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Abstract

Efficient scheduling is critical for achieving improved performance of distributed
applications where an application is to be considered as a group of interrelated tasks
and represented by a task graph. In this work, we present a clustering-based scheduling
algorithm called effective critical path (ECP) to schedule precedence constrained tasks
on multiprocessor computing systems. The main aim of the algorithm is to minimize
the schedule length of the given application. It uses the concept of edge zeroing
on the critical path of the task graph for clustering the tasks of an application. An
experimental analysis is performed using random task graphs and the task graphs
derived from the real-world applications such as Gaussian Elimination, fast Fourier
transform and systolic array. The results illustrate that the ECP algorithm gives better
performance than the previous algorithms, considered herein, in terms of the average
normalized schedule length and average speedup.

Keywords DAG scheduling - Clustering - Task graphs - Multiprocessor computing
systems - Static scheduling
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1 Introduction

Over the years, the high-speed multiprocessor computing systems are developed that
facilitate computation of large commercial, scientific, and mathematical applications
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by dividing the applications into various tasks and executing them on different pro-
cessing units. The scheduling of tasks in such systems is a significant problem that
have been widely studied by the researchers. A multiprocessor computing system
refers to a distributed suite of several processing units interconnected with each other
via fast communication links. It is exploited to compute big parallel and distributed
applications. Such an application is usually consists of interrelated tasks. Possible
interrelations amongst the tasks are depicted by a task graph that is modeled by a
Directed Acyclic Graph (DAG) [22]. The competence of computing parallel and dis-
tributed applications on multiprocessors is extremely dependent on their features, for
example, size of data to transfer between tasks, computation time of tasks, precedence
constraints among tasks, etc. and platform features such as number of processor, exe-
cution power of the processors, link capacity, etc. For the effective exploitation of a
multiprocessor computing system, each task of the application is allocated to a best-
suited processing unit such that dependency constraints among tasks are satisfied,
and minimum schedule length is achieved. The minimization of makespan helps to
enhance the processor utilization and system throughput. The problem of obtaining
schedules with minimum length has been shown to be NP-complete [31,32]. In an
attempt to give polynomial time solutions, the known algorithms end up providing at
times suboptimal solutions.

To solve the problem of task scheduling, the known algorithms are grouped into
static and dynamic scheduling algorithms. The static scheduling algorithms use all
information regarding tasks in advance, such as computation time of tasks on process-
ing units and communication time between tasks, etc. before starting the execution
of the application while dynamic scheduling algorithms utilize the required infor-
mation for scheduling decisions at run-time. There are many methods to assess
such information [7]. This paper focuses on static scheduling algorithms as it gen-
erates optimal schedules without considering run-time overheads. Static scheduling
algorithms may be grouped into guided heuristic-based algorithms or random search-
based algorithms. The second group of the static algorithm takes more time to find
the required solution even though the makespan is minimized at the cost of spare
time. It gives different makespan for the same problem size and the same inputs
based on the various scheduling techniques are used to allocate parallel tasks onto
the suitable processors. Alternatively, the first group of static algorithm focuses
on generating schedules with the minimum scheduling overhead, but the obtained
makespan is not necessarily the shortest. Hence, both heuristic-based and guided ran-
dom search-based algorithms can be used as per circumstances. The heuristic-based
algorithms are further divided into three subgroups that are list scheduling, duplication-
based scheduling, and clustering-based scheduling. The list scheduling algorithms
[1,7,10,11,15,20,33,35,36], typically schedule tasks in 2 phases: the primary phase
is task prioritization in which tasks are assigned priorities based on their associated
execution and communication times; processor selection being the second phase in
which suitable processors are selected and task assignment to processors is done. The
duplication-based algorithms [2,3,12,13,19,31,34] attempt to minimize the communi-
cation time between tasks through duplication of tasks onto different processors. The
clustering-based algorithms [16,18,20,23,27,32,36,38] are mainly applicable for an
unbounded number of processors and generate schedules by grouping heavily com-
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municating tasks of a given application into clusters and assigning these clusters onto
appropriate processors so that the schedule length of an application can be minimized.

Clustering-based algorithms are more advantageous as they embrace a more global
view, whereas list scheduling algorithms, in contrast, tend only to make local opti-
mization decisions [4]. The aim, in this work, is to look for some fresh approach to
develop a clustering-based technique for scheduling precedence constrained tasks of
an application in multiprocessor computing systems. We propose an algorithm called
Effective Critical Path (ECP) that schedules tasks of the application onto an unbounded
number of fully connected processors. The time complexity of the ECP algorithm is
0(|V|2(|V| + |E])), where | E| is the number of edges and | V| is the number of tasks
in the task graph. The contributions here may be indicated as follows:

— Our idea of applying edge zeroing concept on the critical path leads to reduction
in the communication time among the tasks of a given task graph and finally
provides a meaningful clustering that can consequently help in improving the
execution characteristics.

