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Abstract
This study elucidates the dynamic behaviour of the two competing mutually exclusive
epidemic (meme) spreading model with the alert of memes over multiplex social
networks. Each meme spreads over a distinct contact networks (CN1,CN2) of an
undirected multiplex social network. The behavioural responses of agents (alerts) to
the spread of competing memes is disseminated through information dissemination
network (IDN). Here, IDN has the same nodes but different links with respect to the
respective CNi (i = 1, 2). The analytical treatment of this model is analysed through
themean field approximation of the epidemic process. Also, it has been shown through
numerical illustrations that a node in the alert state is less probable to become infected
than a node in the susceptible state. Moreover, co-existence of both the memes, the
survival threshold, the absolute dominance threshold of the two competitive memes
and the alert threshold for minimizing the severity of meme spread are analytically
explored and numerically illustrated.
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1 Introduction

Myriad research efforts in capturing the dynamics of epidemic spreading process of
diseases (or ideas, computer viruses, product adoption) and in controlling the out-
break of the epidemic spreading have attracted the biologists, social scientists and
communication engineers in the recent years. These overwhelming research efforts
have led to develop and study the dynamic behaviour of the various epidemic models.
These models have been successful in providing insights and in understanding the
phenomenon of epidemic process which leads to the successful conclusion of both
the prevention and prediction of epidemics. With the advent of the network science,
complex epidemic models were analysed to capture the dynamics of epidemic spread
through real networks.

The theory of epidemics over a network can be applied to the spread of email worms
(ex. News, rumors, meme, brand awareness and marketing new products), epidemic
dissemination or/and routing occurring in ad-hoc and peer to peer networks. However,
most of the earlier works in epidemicmodels with regard to the contact patterns among
the individuals within a population were suitable for a well mixed homogeneous pop-
ulation rather than the heterogeneous population. In particular, Moreno et al. [1] have
presented the results for heterogeneous networks. Pastor et al. [2] studied the epidemic
spread in scale free networks, showing that in these networks, the epidemic threshold
disappears with consequent concerns for the robustness of many real complex sys-
tems. Moreover, node based epidemic models were analysed by Wang et al. [3] and
Ganesh et al. [4]. Further, Deepayan et al. [5] proposed the general epidemic thresh-
old condition for the non-linear dynamical system which proved that the epidemic
threshold for a network is exactly the inverse of the largest eigenvalue of its adjacency
matrix. Later, Van Mieghem et al. [6] proved that the epidemic threshold τc is equal
to the inverse of the spectral radius of the adjacency matrix of a contact graph. How-
ever, Poletti et al. [7] developed a population based model where susceptible nodes
could choose between the two behaviour responses to the presence of infection. In
[8], they proved that the size of epidemic outbreak reduced when individuals had the
awareness of the disease. Faryad et al. [10] discussed the epidemic threshold in the
case of spontaneous behavioural responses, and assessed the capability of the human
behavioural responses to influence the epidemic spreading in networks. Later, Faryad
et al. [9] extended the SIS model to SAIS model, which incorporates the reaction
agents to spread the infection. Based on this model, they studied how dissemination
of information can help to strengthen the resilience of the population of agents against
the propagation. Furthermore, the problem of finding the cost-optimal distribution of
resources throughout the nodes of the network was studied by Preciado et al. [11].
Afterwards, Nowzari et al. [12] proposed a generalized epidemic model over arbitrary
directed graphswith heterogeneous nodes and also derived the necessary and sufficient
conditions for global exponential stability. Recently, Watkins et al. [13] have devel-
oped a robust economic model predictive controller for the containment of stochastic
continuous time SEIV epidemic processes which had driven the process quickly to
extinction, while minimizing the rate at which control resources were used. Moreover,
it addressed the problem of efficiently controlling the general stochastic epidemic sys-
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tems without relying on the mean-field approximation, which is an important issue in
the theory of stochastic epidemic processes.

In the competitivememes spreading scenario, highly challenging efforts are taken to
study the dynamic behaviour of the distinct memes spreading over the network layers.
Funk and Jansen [14] extended the bond percolation analysis of the two competitive
viruses in the case of the two layer network and investigated the effects of overlapping
layers.Granell [15] investigated a two layer networkwhere one layer helps in spreading
the disease of physical contact network and the other propagating the information to
stop the disease of a virtual overlay network. They identified a meta critical point for
the epidemic onset leading to disease suppression. Moreover, the value of the critical
point depended on the awareness of the dynamics and the overlay of the network
structure. Wei et al. [16] studied the SI S spreading of two competitive viruses on
an arbitrary two layer network, deriving sufficient conditions for exponential die out
for both the viruses. They also introduced a statistical tool Eigen Predict, to predict
the viral dominance of one competitive virus over the other. Shouhuai et al. [17]
analyzed a general model of multivirus spreading dynamics in arbitrary networks and
also discussed the analytical results that made a fundamental connection between the
defence capability and the network connectivity. On the other hand, Weng et al. [18]
proposed the competition among thememeswith limited attentionof agent based social
networkmodel. Further,the epidemicmodel of two exclusive, competitive viruses over
a two-layer networkwith generic structure and also proved the long termcoexistence of
the two competitive viruses in non-trivial multilayer networks which was extended by
Faryad et al. [19]. Liu et al. [20] analysed a distributed continuous-time bi-virus model
for a system of groups of individuals. Additionally, they have explored the equilibria
of a continuous-time bi-virus model. Aresh et al. [21] derived analytically generic
switching thresholds at which the extinction, co-existence, and absolute-dominance
equilibria transpire inmultiplex social network.Multiple competing viruses over static
and dynamic graph structures, and an antidote control technique for stability analysis
were discussed by Philip et al. [22]. Later, Liu et al. [23] examined the effect of
human awareness on a distributed continuous-time bi-virus model and compared their
stability with those of the model without human awareness. Recently, Watkins et
al. [24] have developed an optimization program for determining the optimal-cost
parameter distributions. Moreover, a heuristic design was performed in the case of a
fixed budget SI1SI2S spreadingmodel of the two competing behaviours over a bilayer
network.

