mayez A. Al-Mouhamed
mayez@kfupm.edu.sa

Nazeeruddin Mohammad
nmohammad@pmu.edu.sa

1 Computer Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran,
Saudi Arabia

2 Computer Science Department, Karachi Institute of Economics and Technology, Karachi,
Pakistan

3 Computer Engineering Department, Prince Mohammad Bin Fahd University, AlKhobar, Saudi Arabia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-019-00744-1&domain=pdf
http://orcid.org/0000-0003-1167-7319
http://orcid.org/0000-0003-3580-5960

978 M. A. Al-Mouhamed et al.

Mathematics Subject Classification 68U20 · 65Y05

1 Introduction

Recent advances in Graphic Processing Units (GPUs) has opened a new challenge in
harnessing their computing power as a new general purpose computing paradigm.
GPUs have obtained prominence through implementing efficient massive multi-
threading as the main strategy for latency hiding. GPUs use multiple streaming
multiprocessors (SMs) with potentially hundreds of cores, fast context switching, and
high memory bandwidth to tolerate ever-increasing latencies to main memory. The
strategy is to overlap long-latency loads of stalled threads with useful computation
in other threads [33]. The Compute Unified Device Architecture (CUDA) is a C-like
interface proposed for programmingNVIDIAGPUs. However, porting applications to
CUDA remains a challenge. CUDAplaces on the programmer the burden of packaging
GPU code in separate functions, explicit management of data transfers between the
host and GPU memories, and manual optimization of GPU memory utilization [20].
Hence, the pre-condition to efficiently utilize the GPU resources is a comprehensive
understanding of the underlying architecture, and the exertion of complex kernel opti-
mizations. These difficulties have motivated many researchers to develop high-level
compilers that restructure the code into optimized CUDA program using a set of loop
transformations or optimizations to meet the GPU architectural constraints. Such high
level compilers may greatly simplify programming of GPUs, thereby spreading the
use of GPUs for supercomputing and scientific computing applications where the
tremendous GPU computing power is most needed.

A survey of awide set of high-level frameworks [45] knownas algorithmic skeletons
is available online. In some cases, modular programming is used by representing the
computation using a graph of modules. The ultimate aim is to develop an explicit pro-
gramming paradigm with implicit communication among processes. In other cases,
a pattern-oriented programming is developed. Other options use parametric skele-
ton objects for skeleton programming. The skeletal parallel programming framework
is useful for data-parallel applications targeting heterogeneous multi-core platforms.
Overall, most of presented frameworks, extensions and libraries target only shared
(SMP) and/or distributed (DMS) memory parallel computing systems except the Fast-
Flow framework that extends its application to CUDA programming.

1.1 Compilers and code restructuring tools

There is a growing research for reducing the complexity of generating optimized
CUDA kernels [11,29,35]. Even though the programming model of CUDA offer a
more programmer friendly interface, programming GPUs is still considered error-
prone and complex even for expert programmers, in comparison to programmingCPUs
using parallel programming models, such as OpenMP [13,34]. Most recently, quite
a few directive-based GPU programming models have been proposed from both the
research community (hiCUDA [20], OpenMPC [27], etc.) and industry (PGI Acceler-

123

A review of CUDA optimization techniques and tools for… 979

ator [36], HMPP [40], R-Stream [28], OpenACC, OpenMP for Accelerators [8], etc.).
In directive-based programming the user provides hints to the compiler to trigger some
selective code optimizations with reasonable background on the GPU architecture and
the application. On the surface, these models appear to offer different levels of abstrac-
tion and reduction in programming effort for code restructuring and optimization.

CUDA-lite [42] proposed a set of annotations to maximize the efficiency of the
transformation such as inserting shared memory variables, loop tiling and memory
coalesced loads/stores by replacing global memory access with corresponding shared
memory access. CUDA-lite allows users to input a naïve CUDA code that treats the
memory as a single entity thereby hiding the complexity of handling hierarchical
memory. hiCUDA [20] is a directive based language for programming GPUs. The aim
is not to automate program optimizations rather it makes the programming in CUDA
easier. It still depends on explicit optimizations by the programmer, such as utilizing
shared memory or constant memory.

OpenMPC [27] proposed a set of directives to be considered along with OpenMP
directives [8]. It optimizes data movement between CPU and GPU by applying the
inter-procedural dataflow analysis. It also performs parallel loop swap and loop col-
lapsing to enhance the inter-thread locality. Furthermore, it also uses auto-tuning to
obtain the final optimized CUDA code.

OpenACC is the first standardization effort towards a directive-based, general accel-
erator programming model portable across device types and compiler vendors. PGI
accelerator programming model [36] is a directive based model targeting general
hardware accelerators. It currently supports only CUDA GPUs based on OpenACC
standards. With light exposure to GPU architecture, the user needs to insert directives
into the host program to guide the compiler for particular set of kernel optimizations
and code transformations.

HMPP [9] is another directive-based with very high-level abstraction on GPU
programming similar to PGI accelerator. HMPP model is based on the concept of
codelets that can be remotely executed on hardware accelerators like GPUs. Codelets
are offloaded to GPUs based on some manual modification of code structures.

R-Stream [28] is a high-level, architecture-independent programming model that is
based on the polyhedral model [10]. It targets various architectures, such as STI Cell,
SMP with OpenMP directives, Tilera, and CUDA GPUs. R-Stream performs affine
scheduling to extract fine-grained and coarse-grained parallelism. It also performs
a set of loop tranformations such as global memory coalescing, loop interchange,
strip-mining, loop fusion, shared memory promotion and tiling.

RT-CUDA [25] provides the same level of abstraction as R-Stream but also pro-
vides user-defined configurations to control various optimizations and features of the
underlying GPU architecture to explore the effects of different kernel optimizations.
RT-CUDA converts a C-Like program into an optimized CUDA program by align-
ing the code to meet the major GPU constraints. A configuration file is used to store
hints on selective code transformation. APIs have been added to allow the invocation
of external library calls. Finally, a generic program parametrization is used to apply
auto-tuning, which will help finding a suitable setting of the resource occupancy.

CUDA-CHiLL [26] is a command based transformation compiler that performs a
recipe that contains a set of commands for each required code transformation. Opti-

123

980 M. A. Al-Mouhamed et al.

mization heuristics are applied manually such as the dependences and parallelization,
global memory coalescing, shared memory and bank conflicts, and maximize reuse in
registers.

The FastFlow framework [2] addresses computations that can be represented by a
set of iterative data parallel kernels. Specifically, a loop-of-stencil-reduce is developed
to simplify the programming of data parallel programs on heterogeneous multi-core
platforms. FastFlow has been used for implementing the Helmholtz PDEs and for
streaming Sobel edge detection. For this a 2D stencil is used by combining a 3-by-
3 neighbors in updating the solution matrix. The work extends the earlier work on
the SKePU programming framework [15]. FastFlow presents an important parallel
program optimization for implementing the reduce operations (map, reduce, map-
reduce and stencil reduce) in a heterogeneous GPU systems.

Section 2 presents a summary of current compilers and restructuring tools applying
various GPU optimizations. It also discusses the GPU optimizations that are required
to enhance resource utilization, a pre-requisite for GPU performance.

Most of the proposed computational paradigms aim at determining the involved
stencils in the solver equations based on the knowledge of the PDEs involved in
the physical model. In this view our proposed computational paradigms and that of
FastFlow positively help developing fast prototyping altogether with optimizing the
implementation of the most time consuming part that is the stencil involved in the
solver system.

1.2 GPUs and structured grid computing (SGC)

The GPU tremendous computing power is extremely useful for accelerating many
science applications that are based on discrete numerical simulation. Extracting par-
allelism depends on the application nature. For example, in signal processing the
multi-dimensional digital filter matrices are determined based on dependence graph
analysis (DAGs), divide-and-conquer strategies and pipelining [18].

Structured grid computation (SGC) is one important class of science applications
[19,22,30,32,41,43]. Hence, there is a great interest to develop systematic optimization
approaches for accelerating SGCs using GPUs. Generally, SGCs consist of repeatedly
solving a sparse system of linear equations using an iterative linear algebra solver
(ILAS) algorithm that represent the solver. Most of the simulation time is spend within
the solver, which justify the need for an efficient solver implementation. The most
time consuming part of a solver is the sparse matrix–vector multiplication (SpMV)
operations [22,30,44,48]. Sparse matrix and vector calculus attracted great attention.
For example, optimizing the storage of sparce matrices and the implied matrix–vector
calculus is one critical issue in the efficient implementation of SGCs on GPUs. In
most cases, users have standard storage schemes that are adequate for general sparse
matrices with quasi-random rdata layout. Inmany cases, the above issues aremanually
addressed due to lack of effective tools especially when there is need to efficiently
exploit the regularity and the data pattern in the distribution on non-zero elements to
increase problem size and simulation accuracy.

123

A review of CUDA optimization techniques and tools for… 981

Compilers, Restructuring Tools, and Frameworks

Numerical Libraries

Massively Parallel Op�miza�ons for
the Efficient Implementa�on of
Itera�ve Linear Algebra Solvers (ILAS)

Structured Grid tools for the efficient
Design of Data Structures, storages,
and Math Operators.

