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Abstract
Similar to the regular enzymatic glycosylation, lysine glycation also attaches a 
sugar molecule to a peptide, but it does not need the help of an enzyme. It has been 
found that lysine glycation is involved in various biological processes and is closely 
associated with many metabolic diseases. Thus, an accurate identification of lysine 
glycation sites is important to understand its underlying molecular mechanisms. 
The glycated residues do not show significant patterns, which make both in silico 
sequence-level predictions and experimental validations a major challenge. In this 
study, a novel predictor named MDS_GlySitePred is proposed to predict lysine gly-
cation sites by using multidimensional scaling method (MDS) and support vector 
machine algorithm. As illustrated by the average results of tenfold cross-validation 
repeated 50 times, MDS_GlySitePred achieves a satisfactory performance with 
a sensitivity of 95.08%, a specificity of 97.65%, an accuracy of 96.58%, and Mat-
thew’s correlation coefficient of 0.93 on the extensively used benchmark datasets. 
Experimental results indicate that MDS_GlySitePred significantly outperforms four 
existing glycation site predictors including NetGlycate, PreGly, Gly-PseAAC, and 
BPB_GlySite. Therefore, MDS_GlySitePred can be a useful bioinformatics tool for 
the identification of glycation sites.
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1  Introduction

Lysine glycation is one of the most common and important post-translational 
modifications (PTMs), which can potentially affect various biological processes, 
such as conformation, efficacy, and immunogenicity [1, 2]. Moreover, lysine is 
one of the essential amino acids in the human body, which can promote human 
development, enhance immune function, and can improve the functioning of the 
central nervous system. Because of the low lysine content in cereals and the sus-
ceptibility to damage during processing, it is called the first limiting amino acid.

Lysine glycation is a complex multi-step process, beginning with the attach-
ment of reducing sugars to amino groups in cellular proteins, leading to the for-
mation of Schiff’s base as early glycation product [3–5]. The advanced glycation 
end-products are known to facilitate age-related chronic diseases, e.g. athero-
sclerosis [6], by changing vascular elasticity and thickening vascular walls [7]. 
Glycation is also observed to promote abnormal amyloid aggregation in aging-
related neurodegenerative disorders, such as Alzheimer’s [8] and Parkinson’s [9] 
diseases. In spite of its essential role, the detection of glycated residues is still 
solely based on the tedious and time-consuming mass spectrometry technique to 
measure the monosaccharide modification-induced mass increase in the investi-
gated peptide [10].

Several methods for predicting glycation sites based on protein sequence infor-
mation have been reported. The neural network predictor named NetGlycate was 
built by Jonansen et al., which was trained on 89 glycated and 126 non-glycated 
lysine sites derived from 20 proteins. Later, Liu et  al. constructed the model 
PreGly to predict the glycation sites by extracting the composition of amino 
acid, 4-interval amino acid pairs, five amino acid physicochemical properties 
and then selecting effective features through the maximum correlation minimum 
redundancy (mRMR) algorithm. Xu et al. developed a predictor Gly-PseAAC by 
combining position-specific amino acid propensity and support vector machine 
(SVM) algorithm. Recently, Ju et al. used bi-profile Bayes (BPB) feature extrac-
tion combined with SVM algorithm to construct a new predictor BPB_GlySite 
to predict glycosylation sites. While the prediction performance of BPB_GlySite 
has few improvements over the previous predictors, it is noted that its perfor-
mance on the Xu training set is not satisfactory, because it obtains the Matthew’s 
correlation coefficient of 0.3499 only, and thus, requires significant improvement.

In this study, we propose a novel predictor MDS_GlySitePred to improve 
the prediction performance of glycation sites. To overcome the defective non-
uniform distribution of training and test samples, we employed multidimen-
sional scaling (MDS) to cluster the samples [11]. According to different distance 
radius, the negative samples were divided into three categories, and the positive 
samples remained unchanged. They characteristics including Parallel correla-
tion pseudo amino acid composition (PC-PseAAC), General parallel correlation 
pseudo amino acid composition (PC-PseAAC_General), Adapted normal distri-
bution bi-profile Bayes (ANBPB), Double Bi-profile Bayes (DBPB), Bi-profile 
Bayes (BPB), Top-n-gram, Amino acid composition (AAC), Position-specific 
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di-amino acid propensity (PSDAAP) and Position-specific tri-amino acid pro-
pensity (PSTAAP) were extracted from sequence information. By combining the 
MDS method with the SVM algorithm, and through a tenfold cross-validation 
test, the MDS method was shown to be superior to the existing prediction in pre-
dicting lysine glycation sites. Finally, based on the features combination of PC-
PseAAC_General + ANBPB + DBPB + Top-n-gram +  AAC, ANBPB + PSDAAP 
and PC-PseAAC_General + PC-PseAAC + BPB + DBPB + PSTAAP, the impor-
tance of the positions around the glycation sites was analyzed. The features analy-
sis shows that the residues around the glycation sites may play the most important 
role in the prediction of glycation sites. These results may provide useful clues for 
studying the lysine glycation mechanisms and may facilitate relevant experimental 
verifications.