All the above mentioned competing epidemic spreading models assume infec-
tion rates that are linear in the virus occupancy probabilities of the individuals in
a population. As the linear infection rates are the overestimation of the real infection
rates, in some situations these models cannot accurately predict the process of spread-
ing of the multiple competing viruses. Yang et al. [25] proposed a continuous-time
bilayer-network-based bi-virus competing spreading model with generic infection
rates. Recently, Liu et al. [26] extended their work to limit the behaviour of the
network characterized by analyzing the equilibria of the system and its stability of
continuous-time bi-virus model in which two competing viruses spread over a net-
work. Table 1 summarizes the consolidated view of the existing research works which
inherently describes the models over specific network topology for spread of meme.
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Table 1 Summary of the models
over specific network topology
studied in recent literature

References Model Network topology Competitive
memes with
alert

[24] SIS Bilayer network No

[25] SIS Bilayer network No

[26] SIS Single layer network No

[22] SIS Single layer network No

[23] SIS Single layer network No

[21] SIS Multiplex networks No

[20] SIS Single layer network No

[28] SIS Multi-layer networks No

[19] SIS Multi-layer networks No

[29] SIR Contact networks No

[18] SIS Social network No

[30] SIS Composite network No

[31] SIS Social network No

[16] SIS Composite networks No

[17] SIS Composite networks No

[32] SIS Social network No

[33] SIS Complex networks No

[34] SIR Social network No

Proposed
model

SIS Multiplex social
networks

Yes

Furthermore, this table shows how the proposed work differs from the other existing
models in literature. The advancements in networking technologies require a robust
analytic framework for modeling epidemic spreading process which has been recently
addressed by many researchers in the field of communication networking. In order to
model the on-line informative propagation for meme spreading through media (IDN)
and contact networks (likeFacebook, Twi t ter ,Whatsapp, etc.), the competitive
meme spreading model over two CNs and IDN can be considered. Although, many
epidemic models over social networks have been developed, the model of competing
memes spread over contact and information dissemination networks have not been
studied yet. Hence, the proposed work uses the competitive meme spread model over
CNs and IDN. The following are the main contributions in this model: (i) The proof
of long term co-existence of competitive meme spreading over two CNs and IDN. (ii)
Themathematical framework of survival threshold shows the survival of memek while
the spreading severity of competing memel is reduced. (iii) Analytical derivation for
the alert threshold of memek , at which the spreading probability of the alert of memek
is increased and the spreading probability of alert of memel is reduced.

The rest of the paper is organised as follows: Sect. 2 describes the preliminary
notions, presents the mathematical model of SA1 I1SA2 I2S, with steady state analysis
and compares the mathematical model with SAI S model. Section 3 illustrates the
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numerical results. Finally, Sect. 4 discusses the concluding remarks of the proposed
work and presents the scope for future enhancements.

2 Alert influence behaviour of competitive spreadingmemes in
multiplex social networks

This section develops a continuous time SA1 I1SA2 I2S model for the two competitive
memes propagating on the two contact networks with the alerts of memes propagation
over information dissemination network.

2.1 Preliminaries

Consider a population having N individuals (nodes) in which two memes can spread
through the different transmission routes onCN1,CN2 and the alert information about
the memes through IDN. In these layers, the individuals are identical and the link of
the nodes are distinct based on the connectivity of both the layers.

Mathematically, the multiplex network is represented as G(V , EC1 , EC2 , EI )

where V (= 1, 2, . . . , N )is the set of vertices, EC1 , EC2 , EI are the set of edges of
CN1,CN2 and IDN layers respectively. Let us consider A = (ai j ) which represents
the adjacency matrix

ai j =
{
1, (i, j) ∈ EC1 ,

0, otherwise

of CN1 and B = (bi j ) which represents the adjacency matrix

bi j =
{
1, (i, j) ∈ EC2 ,

0, otherwise

of CN2 whose nodes are undirected and connected. Similarly, C = (ci j ) which rep-
resents the adjacency matrix

ci j =
{
1, (i, j) ∈ EI ,

0, otherwise

of IDN, where the nodes are directed and not connected.