Massively Parallel Structured Grid Compu�ng

- Efficient/Timely: development of science simula�ons
- Flexibility: developing general purpose tools that can

be applied to a variety of applica�ons
- Incremental Development: build through progressive

enhancements from research and industry
- Use of massively parallel compu�ng for advancing

science simula�ons

Basic Architectural Op�miza�ons

- Parallel code genera�on
- Enhancing Memory Bandwidth
- Explicit Memory Hierarchy
- Managing Host/Device Data transfer

Domain Specific Op�miza�ons

- Ra�o of Communica�on to Computa�on
- Locality op�miza�on, synchroniza�on
- Automa�c Auto-tuning, occupancy control
- Invoca�on of op�mized external libraries
- Inter-block synchroniza�on (IBS)

Standard Numerical Library Support

- Basic Library Operators
- Standard Sparse Matrix Storage
Schemes
- Complete Linear Algebra Solvers
- Support for Numerical Methods

Numerical Library Advanced Tools for SGC

- User-guided synthesis of complex data
structures (Dense/Sparse Linear Algebra)
- Op�mized code using synthesized storage
- Data locality across library operators
- Incremental development

Compilers, Restructuring Tools, and Frameworks:
Exis�ng and Needed Op�miza�ons

Numerical Libraries:
Exis�ng and Needed Intelligent Tools

Fig. 1 An overview of required optimizations to support SGC. The optimizations that are briefly addressed
by existing tools are marked in green; the optimizations that are mostly not addressed by the existing tools
are marked in red (color figure online)

1.3 Paper contributions and organization

Many computational science applications can be discretized and simulated using SGC
approaches. The objective of this paper is to explore the techniques that accelerate the
implementation of efficient science simulations for the class of SGCs applications.
It identifies SGC simulations that can be accelerated by “basic machine dependent
optimizations” and “domain specific optimizations & tools”. Figure 1 summarizes the
basic idea of this paper.

An efficient implementation of SGC on GPUs must account for two fundamental
class of optimizations, which are (1) GPU machine dependent architectural optimiza-
tions and (2) SGC domain specific optimizations, see Sects. 2.1 and 2.2 for details.

123

982 M. A. Al-Mouhamed et al.

Due to their complexity andmulti-objective nature, the former optimizations have been
only partially addressed in proposed compilers and restructuring tools. The later opti-
mizations represent the functionalities needed for implementing iterative linear algebra
solvers using intelligent tools for developing optimized storages, sparse matrix data
structures, and implied matrix and vector operators. Section 2 presents more details
about the compilers and restructuring tools which will enlighten the reader about how
the above optimizations are implemented.

NLs helped the scientific community by providing optimized parallel/GPU code
for: (1) a rich variety of operator based vector/matrix functionalities; (2) few standard
sparse matrix storage schemes (COO, CSR, HYB, DIA, etc.); (3) few linear algebra
solvers (Ax=b) with some preconditioning such as Jacobi, SOR, BiCG, and GMRES;
(4) few numerical methods such as matrix Factorization, Gaussian elimination with
pivoting, LU, QR, and LSE. However, the following much needed enhancements for
SGC are missing: (1) User-guided synthesis of complex data structures; (2) Opti-
mized code using synthesized storage; (3) Data locality across library operators; (4)
Automatic auto-tuning.

Section 4 details a set of required enhancements and intelligent tools to help sci-
entists describe their complex data structures and automatically generate optimized
code for quick prototyping of SGCs.

For relevant background and basic terminology related to the GPU architecture,
heterogeneous programming details and the working of linear algebra solvers, the
readers can refer to references [1,3,24,25].

The rest of the paper is organized as follows. Section 2 explores the basic GPU opti-
mizations, how these optimizationswere addressed in research and industry compilers,
and current practices for programming linear algebra solvers. Section 3 introduces
SGC with an example of oil reservoir simulation. It discusses SGC implementation
strategy, and review the libraries, tools and optimizations used in these implemen-
tations. Section 4 explores how computational scientists define SGC data structures
and optimize the solver algorithm, which will help us identify the key optimization
functionalities for an integrated SGC library that will ease the process of designing
complex SGC simulations. Section 5 presents our incremental contributions towards
the integrated SGC library.

2 GPU optimizations for linear algebra solvers

This section presents the basic GPU architectural optimizations (BA), the domain
specific compiler optimizations (DS), and how research and industry GPU compilers
have implemented transformations to enhance code efficiency. It also identifies the
optimizations needed for the class of Iterative Linear Algebra Solvers (ILAS) and
explore how scientists program these solvers.

123

A review of CUDA optimization techniques and tools for… 983

2.1 Basic GPU architectural optimizations

The GPU architecture and its execution model provide detailed information on how
the GPU optimizations must be utilized to achieve the best possible application per-
formance. Following is a list of Basic Architectural Optimizations (BAs) and their
functional specifications that must be applied by the software tool or the compiler to
generate efficient CUDA programs:

1. The Parallel Memory Bandwidth (PMB): This aims at mapping threads within a
warp (group of threads run in lock-step) to access data from distinct storages in the
device memory. The compilers/tools must explore different correct mappings for
the addresses generated by neighboring threads and select a mapping that guar-
antees coalesced access to global memory. For shared memory accesses, threads
within a warp must map their accesses into distinct memory banks to avoid seri-
alization. Data access requests to global memory can be reordered in parallel by
multiple channels and banks. However, the memory bandwidth is efficiently uti-
lized when the accesses to the memory channels are balanced, without congested
channels.

2. The locality optimization (LO): A GPU has several streaming multiprocessors
(SM), each has a small fast shared-memory (ShM). Sharing among SMs is done
using a large slow global memory (GM). The locality optimization aims at enhanc-
ing the use of the deep explicit GPUmemory hierarchy by using four main actions.
The first step consists of copying data once into ShM to maximize data reuse
while maintaining a data footprint that meets memory constraints. The second
step converts the original loop using the technique of blocking or tiling with a
fixed maximum size to fit in the ShM capacity. The third step consists of making
an efficient use of the available large register file for temporary data. Finally, use
read-only special portions of GM that are the constant and texture by preloading
the data in them before entering kernels.

3. The Input/OutputGPUMemoryAllocation (I/O): The use of inter-procedural data-
flow analysis to optimize data movement between host CPU and device GPU, an
explicit operation for many compilers. This includes allocating memory for GPU
input and output, and managing the explicit transfer of data between host CPU
and device GPU.

4. Computation Partitioning and Decomposition (CP): It consists of three fundamen-
tal actions which are (1) manage block-level and thread-level parallelism, (2) map
block/kernel organization and dimension to the data structure of the computation,
(3) use of address transformations to map threads to the results and adjust thread
granularity to amortize transfer/processing ratio.

2.2 Domain specific compiler optimizations

Although the BA optimizations are essential, they are far from being sufficient to
optimize simple domain specific applications. An important target application for
restructuring tools is the area of Iterative Linear Algebra Solvers (ILAS).

123

984 M. A. Al-Mouhamed et al.

ILAS can benefit from the existence of highly optimized math libraries for basic
dense and sparse linear algebra operations. These libraries are developed by the
academia and industry communities to help providing code for multi-core and many-
core computers for a variety of applications including ILAS. Libraries may have
optimized code for many algebra operators that can be invoked from many high-level
languages. Library operator calls offer many substantial performance advantages such
as sparing the user from direct exposure to the GPU details, in addition to rapid proto-
typing and code portability. Further, libraries are constantly enhanced and new features
are added.

To efficiently implement ILAS algorithms, a restructuring toolmust embody theBA
optimizations in addition to the ability to efficiently implement some domain specific
(DS) optimizations. For this the following additional DS features should be integrated
in addition to the aforementioned BA optimizations:

1. Inter-Block Synchronization (SYN) is needed because of the iterative nature of
ILAS algorithms. Here, threads cannot start the next iteration before making
sure all threads have completed the current iteration. Since GPUs offer no global
synchronization, there is need for a customized inter-block synchronization mech-
anism, when exact algorithm behavior is needed to ensure correctness. Some of the
proposed synchronization techniques are: (1) kernel entry/exit, (2) lock-based, (3)
lock free, (4) relaxed synchronization, or (5) adapt synchronization to algorithm
depending on expected degree of thread load unbalancing.

2. Invocation of Optimized External Libraries (IEB): Some external libraries have
been optimized at lower level programming and may deliver substantial perfor-
mance advantages over manually optimized regular code. Efficient invocation of
external libraries require full understanding of its parameters and related imple-
mentation logic to select proper parameter values.

3. Optimization of Architectural Parameters (AP): Due to many GPU occupancy
constraints, there is a need to carry out some resource management analysis and
find out the most suitable machine occupancy parameters. Empirically searching
in a space of possible configurations using code parametrization and auto-tuning
techniques allows finding the optimal values of kernel parameters for best perfor-
mance.

