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Abstract
This work presents a swarm-based meta-heuristic technique known as Generalized
Ant Colony Optimizer (GACO). It is a hybrid approach which consists of Simple Ant
Colony Optimization and Global Colony Optimization concepts. The main concept
behind GACO is the foraging behavior of ants. GACO operates in the following four
phases: Creation of a new colony, search of nearest food location, balance the solution,
and updating of pheromone. GACO has been tested on seventeen well recognized
standard benchmark functions and its results have been compared with three different
meta-heuristic algorithms namely as Genetic Algorithm, Particle SwarmOptimization
and Artificial Bee Colony. The performance metrics such as average and standard
deviation are computed and evaluated with respect to these metrics. The proposed
GACOperforms better in comparison to the aforementioned algorithms. The proposed
algorithmoptimizes the cloud resource allocation problem and gives better results with
unknown search spaces.

Keywords Ant algorithms · Meta-heuristics · Cloud computing · Optimization

Mathematics Subject Classification 91B32 · 68T20 · 90C26

1 Introduction

The cloud is an emerging computing technology that operates at large scales. It is
the development of grid and service-oriented computing [1]. It supports virtualization
technology and enables to lease on computing resources as a service. These resources
are deployed in the form of different Virtual Machines (VMs). The VMs are dynami-
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cally allocated to the user based on their Service Level Agreement (SLA) [2–4]. The
SLA is established through negotiation between user and service provider in terms of
the deadline, consistency, security, network congestion and performance limit [5,6].
The main goal of any service providers is to gain maximum profit and efficient usage
of resources. There are many issues in cloud computing such as limited bandwidth,
poor resource allocation, security concerns, data integration problem, migration con-
cerns etc. Lack of optimized resource allocation is one of the key issues of the cloud
computing [7]. The primary objective of resource allocation process is that the Qual-
ity of Service (QoS) [2] constraints must be satisfied so that service provider profit
should be maximized. The SLA violations affect the QoS guarantees and may be a
profit loss of a service provider due to certain penalty cost. This manuscript is confined
only two approaches of QoS: Cloud Service Provider(CSP) and Cloud Service Con-
sumer(CSC). The CSP and CSC mutually support the SLA in three aspects: services,
profits and resources. Each service provider has many service consumers and it is nec-
essary to ensure that the QoS requirements of all customers are achieved. Generally,
the cloud provider applied a conventional auction mechanism periodically to allocate
the instances of VMs [8,9]. The existing schemes of resource allocation are not much
more effective to reduce the SLA penalty costs. The allocation of resources in cloud
environment is an NP-hard problem. There are several meta-heuristic optimization
algorithms proposed to solve an optimal resource allocation in cloud computing.

This paper propose a hybridization of SACO [10] and GCO [11,12] known as
Generalized Ant Colony Optimizer (GACO), which is based on distance matrix, new
colony creation, foraging behavior and continuous efforts of ants. The performance of
GACO algorithm is measured on 17 benchmark test functions and compared with Par-
ticle Swarm Optimization (PSO), Genetic Algorithm (GA), and Artificial Bee Colony
(ABC) algorithms.

The rest of the research article is organized as follow: Sect. 2 explores the com-
prehensive literature review on meta-heuristic optimization and ant algorithms. The
proposed GACO algorithm has been explained in Sect. 3. An experiment, results and
discussion are presented in Sect. 4. In Sect. 5, we apply GACO to optimization of
resource allocation in cloud computing environment and Sect. 6 followed by conclu-
sion and future scopes.

2 Literature review

This section explores a systematic review of meta-heuristic optimization algorithms,
the emergence and recent applications of ant algorithms.

2.1 Meta-heuristics optimization algorithms

In the last three decades, the meta-heuristic optimization algorithms became popular.
These algorithms have been used for getting optimal possible results for large-scale
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Fig. 1 Taxonomy of meta-heuristic algorithms

scientific compute-intensive problems. Meta-heuristic techniques are more relevant
as compare to tradition optimization techniques to solve the optimization problem in
large search spaces:

(i) Reduced complexity
(ii) In general faster
(iii) Global searching ability
(iv) Enhance performance and efficiency
(v) No fixed iteration
(vi) Simplicity and flexibility

Mostly, these algorithms are inspired by nature, physical phenomena, animal
behavior, insect behavior, swarm intelligence and evolutionary concepts [13]. Meta-
heuristic techniques are divided into five categories: Swarm-based, Nature-inspired,
Biogeographic-stimulated, Evolutionary, and Physics-based. This classification is not
unique; it may also happen that some algorithms have been included in another cate-
gory. It depends on what the emphasis is and what the perspective may be. Figure 1
shows the taxonomy of meta-heuristic algorithms.

