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Abstract
For most regression tasks, we often use an ensemble learning technology of Bagging
algorithm.However, the traditionalBagging algorithm is susceptible to extremevalues.
This leads to high bias and high variance in the prediction process. Therefore, this
paper proposes an improved Bagging algorithm based on the best decision Committee
model and the idea of selecting the base learner, and we have presented the idea
of using the decision-making committee to filter learner, train the decision-making
committee by the base learner to classify the error on the test set. Using the optimal
interval separation factor’s mathematical model which is derived by the Lagrange
multiplier method to classify the evaluation levels. The decision committee is trained
according to the assigned evaluation level, and the learner is selected and assembled
according to the decision result of the decision committee members. Meanwhile,
our theoretical analysis shows that there are two different cases, which we can use
maximum likelihood estimation and stochastic process theory to build mathematical
models for analysis. The analysis results based on reduced activated ferritic/martensitic
(RAFM) steel data sets show that the proposed algorithm can be applied to data
sets with high dimension, high redundancy, high contradictory samples, sparse data
sets, and then, we gives the strict theoretical framework to guarantees the further
development and promotion. This gives algorithm model.
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1 Introduction

The reduced activated ferritic/martensitic (RAFM) steel is the main structural mate-
rial recommended for futuremagnetically constrained nuclear fusion reactors. Because
controllable nuclear fusion has its inherent safety and efficiency, coupled with suffi-
cient energy sources, it become one of the materials used in fusion power stations.
Europe, the United States, Japan, Russia and China have developed a variety of RAFM
steel, forming a series of steel types, such as CLAM steel, F82H steel, etc. [1, 2].

RAFM steel uses low-irradiation sensual elements W, V and Ta instead of the
commonly used high- irradiation living alloy materials Mo, Ni and Nb, which can
effectively reduce the radiation-induced radioactivity, radiation swelling and thermal
expansion coefficient of the material. It can also increase the high temperature ther-
mal properties of the material as well as the high thermal conductivity. Because of
the influence of many factors, it is difficult to make a predictive assessment from the
physical mechanism. In recent years, with the rapid development of computer tech-
nology, the ability to model with computer-aided technology and the establishment
of reliable predictive models to study the performance of RAFM steel is an emerging
research tool and technology.

Bagging algorithm has strong robustness, generalization and high variance reduc-
tion. It has a wide range of practical applications in dealing with multi-classification
problems and regression problems [3]. For example, Binh used the Bagging algo-
rithm based on SVM as a base learner to study the landslide problem [4]. Huang
combined the Bagging algorithm of genetic algorithm to solve the fault diagnosis of
transformer [5]. Yang and Jiang used the hybrid Sampling-Based clustering ensemble
with global and local constitutions [6], at the same time, their research on adaptive bi-
weighting toward automatic initialization andmodel selection for HMM-Based hybrid
meta-clustering ensembles [7]. The Bagging algorithm hasmany variant-derived algo-
rithms, such as attribute resampling algorithms (Attribute Bagging). In the traditional
Bagging algorithm, extra-package estimation is not used in bootstrap sampling [8],
therefore, it losses the a priori information provided by the verification set. Through
the evaluation of the decision-making committee, we can select the base learners with
superior performance on the verification set, and then assemble the best base learners
to get a hybrid prediction model with better prediction effect than the single learner.
This is also the principle that ensemble learning can often show better performance,
because the process of selecting base learners is similar to that of voting by commit-
tees, so we call this method of selecting model as decision-making committees. The
main contributions of this paper are as follows:

1. This work analyzes the traditional Bagging algorithm which is affected by the
extreme values of the base learner. We use the prior information of the verification
set to assist the decision-making process, and put out the idea that the decision-
making committee carefully screens the learner.

2. The concept of interval separation factor is proposed. The error evaluation criteria
of basic learning unit are given, and then, we use the Lagrange multiplier opti-
mization theory to find out the optimal interval separation factor and gives a strict
mathematical proof.
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3. In view of actual case, this paper gives some characteristics of the decision-making
committee, and analyze the two cases in which the model exists from the theory.
For case 1, it has been found that the maximum likelihood estimation method
can be used to analyze the property of the model; for case 2, it is found that
the property of the model can be analyzed theoretically by a stochastic process.
Finally, combining the two cases, we present the ML-RP evaluation algorithm.

4. For a sparse, highly redundant, multi-repetitive sample data set with many outliers
(not limited to theRAFMsteel studied in this paper),wepresent a general algorithm
model. As long as the preconditions are met, it can use the algorithm model
for research and analysis, or only use the DC-Bagging algorithm of the decision
committee.

2 Related work

In this section, we survey the related work on RAFM steel and ensemble learning.
RAFM steel is a kind of material used in future fusion power plant, but its service
conditions are very harsh, such as requiring it to be exposed to high temperature, high
pressure, high irradiation and high corrosive experimental conditions for a long time.
In addition, thematerial selection of fusion power plant is closely related to the safe run
of nuclear power plants. Therefore, it is necessary to study the characteristics of fusion
materials to ensure the promotion of large-scale engineering applications in the future.

