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Abstract
Clouds are becoming an effective platform for scientific workflow applications. In 
the meantime, Cloud computing structures are moving towards being more hetero-
geneous. In heterogeneous service-oriented systems, managing the reliability of 
resources (e.g., processors and communication networks) is widely identified as a 
critical issue due to processor and communication failures affecting user quality of 
service requirements. Therefore, these types of failures should be taken into account 
when scheduling algorithms. The present paper proposes a scheduling approach 
which includes four algorithms for minimizing the workflow execution cost while 
also meeting the user-specified deadline and reliability. To meet the application’s 
requirements, the first algorithm partitions the workflow into several clusters based 
on a critical parent called CbCP. After that, the resource assignment algorithm, con-
sisting of reliability and deadline distribution methods, satisfies the application’s 
constraints. Experimental outcomes on various workflows, generated at different 
scales in real and random fashion, demonstrate that the proposed heuristics meet the 
deadline and reliability. This ensures the minimal cost when performing a similar 
quality of service as opposed to the performance of the state-of-the-art DRR and 
QFEC+ algorithms.
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1 Introduction

Scientific workflows are usually modeled as directed acyclic graphs (DAGs) 
whose nodes are regarded as tasks and whose directed edges constitute depend-
encies among tasks. Because of involving hundreds or thousands of tasks in a 
single workflow [1], a large-scale infrastructure, such as the public Cloud, can 
benefit the scientific workflow. For sharing, Cloud computing supplies an infra-
structure for large scale and heterogeneous resources, such as computing and data 
resources. Numerous hardware and software capacities and configurations make 
resource management a critical issue in large scale heterogeneous systems. In 
order to perform scientific workflows over the Cloud, efficient scheduling algo-
rithms must meet the demands of users or systems [1]. As workflow execution 
in the Cloud incurs financial cost to users, one of the Quality of Service (QoS) 
parameters is cost, in which the pricing model of the most prevalent commercial 
Clouds is based upon the quantity of time intervals utilized by users. In addition, 
the operating proficiency of processors in heterogeneous service-oriented archi-
tectures has been advanced to yield robust Cloud-based services, while processor 
and communication network failures [2] affect system reliability and user quality 
of service [3]. Therefore, reliability is another principal challenge in workflow 
scheduling [3–6]. Moreover, as a consequence of the availability of resources to 
applications dispensing dynamic scaling based on need, Cloud infrastructures 
are appropriate platforms for deadline-constrained workflow application execu-
tion. With all this variety, application developers, intent on providing their sys-
tems with the Cloud experience, face the challenge of making the best choices in 
regard to price, reliability, and deadline.

As scheduling is mapping tasks to the processors, the specific demands of 
QoS are met while task precedence constraints are considered. Since optimal task 
scheduling was verified to be NP-complete [7], numerous heuristic procedures 
have been recommended for homogeneous [8] and heterogeneous distributed sys-
tems [9, 10]. Thus, heuristics can be utilized to obtain sub-optimal schedules. The 
common task scheduling algorithms are categorized into a number of classes, 
such as list scheduling algorithms, cluster algorithms, and duplication-based 
algorithms. For instance, in regard to reducing the scheduling length, the HEFT 
list-scheduling algorithm [8] nominates tasks in accordance with the descending 
order of their upward rank and sends them to different processors. Therefore, the 
aim of the current paper is to obtain a schedule and gain the ability of satisfying a 
user-specified deadline in place of minimizing the execution time.

Furthermore, other items in the Cloud, such as workflow execution reliability 
as well as execution costs, are of reasonable importance. Reliability denotes the 
probability of successfully completing the execution of a schedule [3–6]. Improv-
ing reliability by redundancy in space and time has been proposed by numerous 
algorithms [12, 13]. Redundancy in space is one of the widespread mechanisms 
for providing fault tolerance; for example, [2] applies an active replication scheme 
to maximize execution reliability. This replication plan concurrently carries out 
the replication of each task on various processors and the task succeeds if at least 
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one of the processors does not fail [11–13]. Besides, more replicas imply more 
resource consumption and higher economic cost. Therefore, the aim of the cur-
rent paper is to obtain a schedule with the property of satisfying a user-specified 
reliability in place of maximizing the execution reliability.

Another processor failure mitigation technique is the backup/restart procedure 
which deals with rescheduling the task on a backup processor so as to ensure 
progress [14, 15]. An enhanced form of the backup/restart procedure employed in 
the case of failure is the checkpoint/restart scheme, in which the task is restarted 
from the most recent checkpoint instead of from the exact beginning. By relying 
on the redundancy in time, missed deadlines may occur in backup/restart, as well 
as in checkpoint/restart schemes. As satisfying the user defined deadline is an 
essential issue in our work, this procedure cannot be employed in current study.

Current research has begun to study the fault-tolerant scheduling algorithm 
based on exploring minimum numbers of replicas to satisfy the reliability require-
ment of the workflow. For example, Zhao et  al. [4], Xie et  al. [16] proposed a 
resource redundancy minimizing algorithm (DRR) with deadline and reliability 
requirements and quantitative fault-tolerant scheduling algorithm QFEC+ with 
minimum execution costs, respectively. In both procedures, firstly, probability of 
failure for a task on a processor is calculated. Then, by respecting each task’s 
sub-reliability requirement, different tasks are replicated a number of times and 
are sent to corresponding processors. However, a major limitation of DRR and 
QFEC+ is ignoring the workflow structure, especially when there are high inter-
dependencies among tasks.

Since processor and communication failures affect user quality of service require-
ments, it is essential to take into account the processors’ probability of failure as 
well as related network resources when scheduling algorithms.

To tackle this issue and also meet the reliability and deadline requirements of 
users at a minimum cost, the current study proposes a new reliable scheduling 
approach: CbCP. The first algorithm partitions the workflow into several clusters 
based on the critical parent (CbCP). Reliability and deadline distribution algorithms 
are then introduced to meet the application’s reliability and deadline requirements 
while the overall cost of execution is minimized.