— Makespan being a significant measure for scheduling applications in a multipro-
cessor system, the proposed algorithm provides an alternative approach towards
its minimization.

— This work demonstrates inprovement in performance of the proposed ECP over
four well-known algorithms such as EZ [32], LC [18], CPPS [27], and LOCAL
[26].

— The results of the simulation carried out herein show distinctively better normal-
ized schedule length and speedup for randomly generated benchmark task graphs
[8] and task graphs generated from real-world applications such as Gaussian Elim-
ination, fast Fourier transform (FFT) and systolic array.

The rest of the article is organized as follows. Section 2 formalizes the task schedul-
ing problem. Section 3 describes the related work. Section 4 discusses the proposed
ECP algorithm with an execution trace of the algorithm using an example. The com-
plexity analysis for the proposed algorithm is also presented in this section. The
experimental results for random task graphs and task graphs generated from real-
world applications are presented in Sect. 5. A summary of the findings and future
work are given in Sect. 6.

2 Task scheduling problem

This work focuses on the static scheduling of a single application in a multiprocessor
computing system. Assuming that the multiprocessor computing system is composed
of an unbounded number of homogeneous processors that are fully interconnected
and there is non-zero communication overhead between any two processors. The
execution of tasks on processors and communication between tasks can be performed
simultaneously, and task execution is assumed to be non-preemptive. Also assuming
that no duplication of the task is allowed and all tasks in a cluster will have to execute
on the same processor. Table 1 gives some symbols and their meanings that will be
used in the subsequent discussion.
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Table 1 Symbols and their meaning

Symbols Meaning

\4 Number of nodes in a task graph

|E| Number of edges in a task graph

T; ith task in a task graph

e j A directed edge with precedence constraint from task 7; to T
Tentry Task without any predecessor

Toxit Task without any successor

pred(T;) Set of immediate predecessors of task 7;
suce(T;) Set of immediate successors of task 7;
AFT(T;) Actual finish time of task 7;

ET(T;) Execution time of task 7;

CT (e, j) Communication time from task 7; to 7}
BL(T;) Bottom level of task 7;

CP Critical path of the task graph

ECP Effective critical path of the task graph
EST(T;) Earliest start time of task 7;

EFT(T;) Earliest finish time of task 7;

CCR Communication-to-computation ratio

An application is, a set of tasks, represented as a task graph which is a Directed
Acyclic Graph (DAG), G = (V, E), where V represents the set of nodes, and each
node denotes a task, and E is the set of communication edges between tasks. In the
task graph, each task 7; € V is associated with its execution time or computation time,
denoted by ET(T;) and eachedge e; ; € E from T; € V to T; € V is associated with
its communication time, denoted by CT (e; ;). Each edge ¢; ; denotes the dependency
constraint between tasks 7; and 7; such that task 7; cannot begin its execution until
task T; completes its execution [24]. When two tasks belong to the same cluster,
the communication time between them becomes zero. An instance of a task graph
containing 15 tasks for a homogeneous system is shown in Fig. 1 and is taken from
literature [16]. In Fig. 1, a node denotes a task, and the value inside the node represents
the execution time of that task. The value written with a directed edge between tasks
T; and T denotes the communication time from 7; to 7. For example, the execution
time of 7% is 4, and the communication time from 757 to Ty is 5. T is immediate
predecessor of 73, T4, and Ts. T1; is immediate successor of 77 and T1g. Ty is an entry
task, and T4, Tg, and T4 are exit tasks.

The following known definitions ascribe some common properties for task schedul-
ing, and these definitions will be useful in the forthcoming sections.

Definition 1 (pred(T;)) It represents the set of immediate predecessors of task T;
in a given task graph. A task is called an entry task, Ty, if it doesn’t have any
predecessor task. If a task graph consists of many entry tasks, a dummy entry task
with zero execution time and edges with zero communication time can be added to
the task graph.
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Fig.1 Task graph consisting of
fifteen tasks with their execution
times and edges labelled with
communication times

Definition 2 (succ(T;)) It represents the set of immediate successors of task 7; in a
given task graph. A task is called an exit task, T,;;, if it doesn’t have any successor
task. Similar to the entry task, if a task graph consists of many exit tasks, a dummy exit
task with zero execution time and edges with zero communication time from current
many exit tasks to this dummy task can be added to the task graph.

Definition 3 (AFT(T;)) It is the Actual Finish Time of a task 7; and is defined as the
point of time where the execution of task 7; is completed by some assigned processor.
This time is different from the estimated finishing time of tasks.

Definition 4 (makespan) makespan or schedule length represents the completion time
of the exit task in the scheduled task graph and is defined by

makespan = max{AFT (Toxir)} ey

where AFT (T,yi;) denotes the Actual Finish Time of the exit task. If a task graph
has many exit tasks and no redundant task is added, the makespan is computed as the
maximum AFT of all exit tasks. Schedule length, makespan and parallel execution
time are used interchangeably in this work.