2 � Materials and methods

This method comprised four major steps: (1) collecting and processing data, (2) using 
MDS to cluster training datasets, (3) extracting sequence features, (4) constructing and 
evaluating models. The conceptual diagram of constructing the prediction model is 
given in Fig. 1.

2.1 � Data collection and pre‑processing

The most recently constructed training dataset by Xu et al. [2, 12] and Johansen et al. 
[13, 14] were used in the present study to provide a comprehensive and unbiased com-
parison of our methods with existing methods. For convenience, the datasets were 
named Xu dataset and Johansen dataset, respectively. The proteins in Xu’s training set 
was retrieved from protein lysine modifications database CPLM [15], and it consisted 
of 223 experimentally annotated glycation lysine sites and 446 non-glycation lysine 
sites from 72 proteins. In this study, we retrieved the proteins from NCBI, which were 
used in Xu dataset to get all negative samples. In this work, pseudo-amino acid were 
not considered. According to Xu [12] and Ju [2], the window size was set to 15. Thus, 
every training sample was represented as a peptide segment of length with 7 residues 
downstream and 7 residues upstream of lysine residue K. At last, the new training data-
set contained 215 lysine glycation sites and 1781 lysine non-glycation sites. For Johans-
en’s benchmark dataset, the same method was used to process, and finally obtain 81 
positive samples and 244 negative samples. Finally, amino acid composition (AAC) 
feature extraction was performed on the negative training set. To avoid linearity, we 
removed the last column from the 20-dimensional feature, leaving 19 columns of fea-
ture vectors for later use in the MDS method.



708	 T. Li et al.

1 3

2.2 � Feature extraction and encoding

2.2.1 � Amino acid composition (AAC)

The amino acid composition [16, 17] simply represents the frequency of 20 common 
amino acids in the protein sequence, reflects the global characteristics of the protein 
sequence, and is a basic protein sequence feature extraction algorithm. The AAC maps 
the membrane protein sequence to a point in the 20-dimensional Euclidean space and 
can be defined as a 20-dimensional vector:

Fig. 1   The conceptual diagram of constructing the prediction model
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where xi = fi∕
∑20

i=1
fj , fi is the number of times the first type of amino acid appears 

in the membrane protein sequence. Obviously, 
∑20

j=1
xi = 1 . The calculation of amino 

acid composition is convenient and is the most commonly used sequence feature 
extraction algorithm in the study of membrane protein classification.

2.2.2 � Bi‑profile Bayes (BPB)

The bilateral Bayesian feature extraction algorithm proposed by Shao et al. [18, 
19] has been widely used to predict various post-translational modification sites 
[20–22]. BPB comprehensively considers the information contained in the two 
aspects of positive and negative samples. Let S = s1s2 … sn denote a lysine gly-
cosylated sample, where sj(j = 1, 2,… , n) represents 20 natural amino acids {A, 
C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}, and n is the length of 
the peptide fragment after the amino acid K in the middle position is omitted 
(i.e., n = 14). Given a protein sequence P (Eq. 1), the BPB feature vector of P is 
defined:

where P is the posterior probability vector, x1, x2, …, xn represent the posterior prob-
ability of each amino acid at each position in positive peptide sequence datasets, 
xn+1,… , x2n represent the posterior probability of each amino acid at each position 
in negative peptide sequence datasets. Two position-specific profiles for final model 
training, including positive position-specific profiles and negative position-specific 
profiles, were generated by calculating the frequency of each amino acid at each 
position in the positive, as well as negative datasets.