2.2 SA1I1SA2I2Smodel for two competingmeme

The SA1 I1SA2 I2S model is an extension of the SAI S model of a single meme propa-
gation to the competitive meme propagation scenario of CN and IDN layers. Initially,
the proposedmodel considers all theN nodes that are in any one of the following states:
S-susceptible, I1-infected (infected by memek), I2-infected (infected by memel ), A1-
alert of memek or A2-alert of memel . For each individual i ∈ 1, 2, . . . , N , let us define
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Fig. 1 Transition rate diagram
according to the SA1 I1SA2 I2S
model

a random variable Xi (t) as state of i th node at time t. Here, {Xi (t), t ≥ 0} is CTMC
representing SA1 I1SA2 I2S model.

The following are the five states in the continuous timeMarkov process representing
the SA1 I1SA2 I2S model

Xi (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, node-i is susceptible,
1, node-i is infected by memek,
2, node-i is infected by memel ,
3, node-i has alert of memek,
4, node-i has alert of memel

Figure 1 depicts the transition diagram of the SA1 I1SA2 I2S model

(i) The transition diagram represents the curing time of the infected nodes that follow
exponential distribution with curing rate δ1 for memek and δ2 for memel .

(ii) β1 is the rate at which susceptible state S becomes I1 infected with memek .
Similarly, the transition from state S to I2, happens with rate β2 per link and has
an influence of state I2.

(iii) Alerted nodes infected with rate βa1 at which the alert state A1 becomes I1
with memek . Similarly the transition from state A2 to I2, happens with infection
rate βa2 per link. An alert individual for memek and memel is assumed to be the
reduced version of β1 and β2 respectively. That is r1β1 and r2β2 with 0 < r1 ≤ 1,
0 < r2 ≤ 1.

(iv) The alert information about memek spreads throughCN1 with ratem1 and propa-
gates through IDN with rate μ1. Similarly the alert about memel spreads through
CN2 with rate m2 and also through IDN with rate μ2.

Pr (Xi (t + Δt) = 1 | Xi (t) = 0) = β1Yi (t)Δt + o(Δt)

for i ∈ {1, 2, . . . , N } ,Yi (t) =
N∑
j=1

a ji1{X j (t)=1}
Pr (Xi (t + Δt) = 2 | Xi (t) = 0) = β2Qi (t)Δt + o(Δt)
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for i ∈ {1, 2, . . . , N } , Qi (t) =
N∑
j=1

b ji1{X j (t)=2}
Pr (Xi (t + Δt) = 1 | Xi (t) = 3) = βa1Yi (t)Δt + o(Δt)

Pr (Xi (t + Δt) = 2 | Xi (t) = 4) = βa2Qi (t)Δt + o(Δt)

Pr (Xi (t + Δt) = 3 | Xi (t) = 0) = (m1Yi (t) + μ1Zi (t))Δt + o(Δt),

for i ∈ {1, 2, . . . , N } , Zi (t) =
N∑
j=1

c ji1{X j (t)=3}
Pr (Xi (t + Δt) = 4 | Xi (t) = 0) = (m2Qi (t) + μ2Zi (t))Δt + o(Δt)

Pr(Xi (t + Δt) = 0 | Xi (t) = 1) = δ1Δt + o(Δt)

Pr(Xi (t + Δt) = 0 | Xi (t) = 2) = δ2Δt + o(Δt)

The evolution of system is represented in the following differential equations. The
state probabilities are defined as follows: Pki (t) = Pr (Xi (t) = k), k = 0, 1, 2, 3, 4
for node i and also,

∑4
k=0 Pki (t) = 1.

By theorem of total probability, the evolution of infection probability of memek is
determined.

Pr (Xi (t + Δt) = 1) = Pr (Xi (t + Δt) = 1 | Xi (t) = 0) Pr (Xi (t) = 0)

+ Pr (Xi (t + Δt) = 1 | Xi (t) = 3) Pr (Xi (t) = 3)

+ Pr (Xi (t + Δt) = 1 | Xi (t) = 1) Pr (Xi (t) = 1)

This implies that

P1i (t + Δt) = β1Yi (t)Δt P0i (t) + βa1Yi (t)P3i (t)Δt + P1i (t)(1 − δ1Δt)
P1i (t + Δt) − P1i (t)

Δt
= β1Yi (t)P0i (t) + βa1Yi (t)P3i (t) − P1i (t)δ1 (I )

Based on the mean field approximation [35], the dynamics of node-i infected by
memek is derived by taking limit Δt → 0 and expectation on both the sides in (I), we
have

d I 1i (t)

dt
= β1Si (t)

N∑
j=1

a ji I
1
j + βa1ζ

1
i (t)

N∑
i=1

a ji I
1
j − I 1i (t)δ1 (1)

where E(Xi (t) = 0) = Si (t), E(Xi (t) = k) = I ki (t)(k = 1, 2), E(Xi (t) = 3) =
ζ 1
i (t) and E(Xi (t) = 4) = ζ 2

i (t).
Similarly, the following mean field approximations for the state of node-i infected

by memel , node alerted for memek and node-i alerted for memel are obtained.
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İ 2i = β2