In accordance with these challenges, the contributions of the present work are 
summarized as follows:

• It is found that the key point for increasing reliability is considering the work-
flow structure, especially when there are high interdependencies among tasks. 
Reducing the number of messages transferred from parent tasks to children tasks 
can enhance the obtained workflow reliability. Therefore, clustering based on the 
critical parent (CbCP) algorithm is proposed to partition the workflow into clus-
ters that are able to be performed in parallel or serial.

• The reliability distribution algorithm is introduced to satisfy the reliability 
demand of applications in two stages. The first stage includes gaining the lower 
bound on the sub-reliability demand of each cluster and the second stage is 
repeatedly choosing the accessible processor with the minimum cost values till 
its sub-reliability demand is met.
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• The deadline distribution algorithm is presented to detect the cheapest schedule 
that can execute each workflow task prior to its latest finish time. As a workflow 
includes several tasks, each task is related to a sub-deadline in accordance with 
the overall deadline. In this algorithm, the sub-deadlines of tasks are assessed by 
a traversal of the workflow graph in reverse topological order.

• Experimental outcomes on various workflows, generated at different scales in 
real and random fashion, validate that the proposed approach can incur the low-
est execution cost when compared with the state-of-the-art DRR and QFEC+ 
algorithms.

In the remaining parts of the current paper, Sect.  2 reviews the related works, 
while Sect.  3 explains the system modeling, problem definitions, and evaluation 
metrics. Section 4 discusses the features of the proposed approach and the complex-
ity and illustrations of the examples. Section  5 provides the simulation outcomes 
while Sect. 6 presents the conclusion and future work.

2  Related work

Workflow scheduling algorithms are categorized into two principal classes: QoS 
constrained and QoS optimization [17]. The QoS constrained algorithms attempt 
to satisfy user specified QoS requirements while optimizing some QoS specifica-
tions. For example, some papers have explored limiting the budget while minimizing 
makespan. Scheduling workflows which minimizes the makespan is established by 
Sakellariou et al. [18]. The schedule is completed if the cost is within the budget or 
tasks are remapped to cheaper processors, which can thus meet budget constraints. 
The QoS optimization algorithm attempts to optimize all QoS specifications. In this 
area, some studies have been conducted to yield a balance between time and cost 
[19, 20]. It is assumed that the processors are accessible at any desired time. How-
ever, in reality, processor and network failure is unavoidable. Resources may become 
inaccessible due to reasons such as link failure, power variation, and software/hard-
ware failures [21]. Therefore, to decrease workflow execution failure, it is neces-
sary to consider the reliability of well-organized workflow scheduling. According to 
the common exponential distribution assumption in the field of reliability [22], the 
occurrence of failure for each processor follows the Poisson distribution with a failure 
rate ( � ), which is a positive real number identical to the expected number of occur-
rences of failure in unit time t . Accordingly, reliability during the interval of time t 
is e−�t . To satisfy a specified time constraint while bringing about maximum system 
reliability, the Minimum Cost Match Schedule (MCMS) and Progressive Reliabil-
ity Maximization Schedule (PRMS) were developed in [25]. Evidently, the reliability 
obtained by these works is limited and special schemas, such as active replication, 
are mandatory. The primary and backup scheduling algorithm can tolerate one failure 
in the system. Principal popular procedures include the efficient Fault-tolerant Reli-
ability Cost Driven (eFRCD) [23], efficient Fault-tolerant Reliability Driven (eFRD) 
[12], and Minimum Completion Time with Less Replication Cost (MCT-LRC) pro-
cedures [15]. All of these procedures assume that no more than one failure occurs 
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at any time. In order to assure system reliability, [11] utilizes ε + 1 replicas for each 
task to design the Fault-tolerant Scheduling Algorithm (FTSA). In addition, Benoit 
et al. in [24] present another scheduling algorithm to minimize the schedule length 
under the throughput as well as reliability constraints for parallel application on het-
erogeneous systems in the active replication procedure. The basic issue in [11, 24] 
is the need for ε backups for each task with excessive redundancy in order to meet 
application reliability constraints. This causes great redundancy in the resources and 
so adversely affects system performance and produces high resource costs. Current 
research has begun to study active redundancy for each task procedure so as to meet 
application reliability constraints [4, 16, 25]. In an active redundancy scheme based 
on active replication, each task will have its own number of replicas which leads to 
lower resource costs than those of fixed ε backups for different tasks [25]. Zhao et al. 
[4, 25] and Xie et al. [16] propose the fault-tolerant scheduling algorithms of MaxRe, 
reliability requirements to minimize resource redundancy (RR) and quantitative fault-
tolerant scheduling algorithm QFEC+ with minimum execution costs, respectively. 
All of these procedures combine reliability analysis into the active replication and 
utilize a dynamic quantity of backups for various tasks by taking into account each 
task’s sub-reliability demand. One of MaxRe, RR and QFEC+ limitations is in com-
puting the sub-reliability demands of tasks. In [4], the authors further suggest the 
DRR algorithm, which applies the deadline requirement of a parallel application in 
RR. Moreover, neither of DRR nor QFEC+ consider the workflow structure which 
is an important issue when there are high interdependencies among tasks. Thus, the 
main differences between our work with [4, 16], is the methods of allocation and cal-
culating the sub-reliability requirement of each task.

The current paper’s interest is to meet the reliability and deadline requirement. 
However, some of the above-mentioned algorithms do not take into account the 
communication between tasks and link failures in a network.

3  System model and problem definition

This section explains workflow and Cloud modeling, followed by a formal outline of 
the problem.

3.1  Application and cloud models

The workflow model is one of the most successful patterns for programming scien-
tific applications on distributed infrastructures, such as the grid and Cloud. Bags of 
tasks is another successful application covered by this model [26]. The work on the 
current scheduling algorithm concentrates on scheduling scientific workflows in the 
Cloud.

