
Computing (2020) 102:141–200
https://doi.org/10.1007/s00607-019-00734-3

A new efficient approach for extracting the closed episodes
for workload prediction in cloud

Maryam Amiri1 · Leyli Mohammad-Khanli2 · Raffaela Mirandola3

Received: 9 October 2018 / Accepted: 6 June 2019 / Published online: 13 June 2019
© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Abstract
The prediction of the future workload of applications is an essential step guiding
resource provisioning in cloud environments. In our previous works, we proposed
two prediction models based on pattern mining. This paper builds on our previous
experience and focuses on the issue of time and space complexities of the prediction
model. Specifically, it presents a general approach to improve the efficiency of the
pattern mining engine, which leads to improving the efficiency of the predictors. The
approach is composed of two steps: (1) Firstly, to improve space complexity, redundant
occurrences of patterns are defined and algorithms are suggested to identify and omit
them. (2) To improve time complexity, a new data structure, called closed pattern
backward tree, is presented for mining closed patterns directly. The approach not only
improves the efficiency of our predictors, but also can be employed in different fields
of pattern mining. The performance of the proposed approach is investigated based on
real and synthetic workloads of cloud. The experimental results show that the proposed
approach could improve the efficiency of the pattern mining engine significantly in
comparison to common methods to extract closed patterns.

Keywords Closed episode · Cloud computing · Prediction · Pattern mining engine ·
Workload

B Leyli Mohammad-Khanli
l-khanli@tabrizu.ac.ir

Maryam Amiri
m-amiri@araku.ac.ir

Raffaela Mirandola
raffaela.mirandola@polimi.it

1 Department of Computer Engineering, Faculty of Engineering, Arak University, Arak
38156-8-8349, Iran

2 Faculty of Electrical and Computer Engineering, University of Tabriz, 29 Bahman Blvd, Tabriz,
Iran

3 Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Via Golgi 42,
20133 Milan, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-019-00734-3&domain=pdf

142 M. Amiri et al.

Mathematics Subject Classification 68T10 · 62-07

1 Introduction

Elasticity, one of the prominent features of cloud computing, is the degree of
the system adaptability to workload changes by provisioning and deprovisioning
resources automatically in a way that the allocated resources match the current
demand [1,2]. The future demand prediction is the only practical and effective
solution for the fast resources provisioning and the rapid elasticity implementation
[3,4]. The most important challenges of the application prediction models are as
follows [3]:

– Complexity Each prediction model needs computation resources to estimate future
behavior of applications. The computation resources consumption of the prediction
models should not be significant in comparison with the other applications. So,
time and space complexities of the prediction model should be reasonable in a way
that its deployment is affordable.

– Pattern length In most of the prediction models such as [4–10], the pattern length
is fixed. In these models, using a sliding window, the extracted patterns have
a predefined length. The constraint of the pattern length restricts the model to
specific patterns and prevents the model from learning the other useful patterns.
However, choosing the pattern length is a challenge. The pattern length should be
selected in a way that the most popular patterns can be extracted and application
behavior can be estimated accurately.

In our previous works, based on Sequential Pattern Mining (SPM), we proposed two
new predictionmodels, called POSITING [11] andRELENTING [2]. As Fig. 1 shows,
POSITING considers application behavior in the past, extracts behavioral patterns
and stores them in the off-line pattern base. Based on the extracted patterns and the
recent behavior of the application, POSITING predicts the future demand for different
resources. In [2], we developed POSITING with the capability of online learning and
proposed RELENTING. While RELENTING predicts the status of all the allocated
resources, it also learns the new behavior of the application rapidly without gathering
new data and retraining the model.

According to Fig. 1, the pattern mining engine is the core of the predictors. To
improve mining efficiency and avoid information loss, a compressed set of patterns,
called closed patterns, is extracted by the pattern mining engine [2,11]. A pattern is
closed if none of its super-patterns have the same frequency as the pattern’s [12].
The common approach for extracting the closed episodes under gap constraints is
based on the hash table [12,13]. As our experiment results show this approach is very
time-consuming if there are many candidate closed patterns.

The main goal of the paper is to improve time and space complexities of the pattern
mining engine in a way that it could be employed in different fields such as [14–
17] efficiently. To improve space complexity, we define redundant occurrences of
patterns and prove that omitting them causes no information loss. Then, by using a
new imProved RepresentatiOn of the Stream based on PointERs (PROSPER), we

123

A new efficient approach for extracting the closed… 143

Fig. 1 The scheme of POSITING [11]

develop algorithms proposed in [11] to identify the redundant occurrences and omit
them from the occurrence list of patterns. Thus, memory consumption improves. To
improve time complexity, we introduce a new data structure, called closed pattern
backward tree (CPBT) to extract the closed patterns directly. As it will be shown in
the experiment results, CPBT improves the efficiency of the pattern mining engine
significantly when there are a huge number of patterns. So, the contributions of this
paper are as follows:

– Since SPM is widely used in different fields, this paper presents a general approach
to improve time and space complexities of the pattern mining engine.

– To improve space complexity, this paper proposes PROSPER, defines the redun-
dant occurrences of patterns and suggests algorithms to identify and omit them.
Thus, the length of the occurrence list of patterns decreases andmemory consump-
tion improves (Sect. 4).

– To improve time complexity, this paper introduces a new data structure, called
CPBT , to store the closed patterns. Based onCPBT , depth-first search algorithms
are presented to extract the closed patterns under gap constraints directly without
storing/processing all of the candidate closed patterns (Sect. 5).

– The performance of the proposed approach is evaluated using both real and syn-
thetic workloads and compared with the hashing based approach. According
to the evaluation results, the proposed approach outperforms the hashing based
approach significantly when there are a large number of the candidate closed pat-
terns (Sect. 6).

The rest of the paper is organized as follows: The relatedworks are discussed in Sect. 2.
Section 3 introduces the main concepts of POSITING and RELENTING briefly. To
improve space complexity, the redundant occurrences of patterns are discussed in
Sect. 4. To improve time complexity, Sect. 5 introduces CPBT and presents new
algorithms to extract the closed patterns directly. Experimental results are presented
in Sect. 6. Finally, the paper is concluded in Sect. 7.

123

144 M. Amiri et al.

2 Related work

The sequential patterns could capture causative chains of influences present in data.
They are useful in many real-life applications [12,18,19] such as the prediction of
system failures [20], ICT risk assessment and management [21] and mining web
access patterns [22].

Events could be classified into two groups: time-point events and time-interval
events. The time-point events are stamped with the time of the event occurrence. On
the contrary, the time interval events describe the status of variables in time inter-
vals. An episode is defined as a partially ordered collection of events that occur
together [23]. The main goal of episode mining is to find the relationship between
events [24].

Most of the research works focus on events stamped with the time-point and extend
algorithms to extract their corresponding episodes. The time-interval events are con-
sidered in many applications such as health care, data network, financial applications
[25,26] and cloud workloads [2,11]. The problem of mining the time-interval episodes
is a relatively young research field [27]. Most of the research works ignore the time-
interval events and the relationship between them [28]. So presenting algorithms with
the capability of learning from such complex data is one of the most important and the
most challenging topics in the field of data mining [27,29]. It is clear that mining the
time-interval episodes from such data is more complicated [28]. This paper focuses
on the time-interval events and proposes a general approach for mining the closed
time-interval episodes efficiently. In the following section, we review some research
works on the time-interval events briefly.

Winarko et al. [28] propose a new algorithm, ARMADA, for discovering temporal
patterns from interval-based data. The authors extend MEMISP (MEMory Indexing
for Sequential Pattern mining) [30] to mine frequent patterns. Their algorithm requires
one database scan and does not require the candidate generation.

In [31], time-stamped multivariate data are converted into time interval-based
abstract concepts by using the temporal abstraction (see Sect. 3.1). An algorithm,
called KarmaLego, enumerates all of the patterns whose frequency is above a given
support threshold. Moskovitch et al. [32] improve KarmaLego to handle thousands of
symbol types.

Batal et al. [27] present Recent Temporal Pattern (RTP) mining to find predictive
patterns for the event detection problems. At first, their approach converts the time
series data into time-interval sequences of temporal abstractions. Then complex time-
interval patterns are constructed by using temporal operators. The mining algorithm
explores the space of temporal patterns in the level by level fashion. They also present
the minimal predictive recent temporal patterns framework to choose a small set of
predictive and non-spurious patterns.

In [33], the abstracted time series is used to find temporal association rules by
generalizing Allen’s rules [34] into a relation called PRECEDES. The user defines a
set of complex patterns, which constitutes the basis of the construction of temporal
rules. An Apriori-like algorithm looks for meaningful temporal relationships among
the complex patterns.

123

A new efficient approach for extracting the closed… 145

Patal et al. [35] augment the hierarchical representation with count information to
achieve a lossless representation. The hierarchical representation provides a compact
mechanism to express the temporal relations among events. Based on this represen-
tation, an Apriori-based algorithm, called IEMiner (Interval-based Event Miner), is
proposed to discover frequent temporal patterns. IEMiner employs two optimization
strategies to reduce the search space. Finally, interval-based temporal patterns are used
for classification.

Physiological conditions of patients are reported by using variables such as blood
pressure and the heart rate [27,36,37]. Gosh et al. [37] propose an approach that com-
bines sequential patterns extracted frommultiple physiological variables and captures
interactions between these patterns by Coupled Hidden Markov Models (CHMM).

Laxman et al. [38] present a pattern discovery framework that utilizes event duration
information in the temporal data mining process. They incorporate event duration
information explicitly into the episode structure and discover event duration-dependent
temporal correlations in the data. Furthermore, they define “principal episodes”, which
are similar to closed episodes, and extract them based on the hashing approach.

As it is observed,most of the researchworks focus onmining frequent patterns.Min-
ing frequent patterns might lead to extracting a huge number of patterns. To improve
mining efficiency and avoid information loss, closed patterns are usually extracted
[39]. Most of the works such as [12,39] focus on extracting closed episodes from the
sequence of the time-point events. The common approach to extract closed episodes
under gap constraints is based on the hash table [12,13]. This approach generates
closed patterns under gap constraints in two steps [13]. In the first step, candidate
closed patterns are extracted from frequent patterns. In the next step, they are consid-
ered and closed patterns are determined by using a hashing procedure with frequency
as the key. In this step, all the candidates with the same frequency are hashed to the
same bucket in the hash table. Among the candidate patterns which are hashed to
the same bucket, those patterns for which a super-pattern with the same frequency is
found, are discarded. As our experimental results show, this approach is not appropri-
ate to extract the closed time-interval patterns for the small values of the frequency
threshold because it leads to generating a huge number of candidate closed patterns.
In this paper, we introduce a new data structure, called CPBT , to store the closed pat-
tern. Based onCPBT , depth-first search algorithms are proposed to extract the closed
patterns directly. As it will be shown in the experiment results, CPBT improves the
efficiency of the pattern mining engine significantly when there are a huge number of
the candidate closed patterns.

3 An overview of the patternmining engine of POSITING/RELENTING

In this section, we consider the structure of POSITING briefly. Firstly, the background
concepts such as event, stream and episode are defined. Then, the episode occurrence
is discussed. Finally, the pattern mining engine is explained concisely.We recommend
that readers refer to [2,11] for more detail.

123

146 M. Amiri et al.

Fig. 2 Converting a time series into a symbolic (discretized) time series by the value abstraction that
Status = {Very Low, Low, Medium, High} and blue dashed lines show the border of the values [11,27]
(colour figure online)

3.1 Background concepts

As Fig. 2 shows, POSITING converts the numeric time series of all the resources allo-
cated to the application into a sequence of abstractions 〈S1[st1, et1], . . . , Sn[stn, etn]〉
where Si ∈ Status, 1 ≤ i ≤ n is an abstraction that holds from time sti to time
eti and Status is the abstraction alphabet. Let Status = {S1, . . . , SM } be a set of
the abstract values and ResourceT ype = {R1, . . . , RN } be a set of all the resources
allocated to the application. Without loss of generality, we define an arbitrary order
on ResourceT ype, for example R1 < R2 < · · · < RN .

Definition 1 An event ei is defined as a 4-tuple 〈ri , si , sti , eti 〉 that means the abstract
value of ri ∈ ResourceT ype is si ∈ Status from the start time sti to the end time
eti . The span of the event ei = 〈ri , si , sti , eti 〉 is Δei = eti − sti > ε, where ε is a
positive constant (ε ∈ Z≥0). So the span of each event is at least ε + 1 time slots.

All the discretized time series of the resources are represented as a multivariate
stream. Note that the value of ε depends on the length of sampling intervals. In coarse
grained sampling, ε is set to small values. For fine grained sampling, ε could be set to
larger values.

Definition 2 A multivariate stream E = 〈e1, e2, . . . , en〉, where n is the index of the
latest observed event, is a sequence of events that are ordered according to their start
time:

∀ei , e j ∈ E that 1 ≤ i < j ≤ n : (sti < st j)or(sti = st j and ri < r j)

Definition 3 A state is an ordered pair of (r , s), where r ∈ ResourceT ype and
s ∈ Status. The Resource-Status (RS) is a set of all the possible states: RS =
{(r , s)|∀r ∈ ResourceT ype,∀s ∈ Status}.

123

A new efficient approach for extracting the closed… 147

Fig. 3 An example of amultivariate streamwith ResourceT ype = {CPU , Memory, Disk} and Status =
{Very Low, Low, Medium, High} [27]

Example 1 Figure 3 shows a multivariate stream E with ResourceT y pe =
{CPU , Memor y, Disk} and Status = {Very Low, Low, Medium, High}. If the
order on ResourceT ype is defined as CPU < Memory < Disk, according to Def-
inition 2, E = 〈(CPU , Ver y Low, 0, 2), (Memor y, Medium, 0, 4), (Disk, V er
y Low, 0, 3), (CPU , High, 2, 5), (Disk, Medium, 3, 7), (Memor y, High, 4, 7),
(CPU , Low, 5, 7)〉.
If the span of events is large, they are decomposed based on the decomposition unitμ.
For example the event (Disk, Medium, 3, 7) with μ = 3 is decomposed into two
events (Disk, Medium, 3, 6) and (Disk, Medium, 6, 7). However, after decompos-
ing the event e, the span of the last decomposed event might be less than ε. Here, to
satisfy Definition 1, the latest and penultimate decomposed events merge together.

Inspired by the temporal relations defined in [27], we define two types of relations
between events: concurrent and consecutive.

Definition 4 Given the stream E = 〈e1, . . . , en〉, two events ei and e j , 1 ≤ i, j ≤ n,
are concurrent iff |sti − st j | ≤ ε and are consecutive iff |sti − st j | > ε.

Mannila et al. [23] informally define an episode as a partially ordered collection of
events that occur together [23]. Inspired by the definition of the episode in [23], we
present a detailed definition of the episode based on our problem domain. Note that
we use the terms “pattern” and “episode” interchangeably in this paper.

Definition 5 A Concurrent Nodes Group (CNG) G = D1D2 · · · Dl is a group of
nodes such that ∀Dj , Dm ∈ G, 1 ≤ j,m ≤ l, there is no partial order between Dj

and Dm .

Definition 6 An episode α is defined as a directed acyclic graph α = (Vα,≺α, gα),
where Vα is a set of nodes,≺α is a partial order on Vα and gα : Vα → RS is a function
that maps each node into one state. The episode α is composed of k(> 1) CNGs in
the form of G1 = D1

1, D
1
2, . . . , D

1
l1
,…, Gk = Dk

1, D
k
2, . . . , D

k
lk
that:

1. |Gi | = li
2. Vα = {D1

1 . . . , D1
l1
, D2

1 . . . , D2
l2
, . . . , Dk

1 . . . , Dk
lk
}

3. ∀Di
j ∈ Gi ,∀Dm

n ∈ Gm, 1 ≤ i < m ≤ k, j ∈ {1, . . . , li }, n ∈ {1, . . . , lm} :
Di

j ≺α Dm
n

123

148 M. Amiri et al.

Fig. 4 The graphical representation of the episode α = (CPU , High)(Memory, Medium) →
(CPU , Low)(Disk, Low) [11]

4. |CNGα| = k
5. G ′

i = {(r , s) ∈ RS|gα(v) = (r , s) ,∀v ∈ Gi }.

The episode α could be represented as a general form α = G ′
1 → G ′

2 → · · · → G ′
k .

Example 2 Consider the episode α = (Vα,≺α, gα) in Fig. 4. The set Vα contains
four nodes. As it is shown, the function gα maps the nodes into the states and
D1
1 ≺α D2

1, D
1
1 ≺α D2

2, D
1
2 ≺α D2

1 and D1
2 ≺α D2

2. As a simple graphical nota-
tion, this episode is represented as α = (CPU , High)(Memory, Medium) →
(CPU , Low)(Disk, Low).

3.2 The episode occurrence

Informally, the occurrence of an episode in the stream means that the nodes of the
episode have the corresponding events in the stream such that the partial order of
the episode is preserved [40]. A frequent episode occurs often enough in the stream.
Given a frequency threshold θ ∈ R≥0, the goal of episode mining is to extract all the
frequent episodes in the stream. We choose the Non-Overlapped (NO) frequency [41]
to compute the frequency of episodes. Two occurrences h1 and h2 of the episode α

are said to be non-overlapped if either “h1 starts after h2” or “h2 starts after h1” [41].
The NO frequency is computed by using minimal occurrences. A minimal occurrence
is an occurrence that includes no other occurrences. So, f req(α) is the cardinality of
a maximal NO set of minimal occurrences of the episode α in the stream [11,41]. In
Sect. 4, we discuss how to compute the episode frequency based on the occurrences.