Following subsections explore the research issues for each DS optimizations and
discuss some potential solutions.

2.2.1 Global synchronization

The Lock-based synchronization uses atomic operations on global variables defined
in GM. When all threads of a block finish their work, the first thread of each block
atomically decrements a global variable (mutex) and continues checking as long as it
is more than zero. The drawback is the hot-spot in polling of GM by the terminating
block. In Lock-free [37,47], each terminating block b sets its entry in a global input
array Ain(b) to post its termination. Next, the thread checks the completion of other
blocks using the other block locations of Ain. Note that access to Ain(b) need not be

123

A review of CUDA optimization techniques and tools for… 985

atomic because Ain(b) can be set only by block b. The barrier is passed when a block
finds that all entry of Ain are set.

Relaxed synchronization (RS) [25] allows two iterations to overlap in time. A
completing thread-block stores its range of results in GM and starts the next iteration
by using the partial results from the other threads. A global array is used to collect
the results from completing thread-blocks. The thread-block terminates the current
iterationwhen it has processed all partial results in the current operation. This approach
is profitable when there is enough load unbalancing among the threads to offset the
overhead of processing partial results.

Another interesting scheme is the Re-Ordered Synchronization (ROS), which was
proposed to hide the global synchronization overhead by allowing a completing thread
to execute some independent work that must be done anyway. ROS consists of re-
ordering the operations so that a completing thread block stores its partial results in
GM and starts an independent operation to avoid polling GM for the completion of
other blocks. Two global arrays Ain and Aout are used to post block completion and
to check completion of a global reduction respectively. The thread block that was
last in posting its completion carries out the reduction of partial results in a global
variable and sets all entries of Aout. ROS advantages are: (1) the synchronization
time due to load unbalancing is hidden by some computations, and (2) eliminate
the need for atomic access to global flags as well as polling for the other thread
completions.

2.2.2 Optimization of architectural parameters

In GPU, all data movements among the cache memory hierarchy are highly dependent
on the CUDA kernel structure as there is no cache coherency implemented within
the GPU architecture. In addition, it is difficult to determine the optimal parameters
that define the GPU machine occupancy. These parameters are the grid block size, the
thread block size and tile granularity. Usually these parameters are found usingmanual
empirical testing or using a tool like OpenTuner [5], which is a very time-consuming
process due to many possible combinations. Therefore, the need for a compiler auto-
tuning approach to evaluate the performance of a newly generated parametric kernel
with various possible combinations of the above occupancy parameters. The pruning of
the list of possible parameters is used at three levels to reduce the repeated compilation
and execution of the kernel [24]. The three levels of pruning consists of skipping
those tile sizes which do not equally distribute (1) the number of resultant elements
among all threads (array block), (2) among all kernel blocks (Kernel block level), or
(3) parameters which require more than the available registers (active block level).
For each combination, the number of registers/thread and shared-memory (ShM) per
block are determined. Next the number of Active Blocks by Warp (ABW), Active
Blocks by Shared Memory (ABShM), and Active Blocks by Registers (ABR) are
calculated. Parameter pruning is carried out at the Active Block Level and generates
a list of possible optimal parameters. Finally, the kernel is run for each combination
of parameters in candidate parameter list and the optimal combination of parameters
that give the minimum execution time is retained.

123

986 M. A. Al-Mouhamed et al.

2.2.3 Challenges for numerical libraries

Numerical libraries have made significant progress with respect to code versatility,
operator diversity, and ready-made solvers in many cases. However, just implement-
ing an ILAS using numerical library calls from a high-level language may not work
because of the following two reasons. (i) The provided sparse matrix storage schemes
are appropriate to handle a class of sparse matrices without much regularity. There is a
further need to adapt the storage scheme to take advantage of the non-zero pattern reg-
ularity, block structure and other specific features. (ii) The optimized operator library
calls assume their operands in global memory (GM) to gain generality. This offsets
the benefit of data locality when chaining the solver operators. Thus, the operator
data locality is lost unless a more general operator semantic is developed to ensure all
possible operator chaining be done at the level of the shared memory.

The application of stencil based relationships on structured grids results in some
problem-specific features such as the solver matrix layout, the sparsity pattern, and the
number of state variables to be updated at each grid point. Numerical libraries have a
variety of optimized sparse matrix storage schemes, which aim at minimizing sparse
matrix storage and enhancing the computation of basic algebra operators. The use of
NL for SGC implementation is useful for generic sparse data structure and the matrix–
vector math operators. However, NL do not have tools that takes as input the stencil-
based relationships in a given SGC and determine the sparse matrix data layout and its
optimized storage scheme. Hence, the scientists are responsible for the tedious manual
work or use standard storages that cause significant drop in performance. Another
important issue is that sometimes NL does not produce optimized code because of the
lack of tools that exploit the data locality across a chain of operator invocation, i.e.
locality is lost from one operator invocation to the next. Hence, the performance of
library functions is generally far from that of a manually optimized code.

Hence, there is mismatch between the computational power of GPUs and the degree
of SGC optimizations when solely using library implementations. To compile effi-
cient library code, there is a need for an analysis of the strategies used in current
compilers. Proper analysis allows library users to identify the missing constructs for
efficiently implementing iterative solvers, and achieve high-degree of kernel optimiza-
tion. Another problem is how to let the user describe the features of the domain specific
sparsematrix to enable the efficient implementation of theSpMV, sparsematrix storage
and the solver [30]. Finally, the evolving GPU architecture requires some reflections
on a integrated library framework to provide portable, flexible and viable solutions.

2.2.4 Summary about optimizations in research and industry compilers

The discussion from the previous sections shows how research compilers have
addressed the optimizations needed to take advantage of the massive parallelism in
GPUs. Table 1 shows how all the aforementioned BA and DS optimizations (see
Sects. 2.1 and 2.2) have been addressed in the available software frameworks and
compilers. This table is built based on the understanding of the published description
of optimizations used in these compilers and frameworks. The main feature of these
compilers is that they present a simpler GPU programming model. However, the opti-

123

A review of CUDA optimization techniques and tools for… 987

Ta
bl
e
1

C
om

pa
ri
so
n
of

so
ft
w
ar
e
co
m
pi
le
rs
an
d
fr
am

ew
or
ks

in
te
rm

s
of

op
tim

iz
at
io
n
sp
ec
ifi
ca
tio

ns

O
pt
im

iz
at
io
n

sp
ec
ifi
ca
tio

ns
C
U
D
A
-l
ite

hi
C
U
D
A

O
pe
nM

PC
PG

I
O
pe
nA

C
C

H
M
PP

R
-S
tr
ea
m

C
U
D
A
-C
H
iL
L

In
pu

t/O
ut
pu

tG
PU

M
em

or
y

A
llo

ca
tio

n

N
on

e
M
ed
iu
m

M
ed
iu
m

M
ed
iu
m

M
ed
iu
m

M
ed
iu
m

H
ig
h

L
ow

C
om

pu
ta
tio

n
Pa
rt
iti
on

in
g
an
d

D
ec
om

po
si
tio

n

N
on

e
M
ed
iu
m

M
ed
iu
m

M
ed
iu
m

M
ed
iu
m

M
ed
iu
m

H
ig
h

L
ow

L
oc
al
ity

op
tim

iz
at
io
ns

an
d
D
at
ac
op
y

T
ra
ns
fo
rm

at
io
ns

H
ig
h

M
ed
iu
m

M
ed
iu
m

M
ed
iu
m

L
ow

M
ed
iu
m

H
ig
h

L
ow

Pa
ra
lle
lM

em
or
y

B
an
dw

id
th

H
ig
h

H
ig
h

H
ig
h

H
ig
h

H
ig
h

H
ig
h

H
ig
h

H
ig
h

O
pt
im

iz
at
io
n
of

A
rc
hi
te
ct
ur
al

Pa
ra
m
et
er
s

N
on

e
N
on

e
N
on

e
L
ow

N
on

e
L
ow

M
ed
iu
m

M
ed
iu
m

U
se

of
au
to
m
at
ic

co
m
pi
le
r

op
tim

iz
at
io
n

an
d/
or

pr
og

ra
m
m
er
-

gu
id
ed

op
tim

iz
at
io
n

M
ed
iu
m

H
ig
h

M
ed
iu
m

M
ed
iu
m

H
ig
h

M
ed
iu
m

H
ig
h

H
ig
h

Sy
nc
hr
on

iz
at
io
n

ac
ro
ss

SM
s

N
on

e
N
on

e
N
on

e
N
on

e
N
on

e
N
on

e
N
on

e
N
on

e

In
vo
ca
tio

n
of

O
pt
im

iz
ed

ex
te
rn
al

L
ib
ra
ri
es

N
on

e
N
on

e
N
on

e
N
on

e
N
on

e
N
on

e
N
on

e
N
on

e

123

988 M. A. Al-Mouhamed et al.

mizations needed to generate tailored kernels for scientific simulations are missing.
The complexity of finding systematic and automatic GPU optimizations makes these
compilers less efficient than manually optimized programs for general purpose com-
puting. The following are the major limitations for the efficient implementation of
ILAS algorithms using parallel compilers and libraries:

1. There is a semantic gap between current GPU compilers and the optimizations
needed for ILAS, which are far from meeting the expectation of raw numerical
algorithms. For example, lack of global synchronization and absence of automatic
auto-tuning tools degrade resource utilization.