Since the tasks in a workflow are optionally interconnected, the application 
model utilized for a scientific workflow is a directed acyclic graph (DAG) [27]. 
Let G� = (V ,E,ET ,CM) be the graph corresponding to a workflow in which 
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V =
{
�1, �2,… , �n

}
 is the set of tasks. E is the set of edges describing the prece-

dence relationships among tasks. Edge 
(
ei, ek

)
∈ E indicates that �i is a parent of �k . 

Since the proposed algorithm needs a single entry and a single exit task, two dummy 
entry and exit tasks, represented by �entry and �exit and with zero processing time 
and zero communication, are assumed at the start and at the end of the workflow, 
respectively. ET  is an n × m matrix in which exei,j indicates that the execution time 
of �i occurs on resource rsj . Since Cloud is heterogeneous in nature, the computation 
time of tasks differs from processor to processor. CM is an n × n matrix where cmi,k 
indicates the size of data transferred from �i to �k . The amount of data communica-
tion among tasks is predetermined and known in advance. In a workflow, a task can 
begin execution when the executions of all of its parents have been completed and 
its essential data has been transferred.

For scheduling the algorithm, the present work models the Cloud resource by 
Grs = (RS,�,PR) , where RS denotes the finite set of m heterogeneous processors: 
RS = {rs1, rs2,… , rsm} . � = {�1, �2,… , �m} represents the failure rate of rsj which 
is a positive real number identical to the expected number of occurrences of failure 
in unit time t and PR = {pr1, pr2,… , prm} indicates the price of each resource per 
time unit.

Figure 1 presents a sample workflow consisting of ten tasks from τ1 to τ10 . Since 
the proposed algorithm needs a single entry and a single exit task, two dummy tasks, 
τentry and τexit , are considered. In Fig. 1, each weighted edge shows both the esti-
mated data transfer time and the precedence constraint between the corresponding 
tasks. Three different possible resources are assumed for each task τi , i.e., rs1 , rs2 , 
and rs3 , which can execute the task with a different QoS. Table 1, indicates the exe-
cution times of tasks on different resources (ET), the price of each resource per time 
unit (PR) and failure rate of each resource (Λ), respectively. As it is seen, for the 
processing of τ5 to begin, all the data needed from τ2 and τ3 must be received. In 

Fig. 1  A sample workflow

Table 1  Available resources for 
the workflow of Fig. 1

RS ET PR Λ

�
1

�
2

�
3

�
4

�
5

�
6

�
7

�
8

�
9

�
10

rs
1

12 30 18 24 18 24 30 18 30 12 5$ 0.00010
rs

2
30 72 30 36 48 48 48 36 48 30 2$ 0.00015

rs
3

48 96 54 60 66 66 66 48 84 48 1$ 0.00018
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this example, the makespan of the workflow will be the finish time of the end task, 
which is τ10.

3.2  Problem definition

As discussed in Sect. 1, it is not possible for any workflow execution to be 100% 
reliable. However, if the system can satisfy the workflow’s reliability requirement, 
then the workflow execution is considered reliable. The problem addressed by the 
present study may be formally described as follows. The input of the scheduling 
system includes the given workflow G� , deadline D, and reliability R. The problem 
is to find a map of tasks for processors to generate a concrete workflow, such that the 
Cost of workflow execution is minimized while the makespan satisfies the deadline 
and the obtained reliability of the workflow, Relschedul , meets the workflow’s reli-
ability requirement. Equation (1) defines the formal description of the program and 
Table 2 provides the list of important notations and their definitions that are used in 
this study.

where Cost is the cost that the user should pay for processor and network consump-
tion to execute the workflow. As mentioned previously, our paper is based on clus-
tering algorithm. In other words, according to critical parent concept, the workflow 
is partitioned into some clusters in which y is the number of generated clusters. 
TETclx,j be the total execution time of cluster x (clx ) on resource rsj . Relschedul is the 

(1)

Min Cost =

y∑

x=1

⌈
TETclx,j

lenght of interval

⌉
× prj

M = FT�exit − ST�entry ≤ D

Relschedul ≥ R

Table 2  Important notations in this study

Notation Definition

exei,j Execution time of task �i on resource rsj
cmi,k Communication time between the tasks �i and �k
�j Constant failure rate of resource rsj per time unit
prj Price of each resource per time unit
TETclx ,j Total execution time of cluster x (clx) on resource rsj
CMRk,i Communication reliability between parent and its child tasks.
CRi,j Computation reliability of task �i on the resource rsj
CRclx ,j

Computation reliability of cluster x (clx) on the resource rsj
CPi Critical parent of task �i
Relschedul Reliability of workflow execution

Rel
clx
min

minimum sub-reliability requirement for the cluster x ( clx).

Rel
clx,j

Actual
Actual reliability achieved by allocations of cluster x (clx) on resource rsj

Reli
j

reliability attained by scheduling a task �i on resource rsj
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reliability of workflow execution, which is defined as the probability of the work-
flow execution being successfully completed. M is the workflow makespan, which 
is defined as the time it takes to complete the execution of all tasks. Finally, the start 
time and finish time of each task are also defined during scheduling.

To model the cost of resource usage, one of the available pricing models employed 
by most commercial infrastructure as a service (IaaS) Cloud service providers is based 
on a pay-as-you-go approach. In this model, the users are charged according to the 
number of time intervals they have used the resource, even if the last time interval was 
not completely used.

Transient failures (also called random hardware failures) and permanent failures 
are the two main failure categories for modeling reliability. Once a permanent failure 
occurs, the processor can only be restored by replacement. On the other hand, in the 
case of a transient failure, which is the most probable occurrence, failure appears for a 
short time and then disappears without damage to the processors [22]. Therefore, the 
current paper mainly takes transient failures into account for its research. In general, in 
the case of a transient failure, a task in a DAG-based application follows the Poisson 
distribution with failure rate ( � ) [4, 13, 28]. Therefore, Eq. (2) denotes the reliability of 
an event in unit time t:

In addition, the current paper considers heterogeneous systems that consist of vari-
ous hardware and software with different configurations or capacities. Thus, the Mean 
Time Between Failure (MTBF) of each processor differs from one to another. Similar 
to [28], the present study considers the assumption that no failure happens during the 
processor’s idle times.