Definition 7 Given the episode α such that |CNGα| = k and 1 ≤ i ≤ k, for each
occurrence of α, the starting interval of the occurrence of Gi , [t i1, t i2], is:

t i1 = min{st of the corresponding events of the nodes of G ′
i in the occurrence}

(3.1)

t i2 = max{st of the corresponding events of the nodes of G ′
i in the occurrence}

(3.2)

Definition 8 Given the episode α such that |CNGα| = k, each occurrence O of α is
determined as a sequence of the starting intervals of CNGs: O = ([t i1, t i2]ki=1)

Example 3 Consider the stream E = 〈e1 = (CPU , High, 0, 3), e2 = (Memory,
Medium, 0, 4), e3 = (Network, Low, 0, 2), e4 = (Disk, Medium, 0, 3), e5 =

123

A new efficient approach for extracting the closed… 149

(Network, Medium, 2, 5), e6 = (CPU , 3, 5, Low), e7 = (Disk, Low, 3, 5), e8 =
(Memory, Very Low, 4, 5)〉. For ε = 0, there is an occurrence of the episode α

given in Example 2 in the stream E . The starting intervals of the occurrence of G1
and G2 are [t11 , t12] = [0, 0] and [t21 , t22] = [3, 3] respectively. So the occurrence is
represented as O = ([0, 0], [3, 3]).

Dynamic resources allocation is based on virtualization techniques [42]. Based on
time spent on booting VMs, patterns should be extracted from application behavior
in a way that SLA is satisfied and energy wasting is avoided. Given the episode
α = G ′

1 → G ′
2 → · · · → G ′

k and an occurrence O = ([wi
1, w

i
2]ki=1) of α, if the time

it takes to instantiate a new VM instance is δ(> ε) time slots, the starting interval
of G ′

i+1, 1 ≤ i < k, should begin after δ + wi
2. Thus, the resources manager has

enough time to instantiate a new VM instance. On the other hand, if resources are
allocated before occurring workload burstiness for a long time, energy and resources
are wasted. According to the discretion of the resources manager and characteristics
of the cloud data center, the gap constraintΔ(≥ δ) determines that resources might be
allocated at most Δ − δ time slots before occurring workload burstiness. Therefore,
the Valid Interval (VI) of G ′

i+1 is V I ([wi
1, w

i
2], i + 1) = [wi

2 + δ,wi
2 + Δ] to satisfy

QoS and SLA and avoid wasting energy. δ and Δ are called minimum internal gap
and maximum internal gap respectively.

To compute the NO frequency of episodes under gap constraints, tracking the
minimal occurrences of episodes is not enough [12]. So we introduced a new type of
the occurrence, called the latest occurrence, to compute the NO frequency under gap
constraints in [11]:

Definition 9 Given the episode α = G ′
1 → G ′

2 → · · · → G ′
k and the internal

gaps δ and Δ, an occurrence O = ([wi
1, w

i
2]ki=1) of α is a valid occurrence iff

∀i, 1 ≤ i < k, wi
2 + δ ≤ wi+1

1 ≤ wi
2 + Δ.

Example 4 Consider Example 3. If δ = 2 andΔ = 3, V I ([0, 0], 2) = [0+2, 0+3] =
[2, 3]. In addition, the occurrence O is valid because we have 0 + 2 ≤ 3 ≤ 0 + 3.

Definition 10 Given the episode α = G ′
1 → G ′

2 → · · · → G ′
k , if for a valid

occurrence O = ([t i1, t i2]ki=1) of α there exists no other valid occurrence Q =
([wi

1, w
i
2]k−1

i=1 , [tk1 , tk2]) of α such that ∃ j, 1 ≤ j < k, w j
1 > t j1 , it is said that O

includes the Latest Prefix Occurrence (LPO).

Definition 11 Each valid occurrence of the episode α that includes LPO , is called the
Latest Occurrence (LO). LO(α) is a set of all the latest occurrences of α.

Example 5 Given the episode α = G ′
1 → G ′

2 → G ′
3, ε = 1, δ = 4 and Δ = 7,

Fig. 5a shows the occurrences of G ′
i , i = 1, 2, 3. Note that there are two occurrences

for each G ′
i : A1 = [1, 2] and A2 = [4, 5] are the occurrences of G ′

1, B1 = [9, 10] and
B2 = [12, 13] are the occurrences of G ′

2 and C1 = [17, 18] and C2 = [21, 22] are the
occurrences of G ′

3. Figure 5b shows that four valid occurrences (note that each LO is
also a valid occurrence) could be identified for α under gap constraints. According to
Definition 11, the corresponding occurrences of the red lines in Fig. 5b are not LO .
As the figure shows there are two LOs for α: (A2, B2,C1) and (A2, B2,C2).

123

150 M. Amiri et al.

(a)

(b)

Fig. 5 Extracting LOs of the episode α based on the occurrences of its CNGs

In previous works, a superset of the minimal occurrences, called Minimal Prefix
Occurrences (MPOs), is extracted to compute the NO frequency under gap con-
straints. An MPO with the span of [ts, te] is a valid occurrence (satisfying gaps)
such that there is no other valid occurrence that starts strictly after ts and ends at or
before te [12].

Example 6 Consider Example 5 again. Assume there is only the occurrence A2 for
G ′

1. In this case, according to the definition of MPO , there are three MPOs: O1 =
(A2, B1,C1), O2 = (A2, B2,C1) and O3 = (A2, B2,C2) for α. On the contrary, there
are two LOs: O2 = (A2, B2,C1) and O3 = (A2, B2,C2) for α. This example shows
that LOs of α are a subset of its MPOs.

Lemma 1 Given the episode α = G ′
1 → · · · → G ′

k , if MPO(α) is a set of all the
minimal prefix occurrences of α, then LO(α) ⊆ MPO(α).1

Definition 12 Given the episode α = G ′
1 → G ′

2 → · · · → G ′
k , LOList(α)

includes a 4-tuple (tk−1
2 , tk1 , tk2 , t11) for each occurrence O = ([t i1, t i2]ki=1) ∈ LO(α).

LOList(α)[i] is the i-th member of LOList(α).

The focus of the following sections is on improvements to time and space complexities
of the pattern mining engine.

3.3 The pattern extraction

The pattern mining engine constructs a pattern tree and extracts frequent patterns.

Definition 13 Given the episode α = G ′
1 → G ′

2 → · · · → G ′
k and (r , s) ∈ RS, the

serial extension of α with (r , s) is:

α ⊕ (r , s) = G ′
1 → G ′

2 → · · · → G ′
k → (r , s) (3.3)

1 The proof of lemmas and theorems could be found in “Appendix A”.

123

A new efficient approach for extracting the closed… 151

Fig. 6 A part of the lexicographic pattern tree [11]

Definition 14 Given the episode α = G ′
1 → G ′

2 → · · · → G ′
k−1 → G ′

k and
(r , s) ∈ RS, the concurrent extension of α with (r , s) is:

α � (r , s) = G ′
1 → G ′

2 → · · · → G ′
k−1 → G ′′ that G ′′ = G ′

k ∪ (r , s) (3.4)

The lexicographic tree (pattern tree) is constructed based on the serial and concurrent
extensions as follows [13]:

– The root is labeled with ∅.
– Each node n of the tree is labeled with a state. Label(n) is the corresponding label
of the node n.

– Each node n of the tree corresponds to an episode. Pattern(n) is the corresponding
episode of the node n.

– If Pattern(n) = α, the corresponding episode of each child of n is either a serial
extension or a concurrent extension of α.

– The left sibling is less than the right sibling.

Figure 6 shows a part of the pattern tree constructed on RS [11]. Note that
∀i, j, 1 ≤ i ≤ N , 1 ≤ j ≤ M, (Ri , S j) ∈ RS. Here, the lexicographic order is
defined on RS as (R1, S1) < · · · < (R1, SM) < (R2, S1) < · · · < (R2, SM) < · · · <

(RN , S1) < · · · < (RN , SM). The root of the tree is null. All the patterns in the tree
are generated only by the serial extension or the concurrent extension. For example
the episode ((R1, S1)(R2, S1)) is generated from the concurrent extension of (R1, S1)
with (R2, S1) and the episode ((R1, S1) → (RN , SM)) is generated from the serial
extension of (R1, S1) with (RN , SM).

Mining frequent episodes might lead to extracting a huge number of patterns. To
improve mining efficiency and avoid information loss, a compressed set of episodes,
called closed episodes, is extracted [43].

Definition 15 The episode β is a sub-episode of the episode α (or α is a super-episode
of β), β � α, if all the states of β and the partial order between them exist in α.

123

152 M. Amiri et al.

Definition 16 Given the episode α = G ′
1 → G ′

2 → · · · → G ′
k and 1 ≤ i ≤ k,

Pre f i x(α, i)= G ′′
1 → G ′′

2 → · · · → G ′′
i and Post f i x(α, i) = G ′′

i → G ′′
i+1 →

· · · → G ′′
k , where G

′′
i ⊆ G ′

i .

Definition 17 The episode α is closed under gap constraints δ and Δ iff there is no
other episode β whose prefix or suffix is α and f req(α) = f req(β) [12].

Example 7 Consider the two episodes α = (Memory, Low) → (Disk, High) and
β = (CPU , High)(Memory, Low) → (Disk, High). It is clear that α � β and
α = Su f f i x(β, 1). So if f req(α) = f req(β), then the episode α is not closed.

Based on the definitions of the serial extension and the concurrent extension, if
nodes n′ and n′′ are the serial and concurrent extensions of the node n respectively,
then we have:

Pattern(n′)
︸ ︷︷ ︸

α

= Pattern(n)
︸ ︷︷ ︸

β

⊕ Label(n′)
︸ ︷︷ ︸

x

(3.5)

Pattern(n′′)
︸ ︷︷ ︸

γ

= Pattern(n)
︸ ︷︷ ︸

β

� Label(n′′)
︸ ︷︷ ︸

y

(3.6)

Sowithout scanning the stream, amaximal non-overlapped set ofminimal occurrences
of α and γ can be determined by using the join of LO(β) with the occurrences of x
and y respectively [12].

Firstly, the pattern mining engine extracts frequent episodes by the complete tra-
verse of the pattern tree in a depth-first way. For this purpose, all the frequent 1-node
episodes are extracted. Then, the pattern tree is traversed in a depth-first manner from
each of the frequent 1-node episodes.When the serial and concurrent extensions of the
episode are constructed, it is checked whether any of the super patterns has the same
frequency as the episode’s or not; if not, the episode is added to the list of candidate
closed episodes. After extracting the candidate closed episodes, a post-processing step
is performed on them using a hashing procedure with frequency as the key. Finally, a
set of all the closed frequent episodes are extracted. Note that to avoid enlarging the
pattern tree, we could limit the number of CNGs of episodes. We define Level as the
maximum number of CNGs of episodes.

4 Improving space complexity: computingNO frequency based on
redundant occurrences

This section focuses on improvements to space complexity of the pattern mining
engine. In Sect. 4.1, redundant LOs are introduced. The improved representation of
the stream is introduced to identify the redundant occurrences in Sect. 4.2. In Sect. 4.3,
algorithms are proposed to compute the NO frequency under gap constraints.

123

A new efficient approach for extracting the closed… 153

4.1 Redundant LO

In this section, the redundant LOs are defined and it is proved that removing these
occurrences does not affect the frequency of episodes. Therefore, the redundant occur-
rences could be removed without any information loss, which improves memory
consumption.

Definition 18 Given the episode α = G ′
1 → G ′

2 → · · · → G ′
k and the occurrence

O = ([t i1, t i2]ki=1) ∈ LO(α), the occurrence O is a redundant occurrence iff three
conditions below are satisfied:

1. There exists another occurrence Q = ([wi
1, w

i
2]ki=1) ∈ LO(α) such that w1

1 = t11
and wk

2 < tk1
2. There is no sub-interval of [tk2 + δ, tk2 + Δ] such that only O covers it.
3. There exists no event e = (r , s, st, et) such that |tk2 − st | ≤ ε and |tk1 − st | ≤ ε.

In Sect. 3.3, we explained how the pattern tree is constructed based on the serial
and concurrent extensions. If for the occurrence O there is an event e = (r , s, st, et)
such that |tk2 − st | ≤ ε and |tk1 − st | ≤ ε, then an episode β can be extended from
α by the concurrent extension (β = α � (r , s)). Therefore, the occurrence O is not
redundant and it should not be removed.

Example 8 Given the episodeα = G ′
1 → G ′

2, ε = 1, δ = 12 andΔ = 23, Fig. 7 shows
the occurrences of G ′

i , i = 1, 2. A1 = [80, 81] and A2 = [92, 93] are the occurrences
ofG ′

1 and B1 = [100, 101], B2 = [103, 104] and B3 = [106, 106] are the occurrences
of G ′

2. There are three LOs: O1 = (A1, B1), O2 = (A1, B2) and O3 = (A2, B3).
Note that the occurrence O2 satisfies the first two conditions of Definition 18: the
occurrence O1 satisfies the first condition and as Fig. 8 shows V I ([103, 104], 3) is
covered completely by the valid intervals of O1 and O3. Therefore if there exists no
event e = (v, s, st, et) such that |104 − st | ≤ ε and |103 − st | ≤ ε, then O2 is
redundant.

Fig. 7 The occurrences of G′
i , i = 1, 2 of the episode α = G′

1 → G′
2

Fig. 8 The valid intervals of the occurrences O1, O2 and O3 in Example 8

123

154 M. Amiri et al.

Lemma 2 Given the episode α, if β and γ are the serial and concurrent extensions
of α, removing redundant occurrences from LOList(α) does not affect f req(α),
f req(β) and f req(γ).

Lemma 3 Given the episode α = G ′
1 → G ′

2 → · · · → G ′
k and the occurrences

A = ([ai1, ai2]ki=1), B = ([bi1, bi2]ki=1) andC = ([ci1, ci2]ki=1), where A, B,C ∈ LO(α)

and A and C are LOs immediately before and after B respectively, if a11 �= b11 and
[bk1, bk2] is not covered by [ak1, ak2] and [ck1, ck2], then all of the LOs before A start
before B and [bk1, bk2] is covered by none of the LOs before A and after C.

Lemma 4 If ε ≥ δ
4 and Δ ∈ [δ, 2δ), then there is no redundant LO.

4.2 Improved representation of the stream based on pointers (PROSPER)

According to Lemma 2, all the LOs of the episode don’t include useful information.
So removing these LOs could improve memory consumption of LOList of episodes.
To identify redundant LOs, according to the third condition of Definition 18, LOs
should not extend concurrently. For this purpose, the occurrence list of all the states of
RS should be checked, whichmight be time-consuming. To expedite the identification
of concurrent events and the removal of redundant LOs, we propose PROSPER,
which is the improved representation of the stream based on pointers. PROSPER is
based on the vertical representation of the stream. It connects the concurrent events
by using pointers.

In the vertical representation of the stream [44], each (r , s) ∈ RS is associated with
a list whose entries include the starting intervals of that (r , s). In PROSPER, each
entry of the list is augmented with two pointers to the entry, which are called Next and
Previous. The concurrent events are connected by the pointers. The corresponding
list of (r , s) in PROSPER is called LOList RS(r , s).

Definition 19 LOList RS(r , s) includes a 4-tuple ([v, v′], Next, Previous) for each
occurrence of (r , s) ∈ RS, where [v, v′] is the starting interval of the occur-
rence and Next and Previous are the pointers that connect the concurrent events.
LOList RS(r , s)[i] is the i-thmember of LOList RS(r , s). (Note that for each occur-
rence of (r , s), v = v′.)

Example 9 Consider the stream E :

E = 〈(CPU , Low, 0, 1), (Memory, Medium, 0, 3),

(CPU , High, 1, 2), (CPU , Low, 2, 3),

(CPU , Medium, 3, 4), (Memory, High, 3, 4), (CPU , Low, 4, 6),

(Memory, Low, 4, 5), (Memory, High, 5, 6)〉

Figure 9 shows the vertical representation and PROSPER of the stream E for
ε = 0. As Fig. 9b shows, the concurrent events could be identified by using the
pointers easily. Note that the pointer L always points to the last event of the stream.

123

A new efficient approach for extracting the closed… 155

(a)

(b)

Fig. 9 The representation of the stream E in Example 9 in the forms of the vertical representation and
PROSPER

4.3 NO frequency under gap constraints

To compute the NO frequency of episodes, their LOList should be extracted firstly
[11]. In this section, based on PROSPER, we modify the algorithms SSMakeLOList
and SCMakeLOList presented in [11] to extract the non-redundant LOs of episodes.