2.2.3 � Double bi‑profile bayes (DBPB)

DBPB is an improvement over BPB [23]. BPB is the posterior probability of each 
single amino acid at each position in the positive and negative datasets, while DBPB 
is the posterior probability of every di-amino acid at each position in the datasets. 
Given a protein sequence P (Eq.  1), the DBPB feature vector of P is defined as 
follows:

where P is the posterior probability vector, x1, x2,… , xn−1 represent the posterior 
probability of each amino acid pair at each position in positive peptide sequence 
datasets,x(n−1)+1,… , x2(n−1) represent the posterior probability of each amino acid 
pair at each position in negative peptide sequence datasets. Two position-specific 

(1)P =
[
x1, x2,… , xi,… , x20

]T

(2)P =
[
x1, x2,… , xn, xn+1,… , x2n

]T

(3)P =
[
x1, x2,… , xn, xn+1,… , x2n

]T
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profiles for final model training, including positive position-specific profiles and 
negative position-specific profiles, were generated by calculating the frequency of 
each amino acid pair at each position in the positive, as well as negative datasets.

2.2.4 � Adapted normal distribution bi‑profile Bayes (ANBPB)

ANBPB [20, 24] is the improvement of BPB in another aspect. Given a protein 
sequence P (Eq. 1), the ANBPB feature vector of P is defined as:

where p1, p2, …, pn is the posterior probability of each amino acid at each position 
in positive peptide sequences datasets; pn+1,… , p2n is defined based on the posterior 
probability of each amino acid at each position in negative peptide sequences data-
sets. The posterior probability p1, p2,… , p2n is coded by the adapted normal distri-
bution as follows:

where �(x) is the standard normal distribution function and the detailed description 
of the formula is given [20, 24].

2.2.5 � Position‑specific di‑amino acid propensity (PSDAAP)

The posterior probability of every two nearest amino acids at each position in the posi-
tive peptide sequence datasets is subtracted from the negative peptide sequence data-
sets [25, 26]. Given a protein sequence P (Eq. 1), the PSDAAP feature vector of P is 
defined as follows:

where P is the posterior probability vector, +pi represent the posterior probability of 
each amino acid pair at each position in positive peptide sequence datasets, −pi rep-
resent the posterior probability of each amino acid pair at each position in negative 
peptide sequence datasets. pi =

(
+pi

)
−
(
−pi

)
 is the feature vector.

(4)P =
[
p1, p2,… , pn, pn+1,… , p2n

]T

(5)�(x) =
1√
2�

x

∫
−∞

e
−

t2

2 dt

(6)P =
[
p1, p2,… , pn−1

]T

(7)+P =
[
+p1,+p2,… ,+pn−1

]T

(8)−P =
[
−p1,−p2,… ,−pn−1

]T
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2.2.6 � Position‑specific tri‑amino acid propensity (PSTAAP)

Similar to PSDAAP, the posterior probability of every three nearest amino acids at each 
position in the positive peptide sequence datasets is subtracted from the negative pep-
tide sequence datasets [25, 26]. Given a protein sequence P (Eq. 1), the PSTAAP fea-
ture vector of P is defined as follows:

where P is the posterior probability vector, +pi represent the posterior probability of 
each three amino acid pair at each position in positive peptide sequence datasets, −pi 
represent the posterior probability of each three amino acid pair at each position in 
negative peptide sequence datasets. pi =

(
+pi

)
−
(
−pi

)
 is the feature vector.

2.2.7 � Parallel correlation pseudo amino acid composition (PC‑PseAAC)

PC-PseAAC [27] is an approach merging the global sequence-order information and 
the contiguous local sequence-order information into the feature vector of the pro-
tein sequence. Given a Protein sequence P (Eq. 1), the PC-PseAAC feature vector of 
P is defined as follows:

where,

where w is the weight factor ranging from 0 to 1, the parameter λ is an integer 
that represents the highest counted rank (or tier) of the correlation along a protein 
sequence, fi(i = 1,2,…,20) is the normalized occurrence frequency of the 20 amino 
acids in the protein P, Θj(j = 1,2,…,20) is called the j-tier correlation factor reflect-
ing the sequence-order correlation among all the jth most contiguous residues along 
a protein chain, which is defined as follows:

(9)P =
[
p1, p2,… , pn−2

]T

(10)+P =
[
+p1,+p2,… ,+pn−2

]T

(11)−P =
[
−p1,−p2,… ,−pn−2

]T

(12)P =
[
x1, x2,… , x20, x21,… , x20+�

]T

(13)xu =

⎧⎪⎨⎪⎩

fu∑20

i=1
fi+w

∑�

j=1
�j

(1 ≤ u ≤ 20)

w�u−20∑20

i=1
fi+w

∑�
j=1

�j

(20 + 1 ≤ u ≤ 20 + �)