4  The proposed scheduling approach

The motivation behind the present research is the QoS constrained static scheduling of 
scientific workflows on the IaaS Cloud platform. The data communications and prec-
edence constraints among workflow tasks make optimal scheduling of the workflow 
more complicated and so more difficult to attain. The issue of reliability-aware design 
adds some complexity to this scheduling problem, because reliability depends on Com-
munication Reliability, CMR, and Computation Reliability, CR.

CMRk,i is the probability that the message created by the parent tasks, for example 
�k , can be successfully moved to the processors where their child tasks, for example 
�i , are located. CRi,j is the probability that �i is successfully completed on rsj.

The key point for increasing reliability is to consider the workflow structure. 
Based on Eq. (3), reducing the number of messages transferred from parent tasks to 
children tasks can enhance achieving the reliability of the workflow. Therefore, as 
the proposed algorithm is based on clustering, different scheduling algorithms have 

(2)R(t) = e−�t

(3)Relschedul =

n∏

i=1

CRi,j × CMRk,i, �i ∈ V ,
(
ek, ei

)
∈ E, rsj ∈ RS
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been studied that address the concept of workflow clustering [29, 30]. The present 
research provides an algorithm which finds clusters in accordance with the critical 
parent. In order to select the critical parent in each step, a scoring function has been 
employed.

This section first discusses the main ideas of the proposed approach and then pro-
vides some basic definitions. Afterwards, the CbCP scheduling approach and com-
putation of its time complexity is elaborated upon. Finally, there is a demonstration 
of its operation by an illustrative example.

4.1  Main ideas

The proposed approach consists of four main algorithms: clustering, reliability dis-
tribution, deadline distribution, and resource assignment. The clustering algorithm 
is based on a critical parent, which means that, for each �i , a critical parent, CPi , is 
assigned by Eq. (4). This equation designates the assigning task as well as its critical 
parent to the identical processor. predi is the set of immediate predecessor tasks of 
�i . The earliest time when �k can finish its computation is defined as its Earliest Fin-
ish Time, EFTk , which will be explained in the next sub-section.

R represents the reliability demand. In the reliability distribution algorithm, the 
sub-reliability requirement for the clusters is continuously calculated based upon the 
actual reliability obtained by previous assignments so as to ensure that the overall 
reliability requirement is met. Finally, the resource assignment chooses the cheap-
est service for each cluster while satisfying its sub-reliability and sub-deadline. In 
the deadline distribution algorithm, the distribution of the overall workflow deadline 
over individual tasks is based on the Latest Finish Time. That is, if each task finishes 
before its sub-deadline, the whole workflow is completed before the user-defined 
deadline. The following sub-sections discuss each algorithm in detail.

4.2  Basic definitions

In the proposed CbCP scheduling approach, the aim is to observe the priority and 
critical parent of all tasks. In order to determine these, it is necessary to compute 
some parameters of each workflow task before scheduling the workflow.

The length of the longest path, from the task to �exit , is the rank of a task indicated 
by Ranki . When the length of the path is calculated, the computation times are con-
sidered, but the communication times are ignored.

The rank is repeatedly calculated by passing over the task upwardly starting from 
�exit . In Eq. (5), exei,j is the average computation time of task �i and succi is the set of 
immediate successor tasks of �i.

(4)
CPi = k ∈ predi s.t EFTk + cmk,i > EFTl + cml,i where l ∈ predi and k ≠ l

(5)
Ranki = exei,j, if succi = �, �i ∈ V , rsj ∈ RS

Ranki = max�k∈succi

(
Rankk + exei,j

)
, Otherwise
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The earliest start time, ESTi of each unscheduled task �i is defined as the earliest 
time when �i can begin its computation. Since Cloud is heterogeneous in nature and 
the computation time of tasks differs from processor to processor, it is impossible 
to compute the exact ESTi . Therefore, the execution and data transmission time for 
each unscheduled task should be estimated. The minimum execution and data trans-
mission time are selected among other potential approximation alternatives, e.g., 
the average or the median. Therefore, the Earliest Start Time, ESTi , is defined as 
follows:

Moreover, for each unscheduled task �i , the earliest time when �i can finish its 
computation is defined as its Earliest Finish Time, EFTi . Once again, it is impos-
sible to precisely compute EFTi and it should be computed in accordance with the 
approximate execution and data transmission time as follows:

Similarly, the Latest Finish Time,LFTi , which is the latest time when �i can finish 
its computation, may be defined as:

Finally, the Latest Start Time,LSTi , which is the latest time when �i can begin its 
computation, is expressed in (9):

4.3  Clustering based on critical parent

Algorithm 1 shows the pseudocode of the overall CbCP algorithm for scheduling 
a workflow. Two dummy nodes, �entry and �exit , are added to the task graph in Line 
3, even if the task graph previously just had one entry or exit node. The task graph 
is traversed to compute the desired parameters in Lines 4–9. After this, a sub-dead-
line is allocated to nodes �entry and �exit(Line 10). Accordingly, the user’s deadline 
is employed to set the sub-deadline of �exit . This causes the parents of �exit , i.e., the 
actual exit node of the workflow, to be performed prior to the deadline. The last two 
lines are the major part of the algorithm. For the input node, the clustering proce-
dure is called in Line 11. This method partitions the workflow into some clusters 
according to critical parent concept. At the end, in Line 12, the process of resource 
assignment is called to choose the cheapest processor for each cluster in accordance 
with the sub-deadline and sub-reliability for each task.