Definition 5 (Critical path) Critical Path (CP) of a task graph is defined as the longest
path from the entry task to the exit task in the graph where the length of a path in the
task graph is the sum of the execution times of its tasks and communication times of
its edges.
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Definition 6 (BL(T;)) It denotes the Bottom Level of a task 7; and is defined as the
length of the longest path from the task 7; to the exit task in the task graph. It is
obtained as given in Eq. (2):

BL(T) = ET(T;) +  max {BL(T,-)+CT(e,-,j)} 2)
Tjesucc(T;)

CT (e;, ;) becomes zero, when 7; and T are in a same cluster. For the exit task,
BL(T;)) = ET(T)). 3)

Definition 7 (E ST (T;)) It denotes the Earliest Start Time of a task 7; and is defined as
the time at which 7; can start its execution, after all its predecessor tasks are finished
their execution and associated dependencies have been transferred to 7;. It is obtained
as given in Eq. (4):

EST(T}) = max {EST(T,-)+ET(TJ-)+CT(e,,,-)} 4)
Tjepred(T;)

CT(ej,;) becomes zero, when T; and T; are in a same cluster. For the entry task,
EST(Tentry) = 0. (5)

Definition 8 (E FT (T;)) It denotes the Earliest Finish Time of a task 7; and is defined
as the time where the computation of task 7; is completed. It is obtained as given in
Eq. (6):

EFT(T;)) = EST(T;) + ET(T}) (6)

We assume that all processors are homogeneous and initially available. Thus, the AFT
and EFT of a task will be equal.

The aim of the scheduling algorithm is to schedule tasks of a given task graph onto
processing units such that the precedence constraints are satisfied and makespan is
minimized. When all tasks of a task graph are scheduled, the makespan will be the
maximum of the AFT of all the exit tasks, as expressed by Eq. (1).

3 Related work

Many algorithms for task scheduling for multiprocessor computing systems have been
proposed. In this section, we give a brief explanation of some existing clustering based
task scheduling algorithms. One of the most famous clustering based algorithms is
Sarkar’s algorithm [32] that utilizes the concept of edge zeroing for clustering the
tasks. In this concept, the tasks which involve large communications are grouped
and executed on the same processor to minimize makespan of the task graph. This
algorithm initially kept each task in a separate cluster and sorted the edges by their
weights in non-increasing order, then scrutinizes edges one-by-one and zeroes them
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if the makespan does not increase. After edge zeroing concept, Kim and Browne [18]
came with the idea of linear clustering that finds the critical path in the task graph and
merges all the nodes of a critical path in the same cluster.

Yang and Gerasoulis [37,38] presented an algorithm, called Dominant Sequence
Clustering (DSC) that groups the nodes of the task graph by their priorities which is
determined by using the idea of the bottom level and top level. The top level of a node
is the length of the longest path from an entry node up to that node (excluding the
weight of the node) in the task graph. The greedy version of DSC algorithm is given
by Dikaiakos et al. [9].

Wu and Gajski [36] proposed MCP (Modified Critical Path) algorithm for a limited
number of processors that can also perform as an edge-zeroing heuristic when used for
an unlimited number of processors. It exploits the idea of As-Late-As-Possible (ALAP)
binding which assigns latest possible execution time to the task and determines the
ALAP time for each task by moving downward through the DAG. The MCP maintains
an increasing lexicographical sorted list of tasks according to their ALAP time and
schedules the first task from the list at each step. Like MCP, the DCP (Dynamic Critical
Path) algorithm [20] is given for a bounded number of processors and becomes an
edge-zeroing heuristic when it is utilized for an unbounded number of processors. At
each iteration, it determines the difference between the absolute EST and absolute
latest start time for each task of the CP and schedules the task which has the smallest
difference among all tasks. The authors called the intermediate CP as the dynamic CP
to differentiate it from the initial CP of the DAG.

Kadamuddi and Tsai [16] presented a Clustering Algorithm for Synchronous
Communication (CASC) that efficiently parallelizes the input application on mul-
tiprocessors. It includes 4 steps, that is, Initialize, ForwardMerge, BackwardMerge,
and EarlyReceive. It increases the performance that occurred because of synchronous
communications. The CASC prevents deadlocks and handles the problems of blocking
synchronous sends at the clustering phase.

Mishra and Tripathi [27] defined a priority function for cluster pairs in the task graph
and proposed an algorithm, named Cluster Pair Priority Scheduling (CPPS). The CPPS
initially determines the priorities for all cluster pairs and sorts them in decreasing order,
then inspects each cluster pair one-by-one and groups them if makespan decreases.
The priorities of cluster pairs change whenever a grouping of tasks take place; the
CPPS performs above steps until makespan decreases.