At present, RAFM steel is mostly studied and analyzed from the physical mech-
anism. For example, Vijayanand et al. studied on the microstructure evolution of
electron beam welds under creep loading [9], and microstructural evolution in creep
tested electron beam welded Reduced Activation Ferritic Martensitic (RAFM) steel
and 316LN stainless steel dissimilar weld joints has been studied at 823 K under
different stress levels. In addition, Laha et al. studied the effects of tungsten and tan-
talum contents on impact, tensile, low cycle fatigue and creep properties of Reduced
Activation Ferritic-Martensitic (RAFM) steel were studied to develop India-specific
RAFM steel [10]. And their research found that the RAFM steel having 1.4 wt% tung-
sten with 0.06 wt% tantalum was found to possess optimum combination of impact,
tensile, low cycle fatigue and creep properties and was considered for Indian-specific
RAFM steel. Mao et al. studied the correlation among microstructural parameter and
dynamic strain aging (DSA) in influencing the mechanical properties of a reduced
activated ferritic-martensitic (RAFM) steel [11], and then the contributions of these
microstructural parameters on the tensile properties at elevated temperatures were
studied with the modified Crussard–Jaoul (C–J) analysis based on the Swift equation.
In addition to the above studies, there are few related studies on the application of
machine learning in nuclear fusion materials, so the focus of our work is to carry out
cross-cutting research in the above two fields.

In the field of machine learning, we take regression task as an example. There are
many classical prediction and analysis algorithms, such as artificial neural network
model, support vector machine model, decision tree model and random forest model.
Thesemodels are all single learners (we call them “base learners”).When dealing with
very complex experimental data, such as high dimensions,many contradictory samples
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22 S. Long et al.

and many outliers, we discuss the defects exposed by a single learner in subsequent
chapters. Therefore, in order to solve this problem, we use the technology of ensemble
learning to overcome this obstacle [12]. After repeated experiments, we finally chose
theBagging algorithm as the blueprint, combinedwith the decision-making committee
prediction algorithm to get the best results.

3 Preliminary study

In this section, we will introduce some basic research, including the data set we used,
the PCAalgorithm for dimensionality reduction, and the traditional bagging algorithm.

3.1 Database

The data set used in this paper is the result of irradiation experiment. For related
information, refer to “Appendix”, which described the nonlinear relationship between
yield strength and experimental conditions (e.g. irradiation temperature, irradiation
dose and test temperature etc.) and element content (e.g. Cu, Fe and S etc.). Elemental
content is given by the material company, the corresponding experimental conditions
are measured in the laboratory, the associated attribute set involves 37 attributes.
The cor-responding statistics are given: maximum, minimum, average, variance and
standard deviation. These statistics can reflect the distribution of data to a certain
extent. It can be concluded that the biggest feature of data distribution is sparsity.

3.2 Principal component analysis

The experimental data used in this study have the following characteristics.

1. There are many associated attributes, reaching 37 dimensions.
2. Data distribution is sparse and it is difficult to integrate information.
3. There are many outliers, which interfere with the constructed model.

Based on the above challenges, this study will use principal component analysis
(PCA) techniques to effectively alleviate the above difficulties [13]. It can search for m
pieces of n-dimensional orthogonal vectors that best represent the original data, where
m≤n. Therefore, the original data is projected onto a small space, which achieves the
purpose of data dimensionality reduction, data cleaning, and noise removal. After data
dimensionality reduction, the unrelated, weakly correlated, and redundant attributes
and dimensions are detected and deleted. High-dimensional attributes are successfully
dimension-reduced to obtain new data sets with low noise, low-dimensional, high-
information, and then we can retrain the model on the new data set.

3.3 Bagging algorithm

In machine learning, whether it is discriminant analysis or regression analysis, the
commonly used algorithms are single learners, such as neural network model [14],
LS-SVM[15, 16],Decision tree, etc. [17, 18].However, it can use an ensemble learning
strategy to obtain a strong learner with superior performance. A good learner requires
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A novel PCA-DC-Bagging algorithm on yield stress… 23

good predictive ability and diversity. In other words, in order to make more accurate
predictive ability after the integration ofmultiple base learners, each base learner needs
to have good performance and diversity. For example, for a data set, we train five base
learners. We need to predict a data point that we given in advance is 120. Then, if
five learners are good, the output of the learner is 118, 118, 118, 118, 118 (if we use
a arithmetic average as the output after integration). The output of ensemble learning
is 118. If our learners are more diverse, and then the output is 118, 121, 119, 122,
120, then the output of ensemble learning is 120. Of course, 120 is more accurate than
118. Based on the principle described above, Bryll proposed an improved Bagging
algorithm [19], the votingmodel is selected by random feature subset, and then a strong
learner is selected according to the voting result, thereby we assembled a predictive
model of the strong learner.

The Bagging algorithm is one of the most representative algorithms in the parallel
ensemble learning method. In the model training process, it is necessary to obtain a
learner with superior performance and diversity. First, self-sampling bootstrap sam-
pling is used on the generated training data set. For a given data set D that containsM
samples, in order to produce a discrepant datasetD′,m samples are randomly selected
from the overall sample in each time, and the process is repeated m times. From this,
it can be concluded that after m sampling is completed, a new subset containing the
total number of samples m is obtained as D′. It can be seen that a part of the samples
in D will appear multiple times in the subset D′. Another part of the sample will not
appear, so the probability that the sample was taken in m samples is:(

1 − 1

m

)m

(1)

Therefore, taking the limit, we have.

lim
m→∞

(
1 − 1

m

)m

→ 1

e
≈ 0.368 (2)

The (1) and (2) equation shows that about 63.2% of the data in training of themodel,
and 36.8% of the data does not participate in the waste of the data set. Therefore, the
algorithm performs out-of-package application of data sets that are not involved in
model training, which ensures maximum use of the data set, which is critical for areas
with high data acquisition costs (e.g. the nuclear material field).