4.3.1 Extracting the non-redundant LOs of episodes using the serial extension

The algorithm SMakeLOList (Algorithm 1) is proposed to extract the non-redundant
LOs of episodes using the serial extension. The algorithm receives LOList(α) (see
Definition 12) and LOList RS(r , s) (see Definition 19) that α is an episode and
(r , s) ∈ RS, and computes LOList(β = α ⊕ (r , s)) without scanning the stream.
Note that LOList RS(r , s) is the occurrence list of (r , s) inPROSPER. The counters
i , z and j traverse the LOLists of α and β and LOList RS(r , s) respectively. Lines
2 to 23 consider for each LO of α which LOs of (r , s) could create a non-redundant
LO for β. Lines 4 to 6 check whether the i-th LO of α could be the latest prefix
occurrence for the j-th occurrence of (r , s) or not. If not, this LO of α could not
be the latest prefix occurrence for the next occurrences of (r , s). So the next LOs
of α are considered (line 22). For the new LOs of α, we start from the occurrences
of (r , s) that there is no latest prefix occurrence for them. In lines 4 to 5, if an LO
of α is the latest prefix occurrence for an LO of (r , s), the corresponding LO of
β is generated and inserted in LOList(β). In lines 7 to 17, the LOs immediately
before and after each LO of β are considered whether that LO is redundant based on
Definition 18. In line 12, the functionCExtending (seeAlgorithm 7 in “AppendixB”)
considers whether LO could extend concurrently or not. According to Lemma 3, if the
conditions of Definition 18 are not satisfied for the next and previous LOs, then the
conditions would not be satisfied by the other LOs. In line 13, if an LO is redundant,
it is removed and the counter z is updated. Note that in line 10, if b3 + δ ≤ b1 + Δ,
then [b2 + δ, b2 + Δ] is covered because we have b1 < b2 < b3. So if b1 + δ <

b2+δ < b3+δ ≤ b1+Δ < b2+Δ < b3+Δ, then V I ([a2, b2], k+1) is completely

123

156 M. Amiri et al.

Fig. 10 The serial extension of G′
1 with (r , s) and extracting LOList(G′

1 → (r , s)) by the algorithm
SMakeLOList in Example 10

covered by V I ([a1, b1], k + 1) and V I ([a3, b3], k + 1), where |CNGα| = k. Time
complexity of the algorithm is discussed in Lemma 9 in “Appendix A”.

Algorithm 1 SMakeLOList
Input: ε, δ, Δ, LOList(α), LOList RS(r , s) % α is an episode; (r , s) ∈ RS; LoList RS(r , s)[i] =

([vi , vi], Next, Previous);LoList(α)[i] = (xi , ti , t
′
i , t

α
i)

Output: LOList(β)

1: i ← 1; j ← 1; z ← 1;
2: while ((i ≤ |LOList(α)|) and (j ≤ |LOList RS(r , s)|)) do
3: while ((j ≤ |LOList RS(r , s)|) and (i = |LOList(α)| or (i < |LOList(α)| and t ′i+1 + δ >

v j)) and (v j ≤ t ′i + Δ)) do
4: if (t ′i + δ ≤ v j ≤ t ′i + Δ) then
5: Add((t ′i , v j , v j , t

α
i), LOList(β)); % add (t ′i , v j , v j , t

α
i) into LOList(β)

6: j + +; z + +;
7: if (z > 3) then
8: [(x1, b1, b1, c1), (x2, b2, b2, c2), (x3, b3, b3, c3)] ← LOList(β)[z − 3 : z − 1];
9: if (c1 = c2) then
10: if (b3 + δ ≤ b1 + Δ) then
11: I ndex ← Find Index(b2, b2, LOList RS(r , s)); % Find the I ndex of an

entry of LOList RS(r , s) whose start time is in [b2, b2]
12: if (!CExtending(r , s, LOList RS(r , s)[I ndex], b2, b2, ε)) then
13: LOList(β)[z − 1] ← LOList(β)[z]; z − −;
14: end if
15: end if
16: end if
17: end if
18: else if (v j < t ′i + δ) then
19: j + +;
20: end if
21: end while
22: i + +;
23: end while
24: return LOList(β);

Theorem 1 Given the episode α and (r , s) ∈ RS, the algorithm SMakeLoList only
finds all the non-redundant LOs of β = α ⊕ (r , s).

Example 10 Consider Example 8. Figure 10 shows LOList(G ′
1), LOList RS(r , s)

and LOList(β = G ′
1 → (r , s)) extracted by Algorithm 1. Since all of the pointers

of LOList RS(r , s) are null, according to lines 10 to 20 of the algorithm, the second
element of LOList(β) is redundant. So it is removed.

123

A new efficient approach for extracting the closed… 157

4.3.2 Extracting the non-redundant LOs of episodes using the concurrent extension

The algorithm CMakeLOList (Algorithm 2) is proposed to extract the non-
redundant LOList of episodes using the concurrent extension. The algorithm receives
LOList(α) and LOList RS(r , s) that α is an episode and (r , s) ∈ RS, and computes
LOList(β = α � (r , s)) without scanning the stream.

Algorithm 2 CMakeLOList
Input: ε, δ, Δ, LOList(α), LOList RS(r , s) % α is an episode;(r , s) ∈ RS LoList RS(r , s)[i] =

(vi , vi , Next, Previous);LoList(α)[i] = (xi , ti , t
′
i , t

α
i)

Output: LOList(β)

1: i ← 1; j ← 1; z ← 1;
2: while (i ≤ |LOList(α)| and j ≤ |LOList RS(r , s)) do
3: while (j ≤ |LOList RS(r , s)| and LOList RS(r , s)[j].Next = null and LOList RS(r , s)[j].

do Previous = null)
4: j + +;
5: end while
6: if (j ≤ |LOList RS(r , s)|) then
7: if (|v j − ti | ≤ ε and |v j − t ′i | ≤ ε and xi + δ ≤ min(ti , v j) ≤ xi + Δ) then
8: Add((xi ,min(ti , v j),max(t ′i , v j), t

α
i), LOList(β)); %add (xi ,min(ti , v j),max(t ′i , v j),

%tαi) into LOList(β)

9: i + +; j + +; z + +;
10: if (z > 3) then
11: [(x1, a1, b1, c1), (x2, a2, b2, c2), (x3, a3, b3, c3)] ← LOList(β)[z − 3 : z − 1];
12: if (c1 = c2) then
13: if (b3 + δ ≤ b1 + Δ) then
14: I ndex ← Find Index(a2, b2, LOList RS(r , s)); % Find the I ndex of an

entry of LOList RS(r , s) whose start time is in [a2, b2]
15: if (!CExtending(r , s, LOList RS(r , s)[I ndex], a2, b2, ε)) then
16: LOList(β)[z − 1] ← LOList(β)[z]; z − −;
17: end if
18: end if
19: end if
20: end if
21: else if v j > t ′i then
22: i + +;
23: else
24: j + +;
25: end if
26: end if
27: end while
28: return LOList(β);

The counters i , z and j traverse the LOList(α), LOList(β) and LOList RS(r , s)
respectively. In lines 3 to 5, the first element of LOList RS(r , s) that is concur-
rent with at least one event is found. There are three cases for LOList(α) and
LOList RS(r , s): 1) In lines 7 to 20, if the corresponding entries of LOList(α)[i]
and LOList RS(r , s)[j] could generate an LO of β = α � (r , s), it is inserted in
LOList(β) and three counters i , j and z increase by +1. In lines 10 and 20, if an
LO is redundant, it is removed and the counter z is updated. (2) In lines 21 to 22,
if LOList RS(r , s)[j] occurs after LOList(α)[i], then LOList(α)[i] should not
be considered for the members after LOList RS(r , s)[j]. So the next LO of α is
checked. (3) In lines 23 and 24, if LOList RS(r , s)[j] occurs before LOList(α)[i],

123

158 M. Amiri et al.

Fig. 11 The concurrent extension ofαwith (r , s) and extracting LOList(β)by the algorithmCMakeLOList
in Example 11

the next occurrences of (r , s) are considered for LOList(α)[i]. Time complexity of
the algorithm CMakeLOList is discussed in Lemma 10 in A.

Theorem 2 Given the episode α = G ′
1 → G ′

2 → · · · → G ′
k and G = (r , s) ∈ RS,

the algorithm CMakeLOList only finds all the non-redundant LOs of β = α � G.

Example 11 Given the episode α = G ′ → (r , s), (r ′, s′) ∈ RS, (r , s) < (r ′, s′),
ε = 1, δ = 12 and Δ = 23, Fig. 11 shows LOList(α), LOList RS(r , s),
LOList RS(r ′, s′) and LOList(β) extracted by Algorithm 2. According to the algo-
rithm, the second element of LOList(β) is removed because it is redundant.

After extracting LOList of episodes, their NO frequency could be computed by
calling the function ComputeFreq presented in [11] easily. ComputeFreq scans
LOList of the episode and counts the number of the non-overlapped LOs.

5 Improving time complexity: a new approach for mining the closed
episodes

As it was mentioned, the common approach to extract closed episodes under gap
constraints is based on the hash table [13]. It is a two-step approach. In the first step,
candidate closed episodes are extracted. In the next step, they are considered and
closed episodes are determined by using a hashing procedure with frequency as the
key [12,13]. As it will be shown in the evaluation results, the number of closed episodes
is usually much fewer than candidate closed episodes’. So extracting closed episodes
from among a huge number of candidate closed episodes is very time-consuming. For
this purpose, we introduce a new data structure, calledCPBT , to store closed episodes
and present depth-first search algorithms based on CPBT to extract closed episodes
directly. In this section, CPBT is introduced firstly. Then, the algorithms for mining
closed frequent episodes are presented.

5.1 The data structure CPBT

The data structure CPBT is introduced to store closed episodes compactly. The root
of CPBT is labeled with ∅. The episode is traversed in the backward direction and
inserted in CPBT in a way that each node is corresponding to one CNG of the
episode. So the episodes whose postfixes are the same share the same nodes. To avoid
losing the frequency of the episodes, each node maintains the sum of the frequency of
the episodes that share that node. Each Node n of CPBT includes:

123

A new efficient approach for extracting the closed… 159

(a) (b)

(c)

Fig. 12 The step-by-step construction of CPBT while inserting the episodes of Example 12

– label Given the episode α = G ′
1 → · · · → G ′

k , if the node n is corresponding to
G ′

i , 1 ≤ i ≤ n, then label(n) is the inverse of G ′
i .

– f req: It is the sum of the frequency of the episodes that share n.
– children There is a node as a child of n for each episode that shares n and n is
not corresponding to the first CNG of the episode.

Example 12 Given RS1 = {A, B,C, D, E, F,G, M, N , Z}, where RS1 ⊆ RS,
assume the three episodes α, β and γ are extracted as follows:

α = AB → CEG → FM β = A → C → MN γ = DZ → FM

f req(α) = 50 f req(β) = 70 f req(γ) = 100

As Fig. 12a shows, the episode α is inserted in the backward direction inCPBT . Each
node of CPBT is corresponding to one CNG of α. Note that each node includes the
frequency of α. Figure 12b shows CPBT after inserting the episode β. Since the
episodes α and β have no equal postfix, the episode β is inserted as a new branch of
the root. Since the postfixes of the episodes γ and α are equal, so the node labeled
MF is shared between them. Note that the frequency of this node is the sum of the
frequency of α and γ .

123

160 M. Amiri et al.

Algorithm 3 AllClosedFreqEpisodes
Global Variables: CPBT ,PathList ;
Input: ε, δ, Δ, Level, θ % parameters and thresholds, 0 ≤ θ ≤ 1
Output: ClosedSet % ClosedSet is a set of all the closed frequent episodes
1: P ← CreateList(RS); % Create a list of x ∈ RS, where |LOList RS(x)| > 0
2: Sort P based on the Order de f ined on RS;
3: for each (p ∈ P) do
4: FindClosedFreqEpisode(ε, δ, Δ, Level, θ, p,ConvertT oLOList(LOList RS(p))); %

ConvertT oLOList(LOList RS(p)) converts the LOList RS(p) to the form of LOList
5: end for
6: ClosedSet ← ExtractClosedEpisodesFromCBBT ();
7: return ClosedSet

5.2 Mining closed frequent episodes

Firstly, we introduce two new supersets of closed episodes, called Forward Closed
and Backward Closed. Then based on them and CPBT , we propose algorithms that
extract closed frequent episodes directly.

Definition 20 Given α = G ′
1 → · · · → G ′

k , if there is no episode β such that
α = Pre f i x(β, k) and f req(α) = f req(β), then α is Forward Closed (FC).

Definition 21 Given α = G ′
1 → · · · → G ′

k , if there is no episode β such that
|CNGβ | = u, α = Su f f i x(β, u − k + 1) and f req(α) = f req(β), then α is
Backward Closed (BC).

If an episode is FC and BC then it is a closed episode. Therefore, we extract
the FC episodes and insert them in CPBT firstly. From among the FC episodes,
the episodes that are not BC are absorbed by their super-episodes. Thus, CPBT
only includes closed frequent episodes. Note that for the two FC episodes α and β,
checking the CNG occurrences of the episodes is redundant because we could check
whether α is a suffix of β and identify their frequency by using CPBT simply. As it
will be shown, closed episodes and their frequency could be extracted from CPBT
easily.

Algorithm 3 extracts closed episodes by the complete traverse of the pattern
tree in a depth-first way. At first, in line 1, all the 1-node episodes (denoted by
P) are extracted. Then, in lines 3 and 4, the pattern tree is traversed in a depth-
first manner from each of the 1-node episodes using the recursive calls of the
algorithm FindClosedFreqEpisode (see Algorithm 8 in “Appendix B”). Note
that LOList RS(p) is the corresponding list of p in PROSPER. The algorithm
FindClosedFreqEpisode identifies the FC episodes and inserts them in CPBT
by calling the function I nsertCPBT . Finally, after extracting closed episodes, Algo-
rithm 3 calls the function ExtractClosedEpisodesFromCBBT to traverse CPBT
and extract closed episodes from it. Note that episodes are represented in the form of
SAVE [11] to expedite the episode extraction. In the next section, we comprehensively
explain how to insert the FC episodes in CPBT.

123

A new efficient approach for extracting the closed… 161

5.3 Insert in CPBT

When the FC episode α is inserted in CPBT , two cases could occur: (1) In CPBT ,
there is another episode β whose suffix is α and f req(α) = f req(β). It means that
β < α because β has been inserted inCPBT sooner than α. So α is not BC and should
not be inserted in CPBT . (2) After inserting α, another episode β whose suffix is α

and f req(α) = f req(β) might be inserted. It means that α < β. So α should be
removed from CPBT .

Definition 22 If the episodes α and β are FC , α is a suffix of β and f req(α) =
f req(β), it is said that β absorbs α.

The procedure for calling functions to insert an FC episode in CPBT is shown
in Fig. 13. According to the figure, the episode is converted to a branch by calling
the function CreateBranch. In the next step, the function Search InTree is called.
This function calls the function EpisodeAbsorbByT ree. It considerswhetherCPBT
absorbs the episode or not. If not, the function TreeAbsorbByEpisode is called. This
function finds the branches that are absorbed by the episode. Then, these branches are
updated by calling the functionUpdateBranch. Finally, the function I nsert I nTree
is called to insert the episode in the right place.

The algorithm I nsert I nC PBT inserts the FC episode α in CPBT . As Algo-
rithm 4 shows this function receives the FC episode α and its frequency. The pointer
R points to the root of CPBT at first. In line 2, the corresponding branch of the
episode α, α′, is created by calling the function CreateBranch (Algorithm 9). In line
3, the branch α′ is searched in CPBT by calling the function Search InTree (Algo-
rithm 5). If α′ is absorbed by a branch of CPBT , this function returns − 1. Otherwise
the branches of CPBT that are absorbed by α′ are removed and the function returns
0. Finally, the branch α′ is inserted in CPBT in lines 4 to 6 by calling the function
I nsert I nTree (Algorithm 6). So while inserting the episode α in CPBT , it should
be considered whether α absorbs the other episodes or is absorbed by another episode.
In the following section, the functions called by the function I nsert I nC PBT are
presented in detail.

(1) Function CreateBranch: The algorithm CreateBranch (Algorithm 9 in
“Appendix B”) receives the FC episode α and its frequency, converts them into a
branch of CPBT and returns a pointer to this branch. Time complexity of the algo-
rithm is discussed in Lemma 11 in “Appendix A”.

Algorithm 4 InsertInCPBT
Input: α, f reqα % α is an episode and f reqα is its frequency
Output: % The algorithm inserts α in CPBT ;
1: R ← CPBT ;
2: α′ ← CreateBranch(α, f reqα);
3: v ← Search InTree(α′, R, |CNGα |);
4: if (v = 0) then
5: I nsert I nTree(α′, R, 1, |CNGα |)
6: end if

123

162 M. Amiri et al.

Fig. 13 The flowchart of the function I nsert I nC PBT to insert the FC episodes in CPBT

Definition 23 Given the node n of CPBT , Episode(n) is the corresponding episode
of a branch that starts from the root and ends in the node n.

(2) Function Search InTree: This function (Algorithm 5) searches an episode in
CPBT and checks whether the episode is absorbed by a branch of the tree or not. If it
is not absorbed, the function checks whether the episode absorbs branches of CPBT
or not. AsAlgorithm5 shows, by calling the function EpisodeAbsorbByTree (Algo-
rithm10 in “AppendixB”) in lines 2 to 4, it is checkedwhether the branchα′ is absorbed
by a branch of CPBT or not. If α′ is absorbed, the value 0 is returned, which shows α′
should not be inserted in CPBT . If α′ is not absorbed, it should be checked whether
α′ could absorb branches of CPBT or not. If it could, before the α′ is inserted, these
branches should be removed from CPBT . The stack Path defined in line 1, stores
the path of branches that should be removed. The function TreeAbsorbByEpisode
(Algorithm 11 in “Appendix B”) in line 6 finds these Paths and inserts them into
the global variable PathList . Finally, in lines 7 to 9, the function UpdateBranch
(Algorithm 12 in “Appendix B”) is called to update the corresponding branches of the
Paths in PathList .