(6)

ESTi = 0, for the entry node

ESTi = maxk∈ predi

(
EFTk where �i&�k∈ identical rs ∥ EFTk where �i and �k ∉ identical rs + cmk,i

)

(7)EFTi = ESTi + exei,j

(8)

LFTi = Deadline, For the exit node

LFTi = min
k∈ succi

(
LSTk where �i and �k ∈ identical rs ∥ LSTk where �i and �k ∉ identical rs − cmi,k

)

(9)LSTi = LFTi − exei,j
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4.3.1  Clustering algorithm

Based upon a clustering heuristic, the reliability and deadline distribution algo-
rithms are the main contributions in the current paper. An algorithm in this group 
maps the tasks which communicate heavily on the same cluster [31].Although the 
proposed clustering algorithm is based on the same heuristic, it utilizes the CP for 
selecting the task for each cluster.

4.3.1.1 Task priority Several approaches exist for computing the task priority, for exam-
ple: the upward rank, the upward rank + downward rank [32], and schedule pressure [33]. 
Generally, the upward rank and the upward rank + downward rank are the two most 
common approaches for prioritizing tasks. In the proposed CbCP algorithm, tasks are 
ranked by their priorities which are based on the upward rank.

The priority of task �i is the length of the longest path from �i to �exit . When com-
puting the priority or the length of the path, the communication times are ignored 
and only the computation times are taken into account according to Eq. (5). The pri-
ority of �entry is the sum of computation costs through the longest path. This sched-
ule length can never be lower than the priority of the �entry of DAG.
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4.3.1.2 Clustering generation algorithm Algorithm 2 demonstrates the pseudocode for 
clustering. This algorithm creates the task clusters based upon the parameters calculated 
in Algorithm 1 and the rank list. Algorithm 2 arranges the nodes of the task graph by the 
smallest rank first order in the list (Line 2). The creation of a cluster is initiated from the 
list’s first task, which has not yet been allocated to a cluster. The allocation is conducted 
by following the selected task, which is the critical parent of any allocated successor 
tasks. Then the current task is added to the proper cluster (Lines 4–7). Otherwise, a new 
cluster is generated for this task (Lines 9–11). The generation of the cluster is completed 
when there is no longer any unassigned task in the list.

4.3.2  Resource assignment algorithm

In order to schedule cluster x (clx) to a processor with a minimum cost while also 
respecting both the reliability and deadline constraints, the current work proposes a 
new deadline and reliability distribution. Algorithm 3 describes the heuristic algorithm 
of resource assignment.

Let D and R be the overall deadline and reliability requirements of an application 
respectively. Since a workflow contains of a number of tasks, each task is related to a 
sub-deadline based on the overall deadline. Therefore, the sub-deadlines of exit tasks 
are identical to D and the sub-deadlines of the remaining tasks are computed according 
to a traversal of the workflow graph in reverse topological order. Moreover, the reli-
ability requirement of the application is transferred to the sub-reliability requirement of 
each cluster. The details are explained as follows.

4.3.2.1 Reliability distribution algorithm In order to schedule cluster x ( clx ) to a 
processor so as to minimize costs by meeting the reliability constraint, the current 
work computes the sub-reliability requirement of each cluster. Let R be the reliability 
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requirement and y be the number of generated clusters. Thus, the minimum sub-
reliability requirement for clx ( Rel

clx
min

 ) with the highest priority is computed as:

The details are explained as follows.
At first, the algorithm provided the minimum reliability requirement of the cur-

rent cluster prior to its consideration for assignment according to Eq.  (10), where 
Rel

cli,j

Actual
 is the probability that clx is successfully executed on processor rsj and Relcli,jmax 

is the probability that clx is successfully executed on processor rsj with the highest 
computation reliability processor RS.

Then, for choosing the proper processor, one possible method is iteratively select-
ing the available processor with the minimum cost value for the current cluster. 
After that, the actual reliability value of the current cluster is computed based on 
Eq. (12). Until the sub-reliability requirement is met, it is assumed that the reliabil-
ity attained by scheduling task �i on rsj is Reli

j
.

Since the proposed method is based on clustering and all the tasks in one clus-
ter are assigned to the same processor, it is possible to assume that each cluster 
resembles one big task. Therefore, to decide which processors can satisfy the reli-
ability requirement of the current cluster, the proposed method iteratively selects 
the available processor with the minimum cost value. Then, the total execution 
time, TETclx,j , and the actual reliability value, Relclx,j

Actual
 , of the current cluster for 

each processor are computed based on Eqs. (13) and (14) until the sub-reliability 
requirement is met.

(10)

Rel
cl1
min

=
R

1 ×
∏y

i=x+1
Rel

cli,j
max

, x = 1

Rel
clx
min

=
R

∏x−1

i=1
Rel

cli,j

Actual
×
∏y

i=x+1
Rel

cli,j
max

, 2 ≤ x ≤ y, rsj ∈ RS

(11)

Reli
j
= CRi,j, if there is no communication with other clusters

Reli
j
= CRi,j × CMRk,i, �i ∈ V ,

(
ek, ei

)
∈ E, rsj ∈ RS

CRi,j = e−�jexei,j

(12)Rel
clx,j

Actual
=

∏

∀�i∈clx

Reli
j
, rsj ∈ RS

(13)TETclx,j = exei,j +
∑

�k∈rsj

exek,j, rsj ∈ RS

(14)
Rel

clx,j

Actual
= CRclx,j

×
∏

∀�i∈clx

CMRk,i,
(
ek, ei

)
∈ E, �k ∉ clx

CRclx,j
= e−�jTETclx ,j
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TETclx,j is the total execution time of clx on rsj , where exei,j is the execution time of �i 
on rsj . 

∑
�k∈rsj

exek,j is the sum of execution time of the previous tasks that have 
already been scheduled on rsj . Therefore, Relclx,j

Actual
 is the probability that clx is suc-

cessfully executed on processor rsj during the TETclx,j period.
Clearly, since Cloud is a heterogeneous environment, the computation time of 

clusters and computation reliability varies from one processor to another.
According to Eq.  (10), for the rest of the clusters, their sub-reliability require-

ments are continuously calculated based on the actual reliability achieved by previ-
ous allocations, as well as presuppose reliability achieved by assigning unallocated 
clusters to the processor with maximum reliability.