4 PCA-DC-Bagging algorithm

This sectionmainly introduces theBagging-derived algorithmbased on principal com-
ponent analysis and decision-making committee, which is named PCA-DC-Bagging
algorithm. In order to effectively avoid the high dimension and the influence of noise,
redundancy, repetition, and contradiction sample data characteristics, so we need to
find more robust algorithms to meet these challenges. Therefore, this paper proposes
a PCA-DC-Bagging algorithm based on the PCA dimension reduction technology
combined with the decision-making committee’s Bagging algorithm.
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24 S. Long et al.

Fig. 1 The main schematic chart of the PCA-DC-Bagging algorithm

4.1 PCA-DC-Bagging algorithm principle

It can be seen from the analysis in the previous section that to solve the problem
that the prediction result of the learner in the Bagging algorithm is easily affected by
extreme values, how to select the learner in a targeted manner is the key to improve
the performance of the algorithm. Therefore, this study gives an efficient filtering of
learners basedon the decision-making committeemodel. That is thePCA-DC-Bagging
algorithm. The principle of the algorithm is that in the training of the learner, bootstrap
sampling is used to filter the data set, then, m pieces of base learners are trained on the
filtered training set, and a decision committee is established on the verification set for
error evaluation. The details of the algorithm can be referred to Fig. 1 andAlgorithm1.

In the process of training the base learner, the base learner is trained on the total data
setD. The data setD is divided into three parts, a training data set Dtrain , a verification
set Dveri f ication , and a test set Dtest. First, m data points are randomly selected as the
test set, and then the remaining data sets are divided into training set Dtrain and test
set Dtest according to the bootstrap sampling method (the data set ratio is 63.2%:
36.8%) [20]. Combining the data set of this study, this paper takes the experimental
data of RAFM steel as an example. At this time, data set D contains 1811 pieces of
data, which divides data set D, and 100 pieces of data are used as test set Dtest, 1711
data for bootstrap sampling, reference to the partition of bootstrap about data sets in
“Appendix”, training set Dtrain about 63.2% of the data for the training of the learner
(about 1080 data points), and about 36.8% of the verification set Dveri f ication for
model performance filtering. Figure 2 shows the process that the data set is divided.

In Fig. 2, m pieces of data is randomly selected as the test set, and then the data
in the remaining training set is divided into the training set Dtrain by the bootstrap
sampling method to train model. And the set Dveri f ication is used to filter models to
select the best base learners.

It has been concluded from the previous analysis that in order to improve the
predictive performance of the learner after the integrated algorithm, the proposed
algorithm focuses on more accurate selection of the base learner than the traditional
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A novel PCA-DC-Bagging algorithm on yield stress… 25

Fig. 2 Division scheme of data sets

Bagging algorithm which does not do any processing on the base learner. Therefore,
the PCA-DC-Bagging algorithm is presented in the form of pseudo code, please refer
toAlgorithm1. The schematic chart of the PCA-DC-Bagging algorithm is given Fig. 1.
Some specific properties of the model are given below.

Algorithm 1 PCA-DC-Bagging Algorithm
Require: High-dimensional data sets, cumulative contribution rates after PCA dimensionality 

reduction, decision-making committee member models (some classic classification algorithms 
such as neural networks, decision trees, SVM, random forests).

Ensure: Given the number of learners m, standard interval I.
Execute PCA algorithm; //Dimensional processing of high-dimensional data;

Random sampling method to extract test set data testD ; 

for i = 1 to m do

Bootstrap sampling,divide data into training data set trainD , verification set onverificatiD ; 

Train the corresponding base learner {learner1, learner2, learner3, , learnerm} on the 

training set trainD ; 

The model is verified on the verification set Dvalidation, and the mean square error is obtained. 
The level is divided and a new mark set Dresult-validation is obtained;
Train the decision-making committee model on the data set Dresult-validation and get the 
decision-making member model of the decision-making committee as DC1, DC2, 
DC3 ,DCm; 

end for 
repeat

// Forecast on the test set.
The decision committee makes decisions on the data set and achieve the corresponding 
decision level l1,l2,l3, lt; 
Follow the ranking rules and select the top h higher level learners for prediction;
Reassemble the learner {learner1, learner2, learner3, , learnerm }(h<m) by a simple 
average strategy. Make predictions;
//PCA-DC-Bagging algorithm ended. 

until j<v
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26 S. Long et al.

Definition 1 In theBagging algorithm, the given base learner l1, l2, l3, . . . , lm . Divides
the training set Dtrain and the verification set Dvalidation by bootstrap sampling
method. To train m pieces of base learners in the training set Dtrain , and define
the mean squared error set E � {e1, e2, e3, . . . , em} of the base learner on the
verification set Dvalidation as the performance error for the m base learners, where

ek � ∑m
i�1

(
ŷki − yki

)2
.

Considering the particularity of the bootstrap sampling method in the Bagging
algorithm, training decision-making committees on validation sets can be used to
evaluate the quality of learners, however, in practical applications, it often requires
more abundant prior information to obtain a more accurate evaluation method. Our
ultimate goal is to establish a quantitative decision-making committee model to assist
selecting the best base learners. In order to increase the decision-making accuracy
requirements of the decision-making committee and reduce the forecasting risk after
decision-making mistakes, here gives a definition of the error level.

Definition 2 For a given closed interval [a, b], where a ≥ 0, b ≥ 0. Without loss
of generality, we give the separation factor ξ � {ξ1, ξ2, ξ3, . . . , ξn}, and satisfy∑n

i�1 ≤ b − a, ξi ≥ 0. Then the separation factor divides the interval [a, b] into n
subintervals [a, a + ξ1], [a + ξ1, a +

∑2
i�1 ξ1], . . . [a +

∑n−1
i�1 ξ1, b].