(
1 − I 1i − I 2i − ζ 1

i − ζ 2
i

) N∑
j=1

b ji I
2
j + βa2ζ

2
i

N∑
j=1

b ji I
2
j − δ2 I

2
i (2)

ζ̇ 1
i =

(
1 − I 1i − I 2i − ζ 1

i − ζ 2
i

) ⎛
⎝m1

N∑
j=1

a ji I
1
j + μ1

N∑
j=1

c ji I
1
j

⎞
⎠ − βa1ζ

1
i

N∑
j=1

a ji I
1
j

(3)

ζ̇ 2
i =

(
1 − I 1i − I 2i − ζ 1

i − ζ 2
i

) ⎛
⎝m2

N∑
j=1

b ji I
2
j + μ2

N∑
j=1

c ji I
2
j

⎞
⎠ − βa2ζ

2
i

N∑
j=1

b ji I
2
j

(4)

The competitivememepropagationmodel reveals that the dynamic behaviour is depen-
dent on the epidemic parameter and the contact network layer structure. The effective
infection rate of both the memes is defined as the ratio of the infection rate over the
curing rate which measures the expected number of attempts of an infected node to
infect its neighbors before recovery. In this model, if transmission of both the memes
is without alert, then the model will be reduced to the SI1SI2S model. Therefore, the
system exhibits a threshold for the effective infection rate τ1 = β1/δ1 and τ2 = β2/δ2,
under which the infection dies out exponentially and also the inverse of the largest
eigenvalue of the adjacency matrix A and B are τ1 = 1/λ1(A), τ2 = 1/λ1(B) respec-
tively.

2.3 Steady state analysis

In the proposed model, the healthy equilibrium establishes the exponential extinction
of memek andmemel . Wei et al. [30] showed that an initial infection dies out exponen-
tially, under the conditions τ1 < 1

λ1(A)
and τ2 < 1

λ1(B)
. A meme with lower effective

infection rate is very weak to spread in the population, even in the absence of any
meme competition.

The competitive memes do not affect the no-spreading thresholds, τm1 = 1
λ1(A)

and τm2 = 1
λ1(B)

for meme k and l respectively. If any one of these meme’s effective
infective rate is less than no spreading threshold, then the competitive scenario reduces
to a single meme problem.

In SA1 I1SA2 I2S model, Eqs. (1–4) yield the following equilibrium equations

Ī 1i
1 − Ī 1i − Ī 2i − ζ̄ 2

i

=
τ1

∑N
j=1 a ji Ī 1j + τa1

(
m̄1

∑N
j=1 a ji Ī 1j + μ̄1

∑N
j=1 c ji Ī

1
j

)

(1 + m̄1)
∑N

j=1 a ji Ī 1j + μ̄1
∑N

j=1 c ji Ī
1
j

N∑
j=1

a ji Ī
1
j (5)
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Ī 2i
1 − Ī 1i − Ī 2i − ζ̄ 1

i

=
τ2

∑N
j=1 b ji Ī 2j + τa2

(
m̄2

∑N
j=1 b ji Ī 2j + μ̄2

∑N
j=1 c ji Ī

2
j

)

(1 + m̄2)
∑N

j=1 b ji Ī 2j + μ̄2
∑N

j=1 c ji Ī
2
j

N∑
j=1

b ji Ī
2
j (6)

ζ̄ 1
i =

(
1 − Ī 1i − Ī 2i − ζ̄ 2

i

) m̄1
∑N

j=1 a ji Ī 1j + μ̄1
∑N

j=1 c ji Ī
1
j

(1 + m̄1)
∑N

j=1 a ji Ī 1j + μ̄1
∑N

j=1 c ji Ī
1
j

(7)

ζ̄ 2
i =

(
1 − Ī 1i − Ī 2i − ζ̄ 1

i

) m̄2
∑N

j=1 b ji Ī 2j + μ̄2
∑N

j=1 c ji Ī
2
j

(1 + m̄2)
∑N

j=1 b ji Ī 2j + μ̄2
∑N

j=1 c ji Ī
2
j

(8)

where Ī 1i , Ī
2
i are equilibrium infectious probabilities and ζ̄ 1

i , ζ̄
2
i are steady state proba-

bilities of i th node being alerted for memek andmemel . The normalized alertness rates
are τa1 = r1τ1(0 < r1 ≤ 1); τa2 = r2τ2(0 < r2 ≤ 1); m̄1 = m1/βa1 ; m̄2 = m2/βa2 ;
μ̄1 = μ1/βa1 and μ̄2 = μ2/βa2 . Equations (5) and (6) can be rewritten as

Ī 1i
1 − Ī 1i − Ī 2i − ζ̄ 2

i

= τ1Qi

N∑
j=1

a ji Ī
1
j (9)

where Qi = (1+r1m̄1)
∑N

j=1 a ji Ī 1j +r1μ̄1
∑N

j=1 c ji Ī
1
j

(1+m̄1)
∑N

j=1 a ji Ī 1j +μ̄1
∑N

j=1 c ji Ī
1
j

and

Ī 2i
1 − Ī 1i − Ī 2i − ζ̄ 1

i

= τ2Ri

N∑
j=1

b ji Ī
2
j (10)

where Ri = (1+r2m̄2)
∑N

j=1 b ji Ī 2j +r2μ̄2
∑N

j=1 c ji Ī
2
j

(1+m̄2)
∑N

j=1 b ji Ī 2j +μ̄2
∑N

j=1 c ji Ī
2
j

.