(14)𝛩𝜆 =
1

L − 𝜆

L−𝜆∑
i=1

𝛩(Ri,Ri+𝜆)0 < 𝜆 < L
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where the correlation function is given by

where H1

(
Ri

)
 is the hydrophobicity value, H2(Ri) is the hydrophilicity value, and 

M
(
Ri

)
 is the side-chain mass of the amino acid Ri. Note that before substituting the 

values of hydrophobicity, hydrophilicity, and side-chain mass into Eq. 7, they are all 
subjected to a standard conversion as described by the following equations.

where H0
1
(i) , H0

1
(i),M0(i) are the original hydrophobicity value, the corresponding 

original hydrophilicity value, the mass of the ith amino acid, respectively. With the 
wide application of PC-PseAAC, Liu et  al. [28] developed a web server “Pse-in-
One” that could generate PC-PseAAC. For detailed information on Pse-in-One and 
its updated version, please refer to [29].

2.2.8 � General parallel correlation pseudo amino acid composition 
(PC‑PseAAC‑general)

The PC-PseAAC-General approach [30] not only allows users to upload their own indi-
ces to generate PC-PseAAC-General feature vectors, but also incorporate comprehen-
sive built-in indices extracted from AA index [31]. Given a protein sequence P (Eq. 1), 
the PC-PseAAC-General feature vector of P is defined as follows:

(15)
�(Ri,Rj) =

1

3

{[
H1

(
Rj

)
− H1

(
Ri

)]2
+
[
H2

(
Rj

)
− H2

(
Ri

)]2
+
[
M
(
Rj

)
−M

(
Ri

)]2}

(16)
H1(i) =

H0
1
(i) −

∑20

i=1

H0
1
(i)

20�
∑20

i=1

�
H0

1
(i)−

∑20

i=1

H0
1
(i)

20

�2

20

(17)
H2(i) =

H0
2
(i) −

∑20

i=1

H0
2
(i)

20�
∑20

i=1

�
H0

2
(i)−

∑20

i=1

H0
2
(i)

20

�2

20

(18)M(i) =
M0(i) −

∑20

i=1

M0(i)

20�∑20

i=1

�
M0(i)−

∑20

i=1
M0(i)

20

�2

20

(19)P =
[
x1, x2,… , x20, x21,… , x20+�

]T
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where

where w is the weight factor ranging from 0 to 1, the parameter λ is an integer 
that represents the highest counted rank (or tier) of the correlation along a protein 
sequence, fi(i = 1,2,…,20) is the normalized occurrence frequency of the 20 amino 
acids in the protein P, Θj(j = 1,2,…,20) is called the j-tier correlation factor reflect-
ing the sequence-order correlation among all the jth most contiguous residues along 
with a protein chain, which is defined as follows:

where the correlation function is given by follows:

where µ is the number of physicochemical indices considered; Hu

(
Ri

)
 and Hu

(
Rj

)
 

are the uth physicochemical index value of the amino acid Ri and Rj, respectively. 
Note that before substituting the physicochemical indices values into Eq. 26, they 
are all subjected to a standard conversion as described by the following equation:

where H0
u
(i) is the uth original physicochemical value of the ith amino acid.

2.2.9 � Top‑n‑gram

Top-n-gram [14] can be viewed as a novel profile-based building block of proteins, 
containing the evolutionary information extracted from the frequency profiles. The 
frequency profiles calculated from the multiple sequence alignments given as out-
put by PSI-BLAST [32] are converted into Top-n-grams by combining the n most 
frequent amino acids in each amino acid frequency profile. The protein sequences 
are transformed into fixed dimension feature vectors by the number of times of each 
Top-n-gram occur. For more information about this approach, please refer to [14].