Definition 3 For the m pieces of given base learner l1, l2, l3, . . . , lm , the performance
error set of the corresponding base learner in the bootstrap sampling process is E �
{e1, e2, e3, . . . , em}. The distribution interval of the given error distribution E is
[a, b], where a � min(E), b � max(E). Given the interval separation factor ξ �
{ξ1, ξ2, ξ3, . . . , ξn}, Then the error set E is divided into t error levels, which may be
recorded as L � (l1, l2, l3, . . . , lt ), so L is declared as the criterion for judging the
error level of the decision committee.

The above sections introduced decision maker on the validation set and defined
a quantitative model to evaluate the performance indicators of the learner. Train m
learners on the training set Dtrain at the same time, make prediction errors in the
verification set Dvalidation , and divide t levels into L � (l1, l2, l3, . . . , lt ), according
to the criteria of the decision-making committee to judge the error level, on this basis,
training the decision-making committee. The general decision-making committee can
use some common classifier algorithms, such as BP neural network [21], SVM classi-
fication algorithm [22], decision tree [23], naive Bayes classifier [24], random forest
algorithm [25], etc. By classifying the level l1, l2, l3, . . . , lt , on the verification set,
the new verification set is also marked as the training data set of the model, in order to
give the predictive ability to decision-making committee. Train the decision-making
committee on the new error result set and obtain m pieces of decision committee pre-
diction model (DC1, DC2, DC3, . . . , DCm). If the decision-making committee does
not play a predictive effect, in the worst case, it is equivalent to random guessing. If
the prediction is better than random guessing, the prediction is made on the new data
set. For each decision-making member in the decision-making committee to make
predication on new data set, the correct probability of decision-making is 1

t .
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A novel PCA-DC-Bagging algorithm on yield stress… 27

In theoretical analysis, it requires to optimize some important parameters. Taking
the interval separation factor as an example, if the value is too large, it will increase
the tolerance of the decision-making members leading to a decrease in the accuracy
of the decision; if the value is too small, it is difficult to construct a decision-making
committee that meets the accuracy requirements. The above analysis shows that the
value of the interval separation factor has an important influence on the classification
error level. Therefore, this article uses the technique of convex optimization theory to
establish a quantitative model to optimize the interval separation factor.

Definition 4 For the members of the decision-making committee, given the certain
data set, we believe that the interval separation factor ξ � {ξ1, ξ2, ξ3, . . . , ξn} has
a nonlinear multivariate function relationship with the error results. And set it as
the committee member loss function f {ξ1, ξ2, ξ3, . . . , ξn}. The decision committee’s
overall loss function is defined as Γ � log2

(
2 + | f |1 + | f2| + | f3| + · · · + | fm |) − 1.

In practical applications, the facing problems are complex. For different data sets,
the loss function given by Definition 4 is different. So, it can build specific models
in other ways, such as polynomial fitting models, least squares fitting models, etc.
[26, 27], this paper doesn’t do more discussion about that. This paper establishes the
nonlinear function relationship between the interval separation factor and the decision
committee error by Definition 4. The next step is to optimize the loss function by
the convex optimization theory to find the corresponding value of the interval sepa-
ration factor ξ � {ξ1, ξ2, ξ3, . . . , ξn} when the loss function f {ξ1, ξ2, ξ3, . . . , ξn} is
minimum [28]. It uses the Lagrange multiplier method to get the results below [29].

Theorem 1 Assuming Loss function f , gi , hi : Ψ n → Ψ (i � 1, 2, . . . , j �
1, 2, . . . , t) is continuous differentiable. The decision-making committee overall loss
function satisfies the following formula:

minΓ � log2
(
2 + | f |1 + | f2| + | f3| + · · · + | fm |) − 1 (3)

s.t .gi (ξ) ≥ 0, hi (ξ) � 0 (4)

Then, there is a Lagrange multiplier vector λ∗ ∈ Ψ s, μ∗ ∈ Ψ t ,which make the
first-order optimality condition for the committee’s overall loss function Γ ,that is, the
KKT condition is established:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ξΓ
(
ξ∗, λ∗, μ∗) � 0,

h j
(
ξ∗) � 0, j ∈ E,

λ∗
i ≥ 0, gi

(
ξ∗) ≥ 0,

λ∗
i gi

(
ξ∗) � 0

(5)

Proof Referring toKolmogorov existence theorem [30], it can been seen that the inter-
val is separated by the factor ξ , and assuming that the linearization feasible direction
(LFD) is the same as the serialization feasible direction (SFD), that is, SFD(ξ∗, D) �
LFD(ξ∗, D). Then, for any d ∈ LFD(ξ∗, D), there is dT∇ f (ξ∗) ≥ 0, the Lagrange
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28 S. Long et al.

multiplier vector λ∗ ≥ 0, μ∗
i , i ∈ I

(
ξ i

)
, j ∈ E must exist, so that the following for-

mula holds∇ξΓ (ξ∗, λ∗, μ∗)∇ f (ξ∗)−∑
i∈I (ξ∗) λ∗

i ∇gi (ξ∗)−∑
i∈E μ∗

j∇h j (ξ
∗) � 0,

make λ∗
i � 0,∀i ∈ I\I (ξ∗), the conclusion of Theorem 1 can be obtained.

When given the interval separation factor ξ Theorem 1 is actually a special case of
the Lagrange multiplier method for solving the optimization problem with the small-
est overall loss function of the decision-making committee. Through mathematical
modeling, the problem of interval separation factor selection in decision-making is
transformed into convex optimization problem. Then, using the Lagrange multiplier
method to find the corresponding first-order optimal condition under the constraints of
the minimum objective function (here, the overall loss function Γ ), namely the KKT
condition [29], and find the optimal interval separation factor ξ sequence. The above
is the research method given from the theory.