The first meta-heuristic technique is a swarm-based which is inspired by the mutual
behavior of particles, insects and social creatures. The most popular swarm-based
algorithms are Fish SwarmAlgorithm (FSA) [14], Particle SwarmOptimization (PSO)
[15] Artificial Bee Colony (ABC) [16] and Ant Colony Optimization (ACO) [17]. A
comprehensive literature survey of ant algorithms is provided in Sects. 2.2 and 2.3.
Following are the advantages of swarm-based algorithms:

(i) Swarm-based algorithms have very less number of parameters to amend.
(ii) A swarm-based algorithm does not have a significant number of operators as

compared to other approaches.
(iii) Swarm-based algorithms collect facts about search space over the number of

iterations.
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(iv) Very easy to implement.

Nature-inspired is the second category of meta-heuristic technique. It is based on
guided search procedure. Population always adapts from environment. In some cases
nature-inspired algorithm can be chemical and biological system depending on source
of inspiration. Such meta-heuristic algorithms include Cuckoo Search Algorithm
(CSA) [18], Bat Algorithm (BA) [19], Flower Pollination Algorithm (FPA) [20], Inva-
sive Weed Optimization (IWO) [21], and Firefly Algorithm (FA) [22].

The third subclass of meta-heuristic is biogeographic-stimulated algorithms based
on hunting and foraging behavior of some animals and sea creatures. The well-known
algorithm of bio-inspired is Spotted Henya Optimizer (SHO) [23], Grey Wolf Opti-
mizer (GWO) [24], Emperor Penguin Optimizer (EPO) [25] and Krill Herd Algorithm
(KHA) [26]. These algorithms have their substantial ability to impersonate the best
efforts.

The fourth subclass ofmeta-heuristic is evolutionary algorithms. These are based on
the natural selection theory. The population tries to continue constructed on the fitness
measure in the environment. It performs well and gives a nearest optimal solution.
This method does not yield any hypothesis about adaptive nature and fitness. The
most popular evolutionary algorithms are Deferential Evolution (DE) [27], Genetic
Algorithm (GA) [28], Evolutionary Strategy (ES) [29], Evolutionary Programming
(EP) [30], and Genetic Programming [31].

The last one is physics-based algorithms. These algorithms are typically based
on physical rules. Some popular algorithms are Black Hole Algorithm (BHA) [32],
Harmony Search (HS) [33], Simulated Annealing (SA) [34], and Central Force Opti-
mization (CFO) [35], Gravitational Search Algorithm (GSA) [35]. These algorithms
are different from swarm-based and nature-inspired algorithms. There are undefined
usual of search agents are communicating and moving from one place to another due
to physical rules. This communication and movement can be easily implemented by
BH,CFO, GSA

2.2 Emergence of ant algorithm

This section provides an overview of various ant colony optimization meta-heuristic
basic principles such as Ant Q, Max Min ant system, Ant-tabu, Continuous colony
optimization, Fast ant system etc. Ants are social insects and living collectively in the
colony. The collective behaviors of ants are more important to the survival of colony
as well as the individual. Many researchers are working on it and many research on ant
colonies intended at a better indulgent of ants behaviors. Many algorithms have been
developed include the division of worker, foraging behavior, brood care, cemetery
organization and colony construction. Table 1 shows the comprehensive review on
emergence of different ant algorithms developed by many researchers.

2.3 Recent applications using ant algorithms

Over the last three decades, ACO algorithms have developed as a dominant meta-
heuristic technique to solve the various optimization problems [44–46]. The ACO
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meta-heuristic algorithms [17,45] have applied in different domains such as supply
chain management [47], a dynamic scheduling problem [48,49], communication net-
work design [50], multi-objective problem [51,52], clustering problem [53], optimal
truss design [54] etc. Table 2 shows the detailed review of recent applications solved
by different authors.