2. The code is not optimized to take advantage of the operator data locality in a
sequence of library calls as it always refer to the data stored in the lower levels of
the memory hierarchy.

3. Numerical libraries have standard sparse matrix storage schemes. Most of the
sparse matrices found in science simulation have domain specific data structures.
Libraries and programming tools fail to capture the regularity in sparse data struc-
tures and synthesize customized storages.

4. ILAS computing suffered in the past from the lack of powerful tools to enable
scalable implementation on cluster computers. This gap is becoming wider with
many-core technology due to complexity of adapting ILAS to massive arithmetic
parallelism, the explicit memory system, and the multi-threading strategy.

As a result it is rare to find an application in the area of linear algebra solvers that has
been significantly accelerated using the above compilers. The next section explores
how SGC researchers have been using parallel computers, software tools, numerical
libraries, to develop structured grid simulation. It focuses on the difficulties in the
above process and identify some of the needed tools to speedup the development of
SG applications on GPUs.

3 From science simulation (SS) to structured grid computing (SGC)

Science simulation (SS) is specially useful to help emulating the design process,
which presents a significant cost saving in a variety of research and engineering areas.
A physical process is modeled using a set of partial differential equations (PDEs).
Discretization of the PDEs lead to representing the problem using a large 3D grid
of cells with each grid cell having a set of states. Most of the models are inherently
non-linear. In any given simulation, each grid cell has a number of independent state
variables. A grid cell interacts with its neighbors through physical exchanges of the
state variables. The stencil defines how the state of neighboring cells interact with
each other according to the PDE laws. Generally the physical process is non-linear
and linearization is done by using the Newton-Raphson method.

To represent the interaction among all the grid cells, a 3D grid having N cells, each
cell has k state variables, is unfolded into 1D representation having kN variables by
using a simple address mapping function. This is useful to build the solver matrix.
Each cell is represented by its k state variables in the 1D representation. A 2D Jacobian
matrix (solver) is built bymapping the 1Dunfolded grid onto the rows and the columns,

123

A review of CUDA optimization techniques and tools for… 989

e.g. element (i,j) represents the interaction coefficient between grid cells i and j. Hence,
the interaction among the grid cells is represented by a Jacobian matrix A of size
(Nk)x(Nk).Generally,matrixA is sparse because a cell interact onlywith its immediate
neighbors. This consists of repeatedly solving a system of linear equations of the form
Ax=b to approximate a non-linear solution, where A is a square sparse matrix, b is
known vector, and x is the unknown vector. Solving this systemmeans finding solution
x that satisfies Ax=b. Solution x is used to update the model which in turn updates the
value of matrix A and vector b. The process of solving for x and updating the model
continues until reaching some converging condition.

There are many linear algebra solvers which solve Ax=b using direct and itera-
tive approaches. The LU factorization is one example of a direct method, and the
Jacobi, Conjugate Gradient (CG) and GMRES are examples of iterative approaches.
A science simulation spends most of its running time in solving the above system of
linear equations. Thus, most of the optimizations focus on the solver which includes
the main algebra operators like the Sparse Matrix–Vector Multiply (SpMV), Matrix-
Matrix multiply (MM), inner product of two vectors, addition/subtraction of matrices
and vectors, etc. Efficient synchronization among all the working threads is another
important optimization to produce correct solutions.

The research and industry communities have developed compilers and numerical
libraries to help alleviate the complexity of programming directly in CUDA. However,
due to the complexity of finding systematic and automatic GPU optimizations and
efficient implementation of linear algebra operators make these approaches much less
efficiently implemented than manual optimization. This is widening the gap between
the performance of science simulation and the large computational capabilities of
GPUs. Table 2 shows the summary of SGC research based on code optimization
(CO), numerical libraries (NL), and/or data structures (DS) for sparse matrices.

4 Integrated SGC library (ISL)

GPUs have a great potential for scientific simulations. Utilization of a significant frac-
tion of GPU peak performance is needed to enable enhancing the accuracy in SGC
simulations. This task is quite challenging because of the GPU architectural com-
plexity and the lack of efficient tools to customize the SGC data structures and to
adapt the code to the algorithm properties. Hence, there have been various research
efforts to help users in GPU programming, but a comprehensive solution that effi-
ciently addresses the SGC data structures and algorithms is still in a research phase.
So, there is a need of an Integrated SGC Library (ISL) for scientific simulations that
will efficiently support scientists in GPU programming and relieve them from the
tedious task of programming their solver matrices, customizing optimized storages,
redesigning operators to preserve data locality, and efficiently embedding the code
using architecture-specific GPU optimization details. ISL can be seen as an intelligent
interface for describing PDEs and structured grids at a very high-level using a nota-
tion that resembles mathematical formulas. An attempt in this direction is found in
the UFL (Unified Form Language) [4] which allows users to describe finite element
equations that are translated into kernels by FEniCS Form Compiler (FFC). ISL needs

123

990 M. A. Al-Mouhamed et al.

Table 2 Summary of SGC Research work that is based on code optimization (CO), use of optimized
operators and tools in Numerical Libraries (NL), or use/develop storage schemes and data structures for
sparse matrices (DS)

Paper title Employed
optimizations

Brief details of manual optimizations
used for performance enhancement

Stencil-aware GPU optimization of
iterative solvers [30]

DS, CO, NL Synthesized an optimized storage scheme to
store non-zero data and the used
object-oriented data structures for SpMV.
The values of GPU structural parameters
for the synthesized storage were optimized
using R-CUDA tuning tool

A generalized framework for
auto-tuning stencil computations
[22]

CO, NL Packaging generalized stencil kernels as
libraries and finding combination of
tunable parameters that maximizes
computational efficiency for a given
algorithmic kernel

Towards dense linear algebra for
hybrid GPU accelerated many-core
systems [41]

CO, NL Splitting a computation to fully exploit the
power of the hybrid many-core
components and application of Dense
Linear Algebra (DLA) such as
LU-factorization algorithm

Optimizing stencil computations for
NVIDIA Kepler GPUs [32]

CO Use of techniques for stencil computations
for regular grids to enhance data locality
with shared-memory combined with warp
specialization for higher instruction
throughput

High-performance sparse
matrix–vector multiplication on
GPUs for structured grid
computations [19]

DS, CO A sparse matrix storage scheme that takes
advantage of the diagonal structure without
explicitly representing many zero elements
in the sparse matrix (compared to DIA)
and build corresponding SpMV.

Benchmarking GPUs to tune dense
linear algebra [43]

CO Exploit blocking in hybrid CPU-GPU,
increasing parallelism and regularity in the
problem that provide slightly higher
performance with enhancement of MM
(GEMM), LU, QR and Cholesky
factorizations

Optimizing sparse matrix–vector
multiplication on CUDA [44]

DS, CO SpMV optimized CSR storage format,
optimized threads mapping, and avoiding
divergence judgment

An Improved Sparse Matrix–Vector
Multiplication Kernel for Solving
Modified Equation in Large Scale
Power Flow Calculation on CUDA
[48]

DS Enhancing SpMV using a new (ICSR)
storage format to solve the problem of
global memory alignment

An auto-tuning framework for
parallel multicore stencil
computations [23]

CO A stencil auto-tuning framework to avoid
limitation to single kernel instantiations
and the difficulty of assembling different
kernels into a library

123

A review of CUDA optimization techniques and tools for… 991

Table 2 continued

Paper title Employed
optimizations

Brief details of manual optimizations
used for performance enhancement

Stencil computation optimization and
auto-tuning on state-of-the-art
multicore architectures [14]

CO Built an auto-tuning environment that
searches optimizing parameters to
minimize runtime, while maximizing
performance portability over a variety of
platforms for stencil (nearest-neighbor)
computations.