Mishra et al. [30] proposed a randomized algorithm, called RDCC (Randomized
Dynamic Computation Communication) for task scheduling. The RDCC is a ran-
domization of the CCLC (Computation Communication Load Clustering) algorithm
given in [29] and uses the concept of dynamic priority from DCCL (Dynamic Com-
putation Communication Load) algorithm [28]. The CCLC determines the CCLoad
(Computation-Communication-Load) for each task and sorts them according to their
CCLoad values. The algorithm initially places all tasks in one cluster, then extracts
them one-by-one at each step and places them in separate clusters if makespan
decrease. The DCCL algorithm works similar to CCLC and utilizes the concept of
priority which is based on the calculation of Dynamic CCLoad.

Khaldi et al. [17] presented an algorithm Bounded Dominant Sequence Clustering
(BDSC) that extends the DSC algorithm for a limited number of processors. The BDSC
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Table2 A comparison of the existing clustering-based task scheduling algorithms

Algorithm References Concept Complexity

EZ [32] Edge zeroing O(E|(IVI+ |E])

LC [18] Critical Path o(VI(|V|+ |E])

DSC [37,38] Dominant Sequence O((IV]+ |EDlog(IV]))

GDS [9] Greedy Dominant Sequence o(VI(IV|+ |E))

MCP [36] ALAP O(IVPlog(IV])

DCP [20] Critical Path o(v))

CASC [16] Synchronous Communication O(IV\(lE\2 +1log(|V])))

CPPS [27] Cluster Pair Priority O(IVIIE|(IV] + |E]))

CCLC [29] CCLoad O(VIX(IVI +EDlog(IV| + |E]))
DCCL [28] Dynamic CCLoad O(VI2(V| + |EDlog(|V| + |E]))
RDCC [30] Randomization O(ab|VI(|V|+ |EDlog(|V|+ |E]))
BDSC [17] Dominant Sequence oV \3)

LOCAL [26] Local Search O(IVIIEI(IV]+|E]))

considers several major attributes like memory constraints, dependency constraints,
processor availability, etc. The algorithm reduces the number of clusters to match the
processor quantities and assigns each cluster to available processors which provide
smallest top level. The algorithm utilizes an extra heuristic to decide the precedence
among tasks by their bottom level when tasks have equal priorities.

In [26], the authors proposed a general randomized task scheduling algorithm called
LOCALC(A, B) for multiprocessor environments. It uses local neighborhood search and
gives a hybrid of two known task scheduling algorithms (A, and B). As an instance,
the authors selected DSC as algorithm A and CPPS as algorithm B.

Table 2 shows a comparison of the existing clustering-based task scheduling algo-
rithms in terms of the concept used and the time complexity. In Table 2, |E| and |V|
represent the number of edges and the number of nodes in the task graph, respec-
tively, ‘a’ represents the number of randomization steps, and ‘b’ denotes a limit on
the number of clusters formed.

4 The proposed clustering-based scheduling of tasks

In this section, we introduce the proposed clustering-based scheduling algorithm
named ECP for an unbounded number of processors for the task scheduling problem
on the multiprocessor computing systems. Our proposed clustering based solution, to
the scheduling problem, is implemented in Algorithm 3 below which makes use of
Algorithms 1, and 2 and executes a chain of clustering refinement steps. The earli-
est step allocates each task of the task graph to a distinct cluster. At each step, the
algorithm tries to improve its earlier clustering by merging suitable clusters into one.
A merging operation is carried out by zeroing an edge cost linking two clusters. The
main aim of the ECP algorithm is to minimize the makespan taking into consideration
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the precedence constraints. This algorithm uses the concept of edge zeroing on the
critical path of the task graph to group the tasks. The idea of edge zeroing was initially
given by Sarkar [32]. Sarkar’s algorithm examines the edges one by one from sorted
list and performs edge zeroing if makespan does not increase. In Sarkar’s algorithm,
the edge which is zeroed may not be on a path that determines the makespan. Here in
the proposed algorithm, we repeatedly compute a critical path of the task graph and
perform the edge zeroing steps only on the critical path edges with the aim of reducing
makespan. The proposed algorithm has the following characteristics:

— it zeroes an edge of a critical path at each step, producing a new critical path,
thereafter,

— ituses backtracking, after zeroing an edge at each step, when current makespan is
more than the makespan in the previous step,

— it dynamically updates the schedule for each processor until makespan of the task
graph does not increase, and

— itimplicitly gives the feasible schedule of the clustering obtained at each step. Oth-
erwise, current makespan would not be determined, on which clustering decisions
are based.

In the following, we talk about a number of the concepts utilized in the design
of our algorithm. In the first subsection, we describe the computation of the critical
path and a method to select the edge for zeroing. In the second subsection, we discuss
the method for merging of clusters. We describe the proposed algorithm in the third
subsection. In the fourth subsection, the analysis about the complexity of the algorithms
are presented, An illustrative example for proposed algorithm is given at the end of
this section.