123

A new efficient approach for extracting the closed… 163

Algorithm 5 SearchInTree
Input: α′, R, |CNGα | % α′ is the corresponding branch of the episode α, R is a node of CPBT
Output: -1: if α′ is absorbed by another episodes; Otherwise 0
1: Path: an empty stack; % Path is a stack to store the corresponding path of the episodes inCPBT
2: if (EpisodeAbsorbByTree(α′, R, 1, |CNGα |)) then
3: return -1;
4: end if
5: PathList ← ∅; % PathList is a global variable and is a list of Paths.
6: TreeAbsorbByEpisode(α′, R, 1, Path, |CNGα |);
7: for (j = 1 to |PathList |) do
8: UpdateBranch(R, α′. f req, PathList[j]);
9: end for
10: return 0;

Algorithm 6 InsertInTree
Input: α′, R, i, |CNGα | % α′ is the corresponding branch of the episode α, R is a node of CPBT
Output: % The function inserts the branch α′ into the subtree of the node R in CPBT
1: f lag ← f alse;
2: for each (x ∈ R.children) do
3: if (α′.label = x .label) then
4: x . f req = x . f req + α′. f req;
5: if (i < |CNGα |) then
6: α′ ← α′.children[1];
7: I nsert I nTree(α′, x, i + 1, |CNGα |);
8: end if
9: f lag ←True;
10: break;
11: end if
12: end for
13: if (! f lag) then
14: add α′ to R.children;
15: end if

(3) Function I nsert I nTree: This function (Algorithm 6) inserts the corresponding
branch of the episode α, α′, in the subtree of the node R in CPBT . As Algorithm 6
shows, in lines 2 to 12, a child of R whose label is equal to the label of α′ is found.
Note that there exists just one such node because the labels of nodes are unique. Since
this node is shared with the branch α′, so the frequency of α′ is added to the node’s
in line 4. In lines 5 to 8, the following nodes of the branch α′ are traversed and this
process is repeated. While inserting α′, if no node whose label is equal to the label of
α′ is found, the value of f lag remains False. So in lines 13 to 15, α′ is added to the
children of R as a new child.

Theorem 3 The algorithm AllClosedFreqEpisodes only finds all the closed
episodes.

Example 13 Given RS1 = {A, B,C, E, F,G}, where RS1 ⊆ RS, assume the FC
episodes αi , i = 1, 2, 3, 4, 5 are identified as follows:

α1 = A → B → C, f req(α1) = 100 α2 = BE → C, f req(α2) = 170

α3 = B → C, f req(α3) = 170 α4 = F → A → B → C, f req(α4) = 100

123

164 M. Amiri et al.

(a) (b)

(c) (d)

Fig. 14 Inserting the FC episodes of Example 13 in CPBT

α5 = G → A → B → C, f req(α5) = 50

Wedefine the lexicographic order on RS as A < B < C < E < F < G. Therefore,
based on the lexicographic tree of episodes, we have α1 < α2 < α3 < α4 < α5 [11].
It is clear that the function I nsert I nC PBT is called for episodes in ascending order:

– α1: Since CPBT has no branch, α1 is inserted in it. Figure 14a shows CPBT
after inserting α1.

– α2: As Fig. 14b shows, the episode α2 is also inserted in CPBT .
– α3: When the function I nsert I nC PBT is called for α3, the function

Search InTree returns− 1because the function EpisodeAbsorbByT ree detects
that α3 is absorbed by α2. Therefore, α3 is not inserted in CPBT .

– α4: Since none of the branches of CPBT absorbs α4, the function
TreeAbsorbByEpisode is called for α4. It detects that α1 is absorbed by α4. As
Fig. 14c shows, α1 is replaced with α4.

– α5: α5 is absorbed by no episode. Furthermore, it absorbs no episode. Therefore,
it is inserted in CPBT as Fig. 14d shows.

The function ExtractClosedEpisodesFromCPBT (see Algorithm 3 in
“Appendix B”) extracts the closed episodes stored in CPBT and provides fast access
to them.

123

A new efficient approach for extracting the closed… 165

5.4 Analysis of time complexity

In general, the running time of an algorithm is roughly proportional to how many
times some basic operation is done [45]. To analyze time complexity, we con-
sider the comparison of the FC /candidate closed episodes as the basic operation.
In the hashing approach, all the candidates with the same frequency are hashed
to the same bucket in the hash table. If there are v distinct frequency values,
then there are v buckets such that |bucketi | = li , 1 ≤ i ≤ v and

∑v
i=1 li =

|CandidateClosedEpisodes| = |FC Episodes|. Among the candidate patterns
which are hashed to the same bucket, those patterns for which a super-pattern
with the same frequency is found, are discarded. So the number of comparisons is
∑v

i=1 |bucketi |2 ≤ |CandidateClosedEpisodes|2. It means that time complexity
of the hashing approach is O(|CandidateClosedEpisodes|2). Since the maximum
number ofCNGs of episodes is Level, the height of CPBT is also Level. Therefore,
in our approach, the number of comparisons is O(BranF × Level), where BranF
is the branching factor of CPBT . In the worst case, the branching factor of CPBT
is MaxBranF = ∑N

|CNG|=1

(N
|CNG|

)

M |CNG|, where |ResourceT ype| = N and

|Status| = M . As we will see in Sect. 6.2, we should choose the small values such as
6 for Level. In addition, M and N are not large (in this paper, we set M = N = 4).
In general, BranF depends on the extracted FC episodes and in practice BranF �
MaxBranF . As we will see in Sect. 6, if |CandidateClosedEpisodes| is small,
the hashing approach is a good choice. Otherwise, our approach could identify closed
episodes much faster than the hashing approach.

6 Evaluation

In [2,11], we evaluate POSITING and RELENTING on both the real and synthetic
workloads comprehensively and investigate the impact of different parameters on
them. According to the main concepts introduced in Sect. 3.1, there are some param-
eters for the pattern mining engine: δ, Δ, ε, μ, Level, θ . The parameters setting for
the evaluation of the proposed approach is as follows:

– Δ and δ: As we mentioned in Sect. 3.1, δ and Δ are internal gaps, which deter-
mine the starting interval of CNGs. The values of δ depend on the time spent on
booting VMs. In [2,11], the valid interval of Δ is [δ, δ + ε]. To provide a more
general approach for mining closed episodes in different fields and conduct more
comprehensive experiments, we extend the valid interval of Δ as follows:

• Given the episode α = G ′
1 → G ′

2 → · · · → G ′
k and the occurrence O =

([t j , t ′j]kj=1) ∈ LOList(α) such that k > 2 and 1 ≤ i < k − 1, if there is
overlap between V I ([ti , t ′i], i + 1) and V I ([ti+1, t ′i+1], i + 2), then the two
serial episodes β = G ′

1 → · · · → G ′
i → G ′

i+1 and γ = G ′
1 → · · · → G ′

i →
G ′

i+2 could be extracted. Based on these episodes, different status could be
predicted for the next slots. So Δ should be selected in a way that the precise
prediction is possible and extracting redundant episodes is avoided. For this
purpose, as (6.1) implies Δ should be in the interval of [δ, 2δ):

123

166 M. Amiri et al.

t ′i+1 ≥ t ′i + δ

t ′i+1 + δ > t ′i + Δ

}

→ Δ < t ′i+1 − t ′i + δ → Δ < 2δ → Δ ∈ [δ, 2δ)
(6.1)

– ε: According to Definition 1, the span of the events should be greater than ε. ε

should be determined based on the length of sampling intervals. Since the real
workloads [46,47] are coarse-grained and the synthetic workloads are also gener-
ated in a similar way to them, we set ε = 0 in all the experiments.

– μ: The events whose span is large, are decomposed into two events based on
the decomposition unit μ. For smooth workloads, the small values of μ might
lead to generating many events, which could increase the duration of the episode
extraction. On the other hand, the large values of μ might lead to the inability to
extract all the hidden useful episodes. We evaluate the impact of μ on the pattern
mining engine for both the real and synthetic workloads.

– θ : It is a threshold value that is used to extract frequent episodes. It is clear that
the small values of θ might lead to identifying a huge number of episodes, which
might be very time-consuming. On the other hand, the large values of θ could lead
to losing some useful episodes for prediction. We evaluate the impact of θ on the
pattern mining engine for both the real and synthetic workloads.

– Level: To avoid enlarging the pattern tree, Level limits the length of episodes.
As Level increases, the height of the pattern tree, the number of episodes and the
time consumed to identify them increase. So we investigate the impact of Level
on the pattern mining engine for both the real and synthetic workloads.

Since the focus of the paper is on the pattern mining engine, we evaluate the efficiency
of the proposed approach to extract closed episodes. For this purpose, the effect of
two important parameters θ and μ is considered on the pattern mining engine for both
the synthetic and real workloads.

6.1 Workloads

The data set GWA-T-122 Bitbrains contains the performance metrics of 1750 VMs
from a distributed data center from Bitbrains, which is a service provider that spe-
cializes in managed hosting and business computation for enterprises. The workload
traces are corresponding to requested and actually used resources in a distributed data
center servicing business-critical workloads. The data set focuses on four key types of
resources, which can become bottlenecks for business-critical applications: CPU, disk
I/O, memory and network I/O. For each VM, the performance metrics are sampled
every 5 min. The traces include data for 1750 nodes, with over 5000 cores and 20
TB of memory, and operationally include over 5 million CPU hours in 4 operational
months [48].

Since the workloads of the data set GWA-T-12 Bitbrains are more dynamic than
the other public workloads [48], in a similar way to [11], we use these workloads for
evaluation. Furthermore, we use the synthetic workloads generated in [2,11]. Table 1

2 These traces can be accessed at http://gwa.ewi.tudelft.nl/datasets/Bitbrains.

123

http://gwa.ewi.tudelft.nl/datasets/Bitbrains

A new efficient approach for extracting the closed… 167

Table 1 The types of the synthetic workloads and their embedded episodes [11]

Embedded episodes Type of the synthetic
workload

Parameters of
the episode

α : (Memory, Low)(Disk, Verylow) →
(CPU , Low)(Network, High)

SWT 1 ε = 0

β : (CPU , Low)(Network, Low) →
(Memory, High)(Disk, Medium) →
(CPU , High), (Network, Medium)

SWT 2 ε = 0

α : (Memory, Low)(Disk, Verylow) →
(CPU , Low)(Network, High)

SWT 3 ε = 0

β : (CPU , Low)(Network, Low) →
(Memory, High)(Disk, Medium) →
(CPU , High), (Network, Medium)

shows the types of the generated synthetic workloads and their corresponding embed-
ded episodes. Since the time it takes to instantiate a new VM instance is about 5–15
min [49] and VMs are sampled every 5 min, so three values 1, 2 and 3 should be
evaluated for δ.

6.2 Impact of Level

Since both the methods extend the pattern tree the same, we only report the impact of
Level on the hashing approach. For this purpose, we set θ = 0.1, μ = 3 and δ = Δ

and investigate the impact of Level on both the real and synthetic workloads.

Impact of Level on the real workload: One VM, called V M1, is selected randomly
from GWA-T-12 to evaluate the impact of Level on the number of episodes and the
processing time to identify them. Table 2 shows the impact of Level on V M1 for
δ = Δ = 1, 2, 3. According to the table, as Level increases, the number of episodes
and the time consumed to identify them increase. Although there is no significant
change in the number of episodes for Level > 6, the processing time increases
strongly. So, according to the bolded row, there is a trade-off between the processing
time (T ime) and the number of episodes for Level = 6.

Impact of Level on the synthetic workload: As Table 3 shows, For each workload
type, one trace is generated by the workload generator. The distinct values of δ are
selected for each workload type randomly. Table 4 shows the impact of Level on
Tracei , i = A, B,C . According to the table, as Level increases, the number of
episodes and the time consumed to identify them increase. In a similar way to the real
workloads for Level > 6, although there is no significant change in the number of
episodes, the processing time increases strongly. According to the bolded rows, for all
the traces, there is a trade-off between the processing time and the number of episodes
for Level = 6. So in all of the experiments, we set Level = 6.

123

168 M. Amiri et al.

Table 2 The impact of the parameter Level on the pattern tree for V M1(μ = 3, θ = 0.1)

δ = Δ Level |Episodes| |CandidateClosedEpisodes| |ClosedEpisodes| T ime(s)

1 2 299 255 140 1.77

4 1556 877 222 8.98

6 3826 1774 247 26.1

8 15,833 6962 255 85.74

2 2 231 187 131 1.77

4 1420 813 239 8.33

6 4372 2080 261 27.6

8 10,071 4000 264 73.38

3 2 295 252 135 1.93

4 4163 2786 323 20.39

6 40290 21174 435 210.4

8 344,975 155,787 458 3029.9

Table 3 The traces generated
from the different types of the
synthetic workload

Name Type of synthetic workload δ = Δ

TracA SWT 1 3

TracB SWT 2 1

TracC SWT 3 2

Table 4 The impact of the parameter Level on the pattern tree for Tracei , i = A, B,C (μ = 3, θ = 0.1)

Name of
Trace

Level |Episodes| |CandidateClosedEpisodes| |ClosedEpisodes| T ime(s)

TraceA 2 666 529 97 8

4 60,729 47,077 306 540.7

6 169511 127195 442 6716.5

8 180,449 135,217 450 10204.3

TraceB 2 447 316 60 6.8

4 10,788 8170 147 170

6 743,678 473,002 292 15,667

8 1,238,648 706,872 318 27453.6

TraceC 2 963 688 261 6

4 8049 5600 780 59.8

6 120,647 69,262 1134 650.4

8 406,889 222,227 1247 3489.6

6.3 Evaluation results

To the best of our knowledge, the hashing approach is the only approach that is used
in different literature to identify closed patterns among frequent patterns [12,13,44].

123

A new efficient approach for extracting the closed… 169

Therefore, to evaluate the performance and efficiency of the approach proposed in this
paper, the approach is compared to the hashing approach [13]. For evaluation, there
are four parameters δ, Δ, θ and μ, which should be investigated. As it was mentioned
the valid values of δ are 1, 2 and 3 and Δ is in the interval of [δ, 2δ). The parameter θ

is in the interval of [0, 1]. Since μ ≥ max(2ε +1, ε +2) [11] and ε = 0, then we have
μ ≥ 2. Ifμ is bound to 10 and evaluated in the steps of 1 and θ is evaluated in the steps
of 0.1, then there are 6 × 9 × 10 = 540 distinct combinations of the parameters for
evaluation. Due to space limitation, we select some combinations of the parameters
and investigate the impact of the parameters on the pattern extraction of some VMs.
The valid values of the parameters δ and Δ could be divided into the three groups
δ = Δ and δ < Δ with spans of 1 and 2 time slots. So we select (δ = 1,Δ = 1) from
the group δ = Δ, (δ = 2,Δ = 3) from the group δ < Δwith the span of 1 and (δ = 3,
Δ = 5) from the group δ < Δ with the span of 2. The impact of Δ − δ on episode
mining is investigated on the real workloads. Since the main goal of cloud is to satisfy
SLA and avoid wasting resources [3], the occurrence time of the future events should
be determined precisely. So the main focus of evaluation is on the group δ = Δ. The
values of δ and Δ are selected from this group randomly for the synthetic workloads.
All of the experiments run on a machine with an Intel Core 2 Duo 2.53 GHz processor
and 4GB of RAM.

6.3.1 Experimental results of the real workload

In addition to V M1, We select two other VMs of GWA-T-12 randomly, called V M2
and V M3. Each VM is evaluated for distinct values of δ and Δ: V M1(δ = 1,Δ = 1),
V M2(δ = 2,Δ = 3) and V M3(δ = 3,Δ = 5). For each VM, the impact of the
parameters μ and θ on the number of patterns and the processing time is investigated.
Note that since the same sets of closed episodes are extracted from each VM by using
both of the methods, the number of closed episodes is only reported for the hashing
approach.