Optimizing the matrix multiplication
using strassen and winograd
algorithms with limited recursions
on many-core [24]

CO Implement a depth-first approach for
Strassen/Winograd algorithm for dense
matrix multiply and shows that a few
recursion levels are sufficient to
outperform best known times but with
some loss of accuracy due to trading
matrix addition instead of multiplications

Efficient CSR-Based Sparse
Matrix–Vector Multiplication on
GPU [17]

DS Alleviate the limited memory bandwidth and
data locality of SpMV using an adaptive
multi-level blocking, compression of
column indices and the reuse of input
vector elements. Auto-tuning is used to
find the best set of parameters by
estimating the memory traffic and
predicting the performance

Automatic Selection of Sparse
Matrix Representation on GPUs
[39]

DS Analysis of the inter-relation between GPU
architecture, sparse matrix representation
and the sparse dataset using a set of 700
matrices with different sparsity features. A
machine learning decision model
automatically selects the best
representation on a given target platform,
based on the sparse matrix features

Characterizing Dataset Dependence
for Sparse Matrix–Vector
Multiplication on GPUs [38]

DS Study of statistical features of CuSPARSE
storages like CSR, ELL, COO and
ELL-COO scheme for 27 matrices and
attempt to correlate performance with each
representation with simple aggregate
metrics

Efficient CSR-Based Sparse
Matrix–Vector Multiplication on
GPU [17]

DS Enhancing the CSR sparse matrix storage
scheme for GPU using dynamic
assignment of different numbers of rows to
each thread block on the basis of the
number of rows involved for each block,
which allows coalesced access to the
global memory. Evaluation shows
favorable results compared to CSR and
adaptive-CSR on the C2050 and K20c
GPUs

123

992 M. A. Al-Mouhamed et al.

Table 2 continued

Paper title Employed
optimizations

Brief details of manual optimizations
used for performance enhancement

Optimization of sparse matrix–vector
multiplication on emerging
multicore platforms [46]

CO Analysis of SpMV optimization strategies
across a broad spectrum of multicore
environment and provide key insights into
the architectural tradeoffs of leading design
strategies, in the context of demanding
memory-bound numerical algorithms

Inter-block GPU communication via
fast barrier synchronization [47]

CO To reduce overhead in CPU-based
synchronization (kernel exit), a GPU
inter-block synchronization is proposed
using lock and lock-free approaches.
Micro-benchmarking of the FTT, dynamic
programming, and bitonic sort shows that
lock-free schemes have the least overhead

Implementing sparse matrix–vector
multiplication on
throughput-oriented processors [7]

DS, CO, NL To alleviate the irregular memory to broad
spectrum of sparse matrices it is proposed
to choose the storage format such as DIA,
ELL, CSR, and COO, use of fine-grained
parallelism and impose sufficient
regularity on execution paths and memory
access patterns, design kernels with
minimize divergence

A new method of sparse
matrix–vector multiplication on
GPU [21]

DS, CO, NL A non-parametric, self-tunable, approach to
data representation of SpMV for
power-law graphs. Using real web graph
data coupled with a tiling algorithm, can
yield significant benefits over the various
GPU implementations on a number of core
data mining algorithms such as PageRank,
HITS and Random Walk with Restart

High performance conjugate gradient
solver on multi-GPU clusters using
hypergraph partitioning [12]

CO, NL Study of Conjugate Gradient (CG) solver for
sparse matrices on a GPU-cluster where
faster communication is needed to achieve
scalability. A hierarchical
hypergraph-partitioning is used for
communication reduction and load
balancing over a heterogeneous system

Accelerating the solution of families
of shifted linear systems with cuda
[16]

CO, NL Evaluate the open source GPU coding to
solve shifted families of sparse linear
systems for the multi-mass conjugate
gradient (CG-M) and multi-mass
bi-conjugate gradient stabilized
(BiCGStab-M) methods, which are used in
lattice gauge theory for simulating
dynamical fermions. GPU coding
favorably compare to CPU-based coding.

123

A review of CUDA optimization techniques and tools for… 993

Table 2 continued

Paper title Employed
optimizations

Brief details of manual optimizations
used for performance enhancement

Acceleration of GPU-based krylov
solvers via data transfer Reduction
[6]

CO, NL Proposed to re-design the SpMV using
CuBLAS library to alleviate the
communication overhead when
implementing Krylov iterative methods
(KIM) using traditional numerical
libraries; concluded that similar algorithm
optimizations are profitable for other KIM
solvers

Unified form language: A
domain-specific language for weak
formulations of partial differential
equations [4]

NL Unified Form Language (UFL) is proposed
for representing weak formulations of
PDEs. UFL supports variational and
functional forms, automatic differentiation,
arbitrary function space hierarchies and
flexible tensor algebra. UFL expresses
finite element methods in
near-mathematical notation, resulting in
compact, intuitive and readable programs

Auto-tuning stencil-based
computations on GPUs in Cluster
Computing [31]

CO, DS, NL The diagonal storage format of
Newton-Krylov iterative methods is
extended to an efficient blocked data
structure using the PETSc parallel
numerical toolkit. Proposed a tunable
parametric implementation to enable
automatic search for the best parameters
Using Orio framework

to be implemented as a viable software system focusing on ease of extendability and
maintainability, as the working data structures and algorithms will evolve and new
annotations and optimizations will be required to adapt to changes in the simulated
problems and the GPUs. The following are the detailed features of the desired ISL:

1. Intelligent Data Structure Interface (IDSI): There is need to automate the pro-
cess of building, refining, and generating the sparse matrix data structures, which
is the pre-condition to generate optimized programs for scalable solution of PDEs.
The process should be based on a mechanism to capture the grid features such as
the regularity in the sparse matrix and its pattern. This can be implemented using
a set of high-level annotations to help users synthesize the main solver matrix.
Users provide guidance to the principal data structures by taking advantage of the
problem structure in implementing customized solutions. Given an SGC and a
stencil relationship, a set of linear equations (SLEs) corresponding to the applica-
tion of the stencil to all the grid points can be easily derived. The obtained SLEs
are represented by a sparse matrix, which is the solver matrix. Therefore, it is
useful to develop an intelligent tool that allows the user to describe the SG and the
relevant simulation constraints such as the stencil operator, boundary conditions,
initial conditions and cell components.

123

994 M. A. Al-Mouhamed et al.

IDSI tool may use graph properties to build the basic grid cell structure with its
computing links to other cells and determine the rules at the grid boundary and
their trigger conditions. Using inference rules on the synthesized data structure
will enable the automatic generation of the solver matrix for arbitrary grid size.
Generated solver matrix with the incorporation of all the constraints identify the
matrix non-zero blocks, which might be emerging from the stencil definition,
initial conditions, or boundary conditions. In addition, the tool will prepare the
link between the matrix structure and the physical model parameters to update
the solver data on every iteration of the simulation, a task that is essential when
implementing the solver algorithm. This flexible approachwill prove its usefulness
for assessing the simulation scalability in the process of enhancing the simulation
accuracy. Thus, the main benefit of IDSI is that it minimizes the user effort from
the task of defining the grid and its constraints, and let the system find generic rules
that scale the problem to arbitrary size and handle the complexity of the structure
and assessment.

2. Automatic assessment and selection of a library storage scheme: There is a need
to assess the performance of standard library’s storage schemes given the structure
of the synthesized solver matrix, its structured regularity and distribution of non-
zero element (nze) blocks. A tool is needed for the automatic assessment of the
efficiency of library sparsematrix storage schemes. One approach is to select a sub-
set of available storage schemes by comparing the recognized storage profitability
features with those found in the current matrix structure. The automatic assess-
ment must account for the total storage required, number of operations needed to
compute the index of non-zero elements, ratio of communication-to-computation
involving transfer from GPU global memory accesses to shared-memory, bank
conflicts at shared-memory, and available bandwidth. A storage scheme can be
retained when its implied performance meets the user specified optimization level.

3. Synthesizing custom storage scheme: The user needs to guide IDSI for building
a custom storage scheme if no library storage scheme may provide an acceptable
performance level. An interactive process in which the user is provided with high-
level annotations to guide the compression of the non-zero elements in the solver
matrix. The objective is to build progressively a storage scheme that balances the
matrix storage requirement with the overhead of address calculation and memory
access in the basic SpMVoperation. The experiencewithmanual storage optimiza-
tion indicates that many possible storage schemes can be interactively designed
such as converting diagonal blocked data structure into columns or rows, collaps-
ing rows or columns of non-overlapping data, caching block address keys to avoid
multiple conditional statements in code, clustering irregular blocked structure and
use a two-level hybrid compression coding. These techniques have been experi-
enced in different fields and may be used as key user annotations in a bottom-up
approach to construct the storage scheme from the smallest near-compact pattern
(NCP) to whole matrix by taking advantage of the regularity, graph properties, and
repeatability found in the solver matrix among the non-zero blocks. The tool may
display the snapshot of the NCPs to help the user visualize the pattern regularity
at different grid sizes. A grid plan is bounded by many blocks of zeros, which are
due to shrinking the stencil at the plan boundary. The result is a regular distribution

123

A review of CUDA optimization techniques and tools for… 995

of NCPs, where the NCP size depends on the plane size. Although the NCP may
change its pattern depending on grid dimensions, the block connectivity within
the NCP is largely preserved. The tool needs to validate the synthesized storage
and assess its expected performance by using an evaluation technique such as the
SpMV computation.

4. Optimizing the solver algorithm: The optimized math operators available in the
numerical libraries need to be redesigned to preserve inter-operator data locality
in shared-memory and register files, which are currently available through generic
library calls. Currently library math operators pick up their operands from the
global memory. Different argument scenarios must be available for each oper-
ator to ensure the use of the data operand wherever created by its predecessor.
Similarly, produced data should be cached wherever appropriate to minimize data
motion across the data dependent operators. Currently, most of these data motion
optimizations are manually performed. A chained list of operators should be auto-
matically translated, following a global data dependence analysis, into a chain of
selected operator scenarios that minimizes data motion. Optimization techniques
to account for the GPU architectural features such as the small shared-memory
size, coalesced global memory, and conflict avoiding in shared memory should be
systematically used in the algorithm implementation. This ensures some accept-
able level of communication-to-computation ratio for a givenGPU.The code needs
to be easily modified for solving (i) larger problems, (ii) fixed size problems but
with faster execution, or (iii) fixed size problems but with increased accuracy. The
compiler should have sophisticated optimizations to trade memory bound or time
bound implementations.