(20)xu =

⎧
⎪⎨⎪⎩

fu∑20

i=1
fi+w

∑�

j=1
�j

(1 ≤ u ≤ 20)

w�u−20∑20

i=1
fi+w

∑�
j=1

�j

(20 + 1 ≤ u ≤ 20 + �)

(21)𝛩𝜆 =
1

L − 𝜆

L−𝜆∑
i=1

𝛩(Ri,Ri+𝜆)0 < 𝜆 < L

(22)�(Ri,Rj) =
1

�

�∑
u=1

[
Hu

(
Ri

)
− Hu

(
Rj

)]2

(23)
Hu(i) =

H0
u
(i) −

∑20

i=1

H0
u
(i)

20�
∑20

i=1

�
H0

u
(i)−

∑20

i=1

H0
u (i)

20

�2

20
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2.3 � Multidimensional scaling (MDS) method

MDS is a multivariate data analysis technique that displays “distance or similarity” 
data structures in low-dimensional space, which has been widely applied in many 
applications, such as data visualization [33], object retrieval [34], data clustering 
[35], and localization [36].

The solution provided by the multidimensional scaling method is that when the 
similarity (or distance) between pairs of objects in n objects is given, the representa-
tion of these objects in the low dimensional space is determined (Perceptual Map-
ping) and is made as “substantially matched” as possible with the original similarity 
(or distance) to minimize any distortion caused by dimensionality reduction. Each 
point arranged in a multidimensional space represents an object, so the distance 
between two points is highly related to the similarity between them. In other words, 
two similar objects are represented by two points with similar distances in a multi-
dimensional space, and two dissimilar objects are represented by two points in the 
multidimensional space that are far apart. Here, we use the dimensionality reduction 
clustering function of MDS. The relationship among amino acid sequences in a pol-
ypeptide is converted to a distance matrix, and each sequence is regarded as a point 
in a multidimensional space. By MDS dimensionality reduction clustering, the evo-
lutionary relationship among these sequences can be displayed in low-dimensional 
space [11].

Generally, the classical MDS [37] is a three-step algorithm, including distance 
matrix construction, inner product matrix computation, and low dimensional repre-
sentation calculation. Details of these steps are presented as follows:

1.	 Distance matrix construction. For each vector xi (1 ≤ i ≤ N), the Euclidean dis-
tance di,j between xi and xj (1 ≤ j ≤ N) was calculated and thus the distance matrix 
D = (di,j)N×N was obtained as follows:

where xi(l) is the lth elements of xi,xj(l) is the lth elements of xj,Distance matrix 
D is a real symmetric matrix with all 0 diagonal elements.

2.	 Inner product matrix computation. With the distance matrix D, the inner product 
matrix B can be determined by

(24)D =

⎡⎢⎢⎢⎣

d1,1 d1,2 … d1,N
d2,1 d2,2 … d2,N
… … … …

dN,1 dN,2 … dN,N

⎤⎥⎥⎥⎦

(25)di,j =
∑K

l=1

[
xi(l) − xj(l)

]2

(26)B = −
1

2
JDJ
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where J is a centralized matrix obtained by the below equation, and E is a unit 
matrix sized N × N, e is a unit vector sized N × 1, Je = 0, and JT= J.

3.	 Low dimensional representation calculation. As B is symmetric and positive 
semi-definite, it can be decomposed as:

where V is a diagonal matrix of the eigenvalues of B, and S is a matrix of the 
corresponding eigenvectors. Consequently, a low dimensional representation G 
can be generated by taking the first d columns of Z.

Therefore, G is a matrix of size N × d (d < K). Assume that Vd is the diagonal 
matrix composed of the d largest eigenvalues, and Ud is the N × d matrix com-
posed of the corresponding d norm of orthogonalized characteristic vectors. If 
Ud = (�⃗v1, ��⃗v2,… , ��⃗vd) and Vd = diag(�1, �2,… , �d) , then the coordinate matrix in 
d-dimensional space is:

2.4 � Model construction and evaluation

A support vector machine (SVM) is a set associated with supervised learn-
ing methods used for classification and regression based on statistical learning 
theory. SVM looks for a rule that best maps each member of the training dataset 
into the correct classification [38, 39], and it has been proved to be a powerful tool 
in a lot of bioinformatics fields [18, 40–43]. In this study, the LIBSVM package 
[44] was applied to build and train a prediction model. The radial basis function 

(RBF)K
�
Si, Sj

�
= e

�
−�‖Si−Sj‖2

�
 was used for the kernel function. The grid search 

was used to search the optimal parameters of SVM. Parameter c was selected from 
{20, 21,…, 213}, and kernel parameter g was selected from {2−13, 2−12,…, 20}.