Dorigo et al. [10] has explained the recent trends of ant algorithms theoretically.
The paper highlights how biological and nature insects inspiration can be transferred
into an algorithm for distinct optimizations and also outlined the ACO in more precise
regarding discrete optimization. Authors have summarized theoretical concepts and
real optimization problems such as data mining, load balancing, graph coloring, etc.

Zeng et al. [75] have given some direction about the usage of ACO algorithm in
the cloud storage system. The user can select a cloud storage resource randomly at the
initial stage, and preserve the experiences and satisfactory information in service path
as a pheromone. After over time the next user will be referred the past user experience
and related value (pheromone deposit) from current cloud storage service. All these
information are controlled by some protocols according to the situation.

An optimal solution of load balancing problem in cloud environments using ACO
algorithm has explained in [76]. This article described how ACO algorithm maxi-
mizes and minimizes the different performance parameters like load, capacity, CPU,
memory for the cloud. It has proposed a heuristic based ACO to initiate the service
load distribution in the cloud environments. It also proved the efficiency and effective-
ness of load balancing by their pheromone updating mechanism. The fault tolerance
mechanism not considered in this article.

In [77] authors have studied two different approaches: MAX–MIN Ant Sys-
tem (MMAS) and Graph-Based Ant System (GBAS). They resolve the limitation
pheromone updating of both approaches. In this article, authors have used two alter-
native methods to update pheromone (i) GBAS with lower pheromone bound and (ii)
GBAS with evaporation factor.

3 Proposed Generalized Ant Colony Optimizer (GACO) algorithm

This section explains proposed GACO algorithm and technical specification the same.
In GACO algorithm ants forging behavior plays an important role. The next section
describing the same.

3.1 Ants foraging behavior

The existence of ants appeared on the earth around 107 years back and current popula-
tion density is projected 106 individuals. Many entomologists studied about foraging
behavior of ant and their ability to select the optimal path, without any coordination,
advice, corporation and central approach. These emergent behaviors of ants located a
food origin and influenced other ants also towards food. Ants are trailing pheromone
on the path during food search. These pheromone deposits reinforce the ants to decide
the better path. The higher pheromone deposited path attracts more ants to use that
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Fig. 2 The capability of binary path finding by ants. The pheromone deposits are shown as a dotted lines
whose thickness denotes the pheromone strength, a all ants are in the nest. At initial stage there is no
pheromone deposit on the path, b all ants move towards food. There may be probability 50% ants select
shorter path and 50% ants take longer path. All ants trail same amount of pheromone on there respective
path, c the ants have selected the shorter path, have arrived earlier. In case of returning, the probability of
selecting shorter path again is higher, d the shorter path has got more pheromone deposited as compare to
longer path. The shorter path has reinforced, and the probability to select this path increases. As the time
increases the whole colony will use shorter path

path. Here, the indirect communication modifies their path to affects the behavior of
the other ants also. Dorigo and Blum [1] have studied about ants foraging behavior
and explained a formal model of binary path selection process. This model assumed
each ant deposits the same amount of pheromone. The mathematical formulation of
the binary path selection had defined as follows:

Let ne1(k) and ne2(k) indicate the number of ants moving on path e1 and e2 respec-
tively at time k. After time (k + 1), the probability of the upcoming ants to select e1
path as follow:

Pe1 (k + 1) = (ne1 (k) + c)α

(ne1 (k) + c)α + (ne2 (k) + c)α

= 1 − Pe2 (k + 1) (1)

where c is the quantifier that shows the degree of the attraction of path, and α indicates
the pheromone deposit. If the value of α is increased, then probability may also be
increased and reinforced to follow this path.

When ants move from nest to food source, an amount of pheromone deposited by
each ant. Over time nearest path will have deposited more pheromone, and other ants
move quickly on this path. The finding capability of binary path by ant’s colony is
illustrated in Fig. 2.
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Fig. 3 Working model of GACO algorithm

3.2 Workingmodel of GACO algorithm

The simple ACO algorithm was explained by Marco Dorigo et al. in the early 1990s.
The SACO is an algorithmic implementation of binary path model illustrated in Equa-
tion 1. Artificial ants will find the nearest node randomly first time and the ants who
have successfully reached the destination will update the total path length (L) as a
pheromone trail of the link visited in pheromone table. Here, actually routing table is
known as pheromone table that contains for each destination with real valued infor-
mation, on for each known adjacency node. This information is a remedy of goodness
of traversing over that adjacency node on the way to the destination. This table is
continuously updated conferring to the quality of solution by the artificial ants. The
next ant’s group will explore the pheromone trails with the help of pheromone table to
reach the destination. The workingmodel of proposed algorithm graphically exhibited
in Fig. 3.