5 Analysis of themodel

The PCA-DC-Bagging algorithm model given in this study belongs to a hybrid model
[31]. In order to evaluate the quality of the model and choose the appropriate combi-
nation strategy based on the performance of the base learner, this paper theoretically
gives the mathematical model of the evaluation method, and finally gives the ML-RP
evaluation algorithm of the evaluation model.

Definition 5 During themodel training process, the correct probability of the i-th com-
mittee member of the decision-making committee DC � {dc1, dc2, dc3, . . . , dcm} is
pi � p{li 
� l̂i }, li is the level decision of the i-th committee member, l̂i is the actual
level of the base learner. At this time, the correct probability p � (p1, p2, p3, . . . , pm)

of the judges of the m committee members is called the probability of successful judg-
ment by the decision committee.

The basic assumption is that the performance of the basic learning device is stable.
It is a prerequisite for defining 5. In practical applications, it is not always satisfied
with this basic assumption. Therefore, the quality of the final judgment will depend
on the degree of violation of this basic assumption. Therefore, It required to establish
a quantitative model based on the basic concept of the above definition and the final
result. In theory, there are two kinds of cases.

Case 1 When the number of samples is large, the weak learner is sufficient for the
sample learning, and under the condition of repeated experiments, the probability
p � (p1, p2, p3, . . . , pm) of the committee members is stable. Therefore, there is
no significant difference in the results of repeated iterations.
Case 2 When the number of samples is scarce, the prediction error of the basic
learning device is relatively large. Under repeated experiments, the probability P of
the members of the Committee showed a significant fluctuation. Therefore, how to
analyze the quality of models in repeated experiments is the key to maximize the
prediction results.

Below we classify and discuss some characteristics of the model in two cases,
and explore the inherent regularity characteristics of the algorithm from the theoret-
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A novel PCA-DC-Bagging algorithm on yield stress… 29

ical point of view. Therefore, the following two theorems are given for two different
situations:

Theorem 2 In the process of repeated experiments, if the prediction accuracy of the
decision members is stable. Let the decision committee members judge the correct
probability as the random variable D, and D obeys the uniform distribution on [s, t],
where s, t is unknown, d1, d2, d3, . . . , dm are the observations of the random variable
D. Then the maximum likelihood estimator of s,t is:

ŝ � min
1≤i≤m

Di , t̂ � max
1≤i≤m

Di (6)

Proof It is assumed that the probability that the decision-making committee members
judge the correct is constant and is recorded as D. According to the results of Fig. 5,
it is reasonable to assume that D obeys a uniform distribution on [s, t]. And set

d1 � min{d1, d2, d3, . . . , dm} (7)

dm � max{d1, d2, d3, . . . , dm} (8)

Then we have, the probability density of D is:

f (d; s, t) �
⎧⎨
⎩

1

t − s
, s ≤ d ≤ t,

0, other .
(9)

So the likelihood function can be written as:

L(s, t) �
⎧⎨
⎩

∏m

i�1

1

t − s
, s ≤ d1, d2, . . . , dm ≤ t,

0, other .
(10)

�
⎧⎨
⎩

1

(t − s)m
, s ≤ d1, dm ≤ t,

0, other .
(11)

For any given s that satisfies the condition of s ≤ d1, t ≥ dm , we have

L(s, t) � 1

(t − s)m
≤ 1

(dm − d1)m
(12)
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30 S. Long et al.

It can be seen from the above formula that the necessary and sufficient conditions
for the likelihood function L(s, t) to take the maximum value of (dm − d1)−m is: If
and only if s � d1, t � dm . Therefore, for the decision committee to satisfy the case
1, the maximum likelihood estimate of s, t is

ŝ � d1 � min
1≤i≤m

di , t̂ � dm � max
1≤i≤m

di (13)

Theorem 2mainly shows that under the condition of satisfying case 1, the decision-
making differences of decision-making committee members are mainly determined
by the worst and best decision-making members. Therefore, during the establishment
of the decision-making committee, the key to increase the decision-making precision
of the decision-making committee members is to improve the accuracy of decision-
making as a whole while weakening the difference in decision-making precision of
decision-making members. The Theorem 2 gives some intrinsic characteristics that
the PCA-DC-Bagging algorithm can satisfy, which can be used as the theoretical basis
for the performance analysis of the prediction results. When the theoretical analysis
satisfies case 2, the PCA-DC-Bagging algorithm satisfies different characteristics. The
Theorem 3 and the practical application in this study are given:

Theorem 3 During repeated experiments, it is assumed that the prediction accuracy
of decision members exhibits an unstable distribution with state T. The probability that
the decision of the committee members is correct is the random variable D, and the
probability space is denoted as (Ω,℘, P). Then for each given t ∈ T , the decision
variable predicts the correct probability of the randomvariable family {D(t, e), t ∈ T }
as a stochastic process on the probability space (Ω,℘, P).

Proof Under the condition of repeated experiments, it is assumed that the probability
that the decisionmember correctly predicts is the random variableD, andD exhibits an
unstable distribution with the given number of times t1, t2, t3, . . . , tm ∈ T . Obviously,
for arbitrarily arrange {i1, i2, i3, . . . , im} of the set 1, 2, 3, . . . ,m, and when k ≤ m
satisfies the lower form

{
Ft1,...,tm (d1, . . . , dm) � Fti1 ,...,tim

(
di1 , . . . , dim

)
Ft1,...,tk (d1, . . . , dm) � Ft1,...,tm (d1, . . . , dm,∞, . . .)