Actual reliability depends on reliability provided by computation reliability (CR) 
and communication reliability (CMR), which are computed from tables of reliability 
given by the Cloud provider. For communication reliability, the location of parent 
tasks as well as child tasks is considered.

Compared with the DRR and QFEC+ algorithms, the principal enhancement 
of the presented CbCP is that it recomputes the sub-reliability requirement of each 
cluster, in regard to not only its previous allocations Relcli,j

Actual
 , but also succeeding 

pre-assignments Relcli,jmax.

4.3.2.2 Deadline distribution algorithm Finding the cheapest schedule that can com-
plete each task of the workflow prior to its latest finish time is the goal of the present 
study’s approach. Consequently, this method is utilized for assigning sub-deadlines 
to tasks on the list. According to Algorithm 3, it starts from the first task on the rank 
list and moves forward to the last task. As stated by Eq. (16), the sub-deadline of �exit 
is set to the workflow deadline. That is, the actual exit nodes of the workflow, i.e., the 
parents of �exit , must be completed before the user deadline.

At first, for each task, resource assignment to its cluster requires to check if no 
resource is allocated previously to that cluster. The algorithm examines the pro-
cessors for a task, from the slowest to the fastest one. Afterwards, the admissible 
assignment processor for the current task (Line 10) is selected, which satisfies the 
sub-deadline and sub-reliability. Then, according to Eq.  (15), the actual start time 
of this task may be calculated. It should be noted that, when an AST  for the current 
task is assigned, the LFT  of its unassigned predecessors may change [Eq. (17)]. For 
this reason, the algorithm updates this value for them.

On the other hand, if the cluster is previously allocated to any processor, then 
the algorithm will assign the task to that processor. If the assignment is admissible, 
the algorithm calculates the AST  for the current task and the LFT  of its unassigned 

(15)ASTi = LFTi − exei,j

(16)LFTi = Deadline, For the exit node

(17)
LFTk = min

(
ASTi∈ succk where �i and �k ∈ identical rs ∥ ASTi∈ succk where �i and �k ∉ identical rs − cmk,i

)
,

unassigned predi
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predecessors. Nonetheless, in the case of an inadmissible assignment, the algorithm 
backtracks to the foregoing task on the cluster in order to make another attempt.

4.4  Time complexity

In order to compute the time complexity of the proposed algorithm, it is assumed 
that the schedule workflow receives workflow G� = (V ,E) as an input with n tasks 
and e edges. In addition, the maximum number of resource types for each task is 
assumed to be m . Since G� is a directed acyclic graph, the maximum number of 
assumed edges is O(V2) . Therefore, the time complexity of the algorithm’s main 
parts is computed as follows:

At first, the algorithm traverses each task of the task graph and computes the start 
times and completion times. At each node, the incoming and outgoing edges are 
examined and, in the worst-case, all the DAG edges must be examined. Thus, the 
worst-case complexity of these steps is O(|E|) , where |E| is the number of edges.

Since the array queue needs to be generated, this can be done at time 
O(|V|log|V|) , which is the time for sorting the DAG nodes in ascending order of 
priority [34].

For the resource assignment algorithm, all resources for each cluster should 
be tried in order to find the cheapest one that respects both the sub-reliability and 
sub-deadline constraints. In each attempt, the actual start time of the task on that 
resource ought to be computed. To achieve this, all parent tasks and their edges must 
be considered. In the worst case, in which a node has n-1 unassigned predecessors, 
the time complexity of updating LFT  for all nodes will be O(|V|).

Thus, the overall time complexity of the CbCP algorithm is O(|V| + |E| + |V| 
log|V|). For a dense graph, the number of edges is proportional to O(|V|2). Thus, the 
worst-case complexity of the CbCP algorithm is O(|V|2).

4.5  An illustrative example

In order to show how the algorithm works, Fig. 1 traces its operation on a sample 
graph. The graph consists of ten tasks, from �1 to �10 , and two dummy tasks, �entry 
and �exit . There are three different possible resources for each task �i , i.e., rs1 , rs2 , and 
rs3 , which can execute the task with a different QoS. Table 1 indicates the execution 
times of tasks on different resources (ET), the price of each resource per time unit 
(PR) and failure rate of each resource ( � ), respectively. Furthermore, all processors 
are assumed to be completely available and able to be provided at any desired time. 
As seen, for each faster resource, costs and reliability are greater than those of a 
slower one. Since any amount of communication inside the Cloud is free [29], the 
Cloud’s data transfer cost of the workflow between resources is assumed to be zero.

In Fig. 1, each weighted edge indicates both the estimated data transfer time and 
precedence constraint between the corresponding tasks. Finally, the overall deadline 
and reliability of the workflow are 300 and 0.94, respectively.



492 S. S. Mousavi Nik et al.

1 3

When the CbCP scheduling algorithm (Algorithm  1) is called for the sample 
workflow (Fig.  1), it first computes the rank for each workflow task according to 
Eq. (5). Then, Earliest Start Time and Earliest Finish Time are computed by assign-
ing the tasks to their fastest processor. To determine the CP of each task, the nodes 
of the task graph are sorted according to the smallest rank order in the list. The 
determination of a CP is initiated from the first task in the list. For instance, �10 
has two predecessors, in which �9 is its CP. The process is completed when there is 
no longer an unchecked task in the list. Table 3 provides the initial value of these 
parameters.

The next steps are to call the main procedures of the algorithm: the clustering 
generation algorithm (CGA) and resource assignment, which shall be discussed.