Impact of θ : To consider the impact of θ , the values of μ and Level are set to 3
and 6 respectively. For different values of θ , Table 5 shows the number of episodes,
candidate closed and closed episodes, the extraction time of candidate closed episodes
(T imeE) and the processing time of candidate closed episodes (T imeP) in seconds
for the hashing approach. The symbol∞ indicates that the hashing approach could not
complete the extraction of candidate closed episodes due to insufficient memory. In
this case, the number of closed episodes is reported by using the proposed approach.
As the table shows, the small values of θ increase the number of extracted episodes
(and closed episodes) and the time consumed to identify them. According to the table,
as the span of Δ− δ increases, the number of candidate and closed episodes increases
abruptly. For example, if θ = 0.1, for V M1 with Δ − δ = 0, the number of closed
episodes is 247, for V M2 with Δ − δ = 1, the number of closed episodes is 22166
and for V M3 with Δ − δ = 2, the hashing approach could not extract candidate
closed episodes due to insufficient memory. On the other hand, as the table shows for
V M2 with θ = 0.1 and V M3 with θ = 0.3, for a large number of candidate closed
episodes, processing candidate closed episodes consumes more time in comparison

123

170 M. Amiri et al.

Ta
bl
e
5

T
he

im
pa
ct
of

th
e
pa
ra
m
et
er

θ
on

ex
tr
ac
tin

g
cl
os
ed

ep
is
od

es
fr
om

V
M
i,
i
=

1,
2,

3
us
in
g
th
e
ha
sh
in
g
ap
pr
oa
ch

(μ
=

3)

N
am

e
of

V
M

θ
|E

pi
so
d
es

|
|C

an
d
id
at
eC

lo
se
d
E
pi
so
d
es

|
|C

lo
se
d
E
pi
so
d
es

|
T
im

e E
(s

)
T
im

e P
(s

)

V
M
1

0.
1

38
26

17
74

24
7

25
.9
9

0.
17

0.
2

12
14

57
7

13
3

15
.0
5

0.
01

0.
3

20
3

12
5

80
7.
6

0.
00

8

0.
4

10
1

78
56

7.
13

0.
00

8

0.
5

50
40

35
2.
93

0.
00

8

0.
6

28
23

22
2.
63

0.
00

4

0.
7

23
20

19
2.
61

0.
00

3

0.
8

20
17

16
2.
62

0.
00

3

0.
9

11
10

10
0.
9

0.
00
4

1
11

11
10

0.
88

0.
00

4

V
M
2

0.
1

34
1,
62

9
19

8,
65

2
22

,1
66

11
09

.2
7

38
55

.4
9

0.
2

12
3,
05

5
68

,5
02

10
,0
53

42
8.
78

33
9.
92

0.
3

94
,0
59

50
,9
78

58
43

30
0.
22

18
1.
06

0.
4

42
,6
79

21
,9
04

20
78

11
4.
63

41
.4
4

0.
5

40
,1
72

20
,3
68

13
80

94
.4
1

33
.4
2

0.
6

36
,7
22

18
,4
39

80
5

79
.5
2

34
.0
2

0.
7

30
,9
64

15
,4
76

32
1

59
.7
4

28
.3

0.
8

29
,5
36

14
,7
70

30
2

61
.3
8

29
.8
2

0.
9

29
,1
82

14
,6
09

24
2

54
.8
7

24
.4
7

1
27

,0
72

13
,4
79

16
0

52
.4
2

22
.6
5

123

A new efficient approach for extracting the closed… 171

Ta
bl
e
5

co
nt
in
ue
d

N
am

e
of

V
M

θ
|E

pi
so
d
es

|
|C

an
d
id
at
eC

lo
se
d
E
pi
so
d
es

|
|C

lo
se
d
E
pi
so
d
es

|
T
im

e E
(s

)
T
im

e P
(s

)

V
M
3

0.
1

∞
∞

39
7,
02

0
∞

∞
0.
2

∞
∞

∞
10

45
78

∞
0.
3

93
7,
94

7
56

9,
36

9
36

,3
51

21
81

.5
6

26
56

2.
2

0.
4

11
3,
97

3
75

,3
94

16
,3
27

28
7.
50

24
5.
41

0.
5

58
,0
99

38
,0
12

90
91

15
9.
99

85
.4
3

0.
6

48
,1
38

31
,0
90

58
27

13
5.
99

68
.9
3

0.
7

29
,1
70

18
,6
19

16
76

75
.5
0

25
.9
1

0.
8

27
,8
48

17
,7
30

11
45

73
.2
5

29
.1
2

0.
9

24
,9
45

15
,9
45

81
8

74
.1
3

29
.2
8

1
22

,0
80

14
,1
12

67
7

51
.8
8

15
.5
6

123

172 M. Amiri et al.

to extracting them. Furthermore, the number of closed episodes is much fewer than
candidate closed episodes’. These points imply that the hashing approach is not a good
choice for small values of θ or large spans of Δ − δ.

The total time consumed by the hashing approach to extract closed episodes is
defined as T imeE + T imeP . Figure 15 shows the total time consumed to extract
the closed episodes by the hashing approach and the proposed approach for different
values of θ . According to the figure, as the value of θ increases, the consumed time
decreases. Furthermore, for V M1 withΔ−δ = 0 (Fig. 15a), the consumed time of the
proposed approach is reasonable and similar to the hashing approach’s. As the span
of Δ − δ increases for V M2 and V M3 (Fig. 15b, c), the number of candidate closed
episodes increases and the total time consumed by the hashing approach increases
abruptly. As Fig. 15 shows the proposed approach extracts the closed episodes much
faster than the hashing approach for small values of θ and large spans ofΔ−δ because it
extracts closed episodes directly without storing/processing all of the candidate closed
episodes.

Impact of μ: To evaluate the impact of μ, we set θ = 0.1 and Level = 6. Since
μ ≥ max(2ε + 1, ε + 2) and ε = 0, then we have μ ≥ 2. Table 6 shows the impact
of μ in the interval of [2, 10] on the number of patterns and the consumed time of
the hashing approach. For small values of μ such as 2 and 3, the number of candidate
closed episodes increases abruptly. On the other hand, as the span of Δ − δ increases
the number of episodes increases suddenly. So for V M2 with μ = 2 and V M3 with
μ = 2, 3, the hashing approach could not complete the extraction of candidate closed
episodes due to insufficient memory. In these cases, the number of closed episodes is
reported by using the proposed approach. It is clear that as μ increases, the span of
events increases and the number of events decreases subsequently. So the number of
episodes decreases as μ increases. Furthermore, for V M2 with μ = 3 and V M3 with
μ = 4, processing candidate closed episodes consumes more time in comparison to
extracting them due to a large number of candidate closed episodes. Therefore, since
the hashing approach extracts a large number of candidate closed episodes, it could
not be an appropriate choice for small values of μ or large spans of Δ − δ.

Figure 16 shows the total time consumed by the hashing approach and the pro-
posed approach to extract the closed episodes for different values of μ and θ = 0.1.
According to the figure, as the value of μ increases, the consumed time decreases.
Furthermore, for V M1 with Δ − δ = 0 (Fig. 16a), the processing time of the hashing
approach is reasonable. As the span ofΔ−δ increases for V M2 and V M3 (Fig. 16b, c),
the number of candidate closed episodes increases and the total time consumed by the
hashing approach increases abruptly. As Fig. 16 shows the proposed approach extracts
closed episodes much faster than the hashing approach for small values of μ and large
spans of Δ − δ. For example, for V M3, the time consumed by the hashing approach
for μ = 4 is nearly equal to the time consumed by the proposed approach for μ = 2.
All these points show that extracting closed episodes without storing/processing all of
the candidate closed episodes improves the mining efficiency significantly.

123

A new efficient approach for extracting the closed… 173

(a)

(b)

(c)

Fig. 15 The total time consumed by the hashing approach and the proposed approach to extract closed
episodes from V Mi , i = 1, 2, 3 for different values of θ and μ = 3

123

174 M. Amiri et al.

Ta
bl
e
6

T
he

im
pa
ct
of

th
e
pa
ra
m
et
er

μ
on

ex
tr
ac
tin

g
cl
os
ed

ep
is
od

es
fr
om

V
M
i,
i
=

1,
2,

3
us
in
g
th
e
ha
sh
in
g
ap
pr
oa
ch

(θ
=

0.
1)

N
am

e
of

V
M

μ
|E

pi
so
d
es

|
|C

an
d
id
at
eC

lo
se
d
E
pi
so
d
es

|
|C

lo
se
d
E
pi
so
d
es

|
T
im

e E
(s

)
T
im

e P
(s

)

V
M
1

2
14

41
36

69
65

8
12

00
64

9.
95

50
7.
49

3
38

26
17

74
24

7
25

.9
9

0.
17

4
16

24
82

3
17

6
9.
19

0.
03

5
10

97
51

4
12

9
5.
7

0.
02

6
67

3
33

4
10

3
4.
11

0.
01

7
66

2
31

4
10

6
3.
95

0.
01

8
77

3
40

2
85

4.
07

0.
02

9
35

6
19

6
79

2.
28

0.
01

10
54

8
28

6
85

2.
81

0.
01

V
M
2

2
∞

∞
31

07
80

∞
∞

3
34

1,
62

9
19

8,
65

2
22

,1
66

11
09

.2
7

38
55

.4
9

4
12

,1
16

62
05

85
3

57
.1
5

1.
86

5
14

,2
04

71
95

81
9

73
.6
0

2.
14

6
17

60
81

6
30

0
9.
25

0.
04

123

A new efficient approach for extracting the closed… 175

Ta
bl
e
6

co
nt
in
ue
d

N
am

e
of

V
M

μ
|E

pi
so
d
es

|
|C

an
d
id
at
eC

lo
se
d
E
pi
so
d
es

|
|C

lo
se
d
E
pi
so
d
es

|
T
im

e E
(s

)
T
im

e P
(s

)

7
42

6
26

0
11

1
3.
03

0.
01

8
51

3
29

0
11

0
4.
29

0.
01

9
37

4
23

2
10

6
2.
74

0.
01

10
32

9
19

5
96

2.
35

0.
01

V
M
3

2
∞

∞
23

05
88

4
∞

∞
3

∞
∞

39
70

20
∞

∞
4

1,
52

8,
65

7
87

7,
43

3
81

,4
40

39
16

.5
5

70
50

8.
1

5
41

2,
73

3
23

9,
24

7
15

,2
08

11
73

.3
1

56
29

.6
3

6
70

,4
10

35
,1
16

32
47

19
2.
94

13
2.
04

7
33

,0
63

16
,4
02

17
27

12
9.
32

21
.3
4

8
34

,8
73

17
,7
37

16
89

12
4.
64

14
.1
5

9
18

,1
79

10
,1
44

11
14

84
.5
3

4.
42

10
12

,3
48

69
07

83
7

55
.8
2

2.
06

123

176 M. Amiri et al.

(a)

(b)

(c)

Fig. 16 The total time consumed by the hashing approach and the proposed approach to extract closed
episodes from V Mi , i = 1, 2, 3 for different values of μ and θ = 0.1

123

A new efficient approach for extracting the closed… 177

6.3.2 Experimental results of the synthetic workload

In this section, the impact of the two parameters θ and μ on the number of closed
episodes extracted from the syntheticworkloads and the time consumedby themethods
to identify them is considered. We use the traces generated in Table 3 and compare
the time consumed by the hashing approach with the proposed approach’s.

Impact of θ : To consider the impact of θ , the value ofμ is set to 3. For different values
of θ , Table 7 shows the number of episodes, candidate closed and closed episodes,
T imeE and T imeP in seconds for the hashing approach. According to the table, the
small values of θ increase the number of extracted episodes (and closed episodes) and
the time consumed to extract them. As the table shows for TraceB with θ = 0.1, for
a large number of candidate closed episodes, processing candidate closed episodes
consumes more time in comparison to extracting them. So the time consumed by the
hashing approach mainly depends on the number of candidate closed episodes. For
example, TraceC with θ = 0.1 needs the minimum time for the episode extraction
due to the minimum number of candidate closed episodes. Furthermore, for all the
traces, closed episodes are a small fraction of candidate closed episodes. These points
imply that the hashing approach is not an appropriate choice for small values of θ

because it generates a large number of candidate closed episodes.
Figure 17 shows the total time consumed by the hashing approach and the proposed

approach to extract closed episodes for different values of θ . According to the figure,
as the value of θ increases, the consumed time decreases for both the methods. Since
a large number of candidate closed episodes are extracted for TraceA and TraceB
with small values of θ , the proposed approach improves the consumed time for them
significantly (Fig. 17a, b). As it is observed, for TraceB with a larger number of
candidate closed episodes, the effect of the proposed approach on the consumed time
is more prominent. On the contrary, since a smaller set of candidate closed episodes
is extracted by the hashing approach for TraceC , the consumed time of the hashing
approach is less than the proposed approach’s (Fig. 17c). However, the time consumed
by both the methods is similar and comparable.

Impact of μ: To evaluate the impact of μ, we set θ = 0.1. Table 8 shows the impact
of μ in the interval of [2, 10] on the number of patterns and the consumed time of the
hashing approach. Unlike the real workloads, there is no clear behavior of the impact
of μ on the traces. The increase of μ does not show clear behavior on the training
phase of TraceA. For example, the number of candidate closed episodes for μ = 10
is more than the number of candidate closed episodes for μ = 4. On the other hand,
for μ ≥ 3, there is no change in the number of candidate closed episodes of TraceB .
For μ ≥ 8, there is no significant change in the episode extraction of TraceC . These
results imply that the increase of μ does not affect the span of events of dynamic
workloads. As the table shows the time consumed by the hashing approach mainly
depends on the number of episodes and candidate closed episodes.

Figure 18 shows the total time consumed by the hashing approach and the proposed
approach to extract the closed episodes for different values of μ and θ = 0.1. Accord-
ing to the figure, there is no clear behavior of the impact of μ on the consumed time
of both the methods. However, as the figure shows, since there are a large number of

123

178 M. Amiri et al.

Ta
bl
e
7

T
he

im
pa
ct
of

th
e
pa
ra
m
et
er

θ
on

ex
tr
ac
tin

g
cl
os
ed

ep
is
od

es
fr
om

T
ra

ce
i,
i
=

A
,
B

,
C

us
in
g
th
e
ha
sh
in
g
ap
pr
oa
ch

(μ
=

3)

N
am

e
of

T
ra
ce

θ
|E

pi
so
d
es

|
|C

an
d
id
at
eC

lo
se
d
E
pi
so
d
es

|
|C

lo
se
d
E
pi
so
d
es

|
T
im

e E
(s

)
T
im

e P
(s

)

T
ra

ce
A

0.
1

16
,9
51

1
12

7,
19

5
42

64
92

.0
6

22
4.
45

0.
2

46
23

38
36

15
8

23
4.
25

0.
28

0.
3

51
4

41
7

79
45

.1
5

0.
01

0.
4

39
1

32
1

70
25

.7
9

0.
01

0.
5

49
44

24
5.
84

0.
01

0.
6

40
36

21
5.
39

0.
01

0.
7

40
36

21
5.
39

0.
01

0.
8

40
36

21
5.
32

0.
01

0.
9

22
18

12
3.
75

0.
01

1
9

8
7

1.
53

0.
00

4

T
ra

ce
B

0.
1

74
3,
67

6
47

3,
00

2
29

8
76

11
.4
1

80
55

.4
4

0.
2

68
1,
60

3
43

5,
28

3
27

9
70

04
.4
5

52
28

.4
5

0.
3

44
,9
72

28
,2
90

11
9

17
68

.7
9

10
.8
4

0.
4

38
,5
26

23
,5
00

89
15

67
.3
1

10
.0
7

0.
5

19
6

16
7

25
15

.5
3

0.
01

0.
6

69
60

14
7.
53

0.
01

0.
7

60
54

10
6.
28

0.
01

0.
8

60
54

10
6.
23

0.
01

0.
9

60
54

10
6.
31

0.
01

1
58

52
8

6.
09

0.
01

123

A new efficient approach for extracting the closed… 179

Ta
bl
e
7

co
nt
in
ue
d

N
am

e
of

T
ra
ce

θ
|E

pi
so
d
es

|
|C

an
d
id
at
eC

lo
se
d
E
pi
so
d
es

|
|C

lo
se
d
E
pi
so
d
es

|
T
im

e E
(s

)
T
im

e P
(s

)

T
ra

ce
C

0.
1

12
0,
64

7
69

,2
62

11
34

59
6.
01

54
.4

0.
2

83
44

50
40

49
3

11
8.
36

0.
06

0.
3

17
30

11
63

24
5

32
.2
8

0.
01

0.
4

34
9

28
6

11
5

9.
20

0.
01

0.
5

16
2

13
5

67
5.
47

0.
09

0.
6

84
67

46
3.
37

0.
01

0.
7

58
45

34
2.
67

0.
01

0.
8

39
32

26
2.
25

0.
01

0.
9

29
24

20
1.
82

0.
01

1
23

19
16

1.
56

0.
01

123

180 M. Amiri et al.

(a)

(b)

(c)

Fig. 17 The total time consumed by the hashing approach and the proposed approach to extract closed
episodes from Tracei , i = A, B,C for different values of θ and μ = 3

123

A new efficient approach for extracting the closed… 181

Ta
bl
e
8

T
he

im
pa
ct
of

th
e
pa
ra
m
et
er

μ
on

ex
tr
ac
tin

g
cl
os
ed

ep
is
od

es
fr
om

T
ra

ce
i,
i
=

A
,
B

,
C

us
in
g
th
e
ha
sh
in
g
ap
pr
oa
ch

(θ
=

0.
1)

N
am

e
of

T
ra
ce

θ
|E

pi
so
d
es

|
|C

an
d
id
at
eC

lo
se
d
E
pi
so
d
es

|
|C

lo
se
d
E
pi
so
d
es

|
T
im

e E
(s

)
T
im

e P
(s

)

T
ra

ce
A

2
13

54
77

10
92

18
17

82
49

28
.0
8

99
.6
7

3
16

9,
51

1
12

7,
19

5
44

2
64

92
.0
6

22
4.
45

4
98

,2
93

77
,6
49

11
54

33
53

.3
0

47
.7
6

5
10

5,
31

7
88

,2
75

89
1

33
56

.8
4

96
.3
6

6
10

7,
38

2
87

,1
18

90
3

37
55

.7
7

10
9.
70

7
98

,1
42

78
,1
00

88
6

28
53

.6
1

45
.6
6

8
10

1,
33

6
80

,2
29

96
6

29
23

.1
9

44
.1
8

9
10

6,
49

3
85

,1
18

89
1

30
95

.0
8

82
.4
3

10
11

3,
29

5
92

,3
23

81
9

34
21

.5
1

91
.7
5

T
ra

ce
B

2
3,
24

8,
75

8
1,
74

5,
79

2
11

3,
56

3
27

59
3.
17

23
87

5.
46

3
74

3,
67

6
47

3,
00

2
29

8
83

03
.5
1

73
63

.4
9

4
74

3,
67

6
47

3,
00

2
29

8
84

81
.9
2

64
71

.3
1

5
74

3,
67

6
47

3,
00

2
29

6
84

54
.5
1

66
52

.5
6

6
74

3,
67

6
47

3,
00

2
29

2
85

86
.7
3

67
48

.7
8

7
74

3,
67

6
47

3,
00

2
29

2
83

53
.4
3

76
04

.7
5

8
74

3,
67

6
47

3,
00

2
29

2
84

42
.8
5

65
31

.8
7

9
74

3,
67

6
47

,3
00

2
29

2
83

53
.4
2

64
71

.3
1

10
74

3,
67

6
47

3,
00

2
29

2
84

42
.8
5

65
31

.8
7

123

182 M. Amiri et al.

Ta
bl
e
8

co
nt
in
ue
d

N
am

e
of

T
ra
ce

θ
|E

pi
so
d
es

|
|C

an
d
id
at
eC

lo
se
d
E
pi
so
d
es

|
|C

lo
se
d
E
pi
so
d
es

|
T
im

e E
(s

)
T
im

e P
(s

)

T
ra

ce
C

2
45

9,
71

7
29

5,
82

1
62

,9
20

30
20

.7
3

73
4.
17

3
12

0,
64

7
69

,2
62

11
34

59
6.
01

54
.4

4
89

12
59

48
44

4
67

.6
9

0.
32

5
18

,7
86

11
,8
95

49
9

16
4.
77

0.
41

6
13

88
10

62
25

2
22

.6
5

0.
01

7
11

40
88

1
18

8
17

.6
3

0.
01

8
11

18
86

6
17

4
17

.1
8

0.
01

9
11

18
86

6
17

4
15

.8
4

0.
01

10
11

18
86

6
17

4
15

.0
6

0.
01

123

A new efficient approach for extracting the closed… 183

candidate closed episodes for TraceA and TraceB , the proposed approach reduces
the consumed time for episode mining (Fig. 18a, b). According to the results, for a
larger number of candidate closed episodes, the effect of the proposed approach on the
consumed time is more eminent (Fig. 18b). On the contrary, although the time con-
sumed by both the methods is comparable for TraceC , the hashing approach needs
less time due to a smaller set of candidate closed episodes.