5. Integrated auto-tuning (IAT): Currently SGC kernel auto-tuning is manually
done or the application migrated to another environment for a complex user super-
vised auto-tuning. There is a need for an integrating auto-tuning (IAT) as part of
the library development process to hide the complexity of fine tuning code and
to avoid exposing the user to GPU intricacies. Auto-tuning need to be redesigned
to spare the user from being exposed to process of searching the most optimized
combination of architectural parameters, which are complex and highly machine-
dependent. IAT should handlemany complex and interrelated architectural features
such as the automatic generation of parametric solver kernel (PSK) to enable the
use of sophisticated auto-tuning techniques. PSK capture the salient GPU occu-
pancy parameters like the kernel structure, thread block size, thread granule size,
compilation flags, etc. The parametric code can also be a user guided process,
which enables selecting the GPU salient parameters and leave it to the tool to
prune unlikely parameter combinations and focus on a small set of values that are
assessed using empirical evaluation. Auto-tuning results may change depending
on the grid problem size, which favors an integrated approach that benefits from
the cumulative knowledge and overall attempts in scaling up the code from one
level to the next. IAT increases the portability of the solution as auto-tuning can
be done for different architectures without the need for code recompilation.

6. Dynamic Load balancing (DLB): ISL should support DLB to tolerate load unbal-
ancing in iterative algorithms. DLB feature should be scalable and hence should
avoid the use of explicit lock-based synchronization. The experience shows that

123

996 M. A. Al-Mouhamed et al.

hiding synchronization overheads by running some computation that must be done
any way proved to be a profitable alternative in designing linear algebra solvers.
DLB should offer different user selected options for enhanced load balancing such
as allowing the overlap of different iterations with proper management, work-
queues and work-stealing techniques.

7. Backward compatibility and extendibility: ISL should culminate in a viable
software system focusing on backward compatibility and ease of maintenance.
Specifically, it should be extendable to allow the addition of new data structures,
optimizations and solvers that proved to be efficient in optimizing SGCs. For code
simplicity, generality and reusability, ISL may be based on object-oriented (OO)
design.

8. Profiling and debugging: ISL should provide software tools to let users visualize
the key bottlenecks in the code. It should facilitate the debugging when code
crashes. For this purpose, it should store the core files needed including all stacks
at the time of the crash. Debugging can be simulated on a small number of cores
interactively.

5 Proposed tools for integrated SGC library (ISL)

ISL is a complex library and cannot be designed at once, but the individual components
are designed gradually. This section presents our incremental contributions towards
the development of ISL.

5.1 SpMV and BiCG-stab optimization for a class of Hepta-diagonal sparse
matrices on GPU

A Structured Grid Development Tool (SGDT) [1] is proposed to customize the design
of the solver algorithm for reservoir simulation (FRS) for arbitrary grid size, stencil
relationship, number of components, and boundary conditions. SGDT can be summa-
rized as follows:

1. Generalized Sparse Solver Matrix: Deriving the generalized hepta matrix GH
based on the knowledge of the structured grid (J,H,I) all together with a set of cell
components, stencil relationships, initial and boundary conditions, and FRSmodel
for updating the data blocks following each solver iteration. To build the solver
matrix, the SG is unfolded into 1D form taking into account the grid dimensions
and number of cell components. The offsets from a grid cell to its stencil cells
are computed and stored for use in SpMV when indexing the dot product. Taking
advantage of SG regularity, the solver matrix compactly stores the NZs as well as
a common offset vector for all the rows. This enables the automatic generation of
a family of sparse solver matrices as a function of grid dimensions, a number of
cell components, stencil and initial and boundary conditions.

2. Optimizing Sparse Matrix–Vector Multiply: Each SpMV result is assigned to
separate thread. Hence neighboring block of results are implicitly assigned to
threads within each warp. SpMV optimization is based on optimizing the sparse

123

A review of CUDA optimization techniques and tools for… 997

matrix storage and minimizing address calculation by shared an explicit offset
vector coalescing memory access and indexing operations, which are the pre-
requisite for the design of an optimized SpMVCUDAKernelAddress computation
is optimized by sharing an explicit offset vector among all threads that are mapped
to identical number of SpMV results. Threads use a coalesced access due to row
access of matrix NZs and retrieve the multiplicands using the shared offset. SpMV
is coded as a parametric module, which enables the use of code auto-tuning. Auto-
tuning searches for a combination of GPU architectural parameters (grid, thread
blocks, thread granule size, and other compiler flags) for final optimization of the
SpMV CUDA code.

3. Optimizing the Solver: Most iterative solvers can be expressed using vector,
vector-matrix, and vector scaling operations. The solver dependence graph helps
in orchestrating the following parallelization steps: (1) identify and group global
synchronization points, (2) implement optimized operators like SpMV over the
synthesized sparse matrix, inner product, vector addition and scaling, and con-
vergence condition, and (3) enhance vector data locality. Similarly, auto-tuning is
carried out over the parametric solver code as a final optimization step.

For the forward petroleum oil and gas reservoir simulation, the application of a
stencil relationship to structured grid leads to a family of generalized Hepta-diagonal
solver matrices with some regularity and structural uniqueness [1]. A customized stor-
age scheme that takes advantage of generalized Hepta-diagonal (GHD) sparse pattern
and stencil regularity is proposed. The invocation of numerical libraries operators is
made using multiple-kernels invocation, which causes loss of data locality due to ker-
nel exit and re-entry. An in-kernel execution model (IKEM) is proposed based on a
lock-free inter-block synchronization. Thread blocks are assigned some independent
computations to avoid repeatedly polling the global memory. Other optimizations
enable combining reductions and collective write operations to the memory. IKEM
allow preserving vector data locality and avoiding saving vector data back to memory
and re-loading on each kernel exit and re-entry. IKEM is suitable for many iterative
solvers like BiCG-stab and QMR. The experiments are run on Tesla K20Xm hosted
by an Intel Core i7 CPU. Performance Flops of SpMV using GHD with IKEM is 3×
that of using CuSPRSE for CSR or BSR storages and 1.25× for HYB or DIA stor-
ages, respectively. The number of structured grid cells is varied between 8× 103 and
2.6× 105 and each cell has 2, 4, or 8 state variables. Similarly, the performance Flops
of BiCG-stab solver usingGHDwith IKEM is 2.6× that of BiCG-stab for CSR or BSR
storages and 1.27× for HYB or DIA storages with CuSPRSE and CuBLAS library
calls. Results show significant performance improvements in SpMV and BiCG-Stab
solver in response to proposed optimizations compared to other proposed implemen-
tations found in the literature using standard sparse storages and numerical library
calls involving multiple-kernel invocations.

This work contributes towards the three features of the ISL described in Sect. 4—
IntelligentData Structure Interface (feature 1) and synthesizing custom storage scheme
(feature 3) and optimizing the solver algorithm (feature 4).

123

998 M. A. Al-Mouhamed et al.

5.2 Invocation of GPU device routines fromOpenACC

Many Numerical Libraries (NLs) have been developed to help scientists porting com-
mon scientificmethods intoGPUdevices.Automated parallelization is needed tomake
NLs more accessible from high-level languages (HLLs). Interoperability between
automated parallelization technologies is still underrated by researchers in terms of
easiness of use and performance. For example, calling CuBLAS GPU interface from
a GPU CUDA code region requires the use of handles to enable concurrency, which
is similar to calling from a CPU code region. To reduce the overhead, there is need to
eliminate the handle use from inside an HLL and introduce an intermediate function
that does not require cuBLASHandle argument. Hence, an intermediate implementa-
tion has been proposed that puts the necessary calls to create a new cuBLASHandle,
call the actual library using that handle instance then destroy it after the call. This
way the client code needs only to call the intermediate function without any handling
of setup and destroy code for cuBLASHandles. A handle usually has a consistent
pattern among each library. In the example of CuBLAS library; handle usage is fairly
consistent among functions in a way that makes it possible to generalize a solution
and automate it. Our approach is applicable to libraries that depend on pointers to
opaque data structure handle arguments without a corresponding support from the
compiler. A solution [3] for generating a wrapper library is proposed that avoids the
need for such arguments; because these type of arguments stand as obstacles to such
use. In the evaluation, the proposed solution showcase with a library paired with an
OpenACC compiler that does not support it as an example. Our tests show speedups
that reach 2.5× in some cases over the plain use of CuBLAS host-based interface,
while the speedup reached about 34× with respect to the purely OpenACC-exclusive
solution in some cases. Moreover, a decrease in code size of about 50% with respect
to OpenACC-exclusive approach was noted..