The generation of a cluster is initiated from the first task in the list which has 
not yet been assigned to a cluster. Based on CGA, the tasks in a scheduling list are 
sorted by the ascending order of rank value. Therefore, the array list for this DAG 
is:List =

{
�10, �8, �9, �5, �6, �7, �3, �4, �2, �1

}
 . The first unassigned task in the list is 

�10 . Because it is not a critical parent of any successor task, a new cluster is gen-
erated for this task. The condition of the next task, �8 , is the same as that of �10 . 
However, �9 is CP10 and so �9 is chosen for allocation to the same cluster as that of 
�10 . The rest of the allocations are generated by following this process until all tasks 
have been assigned to a cluster.

In order to schedule �i to processors at a minimum cost while still respecting both 
the reliability and deadline constraints, resource assignment is called for the cur-
rent task, for instance �10 of cl1 . This procedure first checks the assignment of the 
current task’s cluster to any processor. If there is a processor, resource assignment, 
schedules this task to that processor. Then, computes AST10 , and updates LFT  with 
its unassigned predecessors. Otherwise, resource assignment tries to find the best 
admissible assignment for that task. Therefore, the sub-reliability requirement of the 
cluster should first be computed. In this example, there are three possible processor 
assignments for this cluster and the assignment of rs3 with its minimum cost is the 
best admissible assignment among them. The task then calculates AST10 and updates 

Table 3  The Values of Rank, 
Critical Parent (CP), EST 
and EFT for Each task of the 
Workflow of Fig. 1

Task Rank
i

CP
i

EST
i

EFT
i

�
1

204 – 0 12
�
2

174 – 24 54
�
3

142 �
1

30 48
�
4

172 – 24 48
�
5

108 �
3

72 90
�
6

130 �
4

72 96
�
7

132 – 60 90
�
8

64 �
6

108 126
�
9

84 �
7

108 138
�
10

30 �
9

156 168
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LFT  with its unassigned predecessors, i.e., �9 . The rest of the allocations are gener-
ated by following this process until all tasks have been assigned to a processor.

Figure 2 presents the schedule map of the CbCP algorithm for the sample work-
flow. The boxes indicate the tasks and the numbers outside the boxes denote the task 
numbers. The execution start and finish time of each task can be specified according 
to the time bar. The �entry and �exit with zero computation and communication time 
have no effect on the scheduling procedure and are not shown on the schedule map.

The total execution time, reliability, and cost are 300, 0.9402, and $32 
respectively.

5  Performance evaluation

This section presents the results of simulations of the Clustering based on Critical 
Parent algorithm. Schedule Cost and System Reliability are appointed as assessment 
criteria. The schedule cost estimates the monetary cost, while system reliability 
determines the performance of each algorithm.

5.1  Experimental workflows

The performance of a scheduling algorithm should be measured on a sample work-
flow for evaluation. This can be accomplished, for example, by utilizing a random 

Fig. 2  Sample workflow schedule map



494 S. S. Mousavi Nik et al.

1 3

DAG generator to produce a variety of workflows with different characteristics or by 
employing a library of realistic workflows which are applied in the scientific or busi-
ness community.

In one of the initial works in this area, Bharathi et al. studied five realistic work-
flows, namely Montage, CyberShake, Epigenomics, LIGO, and SIPHT [35]. These 
graphs are related to real scientific workflows in various scientific fields, such as 
astronomy, earthquake science, biology, and gravitational physics. Figure  3 illus-
trates the approximate structure of these workflows with a small number of nodes. It 
should be noted that these workflows have various structural specifications in regard 
to their composition and main components, such as pipelines, data aggregation, data 
distribution, and data redistribution. For each workflow, tasks with an identical color 
are of the same category and can be processed with a common service. [35] pro-
vides a thorough characterization for each workflow and describes their structures, 
data, and computational requirements. The DAX (directed acyclic graph in XML) 
format of these workflows is available in Bharathi et al.’s website. The current paper 
chose three sizes of workflows for its experiments: small (about 25 tasks), medium 
(about 50 tasks), and large (about 100 tasks).

5.2  Experimental setup

The resource type considered in the present research is based on Amazon AWS 
EC2. Table  4 presents examples and their related leasing prices for a period of 

Fig. 3  The structure of five realistic scientific workflows [35]
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60 min. The current work utilized the Pegasus Workflow Generator [35] to generate 
the workflows.

The approaches similar to the present study are [4, 16]. In [4], the authors pre-
sented the DRR algorithm to minimize the redundancy of a parallel application in 
order to meet an application’s deadline and reliability requirements on heterogene-
ous distributed systems. In [16] the authors presented QFEC+ algorithm to mini-
mize execution cost in order to meet an application’s reliability requirements. The 
essential limitations of DRR and QFEC+ procedures are: 1- the workflow structure 
is ignored; 2- the sub-reliability requirements of the tasks are high. The latter will 
increase the need for unnecessary redundancy to satisfy the sub-reliability require-
ments while the former is crucial when there are high interdependencies among 
tasks. Nonetheless, QFEC+ tried to tackle the second issue by considering an upper 
bound in computing the sub-reliability of tasks, which leads to lower number of rep-
licas compared to DRR method.

To compare the current study’s simulation outcomes with those from DRR 
and QFEC+ algorithms, five different deadline intervals and reliability values are 
defined from tight to relaxed. Firstly, for each workflow, the HEFT strategy calcu-
lates the deadline, because the deadline must be greater than or equal to the makes-
pan of a similar workflow scheduled with the HEFT strategy. Different deadline 
thresholds were then computed by multiplying its deadline by the constant c , where 
c ranges from 1 to 5. When c = 1 , the deadline is very tight; however, higher values 
of c represent more relaxed deadlines. In addition, different reliability thresholds are 
defined from 0.95 to 0.9 with 0.01 decrements. It should be considered that the reli-
ability of the processors and communication links used in this phase are known. In 
other words, these values are obtained from tables of reliability given by the Cloud 
provider.