Let, number of artificial ant sets m = {1, 2, . . . , nm} are located in the colony. We
assume ant m is currently situated at node i then the transitive probability of the ants
to choose next node jεvmi is as follows:

Pm
i j (t) =

⎧
⎨

⎩

zαi j (t)∑
jεvmi

zαi j (t)
i f j ∈ vmi

0 i f j /∈ vmi

(2)

where vmi is the set of feasible path linked with vi with respect to m number of ants.
Each ant has their own decision policy to choose the next node. The zi j indicates
the pheromone concentration on corresponding edge (i, j). If any vi and ant m does
not has any adjacent vmi = ∅, then the predecessor to vi is included in vmi . There is
always a probability of getting a cyclic path. In this case we can remove the cycle once
the destination node has been selected. The α denoted as a constant (positive) value
to increase the impact of pheromone deposit. Once ants have built a complete path
between source to destination nodes then entire cycle has been removed and individual
path can be retraced to their source and retain a pheromone amount on each edge (i, j)
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1618 A. Kumar, S. Bawa

of their respective path. The total deposited pheromone by ant m is δzmi j (t) on path
length Lm(t). The inverse if the path length Lm(t) consider as quality path as follows:

δzmi j (t) ∝ 1

Lm (t)
(3)

there f ore, zi j (t + 1) = zi j (t) +
nm∑

m=1

δzmi j (t) (4)

where nm denotes the population. We assume if Om(t) denotes the optimal solution
during time t then f (Om (t)) depicts the quality solution. It is more important to
emphasize on the optimal path selection process as a result of coordination which
are evaluated from the modest behaviors of individual ants. In multiple global colony
optimization [4,11,36,73] for artificial ants nm , we consider both local aswell as global
search spaces. We assume nl and ng ants perform local and global search respectively.
Let ri denotes the province and f (ri ) is the fitness of province r i . All provinces must
be assignedwith quality solution dynamically and zi initializes the pheromone amount
for each province. At starting point global search space is considered as weak because
∀nm unknown about global province to explore newpath. Here, 95%of the ng perform
crossover to struggle for new province and remaining 5% involved in pheromone trail
distribution. The probability of each m of the local ants nl selects ri province which
partially towards the good province as follow:

pmi (t) = zαi (t)μβ
i (t)

∑
jεNm

i
zαj (t)μ

β
j (t)

(5)

whereμ
β
i (t) denotes the a priori attractiveness of the move from source to destination,

Nm
i indicate the feasible nodes. If provincefindbetter fitness then antmoves in the same

direction otherwise increase the age of province and choose new direction randomly.
The age of province denotes the weakness of the particular solution. The pheromone
is modified by adding the amount of each zi proportionate to the fitness of relative
province. Some of other techniques to solve continuous optimization are mentioned in
[11,37,73]. The technical specification of GACO algorithm is explained in Algorithm
1.

4 Experimental evaluation and discussions

This section explains seventeen well-known benchmark functions that are used to
evaluate the efficiency and performance of GACO algorithm. The suggested bench-
mark test functions are exhibited in Sects. 4.1. Section 4.2 evaluates the performance
metrics such as average and standard deviation compare with PSO, GA and ABC
meta-heuristic algorithms.
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Algorithm 1 : Generalized Ant Colony Optimizer
Input: the number of artificial ants nm (m = 1, 2, 3, . . . nm ), number of province rk (k = 1, 2, 3, . . . rk )
Output: Optimal path with quality solution, Province with best fitness value

1: Procedure GACO
2: Set d = 0, zi j (0) = 0.01 (to small default values), zk (0) = 1
3: do
4: for each m = 1, 2, 3, . . . nm do
5: Om (t) = NULL
6: do
7: Pick next node using Eq. 2
8: Link edge (i, j) to path Om (d)

9: while till reach on destination node
10: end for
11: for each ant m = 1, 2, 3, . . . nm do
12: for each edge (i, j) of Om (d) do
13: δzm = 1

f (Om (d))