4.1 Critical path computation and edge selection

As given in Definition 5, the critical path of a task graph is the path that has the
maximum sum of the execution and communication times. It determines the partial
makespan of a task graph because the sum of computation time of the tasks belongs to
a CP provides the lower bound on the makespan. In the proposed solution, at each step
of the scheduling process, the CP of a task graph may change dynamically, because
an edge on a CP in a particular step may not remain on the CP at the next step due
to edge zeroing. We call the intermediate CP obtained during scheduling steps as the
Effective Critical Path (ECP) to distinguish it from the initial CP of the unscheduled
task graph. The ECP is computed as shown in Algorithm 1.

After the ECP computation, we need an approach to select an appropriate edge on
the ECP for zeroing. To select an edge, we first sort the edges of the ECP according to
their CT values in non-increasing order by using heap sort. Then choose edges from
left to the right in the sorted list until schedule length does not reduce. If two edges
have same CT value on the ECP, the order between edges is decided by the sum of
the execution time of the associated tasks. The edge which has lower value will get
higher order than the other in the sorted list. If this value is equal for both edges, the
order is decided according to FCFES in the ECP. By doing this, we are giving lower
priority to the computation-intensive tasks in comparison to communication-intensive.
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Algorithm 1 Algorithm for the ECP computation

1: topo_list <— a list of all tasks 7; € V sorted in a reverse topological order
2: for each task 7; in topo_list do

3:  Compute BL(T;) as Eq. (2)

4. Store successor of 7; in ecp_succ(T;) from which BL(T;) is computed
5: end for

6: ecpl0] < T;, where T; € V with maximum BL(7T;)

7T:

8:

Teurrent < T;
count <0
9: while ecp_succ(Teyrrent) # ¢ do
10:  ecp_edges[count] <= ecyrrent,ecp_suce(Teyrrent)

11: count < count + 1
12: ecplcount] < ecp_succ(Teurrent)
13: Teurrent < ecp_succ(Teurrent)

14: end while

Computation-intensive tasks are those tasks which spend more time in performing
computation than communication.

4.2 Clustering

While we are able to identify an appropriate edge on an ECP for zeroing, we still
require a method to merge two clusters after zeroing an edge. When two clusters
are merged, their communication becomes local, and tasks of the cluster are ordered
according to Algorithm 2.

Algorithm 2 Algorithm for the merging of two clusters, C; and C»
1: Let [ is a list of tasks of Cy and /5 is a list of tasks of C»

2:1<«0,j <0

3: whilei </j.sizeand j <lp.size do

4 if /1[i] is descendent of /5[ j] then

5 Jj++

6:  elseif /[ ] is descendent of /1[i] then

7 i+ 4+

8: elseif BL(/{[i]) < BL(I3[j]) then

9: add pseudo edge from /5[] to /1 [i] with zero communication time
10: Jj++

11:  elseif BL(I>[j]) < BL(l{[i]) then

12: add pseudo edge from /;[i] to I[j] with zero communication time
13: i++

14:  else if /[ j] comes earlier in topological order than /1 [i] then

15: add pseudo edge from /5[ j] to /1[i] with zero communication time
16: Jj++

17:  else

18: add pseudo edge from /1 [i] to I[j] with zero communication time
19: i++

20:  end if

21: end while
22: Make Cluster C» as Cluster C
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The algorithm first verifies that whether the tasks of one cluster are descendent
of other. If yes, there is no need to order them explicitly. Otherwise, the algorithm
compares their bottom level and adds a pseudo edge with zero communication time
from the task having higher BL value to the task having lower BL value. If the BL
value of the tasks comes out to be equal, order the tasks according to their topological
order in their clusters and add a pseudo edge with zero communication time from the
higher order task to the lower order task.

4.3 The ECP algorithm

In this subsection, we formalize the proposed ECP algorithm in Algorithm 3. As stated
earlier this algorithm makes use of Algorithms 1, and 2 for its purpose as indicated in
the Algorithm 3 given below.

Algorithm 3 The ECP Algorithm

1: Initially, each task forms a separate cluster

2: Compute initial schedule length

3: repeat

4:  Compute the ECP via Algorithm 1

5 Sort the edges of the ECP in non-increasing order according to their communication time
6:  for all edges of ECP in the sorted list do
7
8

if both tasks of an edge belongs to same cluster then

: continue
9: else
10: Zero an edge if schedule length does not increase
11: When two clusters are merged, use Algorithm 2
12: Update schedule length
13: end if
14:  end for

15: until schedule length does not increase

The algorithm starts with initial clustering of each task of the task graph at line 1. It
then computes the initial schedule length of the unscheduled task graph. The algorithm
repeats the steps from line 3 to 14, until schedule length does not increase. In these
steps, the algorithm computes ECP of partially scheduled task graph via algorithm
1 and sorts the edges of the ECP according to their communication time by using
heap sort. Then it selects the edges of the ECP from left to right in the sorted list
and verifies whether both tasks of an edge belong to a cluster or not. Perform edge
zeroing if both tasks of an edge are in different clusters and schedule length does
not increase after clustering, otherwise do verification for next edges. Whenever edge
zeroing is performed, clusters are merged according to Algorithm 2 and schedule
length is updated.