To verify the effectively predictive performance of the model, the sensitivity (Sn), 
specificity (Sp), accuracy (Acc) and Matthew’s correlation coefficient (MCC) were 
employed as follows:

(27)J = E −
1

N
eeT

(28)B = SVST

(29)Z = SV
1∕2

(30)Xd = (
√
𝜆1 ⋅ ��⃗v1,

√
𝜆2 ⋅ ��⃗v2,… ,

√
𝜆d ⋅ ��⃗vd) = Ud

√
Vd

(31)Sn = 1 −
N+
−

N+

(32)Sp = 1 −
N−
+

N−
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where N+ is the total number of the glycation sites investigated, while N+
−

 is the 
number of the sites incorrectly predicted as the non-glycation sites, and N− is the 
total number of the non-glycation sites investigated, while N+

− is the number of the 
non-glycation sites incorrectly predicted as the glycation sites.

In statistical prediction, the following three cross-validation methods are often 
used to examine a predictor for its effectiveness in practical application: independ-
ent dataset test, subsampling or K-fold cross-validation test, and jackknife test [45]. 
The jackknife test is the most credible one among these three test methods [46], 
since the outcome obtained by it is always unique for a given benchmark dataset. 
Accordingly, the jackknife test has been widely recognized and increasingly used by 
investigators to examine the quality of various predictors [47–52]. However, in this 
work, we used tenfold cross-validation test instead of the jackknife test because the 
prediction results in previous works [2, 12] are obtained on tenfold cross-validation. 
Normally, this procedure is repeated 10 times and the final prediction result is an 
average of the 10 testing subsets. For obtaining a reliable estimate in this study, the 
tenfold cross-validation was repeated 50 times.

(33)Acc = 1 −
N+
−
+ N−

+

N+ + N−

(34)MCC =
1 −

N+
−
+N−

+

N++N−√(
1 +

N−
+−N

+
−

N+

)(
1 +

N+
−
−N−

+

N−

)

Fig. 2   Perceptual graph obtained with Xu dataset
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3 � Analysis of results

3.1 � Experimental data processing

The MDS method was used to train the negative training set, and a perceptual map 
was obtained (Fig. 2). From the perceptual map, the training samples were observed 
to be roughly concentrated in three regions. Therefore, the negative training sets 
were divided into three categories based on these three regions, and the values (0.26, 
−0.01), (−0.03, −0.28), and (−0.04, 0.06) were selected as origins, with 0.2, 0.12, 
and 0.1 as radii, respectively. Thus, three groups of non-Glycated lysine are clus-
tered. The numbers of negative samples are 218, 212, 1063 for the three datasets 
named Xu dataset1, Xu dataset2, and Xu dataset3, respectively. To avoid overesti-
mating the prediction performance of the model due to redundancy and sequence 
homology, CD-HIT [53, 54] was used to remove redundancy for group Xu dataset3 
negative training samples. For those two samples with similarity ≥ 40%, one of 
the samples was retained, while 395 negative samples with sequence similarity 
< 40% were obtained in the de-redundant negative samples. For Johansen’s bench-
mark dataset, we used the same method to obtain the perceptual map (Fig. 3), and 
also divided the negative samples into three groups, denoted by Johansen dataset1, 
Johansen dataset2, and Johansen dataset3. The values (−0.07261, 0.07162), (0.1198, 
0.07272) and (0.01023, −0.1557) were assigned as origin, with 0.095, 0.085 and 
0.145 as respective radii. Finally, the three groups of lysine are obtained, with 81, 
56, 51 sites, respectively. Moreover, because Johansen dataset is smaller than Xu 
dataset, we made the origin coordinates and radius more precise.

Fig. 3   Perceptual graph obtained with Johansen dataset
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3.2 � Combining features

To find the optimization features that are most conducive to the identification of 
lysine glycosylation, nine feature extraction strategies, including PC-PseAAC (30), 
PC-PseAAC-General (30), BPB (28), ANBPB (28), DBPB (26), Top-n-gram (20), 
AAC (20), PSDAAP (13) and PSTAAP (12) were used. Here, the numbers in paren-
theses represent the dimension of this feature. In this study, a combination of fea-
tures was used because the combination of multiple features enhances the training 
effect of the model. The feature combinations were performed in the order in which 
these nine feature dimensions are decremented. The performance of the combined 
feature sets for sorting lysine glycation sites and non-glycation sites was exam-
ined by tenfold cross-validation. Take, for example, the combination features in Xu 
dataset1. Firstly, when only the feature PC-PseAAC-General was used, the predic-
tion accuracy achieved was 91%. However, when PC-PseAAC was added, the accu-
racy decreased to 90.98%, so the PC-PseAAC was rejected and when ANBPB was 
directly added, the accuracy rate significantly increased to 94.68%. With these trials, 
a most suitable combination of PC-PseAAC-General + ANBPB + DBPB + Top-n-
gram + AAC was obtained, with the sensitivity of 96.28%, specificity of 99.56% and 
accuracy of 97.92%. Other training groups were handled and processed in a similar 
way. The results are presented in Table 1.