Next the discussion is about the equilibrium of the analysis for the case of disease
free, the absolute dominance for memek and also for memel .

Case (i): In disease free equilibrium, all the individuals are healthy and so the
infection probability does not exist for both the memes.

Case (ii): In case of the absolute dominance of memek (nodes are only infected by
memek), Ī 1i = ui , Ī 2i = 0 and ζ̄ 2

i = 0, i = 1, 2, . . . , N . The equilibrium equation (9)
becomes

ui
1 − ui

= τ1Qi

N∑
j=1

a ji u j (11)

where ui is the steady state infection probability of memek satisfying (11) [33].
Case (iii): Absolute dominance of memel (nodes are only infected by memel ),

Ī 1i = 0, Ī 2i = vi and ζ̄ 1
i = 0, i = 1, 2, . . . , N . The equilibrium equation (10)

becomes
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vi

1 − vi
= τ2Ri

N∑
j=1

b jiv j (12)

where vi is the steady state infection probability of memel satisfying (12). From [19],
the survival and absolute dominant threshold are defined as follows:

Definition 1 Given memel effective infection rate τ2 > 1/λ1(B), the survival thresh-
old τ1s is the critical point such that memek steady-state infection probability of each
node is zero for τ1 < τ1s and is positive for τ1 > τ1s . i.e.,

Ī 1i = 0, for τ1 < τ1s

Ī 1i > 0, for τ1 > τ1s

for all i ∈ {1, . . . , N }.
Definition 2 Given memel effective infection rare τ2 > 1/λ1(B), the absolute domi-
nance threshold τ1 is the critical point such that not only memek survives but also it
removes the other meme. In other words, memel steady-state infection probability of
each node becomes zero for τ1 > τ ∗

1 ; i.e.,

Ī 2i > 0, for τ1 < τ ∗
1

Ī 2i = 0, for τ1 > τ ∗
1

for all i ∈ {1, . . . , N }.
The mean field stability analysis of the proposed model is discussed in the following
theorem.

Theorem 1 Let Ī = ( Ī 1, Ī 2)T be the equilibrium vector of mean field dynam-
ics of memek and memel . Here, let Ī j = ( Ī j1 , Ī j2 , . . . , Ī jN )T , j = 1, 2; ζ̄ 1 =
(ζ̄ 1

1 , ζ̄ 1
2 , . . . , ζ̄ 1

N )T and ζ̄ 2 = (ζ̄ 2
1 , ζ̄ 2

2 , . . . , ζ̄ 2
N )T . Assuming Ī 1i = 0, for all i , Ī 2i is

(locally) exponentially stable iff J11 is Hurwitz,

J11 = β1diag((1 − Ī 2 − ζ̄ 1 − ζ̄ 2)A) + βa1diag(ζ̄
1A) − δ1 I ,

δ1 is the recovery rate of memek, I is the identity matrix of order N and β1, βa1 is the
infection rate without alert and with alert of memek respectively.

Proof Assuming that the contact networks CN1 and CN2 are strongly connected and
irreducible, Ī = ( Ī 1, Ī 2)T be the equilibrium vector of mean field dynamics ofmemek
and memel which is defined as Ī j = ( Ī j1 , Ī j2 , . . . , Ī jN )T , j = 1, 2. Also assume,
ζ̄ 1 = (ζ̄ 1

1 , ζ̄ 1
2 , . . . , ζ̄ 1

N )T and ζ̄ 2 = (ζ̄ 2
1 , ζ̄ 2

2 , . . . , ζ̄ 2
N )T .

The nonlinear system can be defined by Ẋ = J X where, J =
(
J11 J12
J21 J22

)
,

Ẋ = ( İ 1, İ 2)T and, X = (I 1, I 2)T .
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First, the nonlinear systems (1) and (2) are linearized about Ī where Ī 2i is a solution
of (10) with Ī 1i = 0, for all i . After linearization the resulting system is,

J =
(
J11 0
J21 J22

)
(13)

where

J11 = β1diag
((

1 − Ī 2 − ζ̄ 1 − ζ̄ 2
)
A
)

+ βa1diag
(
ζ̄ 1A

)
− δ1 I ,

J21 = −β2diag
(
BT Ī 2

)
,

J22 = −β2diag
(
BT Ī 2

)
+ β2diag

((
1 − Ī 2 − ζ̄ 1 − ζ̄ 2

)
B

)

+βa2diag
(
ζ̄ 2B

)
− δ2 I .

By [36], the nonlinear dynamics given by (1) and (2) are (locally) exponentially stable
if and only if the linearized system J is exponentially stable, since the Jacobian matrix
of the system is bounded and Lipshitz.