This work facilitates the achievement of ISL’s feature 2 “Automatic assessment
and selection of a library storage scheme”. Also it maps indirectly to ISL’s feature 7
“Backward Compatibility and Extendibility”.

5.3 Restructuring tool with auto-tuning

The design of a restructuring tool (RT-CUDA) [25] based on a restructuring algo-
rithm is capable to convert a standard C-program (input) into an optimized CUDA
program (output). The proposed restructuring algorithm acquires the best possible
kernel optimizations and energy-aware rules. RT-CUDA hides architectural details of
the underlying GPU device that helps traditional C programmers to develop parallel
programs in a fast and efficient manner. RT-CUDA supports efficient development
of sparse linear solvers such as conjugate gradient to be used in reservoir simulation
software. It also includes API functions to allocate and initialize sparse matrices with
random sparsity as well as reading matrix from matrix market file to be used as input
for the solver. The implementation of such a solver can be optimized using the com-
bination of user-defined functions and invoking highly optimized library functions
including cuBLAS and cuSparse library functions. RT-CUDA integrates both BA and

123

A review of CUDA optimization techniques and tools for… 999

Fig. 2 Tools comparison using LAPACK operators

DS optimizations for code transformations. The user-defined functions generated by
RT-CUDA are restructured as parametric CUDA kernels that are then pass through
an efficient auto-tuning mechanism to enhance the GPU resource utilization by the
functions.

A subset of the restructuring tools were evaluated with various applications
includingMatrix Addition (Madd), Matrix Multiplication (MM), Matrix–Vector Mul-
tiplication (MV), Vector-Vector Multiplication (VV), and also the recursive block
matrix multiplication that are Strassen (S-MM) and Winograd (W-MM) Matrix Mul-
tiplications [24]. The evaluation results show the significant improvement in terms of
the execution time of the parallel codes using the proposed integrated approach. The
comparison for different applications and tools has shown with appropriate space size
(N) and normalized execution time to show the results in a particular range.

Figure 2 shows the normalized execution times in milliseconds of different tools
using a set of operators inLAPACKbenchmark suite for basic linear algebra operations
including Madd, MM, MV, and VV. The results show that our integrated approach
obtained better performance for Madd and VV in comparison to CUBLAS library
functions. However, for complex applications such as MM and MV, CUBLAS still
has a significant performance advantage over our integrated approach. This is because
cublasSgemm and cublasSgemv functions have been developed with complex kernel
optimizations at very low-level of coding by hand while at this stage, the paper is
focusing on high-level CUDA kernel optimizations. However, with the proposed high-
level kernel optimizations, our integrated approach outperforms CUBLAS with 45%
improvement in case of Madd and 2% improvement in case of VV. In addition to that,
our integrated approach outperformsGPGPU compiler with 30% improvement in case
of MM, 99% improvement in case of MV, and 50% improvement in case of VV. Also,
MV implementation in GPGPU compiler gives value errors in case of large space size

123

1000 M. A. Al-Mouhamed et al.

Fig. 3 Integrated approach for recursive block matrix multiplication

while our integrated approach generates correct values with any space size. Moreover,
our integrated approach outperforms OpenACC implementation of PGI compiler with
42% improvement in case of Madd, 99% improvement in case of MM, and approx.
similar performance in case of MV and VV for large arrays.

Using integrated approach, a recursive blockmatrixmultiplication algorithms based
on Strassen (S-MM) and its Winograd (W-MM) variant were also implemented. The
above algorithms reduce the complexity of the canonical MM algorithm from O(N3)
to O(N2.8). The implementation uses a depth-first (DFS) traversal of a recursion tree
where all cores work in parallel on computing each of the sub-matrices, which are
computed in sequence. The DFS approach reduces the storage at the detriment of
large data motion to gather and aggregate the results. Our implementation uses a
small set of basic algebra functions, invoking CUBLAS, and use of auto-tuning of
the parametric kernel to improve resource occupancy [24]. Evaluation (Fig. 3) shows
that our implementation of W-MM and S-MM with one recursion level outperform
CUBLAS 5.5 library implementation with up to twice as fast for arrays satisfying
N ≥ 2048 and N ≥ 3072 respectively. Based on the above it is clear that integrated
S-MM andW-MM implementations with a few recursion levels can be used to further
optimize the performance of basic algebra libraries. This work contributes towards
the two ISL features—Optimizing the solver algorithm (feature 4) and Integrated
auto-tuning (feature 5).

5.4 Conclusion

Billions of running threads are expected in the coming Exascale computing era. How-
ever, there is a mismatch between rapidly growing computational power and the
efficiency of program produced by the current compilers and optimization tools. The
scalable computing power of GPUs is highly essential for scientific simulations, espe-
cially for the class of Structured Grid Computing (SGC). In order to achieve higher
simulation accuracy, large scale simulations of the problem with highly efficient code
is required. These requirements are missing in the current technologies. This paper

123

A review of CUDA optimization techniques and tools for… 1001

identifies GPU architectural optimizations and techniques used in research and indus-
try compilers to produce optimized code. It also identifies missing optimizations for
the efficient implementation of SGC algorithms such as the iterative linear algebra
solvers. Optimizing SGCs is found to be complex, error prone, and involve a variety
of heterogeneous tools and techniques, which can be envisioned only from a research
perspective. However, spreading the use of SGC on GPUs requires a deliberate effort
for identifying the required automatic techniques for alleviating the complexity and
the integration within a well-engineered framework. This paper details these tech-
niques and described an integrated library with the required essential functionalities
to ease the process of developing efficient storage, optimized code by using a high-level
interactive interface and intelligent domain specific annotations.

Acknowledgements The authors would like to acknowledge the support provided by King Abdulaziz City
for Science and Technology (KACST) through the Science and Technology Unit at King Fahd University
of Petroleum and Minerals (KFUPM) for funding this work through project No. 12-INF3008-04 as part of
the National Science, Technology and Innovation Plan.

References

1. Al-Mouhamed MA, Khan AH (2017) SpMV and BiCG-Stab optimization for a class of hepta-
diagonal-sparse matrices on GPU. J Supercomput 73(9):3761–3795. https://doi.org/10.1007/s11227-
017-1972-3

2. Aldinucci M, Danelutto M, Drocco M, Kilpatrick P, Misale C, Peretti Pezzi G, Torquati M (2018)
A parallel pattern for iterative stencil + reduce. J Supercomput 74(11):5690–5705. https://doi.org/10.
1007/s11227-016-1871-z

3. Almousa A (2017) Experimental evaluation and enhancement of optimizations of annotation-based
and automatic parallel code generators for GPUs. PhD thesis, King Fahd University of Petroleum and
Minerals

4. Alnæs MS, Logg A, Ølgaard KB, Rognes ME, Wells GN (2014) Unified form language: a domain-
specific language for weak formulations of partial differential equations. ACM Trans Math Softw
(TOMS) 40(2):9

5. Ansel J,Kamil S,VeeramachaneniK,Ragan-Kelley J,BosboomJ,O’ReillyUM,AmarasingheS (2014)
Opentuner: an extensible framework for program autotuning. In: Proceedings of the 23rd international
conference on parallel architectures and compilation. ACM, pp 303–316

6. Anzt H, Tomov S, Luszczek P, SawyerW,Dongarra J (2015)Acceleration of GPU-based krylov solvers
via data transfer reduction. Int J High Perform Comput Appl 29(3):366–383

7. Bell N, Garland M (2009) Implementing sparse matrix–vector multiplication on throughput-oriented
processors. In: Proceedings of the conference on high performance computing networking, storage
and analysis. ACM, p 18

8. Beyer JC, Stotzer EJ, Hart A, de Supinski BR (2011) OpenMP for accelerators. In: IWOMP, lecture
notes in computer science. Springer, pp 108–121

9. Bodin F, Bihan S (2009) Heterogeneous multicore parallel programming for graphics processing units.
Sci Program 17(4):325–336

10. Bondhugula U, Hartono A, Ramanujam J, Sadayappan P (2008) A practical automatic polyhedral
parallelizer and locality optimizer. SIGPLAN Not 43(6):101–113. https://doi.org/10.1145/1379022.
1375595

11. Buck I, Foley T, Horn D, Sugerman J, Fatahalian K, Houston M, Hanrahan P (2004) Brook for GPUs:
stream computing on graphics hardware. ACM Trans Graph 23(3):777–786. https://doi.org/10.1145/
1015706.1015800

12. Cevahir A, Nukada A, Matsuoka S (2010) High performance conjugate gradient solver on multi-GPU
clusters using hypergraph partitioning. Comput Sci Res Dev 25(1–2):83–91

13. Dagum L, Menon R (1998) OpenMP: an industry-standard API for shared-memory programming.
IEEE Comput Sci Eng 5(1):46–55. https://doi.org/10.1109/99.660313