(14)

Where F is a family of finite dimensional distribution functions [32]. In the course
of the training committee, the training sequence is unaffected. The finite dimensional
distribution family F satisfies the above equation to satisfy the symmetry and compat-
ibility. According to the Kolmogorov existence theorem, there must be a probability
space (Ω,℘, P) and a random process {D(t, e), t ∈ T } defined in it, and its finite
dimensional distribution function family is F.

Theorem 3 is mainly mathematically modeled by the specific application scenarios
of this study combinedwith the relevant theories of stochastic processes. The decision-
making behavior of the committee is described by stochastic process theory, so the
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random behavior of the decision-making committee is transformed into a descriptive
mathematical model under certain conditions. Then the following metrics are given
under the framework of stochastic process theory. For the stochastic process DT �
{d(t), t ∈ T }, defined by the decision committee’s correct prediction, the following
method is given as the evaluation index.

1. The mean function of DT is mD(t) � ED(t), t ∈ T .
2. The covariance function of DT is BD(s, t) � E[{D(s) − mD(s)}{D(t) − mD

(t)}], s,m ∈ T .
3. The variance function of DT is DD(t) � BD(t, t) � E[D(t) − mD(t)]2, t ∈ T .
4. The correlation function of DT is RD(s, t) � E[X(s)X(t)], s, t ∈ T

The mean function mD(t) is the average value of the stochastic process
{D(t), t ∈ T } in the t state, so it can be used to describe the average value of the
correct prediction probability of the decision committee in the t state. When the fore-
casting results does not meet the accuracy requirements, themean function can be used
to analyze the model to find a solution to improve the prediction performance. The
variance function DD(s, t) describes the degree of deviation from the mean function
mD(t) in the t state. When the predictive performance of decision-making members
shows significant differences, the system should be analyzed by the variance func-
tion to find out the problems of the model itself. The covariance function BD(s, t)
and the correlation function RD(s, t) are the linear correlations of the response in
the stochastic process {D(t), t ∈ T } in the s and t states. For example, when training
a PCA-DC-Bagging algorithm model, take two states to investigate the system. The
covariance function and correlation function can be used to analyze the state of the
model at this time, and then evolve to the final state. Model training, if this process
can be described theoretically, then a contradictory departure from the irreconcilable
over-fitting and under-fitting is a new starting point [33].

The above analysis is the result of meeting the case 2. Because when the probability
of a decision-making committee’s decision is affected, it can no longer be assumed
that the random variable D is approximately stationary, so case 1 doesn’t apply any
more. Why is there such a problem in practical application? The explanation given in
this paper is that in the process of training decision-making committee, the decision-
making level according to the prediction effect of the base learner is affected by the
bootstrap samplingmethod of the bagging algorithm.Therefore, the assumptionsmade
are reasonable and have a strong correlation with a given data set. Through the above
analysis, the following algorithm can be used to describe two situations. We call to
this as the ML-RP evaluation algorithm.
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Algorithm 2 ML-RP Algorithm

Require: Sample size of S, committee 1 2 3, , , ... , md d d d . 

Ensure: Set the sample size is 0s . 

if 0s s< then

//Case 1. 
//Calculating the maximum likelihood estimator. 

1
ˆ min ii m
s d

≤ ≤
← ;//Maximum likelihood estimator of S. 

1
ˆ max ii m
t d

≤ ≤
← ;//Maximum likelihood estimator of T.

else
//Case 2. 

//Mean function of tD . 

( ) ( )Dm t ED t← ; 

//Covariance function of tD . 

( ) ( ) ( ){ } ( ) ( ){ },D DDB s t E D s m s D t m t ⎤⎡← − − ⎦⎣ ; 

//Variance function of tD . 

( ) ( ) ( ) ( ),D D DD t B t t E D t m t← = −⎡ ⎤⎣ ⎦ ; 

//related functions of tD . 

( ) ( ) ( ),DR s t E X s X t← ⎡ ⎤⎣ ⎦ ; 

end if
Decision analysis, making decisions, ending;

The proposed ML-RP evaluation algorithm can be considered in both case 1 and
case 2. As long as the corresponding parameters, such as the sample size, are given,
it is possible to analyze which case is more suitable for the data set given by the
algorithm, and then use the corresponding statistic for more accurate analysis, and
finally approximate the true result.
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Fig. 3 The prediction effect of all base learners on the test set in the Bagging algorithm

6 Experimental analysis

The previous section theoretically gives the corresponding model evaluation criteria
for two different cases. This section mainly conducts comparative analysis of the
models by experiments on the RAFM steel data set. Compared with the traditional
Bagging algorithm, the PCA-DC-Bagging algorithm has stronger anti-noise ability
and more accurate prediction results, and the results of comparative analysis with the
model show that. Different models have different application backgrounds, therefore,
there will be a significant difference in the prediction effect.

6.1 Problems with the Bagging algorithm

For RAFM steel experimental data to construct a prediction model based on Bagging
algorithm, the base learner uses a neural network model. And the network structure
of 11-12-1 (simulated by grid search algorithm) is adopted. The traditional Bagging
algorithm is used to train the learners, and then the test sets are respectively tested, all
the base learning prediction result graphs are drawn as Fig. 3.