Subsequently to prove that J is Hurwitz, it is enough to prove that J22 is Hurwitz.
Since in the Jacobian matrix J , the eigenvalues are J11 and J22. Here, J22 matrix
is exactly the same matrix of the single meme, single layer SAI S system. Using
proposition [37], Ī 2 is locally exponentially stable equilibrium point of the single
layer model. So J22 must be Hurwitz as it is component wise bounded and Lipshitz.
Hence, J is Hurwitz. ��

2.4 Comparison of SAISmodel and SA1I1SA2I2Smodel

This section addresses the problem to identify the following critical values such as
survival threshold (τ1s), absolute dominance threshold (τ ∗

1 ) and coexistence for the
effective infection rate of memes. Moreover, it has to be analyzed for which values of
τ1, the memek will survive or completely remove the other competing meme. Finally,
the proposedmodel is comparedwith the SAI Smodel. Figure 2, depicts the twocritical
values τ1s and τ ∗

1 in the dynamic of an epidemic spread. Case (i) when τ1 < τ1s the
initial infection dies out exponential. Case (ii) When τ1 > τ ∗

1 the infection persists
steady state. Case (iii) Between the two threshold both the memes will be persevered
in the population. For τ1 < τ1s 	 4 ∗ 1/λ1(A), the steady state infection fraction
of memek is zero and τ1 > τ ∗

1 	 12 ∗ 1/λ1(A) the competitive meme reduces to
single meme as shown in Fig. 2. Moreover, the coexistence of memes will exist for
τ1 that lies within the region of (τ1s, τ

∗
1 ) which is depicted in Fig. 3. Assuming the

two contact network layers to be identical, the multiplex network is reduced into a
single layer network. So the survival and absolute dominance thresholds coincide. The
stability analysis of the identical layers are discussed in [19]. The survival threshold
of the equilibriums by using bifurcation analysis can be determined. The disease free
equilibrium is unstable for τ1 > 1

λ1(A)
and also unstable in the case of the absence of

one of the memes. The stability will exist only for the case of coexistence equilibrium.
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Given the fixed value of τ2, the survival threshold of memek is the critical value
where the coexistence equilibrium exist. Survival threshold of memek is analytically
identified by the following theorem.

Theorem 2 If Ī 1i = 0, Ī 2i = vi ,
∂ Ī 1i
∂τ1

> 0,
∂ Ī 2i
∂τ1

= 0 and
∂ζ̄ 2i
∂τ1

= 0 at τ1 = τ1s , then the

non-linear eigenvalue problem can be obtained from Θ = τ1s(1− vi )ϕi
∑N

j=1 a jiΘ j

which has the possible solution as survival threshold

τ1s = 1

λ1(diag(1 − vi )ϕi A)
,

where ϕi =
∑N

j=1 a jiΘ j+τa1

(
m̄1

∑N
j=1 a jiΘ j+μ̄1

∑N
j=1 c jiΘ j

)
(1+m̄1)

∑N
j=1 a jiΘ j+μ̄1

∑N
j=1 c jiΘ j

for which non trivial solution

exist for Θ = (Θ1,Θ2, . . . , Θn)
T , Θi > 0 for i = 1, 2, . . . , N.

Proof Taking the derivative of the equilibrium equation (5) with respect to τ1 and

defining
∂ Ī 1i
∂τ1

|τ1=τ1s= Θi , Ī 2i = vi |τ1=τ1s .

This implies that

(1 − Ī 1i − Ī 2i − ζ̄ 2
i )

∂ Ī 1i
∂τ1

+ Ī 1i

(
∂ Ī 1i
∂τ1

+ ∂ Ī 2i
∂τ1

+ ∂ζ̄ 2i
∂τ1

)

(1 − Ī 1i − Ī 2i − ζ̄ 2
i )2

=
N∑
j=1

a ji
∂ Ī 1j
∂τ1

(τ1 + τa1m̄1)
∑N

j=1 a ji
∂ Ī 1j
∂τ1

+ ∑N
j=1 a ji Ī 1j + τa1μ̄1

∑N
j=1 c ji

∂ Ī 1j
∂τ1

(1 + m̄1)
∑N

j=1 a ji
∂ Ī 1j
∂τ1

+ μ̄1
∑N

j=1 c ji
∂ Ī 1j
∂τ1

(1 − vi )Θi

(1 − vi )2
= (τ1s + τa1m̄1)

∑N
j=1 a jiΘ j + τa1μ̄1

∑N
j=1 c jiΘ j

(1 + m̄1)
∑N

j=1 a jiΘ j + μ̄1
∑N

j=1 c jiΘ j

N∑
j=1

a jiΘ j

Θi = (1 − vi )
(τ1s + τa1m̄1)

∑N
j=1 a jiΘ j + τa1μ̄1

∑N
j=1 c jiΘ j

(1 + m̄1)
∑N

j=1 a jiΘ j + μ̄1
∑N

j=1 c jiΘ j

N∑
j=1

a jiΘ j

By Perron–Frobenius theorem [19], the dominant eigen vector of the matrix diag(1−
vi )ϕi A has all positive entries when Θi > 0. Hence, the survival threshold τ1s with
Θi > 0 has a coexistence equilibrium. Similar, to the SI S epidemic threshold [6], the
survival threshold is the inverse of the spectral radius of the adjacency matrix A, but
scaled by the reduced susceptibility factor (1 − vi )ϕi for each node.