4.4 Algorithm complexity analysis

In this section, we present an analysis of the time complexity of the algorithms dis-
cussed above.
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4.4.1 Analysis of Algorithm 1

This algorithm finds the ECP of a task graph. The topological sorting in line 1 can
be performed in O(|V| + |E|) time. Line 2 in the for loop iterates through the edges
coming out of a task 7;. Lines 3 and 4 take constant time. Therefore, the total number
of iterations for lines 2 to 5 occurs | E| times. Line 6 to 8 takes constant time. The while
loop from lines 9 to 14 find the tasks and edges of the ECP and execute | Ve, | times
where V,,, is the number of tasks on the ECP. In the worst case, this while loop will
execute | V| times when all tasks on the ECP. Thus, the upper bound of this algorithm
is O(|V| + |E]).

4.4.2 Analysis of Algorithm 2

This algorithm finds the ECP of a task graph. Line 2 is an initialization that can execute
in constant time. The while loop beginning at line 3 will execute at most | V| times,
and the steps from lines 4 to 20 will take constant time. Thus, the total number of
iterations for lines 3 to 21 occurs |V| times. Line 22 will execute | V| times. Thus, the
upper bound of this algorithm is O(]V]).

4.4.3 Analysis of Algorithm 3

Algorithm 3 is the proposed ECP algorithm computing the final schedule for a task
graph. Line 1 is an initialization that can be done in |V| times. Line 2 computes the
initial schedule length in (|V| 4+ |E]) times. In line 4, the ECP can be computed via
Algorithm 1 in O (|V|+|E]) time. The sorting in line 5 can be performed via heap sort
and completed in O(]V|lg|V|) time. The for loop beginning at line 6 will execute at
most | V| times when all tasks belong to an ECP. Line 10 can be executed in (|V |+ | E|)
times. In line 11, when two clusters are merged, a call is issued to Algorithm 2 and
can be completed in O (] V]) time. Line 12 updates schedule length in constant time.
The total number of iterations for lines 3 to 15 occurs | V| times. Thus, the complexity
of the ECP algorithm is O(|V|?(|V| + |E|)).

4.5 Anillustrative example

Consider the task graph given in Fig. 1. The graph consists of fifteen tasks labeled Ty
to T14 with their execution times. The tasks 7 and T4 are the entry and exit tasks of
the task graph respectively which represent the starting and ending of the application.
The edges of the graph are labeled with the communication times.

At each step of the execution of the algorithm, the ECP of the task graph is deter-
mined, and edges of the ECP are examined one-by-one in non-increasing order of their
communication times and corresponding tasks (clusters) of that edge are merged, if
schedule length does not increase. Clustering steps of the example task graph in Fig. 1
with the ECP algorithm is shown in Fig. 2.

Initially, each task is assumed to be in a distinct cluster as shown in Fig. 2a, in
which clusters are shown with different color boxes. Schedule length for the initial
clustering comes out to be 39.
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Fig.2 Clustering steps of the example task graph in Fig. 1 with the ECP algorithm a initial clustering (initial
schedule length = 39), b clustering after merging 7' and 73 (partial schedule length = 35), ¢ clustering after
merging 77 and 77, (partial schedule length = 34), d clustering after merging 7 and 7' (partial schedule
length =31), e clustering after merging 773 and T4 (partial schedule length = 28), f clustering after merging
Ty and {77, T3} (partial schedule length = 26), g clustering after merging {77, T12} and {73, T14} (partial
schedule length = 25), (h) clustering after merging {7y, T, 73} and {717, T13, T14} (final schedule length
=23)
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Figure 2b—g show the intermediate clusters and the partial schedule length of the
task graph. In Fig. 2h, the schedule length comes out to be 23 that can’t be reduced
after merging any edge in the ECP. Thus, it is the final schedule length of the task
graph, and the clustering obtained in this step reflects the final schedule of the example
task graph.

5 Experimental results and discussion

This section provides the performance evaluation of the ECP algorithm with four
well-known clustering based task scheduling algorithms, the EZ, the LC, the CPPS,
and the LOCAL, using various comparison metrics. For this purpose, two types of
task graphs are considered: (i) randomly generated and (ii) derived from real-world
applications. The experiments are carried out on a Dell PowerEdge R420 server with
CentOS (version 7.3-1611), Intel(R) Xeon(R) CPU E5-2420 v2 @ 2.20 GHz processor,
and 192 GB of memory.