Obviously, for most base learners (10 learners trained here), there are only 3 pre-
diction deviation points, so the learner can cover 97% of the experimental data points,
which can satisfy most experimental data points and can effectively predict. Figure 3
also shows that the prediction coverage interval of most learners contains real data
points; therefore, it gets an important message: as long as the appropriate learner can
be selected, and we can use arithmetic averaging as the final output strategy [34], the
Bagging algorithm uses an average strategy to fit all the base learners for predictive
performance with great potential for improvement. Since the algorithm of arithmetic
averaging cannot effectively avoid the extreme value, it is impossible for the learner
to make an estimate. This bad situation will greatly deviate from the decision result.
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6.2 Simulation

In the RAFM steel dataset, we trained 10 neural network prediction algorithms as
the base learners. The member decision model in the decision-making committee
uses a random forest classification algorithm to train the decision-making committee
according to this algorithm.

Figure 4 represents the error of the learner on the cross-validation set. It can be seen
that the prediction effect of a single learner is not good, but the subsequent results show
that the prediction effect after integration is better than that of a single learner. We
divide the level according to the size of the residual, and finally complete the training
of the decision committee. The decision-making committee adopts the random forest
classifier algorithm. In the classification level, referring to Fig. 4, themean square error
of the learner on the verification set is calculated by Theorem 1. The division result
of the interval separation factor is divided into 6 prediction levels. At this time, the
interval separation factor is ξ � {7, 20, 32, 18, 44,∞}.. Next, we solve the interval
separation factor according to the mathematical formula given by the fourth section
theory.

Therefore, the corresponding results are as follows:

(I) *Level 1: 0–7
(II) *Level 2: 8–27
(III) *Level 3: 28–59
(IV) *Level 4: 60–77
(V) *Level 5: 78–121
(VI) *Level 6: 122–∞

According to this division, the decision-making committee compares the level of
the test set with the actual situation. The probability of correct division is 42%, 38%,
45%, 36%, 37%, 38%, 47%, 41%, 41%, 40%. Compared with random guessing, the
probability of random guessing is about 16% in the case of dividing 6 levels, and the
decision-making committee proposed in this paper is 2.8 times of random guessing.
The specific experimental results are described below.

Figure 5 is a neural networkmodel, linear regression, traditional Bagging algorithm,
and the PCA-DC-Bagging algorithm given in this study is comparatively analyzed:

1. Use the same data set (this study used the RAFM data set) and divide it into a
training set and a test set to train the compared model.

2. Test the model on the test set, compare the predicted result with the actual output
actual result, and calculate the goodness of fit [35, 36]. The closer the goodness
of fit is to 1, the better the regression effect would be; in the opposite, the worse
effect will be.

3. The predicted output and the actual output result are compared to obtain a residual.
Perform residual analysis [37, 38], including the mean of the residuals (generally
subject to a normal distribution with a mean of 0) [39, 40], variance, and standard
deviation. Theoretically, the closer the mean value is to 0, the smaller the variance
and standard deviation is, and the better the prediction result is.
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(a) Comparison of similar algorithms (b) Comparison of different 
types of algorithms

Fig. 5 ComparisonwithBPneural network, generalized regression neural network, linear regression, random
forest, BP neural network based framework algorithm, SVR-based framework algorithm

4. Calculate the mean square error by predicting the output and the actual output. The
mean square error directly reflects the overall deviation of the prediction result on
the test set [41, 42]. Similarly, the smaller the value is, the better the prediction is.

Relevant statistic information is given in “Appendix”. Among them are mean,
variance, standard deviation, mean square error, and goodness of fit used to judge
regression results. The test results of 100 test data set in Table 1 show that the best

123

RETRACTED A
RTIC

LE



A novel PCA-DC-Bagging algorithm on yield stress… 37

Ta
bl
e
1
C
om

pa
ri
so
n
of

th
e
al
go

ri
th
m

in
th
is
pa
pe
r
w
ith

ot
he
r
m
od

el
s

E
rr
or

st
at
is
tic

s
B
P
ne
ur
al
ne
tw
or
k

R
an
do

m
fo
re
st

L
in
ea
r
re
gr
es
si
on

B
ag
gi
ng

-B
P

PC
A
-D

C
-B

ag
gi
ng

-B
P

PC
a-
D
C
-B

ag
gi
ng

-S
V
R

M
ea
n
va
lu
e

20
.3
4

−
2.
35

−
18

.7
1

−
11

.0
2

−
9.
37

−
4.
08

M
ax
im

um
de
vi
at
io
n

−
41

0.
4

−
36

7.
6

−
43

3.
2

−
31

0.
2

−
28

7.
2

−
23

7.
8

V
ar
ia
nc
e

9.
84
e+

03
6.
69
E
+
03

1.
59
E
+
04

8.
32
e+

03
7.
86
e+

03
4.
40

E
+0

3

St
an
da
rd

de
vi
at
io
n

99
.2
1

81
.8
5

12
6.
01

91
.2
4

88
.6
6

66
.3
2

M
ea
n
sq
ua
re

er
ro
r

1.
07

e
+
04

6.
64

E
+
03

1.
62

E
+
04

8.
42

e
+
03

6.
41

e
+
03

4.
37

E
+0

3

G
oo

dn
es
s
of

fit
0.
71

0.
80

0.
60

0.
76

0.
79

0.
87

123

RETRACTED A
RTIC

LE



38 S. Long et al.

results for various statistics are: the average value is − 2.35, the maximum deviation
is − 237.8, the variance is 4.40e+03, the standard deviation is 66.32, and the mean
square error is 4.37e+03, the goodness of fit is 0.87, except that the best mean is
obtained by the random forest algorithm, and the other best results are obtained by the
PCA-DC-Bagging-SVRalgorithmofSVR-based learner. This shows that the proposed
algorithm is not only superior to the traditional Bagging algorithm, but also shows that
the improved Bagging algorithm of the decision-making committee is superior to the
traditional algorithm. At the same time, it can be seen that for a