7 Conclusion and future work

The prediction of the future workload of applications is an essential step before
resource provisioning in cloud. This paper improves the efficiency of the previous
predictors proposed based on pattern mining. The paper proposes a general approach,
which not only improves time and space complexities of the pattern mining engine
of the predictors, but also can be employed in different fields of SPM. To improve
space complexity, redundant LOs are identified and omitted based on the improved
vertical representation of the stream. To improve time complexity, a new data struc-
ture, called CPBT , is introduced to store closed episodes. Based on CPBT , a new
approach is suggested to extract closed episodes directly. The experimental results
show that for small values of the frequency threshold and the decomposition unit, the
proposed approach improves the efficiency of mining closed episodes significantly in
comparison to the hashing approach.

In the future work, we plan to conduct more experiments to evaluate the efficiency
of the proposed approach for pattern mining in different fields. Furthermore, we plan
to propose an approach to select the values of the parameters according to workload
changes dynamically.

Acknowledgements The GWA-T-12 Bitbrains traces are provided by Bitbrains IT Services Inc., which is
a service provider that specializes in managed hosting and business computation for enterprises. We thank
the GWA team and all those who have graciously provided the data for us.

A Proofs

The proof of all of the theorems, lemmas and corollaries are presented in this appendix.
Furthermore, we might present some new lemmas that are used to prove the other
lemmas and theorems.

Lemma 5 Given the episode α = G ′
1 → · · · → G ′

k and the occurrence x =
([t j1 , t j2]kj=1) ∈ LO(α), if there exists a valid occurrence y = ([w j

1 , w
j
2]kj=1) such

that t11 < w1
1 , then tk1 < wk

1 .

Proof The proof is by induction on k: Base case for k = 2: The proof is by contradic-
tion: Assume w2

1 < t21 . We have:

w1
2 + δ < w2

1 < w1
2 + Δ

t12 + δ < t21 < t12 + Δ

t12 < w1
2

⎫

⎪
⎬

⎪
⎭

→ w1
2 + δ < w2

1 < t21 < w1
2 + Δ (A.1)

123

184 M. Amiri et al.

(a)

(b)

(c)

Fig. 18 The total time consumed by the hashing approach and the proposed approach to extract closed
episodes from Tracei , i = A, B,C for different values of μ and θ = 0.1

123

A new efficient approach for extracting the closed… 185

Therefore, x does not include LPO and it is not an LO . Induction Step: Assume it is
true for k = m−1. Now, we should prove it for k = m: The proof is by contradiction:
Assume wm

1 < tm1 . We have:

wm−1
2 + δ < wm

1 < wm−1
2 + Δ

tm−1
2 + δ < tm1 < tm−1

2 + Δ

tm−1
2 < wm−1

2

⎫

⎪
⎪
⎬

⎪
⎪
⎭

→ wm−1
2 + δ < wm

1 < tm1 < wm−1
2 + Δ (A.2)

It means that x does not include LPO . So it is not an LO , which is in contradiction
to the assumption. ��
Lemma 1 Given the episode α = G ′

1 → · · · → G ′
k , if MPO(α) is a set of all the

minimal prefix occurrences of α, then LO(α) ⊆ MPO(α).3

Proof The proof is by contradiction: assume there exists at least one LO x =
([t j1 , t j2]kj=1) such that x /∈ MPO(α). Since x /∈ MPO(α), so there should exist

a valid occurrence y = ([w j
1 , w

j
2]kj=1) where w1

1 > t11 and wk
1 ≤ tk1 . According to

Lemma 5, for each valid occurrence y = ([w j
1 , w

j
2]kj=1) that t

1
1 < w1

1, we should have

tk1 < wk
1. So x is not an LO , which is in contradiction to the assumption. ��

Lemma2Given the episodeα, ifβ and γ are the serial and concurrent extensions ofα,
removing redundant occurrences from LOList(α) does not affect f req(α), f req(β)

and f req(γ).

Proof We define OSet NM (α) = {O1, . . . , OL} as a set of all the non-overlapped min-
imal occurrences that O1 is the first minimal occurrence of α and Oi+1, 1 ≤ i < L,

is the first non-overlapped minimal occurrence after Oi . In [11], we proved that
OSet NM (α) is a maximal non-overlapped set of the minimal occurrences of α in the
stream and f req(α) = |OSet NM (α)|. The proof of the lemma includes three cases:

– Impact of removing redundant LOs on f req(α): according to the first condition
of Definition 18, there is overlap between the two occurrences O and Q. So at
most one of them could be in OSet NM (α). On the other hand, O is not a minimal
occurrence. So O /∈ OSet NM (α) and removing it does not affect f req(α).

– Impact of removing redundant LOs on f req(β): If there exists a sub-interval
of [tk2 + δ, tk2 + Δ] such that the occurrence O covers it exclusively or O is a
minimal occurrence, then O might be a non-overlapped occurrence of α and form
a non-overlapped occurrence for β. Therefore, removing O might lead to losing a
non-overlapped occurrence of β. According to the first condition of Definition 18,
each non-overlapped occurrence of β whose LPO is O could be formed by using
Q. On the other hand, there exists no sub-interval of [tk2 + δ, tk2 + Δ] such that
the occurrence O covers it exclusively. Therefore, removing O does not affect
f req(β).

3 The proof of lemmas and theorems could be found in “Appendix A”.

123

186 M. Amiri et al.

– Impact of removing redundant LOs on f req(γ): If there exists the event e =
(v, s, st, et) such that |tk2 − st | < ε and |tk1 − st | < ε, then removing O affects
the frequency of γ = α � (r , s). So if there is no such event, removing O does
not affect f req(γ).

Therefore, if the three conditions are satisfied together, removing O does not affect
f req(α), f req(β) and f req(γ). ��
Lemma 6 Given the episode α such that |CNGα| = k and μ ≥ max(2ε + 1, ε + 2),
the successive starting intervals of Gi , 1 ≤ i ≤ k, have no overlap.

Proof The proof is by contradiction: suppose there are two starting intervals [t1, t2] and
[t ′1, t ′2] of Gi such that there is overlap between them: t1 ≤ t ′1 ≤ t2 < t ′2. According
to the definition of the episode occurrence in [11], t2 − t1 ≤ ε and t ′2 − t ′1 ≤ ε.
∀e = (r , s, st, et) ∈ E that t2 < st ≤ t ′2, then there should exist the other event
e′ = (r ′ = r , s′ = s, st ′, et ′) such that t1 ≤ st ′ ≤ t2. Since et ′ ≤ st , if t ′1 ≤ st ′ ≤ t2
then Δe′ < ε. If t1 ≤ st ′ < t ′1 and et ′ = st , we have Δe′ = μ < 2ε, which is in
contradiction to μ > 2ε. If t1 ≤ st ′ < t ′1 and et ′ < st , there should exist the other
event e′′ = (r , s′′ �= s, st ′′, et ′′) such that et ′ ≤ st ′′ < et ′′ ≤ st ′. Since Δe′ > ε, we
have et ′ > t2 and Δe′′ < ε. These show that the successive starting intervals of Gi

have no overlap. ��
Lemma 7 Given the episode α such that |CNGα| = k, 1 ≤ i ≤ k, μ ≥ max(2ε +
1, ε + 2) and the two occurrences O, O ′ ∈ OSet(α), if [u, u′] is the starting interval
of Gi in O, the following starting interval of Gi in O ′ is [w,w′] that w > 2ε + u.

Proof According to the definition of the occurrence O in [11], ∃Ai
j ∈ Gi , 1 ≤ i ≤

k, j ∈ {1, . . . , li } that gα(Ai
j) = (r , s), h(Ai

j) = a and ea = (r , s, st = u, et). Since
Δea > ε, we have et > ε+u. According to Lemma 6,w > u′. For the occurrence O ′,
h′(Ai

j) = b such that e′
b = (r ′ = r , s′ = s, st ′ = v, et ′), w ≤ v ≤ w′, Δe′

b > ε and
et ′ > v + ε. If st ′ > et , there should exist the other event em = (r , sm �= s, stm, etm)

such that stm = et . Since Δea > ε and Δem > ε, then w > 2ε + u. If st ′ = et , we
have Δea = μ. So w − u = μ > 2ε. Note that the condition μ > 2ε is reasonable
because the minimum span of events is ε+1 [11]. So the decomposition unit of events,
μ, could be twice more than the minimum span. ��
Lemma 8 Given the episode α = G ′

1 → · · · → G ′
k and the two occurrences O =

([t i1, t i2]ki=1) and Q = ([wi
1, w

i
2]ki=1), where O, Q ∈ LO(α), if ∃ j, 1 ≤ j ≤ k − 1,

such that for r = 1, 2, . . . , j − 1: tr1 = wr
1, t

r
2 = wr

2 and t j1 < w
j
1 , then tk1 < wk

1 and
tk2 < wk

2 .

Proof The proof is by induction on k:Base case for k = 2: we have j=1 and according
to Lemmas 6 and 7 , w1

1 > t12 . If t
2
1 ∈ [t12 + δ,min(t12 + Δ,w1

2 + δ − 1)], then we
have O ∈ LO(α). If w2

1 ∈ [w1
2 + δ,w1

2 + Δ], then Q ∈ LO(α). So we have w2
1 > t21

and according to Lemmas 6 and 7 , w2
2 > t22 . Induction Step: Assume it is true for

k = m−1. It should be proved for k = m. Since the lemma is correct for k = m−1, so
if t j1 < w

j
1 , 1 ≤ j ≤ m − 2, then tm−1

2 < wm−1
2 . The starting interval of G ′

m in O , tm1 ,

123

A new efficient approach for extracting the closed… 187

should be in the interval of [tm−1
2 +δ,min(tm−1

2 +Δ,wm−1
2 +δ −1)] because if tm1 <

tm−1
2 + δ, then O is not a valid occurrence and if tm1 > min(tm−1

2 +Δ,wm−1
2 + δ −1),

then O is not a valid occurrence or since wm−1
2 > tm−1

2 and t11 ≤ w
j
1 , O cannot

include the starting interval of G ′
m (because O does not include an LPO).

The starting interval of G ′
m in Q, wm

1 , should also be in the interval of [wm−1
2 +

δ,wm−1
2 +Δ] because gap constraints are satisfied. Since t11 ≤ w1

1 andwm−1
2 > tm−1

2 ,
so Q could include the starting interval of G ′

m because it includes an LPO . So we
have:

wm
1 ≥ wm−1

2 + δ

tm1 < wm−1
2 + δ

}

→ tm1 < wm
1

On the other hand, according to Lemmas 6 and 7 , two occurrences of G ′
m have no

overlap. So we have wm
2 ≥ wm

1 > tm2 . For j = m − 1, in a similar way to the
previous case, if tm1 ∈ [tm−1

2 + δ,min(tm−1
2 +Δ,wm−1

2 + δ −1)], then O is an LO . If
wm
1 ∈ [wm−1

2 + δ,wm−1
2 +Δ], then Q is an LO . So we have wm

1 > tm1 and according
to Lemmas 6 and 7, wm

2 ≥ wm
1 > tm2 ≥ tm1 . ��

Lemma 3 Given the episode α = G ′
1 → G ′

2 → · · · → G ′
k and the occurrences

A = ([ai1, ai2]ki=1), B = ([bi1, bi2]ki=1) andC = ([ci1, ci2]ki=1),where A, B,C ∈ LO(α)

and A and C are LOs immediately before and after B respectively, if a11 �= b11 and
[bk1, bk2] is not covered by [ak1, ak2] and [ck1, ck2], then all of the LOs before A start
before B and [bk1, bk2] is covered by none of the LOs before A and after C .

Proof According to Lemmas 6, 7 and 8 , the starting intervals of all the LOs before
A are equal to [a11, a12] or before [a11, a12]. If a11 �= b11, it means that a11 < b11. It is
clear that the starting intervals of all the LOs before A don’t coincide with b11. If
V I ([bk1, bk2], k + 1) is not covered by V I ([ak1, ak2], k + 1) and V I ([ck1, ck2], k + 1),
the starting intervals of all the LOs before A are before [ak1, ak2] and the starting
intervals of all the LOs afterC are after [ck1, ck2]. So V I s of these intervals don’t cover
V I ([bk1, bk2], k + 1). ��
Lemma 4 If ε ≥ δ

4 and Δ ∈ [δ, 2δ), then there is no redundant LO .

Proof According to the second condition ofDefinition 18 andLemma3, [tk2 +δ, tk2+Δ]
of O (the redundant LO) should be covered by the LOs immediately before and after
O . Assume O1 and O2 are the LOs immediately before and after O respectively.
We define [b1, b′

1], [b, b′] and [b2, b′
2] as the starting intervals of the last group of the

episode in O1, O and O2 respectively. It is clear that b′
1 < b′ < b′

2. If b
′
2+δ ≤ b′

1+Δ,
then we have b′

1 + δ < b′ + δ < b′
2 + δ ≤ b′

1 + Δ < b′ + Δ < b′
2 + Δ. It means that

[b′+δ, b′+Δ] is covered completely. Since b′
2+δ ≤ b′

1+Δ, we have b′
2−b′

1 ≤ Δ−δ.
According to the upper bound ofΔ (δ ≤ Δ < 2δ), b′

2 −b′
1 < δ. On the other hand, we

have b > b1 + 2ε and b2 > b+ 2ε according to Lemma 7. So we have b′
2 − b′

1 > 4ε.
It means that 4ε < b′

2 − b′
1 < δ. Therefore, if ε ≥ δ

4 , the second condition of
Definition 18 is not satisfied and there is no redundant LO . ��

123

188 M. Amiri et al.

Theorem 1 Given the episode α and (r , s) ∈ RS, the algorithm SMakeLoList only
finds all the non-redundant LOs of β = α ⊕ (r , s).

Proof To prove this theorem, we focus on the span of LOs in LOList of episodes.
The proof includes three parts: (1) Occurrences extracted by the algorithm are an
LO . Given α = G ′

1 → G ′
2 → · · · → G ′

k−1 and G ′ = (r , s) ∈ RS, we have
β = G ′

1 → G ′
2 → · · ·G ′

k−1 → G ′. The proof is by contradiction: there is at least
one extracted occurrence of β that is not the latest occurrence. For this occurrence,
assume there are the corresponding occurrences Oα and OG of α and G with spans
[r , r ′] and [x, x ′] respectively. There are two cases: (a) The gap constraints have not
been satisfied, which is impossible due to line 11 of the algorithm. (b) There is the
other LO Qα of the episode α with the span [u, u′] for the episode α that satisfies
the gap constraints for [x, x ′] and u > r , u′ > r ′. Otherwise, [r , r ′] and [x, x ′] could
form an LO for β. So, we have:

r ′ + δ ≤ x ≤ r ′ + Δ

u ≥ r , u′ > r ′

u′ + δ ≤ x ≤ u′ + Δ

⎫

⎪
⎬

⎪
⎭

→ r ′ + δ < u′ + δ ≤ x ≤ r ′ + Δ < u′ + Δ (A.3)

Since [r , r ′] is before [u, u′], ∀[f , f ′] ∈ LOList(α) that r ≤ f ≤ u, we have:

r ′ < f ′ < u′ and r ′ + δ < f ′ + δ < u′ + f ≤ x ≤ r ′ + Δ < f ′ + Δ < u′ + Δ

(A.4)

Since line 7 of the algorithm is satisfied for Oα , so [r , r ′] could not be the latest prefix
occurrence. 2) The extracted LOs are non-redundant. According to Definition 18, a
redundant LO satisfies three conditions. In lines 15 to 27, these conditions are checked.
According to Lemma 3, it is sufficient that the immediately next and previous LOs are
investigated. The first condition of Definition 18 is considered in line 19. The second
and third conditions are also investigated in lines 20 and 21 respectively. So if all the
conditions are satisfied, LOList(β)[z − 1] is redundant and is removed in line 22. 3)
It should be proved that “all” of the non-redundant LOs are found. The proof is by
contradiction: suppose there is at least a non-redundant LO Oβ of β, composed of
Oα and OG with spans [r , r ′] and [x, x ′] respectively, which is not extracted. Since
this LO is non-redundant, then the conditions of lines 19 to 22 are not satisfied. Since
LOList RS(G) is complete, there are two cases for Oα: a) [r , r ′] ∈ LOList(α): it is
checked in the first while loop. If [x, x ′] is not checked for [r , r ′], it means that the
other latest prefix occurrence has been found for it previously. So [r , r ′] could not be
the latest prefix occurrence. When [x, x ′] is checked for [r , r ′], if [u, u′] is after [r , r ′]
in LOList(α), then u > r . So we have u′ > r ′ according to Lemma 8. Since [r , x ′]
is not redundant, it means that V I ([x, x ′], k + 1) is not covered or [x, x ′] extends
concurrently or there is not an LO of β with the span [r , y′] such that y′ < x ′. So
if [r , x ′] is not redundant, then [u, x ′] is not redundant. Thus, the non-redundant LO
with the span [u, x ′] is formed. Therefore, [r , r ′] could not be an LPO and [r , x ′] is
not an LO , which is in contradiction to the assumption. (b) If [r , r ′] /∈ LOList(α),

123

A new efficient approach for extracting the closed… 189

so there is the latest occurrence with the span [u, r ′] such that u > r . Since r ′ satisfies
the gap constraints with x , the latest occurrence with the span [u, r ′] also satisfies the
gap constraints with [x, x ′]. So there is another valid occurrence with the span [u, x ′]
that ∃ j, 1 ≤ j ≤ k − 2 that the starting interval of G ′

j in the span [u, r ′] is greater
than [r , r ′]. So the occurrence Oβ is not an LO . Therefore if [r , r ′] ∈ LOList(α),
all the non-redundant LOs whose LPO is [r , r ′], are extracted. ��
Lemma 9 Given the episodeα, (r , s) ∈ RS, |ResourceT ype| = r , |LOList(α)| = q
and |LOList RS(r , s)| = p, time complexity of the algorithm SMakeLoList is
O(p(r + δ

ε
) + q) in the worst case and O(p) and O(q) in the best cases.