5.1 Comparison metrics

The comparisons of the task scheduling algorithms are based on the following perfor-
mance metrics:

5.1.1 Normalized schedule length

As many number of task graphs having various characteristics are utilized, it is required
to normalize the schedule length to the lower bound. Hence, the Normalized Schedule
Length (NSL) [21] of a schedule for a given task graph or Scheduling Length Ratio
(SLR) [25] can be obtained by dividing the makespan to the total execution times on
the critical path of the task graph as given in Eq. (7):

makespan

NSL = —————
2 recr ET(TH)

N

The total execution times on the critical path provide the lower bound on the
makespan. So we have the following inequality for the NSL:

NSL > 1. ®)

5.1.2 Speedup

The speedup [25,35] for a given task graph is the improvement in speed of execution
when task graph is executed on single and many processors. It can be obtained by
dividing the sequential execution time (i.e. by assigning all tasks of a task graph to a
single processor) to the parallel execution time (i.e. the makespan of the final schedule)
as given in Eq. (9):
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dorey ET(T)
makespan

Speedup = )

It is used to show the effect of performance after processor enhancement.

5.1.3 CCR

The CCR (Communication to Computation Ratio) [21] of a given task graph is defined

as the ratio of the average communication time to the average execution time as given

in Eq. (10):

(Yo, ee CT(ei,))/IE|
(Xrev ET(T))/IV]

If CCR value of a task graph is very high, it can be considered as a communication
intensive task graph.

CCR = (10)

5.1.4 Percentage improvement in NSL

The percentage improvement in NSL of ECP algorithm over algorithm A [38] is
defined as follows:

NSLEgcp
%NSLimprovement = (1 - TLA) x 100 D

where NSLEgcp represents the NSL generated by the ECP algorithm and NSL 4
is the NSL generated by the compared algorithms.

5.1.5 Percentage improvement in speedup

The percentage improvement in speedup of ECP algorithm over algorithm A is defined
as follows: Speed
pocdupa ) % 100 (12)

%Speedupimprovement = <1 - W

where Speedup - p represents the speedup generated by the ECP algorithm and
Speedup , is the speedup generated by the compared algorithms.

5.2 Random task graphs

David and Gabriel [8] proposed a set of 180 benchmark random task graphs for
comparison and analysis of heuristic algorithms. The graphs are divided into 6 subsets
each of which contains 30 graphs and having the number of nodes as 50, 100, 200,
300, 400, and 500 respectively.

The average NSL results of random graphs for the different number of nodes are
shown in Fig. 3. For each set of task graphs, the ECP algorithm gives better schedules
than other algorithms. Overall, the ECP algorithm provides an improvement of 19.93,
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Fig.3 Average NSL results WEZ mLC mCPPS mLOCAL mECP
obtained for random task graphs 15 -
as a function of number of nodes
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Fig.4 Average Speedup results WEZ mLC mCPPS mLOCAL mECP
obtained for random task graphs T
as a function of number of nodes

Average Speedup

T
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Number of Nodes

6.72,1.76, and 1.25 percent over the EZ, LC, CPPS and LOCAL scheduling algorithms
respectively.

The average Speedup results of random graphs for the different number of nodes
are shown in Fig. 4. For each set of task graphs, the ECP algorithm produces better
speedup than other algorithms. Overall, the ECP algorithm provides an improvement
of 20.74, 6.54, 1.92, and 1.38 percent over the EZ, LC, CPPS and LOCAL scheduling
algorithms respectively.

5.3 Real-world task graphs

Besides randomly generated graphs, we evaluated and compared the performance of
the algorithms concerning real-world applications, namely Gaussian Elimination [6,
35,36], fast Fourier transform [5,35], and systolic array [14]. All of these applications
are well-known and used in real-world problems.

5.3.1 Gaussian Elimination task graphs

In Gaussian Elimination task graphs, the number of tasks is (m?> 4+ m — 2)/2 where m
is the matrix size. A Gaussian Elimination task graph for matrix size m = 5 is shown
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Fig.5 A Gaussian Elimination
task graph for matrix of size 5

in Fig. 5. The values of m used in this experiment are varied from 5 to 30 with an
interval of 5. As the structure of this graph is known, we use different values of CCR
as [0.1, 1, 10] to carry out experiments.

The average NSL results of Gaussian Elimination graphs for different matrix sizes
are shown in Fig. 6. For each set of task graphs, the ECP algorithm gives better
schedules than other algorithms. Overall, the ECP algorithm provides an improvement
of 18.90, 34.04, 51.23, 44.27, and 9.44 percent over the EZ, LC, CPPS and LOCAL
scheduling algorithms respectively.