The results show that the prediction performance was enhanced by increasing the 
features number step by step. As shown in Table 1, on Xu’s dataset, the Acc reached 
97.92%, 99.77%, 99.02%, respectively. And on Johansen’s dataset, the Acc reached 
97.79%, 96.22%, 100%, respectively.

3.3 � Performance of MDS_GlySitePred

The MDS_GlySitePred was constructed on Xu dataset because the previous pre-
dictors Gly-PseAAC and BPB_GlySite were all trained on the same dataset. To 
show the three groups of results intuitively, the results of tenfold cross-validation 
was repeated 50 times as listed in Table  2. As can be seen, the predictor MDS_
GlySitePred achieved the best prediction performance with the Sn of 95.08%, Sp of 
97.65%, Acc of 96.58%, and MCC of 0.93. The performance of MDS_GlySitePred 
is obviously superior to the second-best model BPB_GlySite, and especially showed 
31.40% better Sn. These results indicate that MDS_GlySitePred is more effective 
and more reliable in identifying lysine glycation sites from query proteins than 
BPB_GlySite and Gly-PseAAC. Since the classification algorithms used in MDS_
GlySitePred, BPB_GlySite, and Gly-PseAAC are all SVMs, a better performance of 
MDS_GlySitePred indicates that the MDS method may be used to cluster samples 
from a different probability distribution.
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3.4 � Comparison between MDS_GlySitePred with existing prediction methods 
on Johansen’s dataset

To further assess the effectiveness of MDS_GlySitePred, we compared it with other 
existing prediction methods, including NetGlycate, PreGly, Gly-PseAAC, and BPB_
Gly-Site [2, 12–14]. All these predictors have been trained on the same Johansen’s 
benchmark dataset [2, 12–14], therefore, the same tenfold cross-validation test could 
be implemented. The compared results among the four methods are presented in 
Table  3. Here too, the MDS_GlySitePred method achieved the best results, with 
the Sn of 94.44%, Sp of 96.15%, Acc of 95.45% and MCC of 0.91. Moreover, the 
MDS_GlySitePred significantly outperformed the existing glycation sites predictors 
on Johansen’s benchmark dataset.

4 � Conclusions

In this work, we built a prediction model MDS_GlySitePred for identifying protein 
glycation site based on multidimensional scaling (MDS) clustering negative sam-
ples. To the best of our knowledge, this is the first time MDS has been applied to 
predict glycation sites. The experimental results show that the MDS is efficient in 
dealing with samples obeying different probability distribution. We hope that this 
model will further facilitate the protein glycation studies. As demonstrated in a 
series of recent publications [47, 55–57] on developing new prediction methods, 
user-friendly and publicly accessible web-servers will significantly enhance their 

Table 2   The comparison 
of MDS_GlySitePred with 
BPB_GlySite and Gly-PseAAC 
on Xu’s dataset by tenfold cross-
validation running 50 times

*The highest value of the column

Method Sn (%) Sp (%) Acc (%) MCC

Gly-PseAAC​ 57.48 74.30 68.69 0.32
BPB_GlySite 63.68 72.60 69.63 0.35
MDS_GlySitePred 95.08* 97.65 96.58 0.93

Table 3   Comparison of existing 
predictors on Johansen’s 
benchmark dataset by tenfold 
cross-validation test

*The highest value of the column
a The corresponding results were obtained by threefold cross-valida-
tion
b The corresponding results were obtained by tenfold cross-validation

Method Sn (%) Sp (%) Acc (%) MCC

NetGlycatea 78.65 80.15 79.05 0.58
PreGlyb 71.06 95.85 85.51 0.70
Gly-PseAAC​b 56.06 80.17 68.12 0.38
BPB_GlySiteb 85.39 88.10 86.98 0.73
MDS_GlySitePredb 94.44* 96.15 95.45 0.91
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impact [48, 58–70]. Hence, our future course of action will be to provide a web-
server for the prediction method presented in this paper.
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