Proof Generally, time complexity of the algorithm SMakeLOList is O(k%× p×r+
q− f)where 0 ≤ k ≤ 100 and 0 ≤ f ≤ q. Itmeans thatwhen k%of LOList RS(r , s)
have been traversed by the f elements of LOList(α), a member of LOList RS(r , s)
is met that should be compared with the remaining q − f elements of LOList(α).
In the worst case, the first element of LOList(α) connects to all the p − 1 elements
of LOList RS(r , s) and the last element of LOList RS(r , s) connects to no element
of LOList RS(r , s). Furthermore, for all the extracted occurrences, the functions
CExtending and Find Index are called. Time complexity of CExtending is O(r).
For the redundant LOs we have b3 + δ ≤ b1 + Δ. In addition, in [11], we proved
that Δ − δ < δ. So we have b1 < b2 < b3 < b1 + δ. On the other hand, in [11], we
proved that if [x1, x1] and [y1, y1] are two consecutive starting intervals of (r , s), then
y1 − x1 > ε. So time complexity of Find Index is O(δ

ε
). Therefore, time complexity

is O(p(r+ δ
ε
)+q). In the best case, the first element of LOList(α) connects to all the

members of LOList RS(r , s) or the first element of LOList RS(r , s) connects to no
element of LOList(α). In these cases, the functions CExtending and Find Index
are not also called. Therefore, time complexity is O(p) and O(q) respectively. ��
Theorem 2 Given the episode α = G ′

1 → G ′
2 → · · · → G ′

k and G = (r , s) ∈ RS,
the algorithm CMakeLOList only finds all the non-redundant LOs of β = α � G.

Proof The proof of the theorem includes three parts: (1) The occurrences extracted
by the algorithm are an LO . According to the definition of the concurrent exten-
sion, we have β = G ′

1 → G ′
2 → · · · → (G ′

k ∪ G = G ′). Since LOList(β) is
constructed based on LOList(α), so all the occurrences extracted by the algorithm
satisfy the definition of LO . (2) The extracted LOs are non-redundant. According to
Definition 18, a redundant LO satisfies three conditions. In lines 14 to 26, these con-
ditions are checked. According to Lemma 3, it is sufficient that the immediately next
and previous LOs are investigated. The first condition of Definition 18 is considered
in line 18. The second and third conditions are also investigated in lines 19 and 21
respectively. So if all the conditions are satisfied, LOList(β)[z − 1] is redundant and
is removed in line 22. (3) It should be proved that “all” of the non-redundant LOs
are found. The proof is by contradiction: there is at least a non-redundant LO A of
β that is not extracted. According to the previous parts, all the extracted LOs are
non-redundant. Then it means that the algorithm does not recognize the occurrence
A as an LO . Since each LO of β includes one LO of α and one LO of G, then it
means that LOList(α) or LOList RS(G) is not complete or the algorithm could not

123

190 M. Amiri et al.

find the occurrence A of β. Since LOList(α) and LOList RS(G) are complete and
line 9 of the algorithm checks the concurrent extensions of α with G, A and all the
possible LOs of β are extracted. Therefore, A is extracted by the algorithm, which is
in contradiction to the assumption. ��
Lemma 10 Given the episode α, G = (r , s) ∈ RS, |LOList(α)| = q and
|LOList RS(r , s)| = p and |ResourceT ype| = r , time complexity of the algo-
rithm CMakeLOList is O(p(r + δ

ε
) + q) or O(p + q(r + δ

ε
)) in the worst cases

and O(min(p, q)) in the best case.

Proof In the best case, the corresponding element of LOList(α)[i]matches the corre-
sponding element of LOList RS(G)[j] and both the counters i and j increase repeat-
edly. Furthermore, all the LOs are non-redundant and the functions CExtending
and Find Index are called for none of the identified LOs. So, time complexity is
O(min(p, q)). In the worst case, each element of LOList(α) is checked with the t
elements of LOList RS(G) where 1 ≤ t ≤ p, then an LO is identified for each ele-
ment of LOList(α) for which the functions CExtending and Find Index are called
in a similar way to Lemma 9. So time complexity is O(q(r + δ

ε
) + p). In the other

case, each element of LOList RS(G) is checked with the w elements of LOList(α)

where 1 ≤ w ≤ q, then an LO is identified for each element of LOList RS(G) for
which the functions CExtending and Find Index are called. So time complexity is
O(p(r + δ

ε
) + q). ��

Lemma 11 Given |ResourceT ype| = r , time complexity of the algorithm
CreateBranch (Algorithm 9) for the episode α is O(r |CNGα|).
Proof Algorithm 9 has a f or loop that processes eachCNG of α in each repeat. Since
episodes are represented in the form of SAV E [11], we have O(|RArrayα[j]|) = r
where 1 ≤ j ≤ |CNGα|. Thus, time complexity of reversing each CNG is O(r). So,
time complexity of the algorithm is O(r |CNGα|). ��
Lemma 12 Given the episodes α and β and the threshold θ ∈ R≥0 , if β � α and
f req(α) ≥ θ , then θ ≤ f req(α) ≤ f req(β) (the anti-monotonic constraint).

Proof Since β � α, each occurrence of the episode α includes an occurrence of β.
So ∀Oi ∈ OSet NM (α), ∃O ′

i ⊆ Oi that O ′
i ∈ OSet NM (β) (see Lemma 2). Therefore,

|OSet NM (α)| ≤ |OSet NM (β)| or f req(α) ≤ f req(β). ��
Lemma 13 The function Insert I nC PBT is only called for FC episodes.

Proof According to lines 31 to 33 of Algorithm 8, when Flag is true, the function
I nsert I nC PBT is called for the episode α. At first, Flag is True. When there exists
a serial extension or a concurrent extension of α whose frequency is equal to α’s, Flag
is set to False. So according to Definition 20, α is not FC . Therefore, if there are no
such episodes, according to Lemma 12, the frequency of episodes extended from α is
less than α’s. Therefore, α is FC . It means that the value of Flag remains True and
the function I nsert I nC PBT is called for it. ��

123

A new efficient approach for extracting the closed… 191

Lemma 14 Given the episode α, if the function FindClosedFreqEpisode is not
called for α, then α is not a closed frequent episode.

Proof The function FindClosedFreqEpisode is called by the function AllClosed
FreqEpisodes and itself. The function AllClosedFreqEpisodes calls it for P =
{(r , s)| |LOList RS(r , s)| > 0,∀(r , s) ∈ RS}. The function AllClosedFreq
Episodes does not call the function FindClosedFreqEpisode for the members
of RS that are not frequent. If an episode is not frequent, then it could not also be
closed frequent. The function FindClosedFreqEpisode is recursively called for the
serial and concurrent extensions whose frequency is larger than the threshold value c
(see lines 13 and 27 of Algorithm 8). So if this function is not called for an episode α,
it means that f req(α) is less than c and it is not a frequent episode. So it could not
also be a closed frequent episode. ��
Theorem 3 The algorithm AllClosedFreqEpisodes only finds all the closed
episodes.

Proof The proof includes two parts: (1) all the extracted episodes are closed. The proof
is by contradiction: assume there is an episode α such that |CNGα| = k and it is not
closed. It means that at least one of the scenarios below occurs:

– There is at least one episode β1 such that α = Pre f i x(β1, k) and f req(α) =
f req(β1): Since α < β1 , then α is processed sooner. While processing α, all
the serial and concurrent extensions of α are generated. If the frequency of one of
them is equal to α’s, Flag is set to False in Algorithm 8. So α is not inserted in
CPBT . It means that such an episode cannot be found in CPBT .

– There is at least one episodeβ2 such that |CNGβ | = n,α = Su f f i x(β2, n−k+1)
and f req(α) = f req(β2). There are two cases: a) α < β2: In this case, α is
inserted in CPBT sooner. Since α is FC and α = Su f f i x(β2, n − k + 1), β2 is
also FC and according to Lemma 13, it is inserted in CPBT . While inserting β2,
the algorithm Search InTree detects that α is absorbed by β2. Therefore CPBT
is updated and α is removed from it. (b) β2 < α: Since β2 is inserted in CPBT
sooner, the function Search InTree returns − 1 and α is not inserted in CPBT .
Therefore, α does not exist in CPBT . It means that all the episodes stored in
CPBT are closed.

(2) All of the closed episodes are found. The proof is by contradiction: there exists
at least one closed episode α which has not been found. There are two cases: (a)
α has not been inserted in CPBT . Since α is a closed episode, then it is FC . So
when the function FindClosedFreqEpisode is called for α, it is inserted inCPBT .
Therefore if the function I nsert I nC PBT has not been called for α, it means that
FindClosedFreqEpisode has not been called for it. Therefore α cannot be a closed
frequent episode according to Lemma 14. So the function I nsert I nC PBT is called
for α. (2) α has been removed from CPBT . It means that there is another FC episode
β whose suffix is α and f req(α) = f req(β). So, according to the definition of
closed episodes, α is not a closed episode, which is in contradiction to the assumption.
Therefore, all the closed episodes are extracted. ��

123

192 M. Amiri et al.

B Algorithms

In this appendix, we present some functions in a canonical form and explain them in
detail.

B.1 Function CExtending

This function considers whether the third condition of Definition 18 is satisfied for
an occurrence of the episode. As Algorithm 7 shows, the function receives (r , s),
which is the last member of the last CNG in the episode, the corresponding entry of
LOList RS(r , s) in the occurrence and the starting interval of the last CNG in the
occurrence. It considers whether a concurrent event with (r , s) exists or not. The state
of the concurrent event should be greater than (r , s) based on the order defined on
RS. In lines 1 to 3, if the pointers Next and Previous are null, it means that there is
no concurrent event for it. So it cannot extend concurrently. In lines 4 to 12, the list
linked to the pointer Next is considered to find the concurrent event. In lines 13 to 21,
the list linked to the pointer Previous is considered in a similar way to the pointer
Next’s.

Algorithm 7 CExtending
Input: r , s, ([a, a], Next, Previous), Min, Max, ε % ([a, a], Next, Previous) is the correspond-

ing entry of LOList RS(r , s) in the occurrence;[Min, Max] is the starting interval of the last CNG in
the occurrence. Note that for the serial extension, we have a = Min = Max

Output: True/False % It considers whether a concurrent event with (r , s) exists or not.
1: if (Next = null and Previous = null) then
2: return False;
3: end if
4: if (Next �= null) then
5: P ← Next ;
6: while (|P.a − Min| ≤ ε and |P.a − Max | ≤ ε) do
7: if (P.(r , s) > (r , s)) then
8: return True;
9: end if
10: P ← P.Next ;
11: end while
12: end if
13: if (Previous �= null) then
14: P ← Previous;
15: while (|P.a − Min| ≤ ε and |P.a − Max | ≤ ε) do
16: if (P.(r , s) > (r , s)) then
17: return True;
18: end if
19: P ← P.Previous;
20: end while
21: end if
22: return False;

B.2 Function FindClosedFreqEpisode

The algorithm FindClosedFreqEpisode (Algorithm 8) receives the parameters δ,
Δ, ε, the thresholds θ and Level, the episode α and LOList(α) and forms the con-

123

A new efficient approach for extracting the closed… 193

current and serial extensions of α (lines 6 and 20) as the episode β and computes
LOList(β) by calling the functionsCMakeLOList and SMakeLOList (lines 7 and
21). Then the NO frequency of β is computed by calling the function ComputeFreq
(lines 8 and 22). If f req(β) is above the threshold c (computed based on θ [11]), the
tree is traversed further down by calling FindClosedFreqEpisode in lines 13 and 27
recursively with β and LOList(β) as its parameters. When the serial and concurrent
extensions of α are constructed, it is checked (in lines 9 and 23) whether any of the
super patterns β formed from α has the same frequency as α’s or not; if not, it means
that α is FC . So the function I nsertC PBT is called to insert the FC episode α in
CPBT (line 32).

Algorithm 8 FindClosedFreqEpisode

Input: ε, δ, Δ, Level, θ, α, LOList(α); % The threshold c is computed based on θ [11].
Output: % Identifying the FC episodes and inserting them in CPBT
1: Flag ← True;
2: if (|α.RArray| ≤ Level) then
3: Fα ← ComputeFreq(LOList(α));
4: Q ← CExt(α); % CExt(α) is a set of all the valid states for the concurrent extensions of α

[11]
5: for each (q ∈ Q) do
6: β ← α � q;
7: L ← CMakeLOList(ε, δ, Δ, LOList(α), LOList RS(q));
8: F ← ComputeFreq(L);
9: if (F = Fα) then
10: Flag ← False;
11: end if
12: if (F > c) then
13: FindClosedFreqEpisode(ε, δ, Δ, Level, θ, β, L);
14: end if
15: end for
16: end if
17: if (|α.RArray| < Level) then
18: Q ← SExt(α); % SExt(α) is a set of all the valid states for the serial extensions of α [11]
19: for each (q ∈ Q) do
20: β ← α ⊕ q;
21: L ← SMakeLOList(ε, δ, Δ, LOList(α), LOList RS(q));
22: F ← ComputeFreq(L);
23: if (F = Fα) then
24: Flag ← False;
25: end if
26: if (F > c) then
27: FindClosedFreqEpisode(ε, δ, Δ, Level, θ, β, L);
28: end if
29: end for
30: end if
31: if (Flag) then
32: I nsert I nC PBT (α, Fα)

33: end if

B.3 Function CreateBranch

The algorithm CreateBranch receives the FC episode α and its frequency, converts
them into a branch of CPBT and returns a pointer to this branch. In lines 3 to 16,

123

194 M. Amiri et al.

in the backward direction, CNGs of α are processed. In lines 4 and 5, the order of
members of CNG is reversed. In lines 6 to 15, for each CNG, a Node is created and
added to the end of the branch. Finally, L1, which is a pointer to the first of the branch,
is returned in line 17.

Algorithm 9 CreateBranch
Input: α, fα % α is an episode and fα is its frequency
Output: The corresponding branch of α

1: L1, L2, n : ∗Node
2: k ← |CNGα |;
3: for (j = k down to 1) do
4: G′ ← Reverse(RArrayα[j].GList);
5: G′ ← G′ + RArrayα[j].x ;
6: n ← Create a new Node;
7: n.label → G′;
8: n. f req ← fα ;
9: if (L2 �= null) then
10: L2.children[1] ← n;
11: L2 ← L2.children[1];
12: else
13: L2 ← n;
14: L1 ← n;
15: end if
16: end for
17: return L1;

B.4 Function EpisodeAbsorbByTree

Algorithm 10 checks whether CPBT could absorb the episode α or not. Finding at
least one branch that absorbs α is sufficient to omit it. In line 1, the function finds the
children of the node R whose label includes α′.label and frequency is greater than
α′. f req. Note that α′ is the pointer to the first node of the corresponding branch of
the episode α. In lines 2 to 4, if there are no such children, α′ cannot be absorbed by
CPBT and the function returns False. In lines 5 to 12, if the last node of α′ is being
checked, it should be considered whether there exists a member of SubSetChildren
that satisfies the condition of equality of the frequency (see function CheckFreq
in B.7). If such an episode is found, it means that α could be absorbed by CPBT .
So α is not a closed episode and the function returns True. In line 11, if there exists
no such episode, the function returns False. In lines 12 to 19, the middle nodes of the
branch α′ are checked whether there exists a super-episode that absorbs α. As soon as
such a super-episode is found, the function returns True in line 15.