Similarly, the survival threshold for memel can be derived. All other equilibrium
is unstable and exists only for Ī 1i ≥ 0 and Ī 2i ≥ 0, for all i = 1, 2, . . . , N and the
coexistence equilibrium will exist for τ1 > τ1s and τ2 > τ2s . ��

The following theorem identifies the promoting alert threshold for memek . While
increasing the alert rate of memek , the promoting rate of memek is also increased. The
widespread occurring at the threshold value (m1c), helps in promoting the behaviour
of the infection memek . The same could be followed for (m2c).
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Theorem 3 If Ī 1i , Ī 2i > 0,
d ζ̄ 1i
dm̄1

= d ζ̄ 2i
dm̄1

= 0 and ζ̄ 2
i = 0 at m1c, then the promoting

alert (influencer) threshold for memek is given by

m1c =

⎧⎪⎨
⎪⎩

(
1 − Ī 1i − Ī 2i − ζ̄ 1

i

) (∑N
j=1 a ji Ī 1j + μ̄1

∑N
j=1 c jiφ j

)
− μ̄1(φi + ψi )

∑N
j=1 c ji Ī

1
j

⎫⎪⎬
⎪⎭

(φi+ψi )
∑N

j=1 a ji Ī 1j −
(
1− Ī 1i − Ī 2i −ζ̄ 1i

)∑N
j=1 a jiφ j

, where φi =
d Ī 1i
dm̄1

and ψi = d Ī 2i
dm̄1

.

Proof Equilibrium equation (7) can be written as,

ζ̄ 1
i

⎛
⎝(1 + m̄1)

N∑
j=1

a ji Ī
1
j + μ̄1

N∑
j=1

c ji Ī
1
j

⎞
⎠

=
(
1 − Ī 1i − Ī 2i − ζ̄ 2

i

) ⎛
⎝m̄1

N∑
j=1

a ji Ī
1
j + μ̄1

N∑
j=1

c ji Ī
1
j

⎞
⎠

Differentiate with respect to m̄1 we get

ζ̄ 1
i

⎛
⎝ N∑

j=1

a ji Ī
1
j + (1 + m̄1)

N∑
j=1

a ji
d Ī 1j
dm̄1

+ μ̄1

N∑
j=1

c ji
d Ī 1j
dm̄1

⎞
⎠

+ d ζ̄ 1
j

dm̄1

⎛
⎝(1 + m̄1)

N∑
j=1

a ji Ī
1
j + μ̄1

N∑
j=1

c ji Ī
1
j

⎞
⎠

=
(
1 − Ī 1i − Ī 2i − ζ̄ 2

i

)⎛
⎝m̄1

N∑
j=1

a ji
d Ī 1j
dm̄1

+
N∑
j=1

a ji Ī
1
j

+ μ̄1

N∑
j=1

c ji
d Ī 1j
dm̄1

⎞
⎠ +

⎛
⎝m̄1

N∑
j=1

a ji Ī
1
j + μ̄1

N∑
j=1

c ji Ī
1
j

⎞
⎠

(
− d Ī 1i
dm̄1

− d Ī 2i
dm̄1

− d ζ̄ 2
i

dm̄1

)

d ζ̄ 1
i

dm̄1
=

⎧⎪⎪⎨
⎪⎪⎩

(
m̄1

∑N
j=1 a ji Ī 1j + μ̄1

∑N
j=1 c ji Ī

1
j

)(
− d Ī 1i

dm̄1
− d Ī 2i

dm̄1
− d ζ̄ 2i

dm̄1

)
+ (

1 − Ī 1i

− Ī 2i − ζ̄ 1
i − ζ̄ 2

i

) (∑N
j=1 a ji Ī 1j + m̄1

∑N
j=1 a ji

d Ī 1j
dm̄1

+ μ̄1
∑N

j=1 c ji
d Ī 1j
dm̄1

)
⎫⎪⎪⎬
⎪⎪⎭

(1 + m̄1)
∑N

j=1 a ji Ī 1j + μ̄1
∑N

j=1 c ji Ī
1
j

At m̄1 = m1c, Ī 1i , Ī 2i > 0,
d ζ̄ 1i
dm̄1

= d ζ̄ 2i
dm̄1

= 0 and ζ̄ 2
i = 0.