14: Add pheromone zi j using Eq. 4
15: end for
16: end for
17: d=d+1
18: while exit condition is true
19: Update Om (d) as optimal with quality solution f (Om (d))

20: do
21: Calculate f (ri )
22: Sort fitness of ∀r i in decreasing order
23: Post 95% of ngfor mutation and crossover
24: Post 5% of ngfor trail diffusion
25: Update pheromone and age of ngweek province
26: Send nl ants to picked good province by Eq. 5
27: for each nl do
28: if improve fitness of ri then
29: Update pheromone and move to good province
30: else
31: Increase province age and select new direction randomly
32: end if
33: end for
34: while exit condition is true
35: End Procedure

4.1 Test benchmark functions and competitor algorithms

There are seventeen benchmark test functions have been applied on GACO algorithm
and evaluate the performance. These test functions are categorized into two classes: (a)
uni-modal, (b) multi-model. The modality of benchmark function defines the number
of local minima and global minima locations. Table 3 shows the complete details of
test functions along with search space range. These benchmark test functions evaluate
the behavior of an algorithm in difficult situation and sometime diverse [78]. The
seven functions (T1 – T7) are uni-modal and ten functions (T8 – T17) are included
in multi-modal test benchmark. The first group of uni-model benchmark functions is
more relevant for evaluating the utilization capability and convergence rapidness of
an algorithm. There is no local optima and having single global optimum. Another

123



1620 A. Kumar, S. Bawa

group of multi-domain benchmark functions provide multiple local solutions and test
the finding ability of an algorithm.

The population size/search agent of each competitive algorithm is set to 20. We
observed that 20 is an equitable value of population size for several optimization prob-
lems. Generally, large size is not suitable for determining the global optima because
it reflects the higher probability.

4.2 Performance evaluation

The parameters description of proposed algorithm and competitive algorithms are
mentioned in Table 4. These parameters are fixed on the basis of reported literature
review. The algorithms illustrated in this paper are implemented inMATLABR2017b-
9.3.0713579 version and then executed on MS Windows 7 Professional N with 64
bits. It is deployed on hardware configuration such as Intel Xeon e5 2650 2.6 GHz
and 8 GB memory. The performance metrics are computed as average (AVG) and
standard deviation (STDEV) of best solution till last iteration. Tables 5 and 6 show the
evaluation results of test benchmark functions (T1–T7) and (T8–T17) respectively.
As per reported results, the GACO is more efficient algorithm for test functions T1,
T2, T5–T8, T10–T14 and T16. Remaining functions produce competitive results. We
have generated and reported the result of each benchmark separately. These reports are
mentioned in Figs. 4 and 5 of uni-modal and multi-model test functions respectively.

5 Optimization of cloud resource allocation using GACO

In this section proposedGACOhas been applied to optimize the cloud resource alloca-
tion problem. Themainmotivation of doing this is that GACOprovides best solution in
larger search space as compare to competitors. The cloud resource allocation problem
has been mathematically formulated which is based on biding concepts [8]. The main
objective of this resource allocation process is the Quality of Service (QoS) constraints
must be satisfied andmaximized the service provider profit. The solemotivation behind
this formulation is to reduced the unnecessary SLA violations penalty cost.

We assume cloud provider offers VM = {vm1, vm2 . . . vmt} computing services to
user on t different types of Virtual Machines (VMs). The number of existing identical
service capacity of a type vmk={1,2,3,...t} is Wk. We consider that Wt is maximum
number of VM instances provisioned by cloud-bid provider. Let, Z = {z1, z2, . . . zi}
be the set of cloud-bid providers. Ai = {a1, a2, . . . ai} is a set of bids submitted by
cloud-bid provider zi. So A1 is the set of bids submitted by cloud-bid provider z1.
Each bid define in pairs as ai = (Ri, ci), where, R is the requested VM resources set
and c is the cost of respective bid. The requested VM set further divided in different
pairs of individual resource (r) and their unit (u) as shown in Fig. 6. It is defined as:

Ri{1, 2,...n}=
{(

ri1, u
i
1

)
,

(
ri2, u

i
2

)
, . . .