5.3  Experimental results

A deadline and reliability should be assigned to each workflow for the CbCP sched-
uling algorithm evaluation. The execution of each workflow is simulated by HEFT 
[8] in order to obtain the workflow’s corresponding deadline and reliability. More-
over, to overcome the difference in the attribution of workflows, the total cost is 

Table 4  VM types used in the 
experiments

Type Memory (GB) Core speed 
(ECU)

Cores Cost ($)

m1.small 1.7 1 1 0.06
m1.medium 3.75 2 1 0.12
m1.large 7.5 2 2 0.24
m1.xlarge 15 2 4 0.48
m3.xlarge 15 3.25 4 0.50
m3.xxlarge 30 3.25 8 1.00
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normalized to make the comparison more convenient. Thus, the Normalized Cost 
(NC) of a workflow is computed by dividing the current execution cost of the work-
flow by the execution cost of the cheapest possible schedule.

To evaluate the CbCP, DRR and QFEC+ algorithms under testing, Schedule Cost 
and System Reliability are elected for the evaluation criteria. The schedule cost com-
pares the monetary cost of the three algorithms, while system reliability evaluates 
the performance of these algorithms.

In the present study’s simulation experiments, in all three algorithms, all work-
flows were successfully scheduled before their deadlines and according to their reli-
ability, with tight deadlines (small deadline factor) and workflow reliability thresh-
old R (equal to 0.95). The system reliability of the three algorithms is compared 
with respect to their graph characteristics. Figure  4 illustrates the overall experi-
mental outcomes. Compared to DRR and QFEC+ , the current paper’s CbCP algo-
rithm achieves noticeable improvement in system reliability in the workflows with 
high interdependencies among tasks, i.e., CyberShake and Montage workflows. In 

Fig. 4  Obtained Reliability of scheduling workflows with the CbCP, DRR and QFEC+ algorithms
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these workflows, by increasing the number of processors in DRR and QFEC+ , the 
average number of links from one processor to another relatively increases and link 
reliability influences system reliability. On the contrary, while the proposed method 
schedules each cluster on one processor, the algorithm works very well for work-
flows with high interdependencies among tasks. In addition, the key limitations of 
the DRR and QFEC+ algorithms are ignoring the workflow structure, as well as 
high sub-reliability requirements of all tasks. Therefore, the overrunning reliabil-
ity values (i.e., Relschedul − R) are usually high for DRR and QFEC+ . In contrast, 
CbCP’s overrunning reliability values are lower in SIPHT, Epigenomics, and LIGO. 
Nonetheless, QFEC+ tried to tackle the second issue by considering an upper bound 
in computing the sub-reliability of tasks, which leads to lower number of replicas 
compared to DRR method. Compared to high-parallelism workflows such as Epig-
enomics, overrunning reliability values are very low in CbCP and QFEC+. To sum 
up, CbCP algorithm, has improved the system reliability in CyberShake and Mon-
tage. However, in other workflows, e.g., SIPHT, Epigenomics, and LIGO, the sys-
tem reliability is just satisfied.

Figure 4 demonstrates that an increase in the number of tasks leads to a decline 
in system reliability, since a rise in the number of tasks correspondingly causes the 
total execution time of each cluster to increase. Therefore, according to Eq.  (14), 
system reliability lowers.

Figure 5 provides the scheduling costs of all workflows with the CbCP, DRR and 
QFEC+ algorithms. It is assumed that decreasing the workflow makespan is of no 
benefit for the user. Therefore, to minimize the execution cost, the CbCP algorithm 
utilizes almost all the time available before the deadline. On the contrary, the DRR 
procedure employs the HEFT scheduler which usually chooses solutions that do not 
consider execution costs and iteratively allocates replicas of each task to processors 
with maximum reliability values until the sub-reliability requirement of the task is 
met. In addition, the QFEC+ procedure, iteratively chooses available replicas and 
processors with the minimum execution times for each task until its sub-reliability 
requirement is satisfied. A quick look at Fig.  5 reveals that, in all workflows, the 
DRR and the QFEC+ cost results are much higher than those of the CbCP method, 
because the objective of this scheduling approach is to select the processor just when 
the workflow makespan and reliability are closest to the specified deadline and reli-
ability. However, the same normalized costs for a relaxed deadline and reliability are 
obtained in different algorithms, for small, medium, and large size workflows. That 
is, in the case of flexibility of the deadline and reliability of the workflow, the sched-
uling process is not affected by structural properties.

As illustrated in Fig. 5, raising the number of tasks from 25 to 100, lowers the 
normalized cost in Epigenomics while produce same normalized cost in SIPHT and 
LIGO. Nonetheless, in Montage and CyberShake, an increase in workflow tasks 
raises the normalized cost. This is due to the structure of these workflows that leads 
to make up small clusters. Thus, the resource assignment algorithm has to establish 
many resources, while just a small part of their time slot is utilized.
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6  Conclusions

Cloud computing allows users to attain their desired QoS (e.g. deadline and reliabil-
ity) by paying a relevant price. For workflow scheduling, the current paper proposes 
a new algorithm, CbCP, that minimizes the total execution cost while satisfying a 
user-specified deadline and reliability.

Compared with DRR and QFEC+, the main advantage of CbCP is its capa-
bility to obtain lower sub-reliability requirements for clusters. To evaluate the 
proposed algorithm, the current work utilized synthetic workflows based on real 
scientific workflows with different structures and different sizes. The results show 
that CbCP provides the best possible solution when the task graph satisfies a sim-
ple condition. Even if the condition is not satisfied, the proposed algorithm pro-
vides a satisfactory schedule that is close to the optimum solution with a short 
computation time.

In heterogeneous service-oriented systems such as Clouds, resources utilize 
huge amounts of electrical energy. It is important to employ workflow scheduling 

Fig. 5  Normalized Cost of scheduling workflows with the CbCP, DRR and QFEC+ algorithms
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to optimize negative impacts of electrical energy, for instance, scaling down com-
putation cost and carbon dioxide, as well as scaling up the reliability of system. In 
addition to concerning execution cost and reliability, in our future work, we will 
take into account the energy consumption of resources. Hence, it is essential to pro-
pose an efficient technique for reducing energy consumption, as well as satisfying 
the user QoS constraint requirements in such environment.
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