⎛
⎝m1c

N∑
j=1

a ji Ī
1
j + μ̄1

N∑
j=1

c ji Ī
1
j

⎞
⎠ (φi + ψi )

=
(
1 − Ī 1i − Ī 2i − ζ̄ 1

i

) ⎛
⎝ N∑

j=1

a ji Ī
1
j + m1c

N∑
j=1

a jiφ j + μ̄1

N∑
j=1

c jiφ j

⎞
⎠
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m1c

⎛
⎝(φi + ψi )

N∑
j=1

a ji Ī
1
j −

(
1 − Ī 1i − Ī 2i − ζ̄ 1

i

) N∑
j=1

a jiφ j

⎞
⎠

=
(
1 − Ī 1i − Ī 2i − ζ̄ 1

i

) ⎛
⎝ N∑

j=1

a ji Ī
1
j + μ̄1

N∑
j=1

c jiφ j

⎞
⎠

− μ̄1 (φi + ψi )

N∑
j=1

c ji Ī
1
j (14)

This implies that,

m1c =

{(
1 − Ī 1i − Ī 2i − ζ̄ 1

i

) (∑N
j=1 a ji Ī 1j + μ̄1

∑N
j=1 c jiφ j

)
−μ̄1 (φi + ψi )

∑N
j=1 c ji Ī

1
j

}

(φi + ψi )
∑N

j=1 a ji Ī 1j − (
1 − Ī 1i − Ī 2i − ζ̄ 1

i

)∑N
j=1 a jiφ j

To corroborate the theoretical results, the following section illustrates the simulation
numerically. ��

3 Numerical simulations

This section discusses the numerical results of the competitive SA1 I1SA2 I2S model
with alert influence over CN and IDNnetworks. Numerical results are further validated
with stochastic simulations using GEMFSim framework [27]. Stochastic simulation
of all state probabilities are depicted in Fig. 4, using the values of the following
parameters m1 = 0.1,m2 = 10, δ1 = 0.005 ∗ m1, δ2 = 0.5 ∗ m2, β1 = 10/λ1, β2 =
90/λ2, βa1 = 1/3 ∗ β1, βa2 = 1/3 ∗ β2, and μ1 = μ2 = 1/λ3.

Time dependent stochastic simulations are shown in Fig. 5 for varying alert rates
to validate our analytical findings. In Fig. 5a, the results are obtained for the same
parameter values as in Fig. 4, when m1 = 10,m2 = 0.1(m1 > m2). Figure 5a
also shows that the infection probability of memek is decreasing as the infection
probability of competing memel is increasing . That is, the increase in alert rate of
memek prevents spread of memek . A similar scenario with the contrasting effect is
depicted in Fig. 5b, when m1 = 0.1,m2 = 8(m2 > m1). Figure 6 represents the
dynamic behaviour of both the memes for each node in the contact networks of 100
individuals. Particularly, the red color trajectory path indicates the infection probability
of memek , while blue color trajectory path represents infection probability of memel
using the same parameter values as discussed above.

Moreover, the model shows the coexistence of competitive memes, survival thresh-
old and dominant threshold of multiplex networks. Based on the identification of the
competitive threshold, the threshold values could be either stable or extinct. In this
regard, the real network data of Facebook, Twitter, and Flickr each having 100 nodes
and the corresponding adjacency matrices A, B and C are generated for the numeri-
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Fig. 4 Stochastic simulation of all state probabilities

cal simulation. The spectral radius of the adjacency matrix A and B are 6.93488 and
4.0781 respectively. Initially, the coexistence of both the memes with the given fixed
value of β2 = 5.1,m2 = 2 and varying τ1 are shown in Fig. 5. At τ1 = 9.2 ∗ 1/λ1(A)

both the memes, memek and memel will exist.
The graphical visualization of survival and absolute dominance threshold ofmemek

are shown in Figs. 7 and 8. By using theorem 2, at τ1 = 0.2∗1/λ1(A), memek starts to
survive for the alert rate of memek(m1 = 8) and has been compared without alert for
memek as shown in Fig. 7. It also shows that the survival threshold ofmemek is concise
at a given alert rate than the case of no alert. In Fig. 8, the dominant threshold with
alert and without alert cases are analyzed. Since, the infection rate of alert individual
is less than the infection probability of memel (β2), the simulation parameter values
are chosen as β2 = 5.7,m1 = 2,m2 = 8, μ1 = μ2 = 4, δ1 = 6.9348, δ2 = 3.8741
and the alert infection rate as βa2 = r2β2 with r2 ≤ 1.

Using various alert rates, the alert probability of memek and memel are obtained.
Figure 9 shows that the wide spread of memek has occurred where as the memel
becomes extinct at the alert threshold (m1c) of memek .

4 Conclusion and future work

The proposed model presents the extension of the single virus SAIS model to compet-
itive meme propagation model. The major contributions of this work are identification
of coexistence, extinction of both the memes, absolute dominant threshold of memes
and alert threshold in multiplex social networks. Also, comparing the alert behaviour
of single meme to competitive memes, the infection fraction of memek and memel
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Fig. 5 a Stochastic simulation of fraction of infected nodes when m1 > m2, b stochastic simulation of
fraction of infected nodes when m1 < m2

is significantly reduced to the case of no-alert. The proposed alert influencer thresh-
old helps in promoting the behaviour of the meme like advertisements promoting
new products in marketing. It is applicable for competitive products like Iphone vs
Android or spreading a disease through the physical contact or vector host population.
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Fig. 6 Trajectory path for 100 nodes representing the behaviour of memek and memel
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The competitive meme with promoting alert over multiplex social network topology
is highly challenging and adoptable for promoting new products in the field of market-
ing. Optimizing the threshold of alert rate of a memewhich controls the corresponding
meme’s propagation in competing scenario will be the scope for future research.
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