Algorithm 10 EpisodeAbsorbByTree

Input: α′, R, i, |CNGα | % α′ is the corresponding branch of the episode α, R is a node of CPBT
Output: True/False
1: SubSetChildren ← {x ∈ R.children|α′.label ⊆ x .label and α′. f req ≤ x . f rq};
2: if SubSetChildren = ∅ then
3: return False;

123

A new efficient approach for extracting the closed… 195

4: end if
5: if (i = |CNGα |) then
6: for each (x ∈ SubSetChildren) do
7: if (CheckFreq(α′, x)) then
8: return True;
9: end if
10: end for
11: return False;
12: else
13: for each (x ∈ SubSetChildren) do
14: if (EpisodeAbsorbByTree(α′.Children[1], x, i + 1, |CNGα |)) then
15: return True;
16: end if
17: end for
18: return False;
19: end if

B.5 Function TreeAbsorbByEpisode

Algorithm 11 finds all the branches of CPBT that are absorbed by the episode α (α′
is the corresponding branch of α). The path of these branches is completed in Path.
The completed paths are added to PathList . Finally, PathList includes all the paths
whose corresponding episodes should be removed fromCPBT . In line 1, the children
of the node R whose label is a subset of α′.label and frequency is greater than or equal
to α′. f req are found. All the found children are considered in lines 2 to 13. In lines
5 to 7, if an episode is found that α absorbs it, the corresponding Path of the episode
is added to PathList and Path is updated. In lines 8 to 9, the middle nodes of α′ are
checked to find the episodes that could be absorbed by α. In lines 10 and 11, since the
last node of α′ is met, Path is updated.

Algorithm 11 TreeAbsorbByEpisode

Input: α′, R, i, Path, |CNGα | % α′ is the corresponding branch of the episode α, R is a node of
CPBT

Output: % The function finds the corresponding Paths of the tree that are absorbed by α′ and
inserts Paths in PathList

1: SubSetChildren ← {x ∈ R.children|x .label ⊆ α′.label and α′. f req ≤ x . f rq};
2: for each (x ∈ SubSetChildren) do
3: Path.push(x);
4: CNF ← ComputeNodeFreq(x);
5: if (CNF = α′. f req) then
6: PathList .add(Path);
7: Path.pop();
8: else if (i < |CNGα |) then
9: TreeAbsorbByEpisode(α′.children[1], x, i + 1, Path, |CNGα |);
10: else if (i = |CNGα |) then
11: Path.pop();
12: end if
13: end for
14: if (Path is not empty) then
15: Path.pop();
16: end if

123

196 M. Amiri et al.

B.6 Function UpdateBranch

After the non-closed episodes of the tree are recognized by Algorithm 11, the corre-
sponding branches of them should be updated. The function UpdateBranch (Algo-
rithm 12) updates these branches based on the frequency of the episodes. The function
receives Path and f req of a non-closed episode and the node R that the search starts
from it towards down. In lines 2 to 3, the function starts the search of Path from the
node R and decreases the frequency of the node corresponding to Path[1] by f req.
If the frequency of the node is 0, it means that the frequency of its corresponding
episode and all of its super-episodes is 0. So in lines 4 and 5, that node and its subtree
are removed. Otherwise, this procedure is repeated for the remaining entries of Path.

Algorithm 12 UpdateBranch

Input: R, f req, Path % R is a node of CPBT , Path is a path of CPBT that should be updated.
Output: % The function updates CPBT based on Path and f req
1: if (Path is not empty) then
2: n ← {x ∈ R.children|x .label = Path[1]}; % n only includes one node
3: n. f req = n. f req − f req;
4: if (n. f req = 0) then
5: remove n from R.children;
6: end if
7: else
8: delete Path[1];
9: UpdateBranch(n, f req, path);
10: end if

B.7 Functions CheckFreq and ComputeNodeFreq

The function CheckFreq (Algorithm 13) is proposed to consider whether there is an
episode in the sub-tree of the node n of CPBT whose frequency is equal to the fre-
quency of the episode α. This function receives α′ (the corresponding branch of α) and
the noden ofCPBT . It returnsTrue if such an episode exists inCPBT . In lines 1 and2,
it is checkedwhether f req(Episode(n)) is equal to f req(α)or not. If not, the children
of n are traversed by calling CheckFreq recursively in lines 4 to 8. As soon as a child
with the frequency f req is found, the search is stopped and True is returned. The func-
tionComputeNodeFreq (Algorithm14) computes the frequency of Episode(n). For
this purpose, in lines 2 to 4, the frequency of the node n decreases by the sum of the fre-
quency of its children. It is clear that the function ComputeNodeFreq(n) computes
f req(Episode(n)). If ComputeNodeFreq(n) > 0, then Episode(n) has occurred
in the stream.

B.8 Function ExtractClosedEpisodeFromCPBT

Algorithm 15 shows the function ExtractClosedEpisodeFromCPBT . The main
loop of Algorithm 15 traversesCPBT until there is no node except the root ofCPBT .
In line 3, the traverse starts from the most left child. In lines 6 to 11, the most left
branch of CPBT is found. The corresponding episode of this branch is stored in the
episode α. Since episodes have been inserted in the backward direction in CPBT , α

123

A new efficient approach for extracting the closed… 197

Algorithm 13 CheckFreq
Input: α′,n % α′ is the corresponding branch of the episode α and n is a node of CPBT
Output: True/False
1: if (α′. f req = ComputeNodeFreq(n)) then
2: return True;
3: end if
4: for each (n′ ∈ n.children) do
5: if (CheckFreq(α′, n′)) then
6: return True;
7: end if
8: end for
9: return False;

Algorithm 14 ComputeNodeFreq
Input: n % n is a node of CPBT
Output: The frequency of an episode that starts from n and ends in the root
1: sum ← n. f req;
2: for each (x ∈ n.children) do
3: sum ← sum − x . f req;
4: end for
5: return sum;

is added to ClosedSet in reverse order in line 12. Furthermore, the branch should be
updated. In lines 13 to 25, the frequency of all the nodes of the branch decreases by
α’s. In lines 15 to 18, if the frequency of a node is 0, then that node and its subtree are
removed. Finally, in line 27, the algorithm returns ClosedSet , which includes all the
closed frequent episodes.

Algorithm 15 ExtractClosedEpisodeFromCPBT

Output: ClosedSet % A set of all the closed frequent episodes stored in CPBT ;
1: define α as an empty episode in the form of SAV E
2: while (|CPBT .children| > 0) do
3: R ← CPBT .children[1];
4: U ← R;
5: PatternU ← CPBT ;
6: while (|R.children| > 0) do
7: G ← the reverse of R.children[1];
8: add a new entry to RArray of α;
9: RArrayα.Last().x ← G[1];
10: RArrayα.Last().GList ← G[2..|G|];
11: end while
12: add RArrayα in reverse order to ClosedSet ;
13: while (1) do
14: U . f req ← U . f req − R. f req;
15: if (U . f req = 0) then
16: remove node U from ParentU ;
17: break;
18: end if
19: if (|U .children| > 0) then
20: parentU ← U ;
21: U ← U .children[1];
22: else
23: break;
24: end if

123

198 M. Amiri et al.

25: end while
26: end while
27: return ClosedSet

References

1. Petcu D, Vzquez-Poletti JL (2012) European research activities in cloud computing. Cambridge Schol-
ars Publishing, Cambridge

2. Amiri M, Mohammad-Khanli L, Mirandola R (2018) An online learning model based on episode
mining for workload prediction in cloud. Future Gener Comput Syst 87:83

3. Amiri M, Mohammad-Khanli L (2017) Survey on prediction models of applications for resources
provisioning in cloud. J Netw Comput Appl 82:93–113

4. Jiang Y, Perng C-S, Li T, Chang RN (2013) Cloud analytics for capacity planning and instant VM
provisioning. IEEE Trans Netw Serv Manag 10(3):312–325

5. Cetinski K, Juric MB (2015) AME-WPC: advanced model for efficient workload prediction in the
cloud. J Netw Comput Appl 55:191–201

6. Amiri M, Feizi-Derakhshi MR, Mohammad-Khanli L (2017) IDS fitted Q improvement using fuzzy
approach for resource provisioning in cloud. J Intell Fuzzy Syst 32(1):229–240

7. Altevogt P, Denzel W, Kiss T (2016) Cloud modeling and simulation. Wiley-IEEE Press, London
8. Yang J, Liu C, Shang Y, Cheng B, Mao Z, Liu C, Niu L, Chen J (2014) A cost-aware auto-scaling

approach using the workload prediction in service clouds. Inf Syst Front 16(1):7–18
9. Shi P, Wang H, Yin G, Fengshun L, Wang T (2012) Prediction-based federated management of multi-

scale resources in cloud. Adv Inf Sci Serv Sci 4(6):324–334
10. Matsunaga A, Fortes JAB (2010) On the use of machine learning to predict the time and resources

consumed by applications. In: Proceedings of the 2010 10th IEEE/ACM international conference
on cluster, cloud and grid computing, Melbourne, Victoria, Australia, pp 495–504. IEEE Computer
Society

11. AmiriM,Mohammad-Khanli L,Mirandola R (2018)A sequential patternminingmodel for application
workload prediction in cloud environment. J Netw Comput Appl 105:21–62

12. Achar A, Ibrahim A, Sastry PS (2013) Pattern-growth based frequent serial episode discovery. Data
Knowl Eng 87:91–108

13. Yan X, Han J, Afshar R (2003) CloSpan: mining—closed sequential patterns in large datasets. In:
Proceedings of the 2003 SIAM international conference on data mining, San Francisco, CA, USA, pp
166–177

14. FahedL,BrunA,BoyerA (2014)Episode rulesmining algorithm for distant event prediction. Technical
Report hal-01062542, HAL

15. Huang P, Liu CJ, Yang X, Xiao L, Chen J (2014) Wireless spectrum occupancy prediction based on
partial periodic pattern mining. IEEE Trans Parallel Distrib Syst 25(7):1925–1934

16. Li K, Fu Y (2014) Prediction of human activity by discovering temporal sequence patterns. IEEE Trans
Pattern Anal Mach Intell 36(8):1644–1657

17. Wright AP, Wright AT, McCoy AB, Sittig DF (2015) The use of sequential pattern mining to predict
next prescribed medications. J Biomed Inf 53:73–80

18. Gan W, Lin JCW, Fournier-Viger P, Chao HC, Yu PS (2018) A survey of parallel sequential pattern
mining. CoRR, arXiv:1805.10515

19. Dinh D-T, Le B, Fournier-Viger P, Huynh V-N (2018) An efficient algorithm for mining periodic
high-utility sequential patterns. Appl Intell 48(12):4694–4714

20. Martin F, Méger N, Galichet S, Becourt N (2012) Forecasting failures in a data stream context appli-
cation to vacuum pumping system prognosis. Trans Mach Learn Data Min 5(2):87–116

21. D’Andreagiovanni M, Baiardi F, Lipilini J, Ruggieri S, Tonelli F (2019) Sequential pattern mining for
ict risk assessment and management. J Log Algebraic Methods Program 102:1–16

22. Van T, Yoshitaka A, Le B (2018) Mining web access patterns with super-pattern constraint. Appl Intell
48(11):3902–3914

23. Mannila H, Toivonen H, Verkamo AI (1997) Discovery of frequent episodes in event sequences. Data
Min Knowl Discov 1(3):259–289

24. Rathore S, Goyal V (2015) Top-K high utility episode mining in complex event sequence. PhD thesis

123

http://arxiv.org/abs/1805.10515

A new efficient approach for extracting the closed… 199

25. Höppner F (2001) Discovery of temporal patterns. Learning rules about the qualitative behaviour of
time series. In: Proceedings of the 5th European conference on principles of datamining and knowledge
discovery, PKDD ’01. Springer, London, pp 192–203

26. Papapetrou P, Kollios G, Sclaroff S, Gunopulos D (Nov 2005) Discovering frequent arrangements of
temporal intervals. In: Fifth IEEE international conference on data mining (ICDM’05), Houston, TX,
USA. IEEE

27. Batal I, Cooper GF, Fradkin D, Harrison J Jr, Moerchen F, Hauskrecht M (2016) An efficient pattern
mining approach for event detection in multivariate temporal data. Knowl Inf Syst 46(1):115–150

28. Winarko E, Roddick JF (2007)ARMADA: an algorithm for discovering richer relative temporal associ-
ation rules from interval-based data. Data Knowl Eng 63(1):76–90 (DataWarehouse andKnowledge
Discovery, DAWAK’05)

29. Papadopoulos S, Drosou A, Tzovaras D (2016) Fast frequent episode mining based on finite-state
machines. In: Abdelrahman OH, Gelenbe E, Gorbil G, Lent R (eds) Information sciences and systems
2015. Springer International Publishing, Cham, pp 199–208

30. Lin M-Y, Lee S-Y (2002) Fast discovery of sequential patterns by memory indexing. Springer, Berlin,
pp 150–160

31. Moskovitch R, Shahar Y (2009) Medical temporal-knowledge discovery via temporal abstraction.
AMIA Annu Symp Proc 2009:452–456

32. Moskovitch R, Walsh C, Wang F, Hripcsak G, Tatonetti N (Nov 2015) Outcomes prediction via time
intervals related patterns. In: 2015 IEEE international conference on data mining, pp 919–924

33. Sacchi L, Larizza C, Combi C, Bellazzi R (2007) Data mining with temporal abstractions: learning
rules from time series. Data Min Knowl Discov 15(2):217–247

34. Allen JF (1984) Towards a general theory of action and time. Artif Intell 23(2):123–154
35. Patel D, HsuW, LeeML (2008)Mining relationships among interval-based events for classification. In:

Proceedings of the 2008 ACM SIGMOD international conference on management of data, SIGMOD
’08. ACM, New York, NY, USA, pp 393–404

36. Batal I, Fradkin D, Harrison J, Moerchen F, Hauskrecht M (2012) Mining recent temporal patterns for
event detection inmultivariate time series data. In: Proceedings of the 18thACMSIGKDD international
conference on knowledge discovery and data mining, KDD ’12. ACM, Beijing, China, pp 280–288

37. Ghosh S, Li J, Cao L, Ramamohanarao K (2017) Septic shock prediction for ICU patients via coupled
HMM walking on sequential contrast patterns. J Biomed Inf 66:19–31

38. Laxman S, Sastry P, Unnikrishnan K (2007) Discovering frequent generalized episodes when events
persist for different durations. IEEE Trans Knowl Data Eng 19(9):1188–1201

39. Tatti N, Cule B (2010) Mining closed strict episodes. In: Proceedings of the 2010 IEEE international
conference on data mining, ICDM ’10. IEEE Computer Society, Washington, DC, USA, pp 501–510

40. Wu S-Y, Chen Y-L (2007) Mining nonambiguous temporal patterns for interval-based events. IEEE
Trans Knowl Data Eng 19(6):742–758

41. Laxman S, Sastry PS, Unnikrishnan KP (2005) Discovering frequent episodes and learning hidden
markov models: a formal connection. IEEE Trans Knowl Data Eng 17(11):1505–1517

42. Hwang K, Bai X, Shi M, Li Y, Chen WG, Wu Y (2016) Cloud performance modeling and benchmark
evaluation of elastic scaling strategies. IEEE Trans Parallel Distrib Syst 27(1):130–143

43. Tatti N, Cule B (2012) Mining closed strict episodes. Data Min Knowl Discov 25(1):34–66
44. Zaki MJ (2001) Spade: an efficient algorithm for mining frequent sequences. Mach Learn 42(1–2):31–

60
45. Neapolitan RE, Neapolitan R, Naimipour K (2010) Foundations of algorithms. Jones & Bartlett Learn-

ing, Burlington
46. Alam M, Shakil KA, Sethi S (2016) Analysis and clustering of workload in google cluster trace based

on resource usage. In: 2016 IEEE international conference on computational science and engineer-
ing (CSE) and IEEE international conference on embedded and ubiquitous computing (EUC) and
15th international symposium on distributed computing and applications for business engineering
(DCABES), pp 740–747. IEEE

47. Alexandru I, Hui L,Mathieu J, ShannyA, CatalinD, LexW, EpemaDickHJ (2008) The gridworkloads
archive. Future Gener Comput Syst 24(7):672–686

48. Shen S, van Beek V, Iosup A (2015) Statistical characterization of business-critical workloads hosted
in cloud datacenters. In: 2015 15th IEEE/ACM international symposium on cluster, cloud and grid
computing (CCGrid), pp 465–474. IEEE

123

200 M. Amiri et al.

49. Li A, Yang X, Kandula S, ZhangM (2010) Cloudcmp: comparing public cloud providers. In: Proceed-
ings of the 10th ACM SIGCOMM conference on Internet measurement, pp 1–14. ACM

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A new efficient approach for extracting the closed episodes for workload prediction in cloud
	Abstract
	1 Introduction
	2 Related work
	3 An overview of the pattern mining engine of POSITING/RELENTING
	3.1 Background concepts
	3.2 The episode occurrence
	3.3 The pattern extraction

	4 Improving space complexity: computing NO frequency based on redundant occurrences
	4.1 Redundant LO
	4.2 Improved representation of the stream based on pointers (PROSPER)
	4.3 NO frequency under gap constraints
	4.3.1 Extracting the non-redundant LOs of episodes using the serial extension
	4.3.2 Extracting the non-redundant LOs of episodes using the concurrent extension

	5 Improving time complexity: a new approach for mining the closed episodes
	5.1 The data structure CPBT
	5.2 Mining closed frequent episodes
	5.3 Insert in CPBT
	5.4 Analysis of time complexity

	6 Evaluation
	6.1 Workloads
	6.2 Impact of Level
	6.3 Evaluation results
	6.3.1 Experimental results of the real workload
	6.3.2 Experimental results of the synthetic workload

	7 Conclusion and future work
	Acknowledgements
	A Proofs
	B Algorithms
	B.1 Function CExtending
	B.2 Function FindClosedFreqEpisode
	B.3 Function CreateBranch
	B.4 Function EpisodeAbsorbByTree
	B.5 Function TreeAbsorbByEpisode
	B.6 Function UpdateBranch
	B.7 Functions CheckFreq and ComputeNodeFreq
	B.8 Function ExtractClosedEpisodeFromCPBT

	References