(
rin, u

i
n

)}
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Table 4 Test parameters setting
of algorithms

Algorithms Parameters Values

GACO Number of Iteration 100

Population size 20

Enforcement factor 0.1

PSO Number of iteration 100

Number of particles 20

Inertia coefficient 0.50

Cognitive and social coefficient 1.7, 1.5

GA Number of iteration 100

Population size 20

Mutation and crossover 0.02, 0.8

ABC Number of iteration 100

Population size 20

Acceleration coefficient 1

The satisfaction levels conditionally define as:

Ri{1, 2,...,n} =
{{(

ri1, u
i
1

) ∩ (
ri2, u

i
2

) ∩. . .∩ (
rin, u

i
n

)} 
= ∅, satisfiable for ∀Ri{(
ri1, u

i
1

) ∪ (
ri2, u

i
2

) ∪. . .∪ (
rin, u

i
n

)} 
= ∅, satisfiable for any Ri

The set P = {p1, p2, . . . . pt} specify the SLA violation penalty cost to be deter-
mined for each VM. The problem is formulated using linear programming with the
help of three optimization variables. For description of variable refer Table 7.

The problem formulation as follows:

MAX
∑

ai∈A
ciαi−

∑

aj∈A
pjj (6)

Subject to

∑

ai∈A ∧(rin,uin)∈Ri{1, 2,...n}

β
j
i,n+ j = Wj

(
vmj∈VM

)
(7)

∑

vmj∈VM
β
j
i,n−uinαi = 0

(
ai∈A ∧

(
rin, u

i
n

)
∈Ri{1, 2,...n}

)
(8)

β
j
i,n = 0

([
ai∈A ∧

(
rin, u

i
n

)
∈Ri{1, 2,...n}

]
∧ [vmj∈VM] ∧ [vmj /∈rin]

)
(9)

αi = {0, 1} (10)

β
j
i,n, j∈Z+ (11)

The objective of above formulation maximizes the profit if we are considering SLA
violation cost along with unallocated resources. The Eq. 6 is an objective line that
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Fig. 4 Results of uni-model test benchmark functions, a T1, b T2, c T3, d T4, e T5, f T6, g T7

maximizes the total profit if it is considering the cost of SLAviolation alongwith under-
utilized resources. Equation 7 identifies the total number of allocated VM instances
of each vm j type which never exceed the number of available instances. Equation 8
recognizes the successful bids for each pair of resource type. Equation 9 inhibits all
underutilized resources to be assigned to particular bid.

We have considered all constraints and implemented above resource allocation
optimization problem using MATLAB. Here, we have defined set of all the possible
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Fig. 6 Sample bid format

Table 7 Description of optimization variables

Variables Description

α It is a binary decision of bid success. Success bid
denoted by ‘1’ and not success by ‘0’

β It denotes an integer variable. This variable contains the
number of resources that are allocated to the bid

γ It is a positive integer variable. This variable contains the
number of resources that are not allocated to any bid

Table 8 Comparison of proposed GACO statistical for resource allocation

Algorithms Worst case Best case Average case STDEV

GACO 0.013792 43701.79 2796.085 8053.906

PSO 0.342633 42021.53 3271.718 8175.305

GA 146.2593 23769.62 1347.263 3141.235

ABC 919.4537 39802.37 7302.713 7546.448

bids orderings as search spaces that will be used by all meta-heuristic algorithms.
Each bid will be converted to a solution and checked it will feasible or not. As per
bid policy there must be at least one ordering that reflects the optimal solution. The
proposed GACO algorithm has been executed 100 times and the comparative statistics
of proposedGACO for resource allocation in unidentified search spaces are reported in
Table 8. Figure 7 shows the comparative best solutionwith other algorithms.Moreover,
the results of the resource allocation problems in cloud computing showed the better
performance in unidentified search spaces. The results of this problem are improved
as compared to existing techniques.

6 Conclusion

In this paper a swarm-based optimization algorithm inspired by ants forging behavior
has been proposed. The algorithm is named as Generalized Ant Colony Optimizer
(GACO). The algorithms demonstrated in this paper are implemented in MATLAB
R2017b version and executed on MS Windows 7. The performance of GACO algo-
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Fig. 7 Comparative best solutions with other algorithms

rithm ismeasuredon17benchmark test functions and comparedwith threewell-known
algorithms naming PSO, GA, and ABC. The test results of the proposed GACO algo-
rithm are better as compared to other algorithms. Future scopes of GACO algorithm
in the cloud computing include efficient resource allocation and load balancing. This
algorithm can also be extended for multi-objective optimization problems.
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