single learner, the PCA-DC-Bagging-BP algorithm proposed in this paper has a
significant improvement over the performance of the traditional BP neural network.
Comparedwith random forests, the prediction performance of PCA-DC-Bagging algo-
rithm based on SVR learner is higher than that of random forest algorithm, while the
performance of PCA-DC-Bagging algorithm based on BP neural network learner is
slightly lower than that of random forest algorithm. The explanation give here is: On
the one hand, the random forest algorithm is also a variant of the Bagging algorithm,
which increases the diversity of the learner by means of attribute scrambling, which
makes the random forest algorithm often appear with superior performance in many
learning tasks [43]. On the other hand, different algorithm performances may be dif-
ferent for different data sets. For example, the PCA-DC-Bagging algorithm based
on SVR can get the best result for RAFM steel data set. Although the PCA algo-
rithm has been used for dimensionality reduction, an important feature is that the
target data set (here is RAFM steel) to be processed in this study is sparse [44]. For
the SVR prediction process, it is advantageous to map the training data to the high-
dimensional feature space to divide the hyperplane [45]. Therefore, the SVR-based
learner is more effective than the BP neural network in prediction results. It also shows
that the decision-making method of the decision-making committee and the Bagging
algorithm using the arithmetic average combination strategy make the model very
inclusive. Through theoretical derivation and the above experimental verification, the
PCA-DC-Bagging framework algorithm proposed in this study is effective.

7 Conclusion

Theprediction results of a fewbase learnerswill cause great deviation for the traditional
bagging algorithm. Therefore, this paper proposes a discriminant analysis based on
the decision committee model. The level of each learner is evaluated and divided, and
the decision committee model is trained by verifying the error performance on the
set. Decision committee members can use most of the discriminant classifiers, such as
neural networks, decision trees, and naive Bayesian model. The algorithm presented
in this paper is universal.

The test result shows that the PCA-DC-Bagging algorithm presented in this paper
solves the prediction of this dataset where high redundancy, multiple repetitions, and
sample data withmany outliers. This algorithm not only solves the shortcomings of the
traditional Bagging algorithm, but also gives a strict theoretical framework to ensure
further development. The future development direction of the PCA-DC-Bagging algo-
rithm. For the data set above the RAFM steel, decision-making committees are able to
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effectively screening base learners, and the results are 2.8 times of random guesses. If
there is an improvement in the decision-making accuracy of the committee, the effect
of ensemble learning will be greatly improved.

Appendix: Statistic information of sample data

Refer to Table 2.

Table 2 Basic information of the input parameters

Index Input variable Minimum Maximum Average Variance Standard
deviation

1 Processing parameters (%) 0 10 0.0828 0.8836 0.94

2 C (wt%) 0.087 0.2 0.0971 0.000169 0.013

3 Cr (wt%) 2.25 12 8.3269 1.054729 1.027

4 W (wt%) 0 3 1.4843 0.605284 0.778

5 Mo (wt%) 0 1 0.1592 0.131769 0.363

6 Ta (wt%) 0 0.54 0.0635 0.010404 0.102

7 V (wt%) 0 0.3 0.1822 0.002916 0.054

8 Si (wt%) 0 0.37 0.0546 0.002704 0.052

9 Mn (wt%) 0 0.13 0.1445 0.041616 0.204

10 N (wt%) 0 0.06 0.0025 0.006561 0.081

11 Al (wt%) 0 0.054 0.0008 0.001369 0.037

12 As (wt%) 0 0.005 0 0.00000009 0.0003

13 B (Vwt%) 0 0.0085 0.0007 0.00000169 0.0013

14 Bi (wt%) 0 0.005 0 0.00000009 0.0003

15 Ce (wt%) 0 0.036 0.0001 0.00000484 0.0022

16 Co (wt%) 0 0.01 0.0002 0.00000081 0.0009

17 Cu (wt%) 0 0.035 0.0006 0.00001024 0.0032

18 Ge (wt%) 0 1.2 0.0132 0.016384 0.128

19 Mg (wt%) 0 0.01 0 0.00000036 0.0006

20 Nb (wt%) 0 0.16 0.00164 0.000121 0.011

21 Ni (wt%) 0 2 0.0566 0.0961 0.31

22 O (wt%) 0 0.009 0.0002 0.00000121 0.0011

23 P wt% 0 0.007 0.0013 0.00000196 0.0014

24 Pb (wt%) 0 0.005 0 0.00000009 0.0003

25 S (wt%) 0 0.005 0.0012 0.00000121 0.0011

26 Sb (wt%) 0 0.003 0 0.00000004 0.0002

27 Se (wt%) 0 0.003 0 0.00000004 0.0002

28 Sn (wt%) 0 0.003 0 0.00000004 0.0002
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Table 2 continued

Index Input variable Minimum Maximum Average Variance Standard
deviation

29 Te (Wi%) 0 0.005 0 0.00000009 0.0003

30 Ti (wt%) 0 0.25 0.01 0.002116 0.046

31 Zn (wt%) 0 0.005 0 0.00000009 0.0003

32 Zr (wt%) 0 0.059 0.003 0.00001296 0.0036

33 Irradiation temperature
(wt%)

273 925 401.0928 32148.49 179.3

34 Irradiation dose (dpa) 0 90 3.4287 100.8016 10.04

35 Irradiated He (dpa) 0 5000 35.697 129456.04 359.8

36 He_dpa (dpa) 0 6315.7895 56.1696 343119.8151 585.7643

37 Test temperature (k) 123 973 549.78 43,848.36 209.4
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