123

https://doi.org/10.1007/s11227-017-1972-3
https://doi.org/10.1007/s11227-017-1972-3
https://doi.org/10.1007/s11227-016-1871-z
https://doi.org/10.1007/s11227-016-1871-z
https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1145/1015706.1015800
https://doi.org/10.1145/1015706.1015800
https://doi.org/10.1109/99.660313

1002 M. A. Al-Mouhamed et al.

14. Datta K, Murphy M, Volkov V, Williams S, Carter J, Oliker L, Patterson D, Shalf J, Yelick K (2008)
Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures. In: Pro-
ceedings of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press, p 4

15. Ernstsson A, Li L, Kessler C (2018) Skepu 2: flexible and type-safe skeleton programming for het-
erogeneous parallel systems. Int J Parallel Program 46(1):62–80. https://doi.org/10.1007/s10766-017-
0490-5

16. Galvez R, van Anders G (2011) Accelerating the solution of families of shifted linear systems with
cuda. arXiv:1102.2143

17. Gao J, Qi P, He G (2016) Efficient CSR-based sparse matrix-vector multiplication on GPU. Math
Probl Eng. https://doi.org/10.1155/2016/4596943

18. Gebali F (2011) Algorithms and parallel computing, vol 84. Wiley, Hoboken
19. Godwin J, Holewinski J, Sadayappan P (2012) High-performance sparse matrix–vector multiplication

on GPUs for structured grid computations. In: Proceedings of the 5th annual workshop on general
purpose processing with graphics processing units. ACM, pp 47–56

20. Han TD, Abdelrahman TS (2011) hiCUDA: high-level GPGPU programming. IEEE Trans Parallel
Distrib Syst 22:78–90. https://doi.org/10.1109/TPDS.2010.62

21. Huan G, Qian Z (2012) A new method of sparse matrix–vector multiplication on GPU. In: 2012 2nd
International conference on computer science and network technology (ICCSNT). IEEE, pp 954–958

22. Kamil S (2009) A generalized framework for auto-tuning stencil computations. Lawrence Berkeley
National Laboratory, Berkeley

23. Kamil S, Chan C, Oliker L, Shalf J,Williams S (2010) An auto-tuning framework for parallel multicore
stencil computations. In: 2010 IEEE international symposium on parallel and distributed processing
(IPDPS). IEEE, pp 1–12

24. Khan A, Al-Mouhamed M, Fatayer A, Mohammad N (2016) Optimizing the matrix multiplication
using strassen and winograd algorithms with limited recursions on many-core. Int J Parallel Program
44(4):801–830

25. Khan AH, Al-MouhamedM, Al-MulhemM, Ahmed AF (2017) RT-CUDA: a software tool for CUDA
code restructuring. Int J Parallel Program 45(3):551–594

26. KhanM, Basu P, Rudy G, Hall M, Chen C, Chame J (2013) A script-based autotuning compiler system
to generate high-performance cuda code. ACMTrans Archit Code Optim 9(4):31:1–31:25. https://doi.
org/10.1145/2400682.2400690

27. Lee S, Eigenmann R (2013) OpenMPC: extended OpenMP for efficient programming and tuning on
GPUs. Int J Comput Sci Eng (IJCSE) 8(1):4–20

28. Leung A, Vasilache N, Meister B, Baskaran M, Wohlford D, Bastoul C, Lethin R (2010) A mapping
path for multi-GPGPU accelerated computers from a portable high level programming abstraction.
In: Proceedings of the 3rd workshop on general-purpose computation on graphics processing units,
GPGPU ’10. ACM, New York, NY, USA, pp 51–61

29. Liao SW, Du Z, Wu G, Lueh GY (2006) Data and computation transformations for brook streaming
applications on multiprocessors. In: Fourth IEEE/ACM international symposium on code generation
and optimization (CGO). pp 196–207

30. Lowell D, Godwin J, Holewinski J, Karthik D, Choudary C, Mametjanov A, Norris B, Sabin G,
Sadayappan P, Sarich J (2013) Stencil-awareGPUoptimization of iterative solvers. SIAMJSciComput
35(5):S209–S228

31. Mametjanov A, Lowell D, Ma CC, Norris B (2012) Autotuning stencil-based computations on GPUs.
In: 2012 IEEE international conference on cluster computing (CLUSTER). IEEE, pp 266–274

32. Maruyama N, Aoki T (2014) Optimizing stencil computations for NVIDIA Kepler GPUs. In: Pro-
ceedings of the 1st international workshop on high-performance stencil computations, Vienna. pp
89–95

33. Mueller K, Xu F, Neophytou N (2007) Why do commodity graphics hardware boards (GPUs) work
so well for acceleration of computed tomography? Proc SPIE 6498:64980N – 6498 – 12

34. OpenMP: The OpenMP®API specification for parallel programming (2018). http://openmp.org/wp/.
Accessed Jan 2019

35. Peercy M, Segal M, Gerstmann D (2006) A performance-oriented data parallel virtual machine for
GPUs. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Sketches. ACM, New York, NY, USA, p 184

36. PGI: Portland group (2019). http://www.pgroup.com/resources/accel.htm. Accessed Jan 2019
37. Rivera-Polanco D (2009) Collective communication and barrier synchronization on NVIDIA CUDA

GPU. Ms thesis, University of Kentucky

123

https://doi.org/10.1007/s10766-017-0490-5
https://doi.org/10.1007/s10766-017-0490-5
http://arxiv.org/abs/1102.2143
https://doi.org/10.1155/2016/4596943
https://doi.org/10.1109/TPDS.2010.62
https://doi.org/10.1145/2400682.2400690
https://doi.org/10.1145/2400682.2400690
http://openmp.org/wp/
http://www.pgroup.com/resources/accel.htm

A review of CUDA optimization techniques and tools for… 1003

38. Sedaghati N, Ashari A, Pouchet LN, Parthasarathy S, Sadayappan P (2015) Characterizing dataset
dependence for sparse matrix–vector multiplication on GPUs. In: Proceedings of the 2nd workshop
on parallel programming for analytics applications. ACM, pp 17–24

39. Sedaghati N, Mu T, Pouchet LN, Parthasarathy S, Sadayappan P (2015) Automatic selection of sparse
matrix representation on GPUs. In: Proceedings of the 29th ACM on international conference on
supercomputing. ACM, pp 99–108

40. Tojo N, Tanabe K, Matsuzaki H (2014) US Patent and Trademark Office, Washington, DC, US Patent
No. 8,732,684

41. Tomov S, Dongarra J, Baboulin M (2010) Towards dense linear algebra for hybrid GPU accelerated
manycore systems. Parallel Comput 36(5):232–240

42. Ueng SZ, Lathara M, Baghsorkhi SS, Hwu WMW (2008) Cuda-lite: reducing GPU programming
complexity. In: Amaral JN (ed) Languages and compilers for parallel computing. Springer, Berlin, pp
1–15

43. Volkov V, Demmel J (2008) Benchmarking GPUs to tune dense linear algebra. In: Proceedings of the
ACM/IEEE conference on high performance computing. p 31

44. Wang Z, Xu X, Zhao W, Zhang Y, He S (2010) Optimizing sparse matrix–vector multiplication on
CUDA. In: International conference on education technology and computer. https://doi.org/10.1109/
ICETC.2010.5529724

45. Wikipedia: Algorithmic skeleton (2019). https://en.wikipedia.org/wiki/Algorithmic_skeleton.
Accessed 01 June 2019

46. Williams S, Oliker L, Vuduc R, Shalf J, Yelick K, Demmel J (2009) Optimization of sparse matrix–
vector multiplication on emerging multicore platforms. Parallel Comput 35(3):178–194

47. Xiao S, chun Feng W (2010) Inter-block GPU communication via fast barrier synchronization. In:
IPDPS. pp 1–12

48. Yang M, Sun C, Li Z, Cao D (2012) An improved sparse matrix–vector multiplication kernel for
solving modified equation in large scale power flow calculation on CUDA. In: IEEE 7th international
power electronics and motion control conference—ECCE Asia

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1109/ICETC.2010.5529724
https://doi.org/10.1109/ICETC.2010.5529724
https://en.wikipedia.org/wiki/Algorithmic_skeleton

	A review of CUDA optimization techniques and tools for structured grid computing
	Abstract
	1 Introduction
	1.1 Compilers and code restructuring tools
	1.2 GPUs and structured grid computing (SGC)
	1.3 Paper contributions and organization

	2 GPU optimizations for linear algebra solvers
	2.1 Basic GPU architectural optimizations
	2.2 Domain specific compiler optimizations
	2.2.1 Global synchronization
	2.2.2 Optimization of architectural parameters
	2.2.3 Challenges for numerical libraries
	2.2.4 Summary about optimizations in research and industry compilers

	3 From science simulation (SS) to structured grid computing (SGC)
	4 Integrated SGC library (ISL)
	5 Proposed tools for integrated SGC library (ISL)
	5.1 SpMV and BiCG-stab optimization for a class of Hepta-diagonal sparse matrices on GPU
	5.2 Invocation of GPU device routines from OpenACC
	5.3 Restructuring tool with auto-tuning
	5.4 Conclusion

	Acknowledgements
	References