The average NSL results of Gaussian Elimination graphs for different values of CCR
are shown in Fig. 7. For CCR = 0.10, the ECP algorithm provides an improvement
of 3.94 percent over the EZ algorithm. For CCR = 1, the ECP algorithm provides an
improvement of 19.84,5.07,2.92, and 2.04 percent over the EZ, LC, CPPS and LOCAL
scheduling algorithms respectively. For CCR = 10, the ECP algorithm provides an
improvement of 22.18, 45.65, 15.48, and 11.57 percent over the EZ, LC, CPPS and
LOCAL scheduling algorithms respectively.

The average speedup results of Gaussian Elimination graphs for different matrix
sizes are shown in Fig. 8. For each set of task graphs, the ECP algorithm gives better
schedules than other algorithms. Overall, the ECP algorithm gives an improvement
of 13.46, 8.47, 60.74, 49.34, and 2.78 percent over the EZ, LC, CPPS and LOCAL
scheduling algorithms respectively.

The average speedup results of Gaussian Elimination graphs for different values of
CCR are shown in Fig. 9. For CCR =0.10, the ECP algorithm provides an improvement
of 4.14 percent over the EZ algorithm. For CCR = 1, the ECP algorithm provides an
improvement of 20.96, 5.30, 3.52, and 2.88 percent over the EZ, LC, CPPS and LOCAL
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Fig.6 Average NSL results
obtained for Gaussian
Elimination task graphs as a
function of matrix size

Fig.7 Average NSL results
obtained for Gaussian
Elimination task graphs as a
function of CCR

Fig.8 Average speedup results
obtained for Gaussian
Elimination task graphs as a
function of matrix size
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scheduling algorithms respectively. For CCR = 10, the ECP algorithm provides an
improvement of 21.95, 43.93, 14.04 and 9.37 percent over the EZ, LC, CPPS and
LOCAL scheduling algorithms respectively.
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Fig.9 Average speedup results WEZ mLC mCPPS WLOCAL mECP
obtained for Gaussian 6 -

Elimination task graphs as a
function of CCR

Average Speedup

Fig. 10 A FFT task graph for
input points 4

5.3.2 Fast Fourier transform task graphs

In fast Fourier transform (FFT) task graphs, the number of tasks is (2m — 1) +mlogom
where m is the input points and m = 2% for some integer k. The FFT task graph contains
two types of tasks: recursive call tasks and butterfly operation tasks. An FFT task graph
for four input points is shown in Fig. 10. In this figure, the tasks above dashed line are
recursive call tasks, and the tasks below dashed line are butterfly tasks. The structure
of FFT is known; hence, we use different values for input points as [2, 4, 8, 16, 32]
and CCR as [0.1, 1, 10] to carry out experiments.

The average NSL results of FFT graphs for different number input points are shown
in Fig. 11. For each set of task graphs, the ECP algorithm produces better schedules
than other algorithms. Overall, the ECP algorithm gives an improvement of 12.83,
39.47,67.30, 55.15, and 21.09 percent over the EZ, LC, CPPS and LOCAL scheduling
algorithms respectively.
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Fig. 11 Average NSL results WEZ mLC wCPPS WLOCAL mECP
obtained for FFT task graphs as 45 -
a function of input points
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The average NSL results of FFT graphs for different values of CCR are shown
in Fig. 12. For CCR = 0.10, the ECP algorithm provides an improvement of 2.23,
0.70, 1.68, and 1.13 percent over the EZ, LC, DCCL, RDCC and CPPS scheduling
algorithms respectively. For CCR = 1, the ECP algorithm provides an improvement
of 8.22,7.46, 10.95, and 5.54 percent over the EZ, LC, CPPS and LOCAL scheduling
algorithms respectively. For CCR = 10, the ECP algorithm provides an improvement of
16.51,50.22,27.48, and 11.14 percent over the EZ, LC, CPPS and LOCAL scheduling
algorithms respectively.

The average speedup results of FFT graphs for the different number of input points
are shown in Fig. 13. For each set of task graphs, the ECP algorithm produces better
schedules than other algorithms. Overall, the ECP algorithm gives an improvement
of 7.53, 7.63, 79.40, 72.37, and 10.00 percent over the EZ, LC, CPPS and LOCAL
scheduling algorithms respectively.

The average speedup results of FFT graphs for the different values of CCR are
shown in Fig. 14. For CCR = 0.10, the ECP algorithm provides an improvement of
3.18, 0.79, 2.81 and 2.09 percent over the EZ, LC, CPPS and LOCAL scheduling
algorithms respectively. For CCR = 1, the ECP algorithm provides an improvement of
10.97, 6.87, 15.37, and 5.98 percent over the EZ, LC, CPPS and LOCAL scheduling
algorithms respectively. For CCR = 10, the ECP algorithm provides an improvement of
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Fig. 13 Average speedup results WEZ mLC mCPPS mLOCAL mECP
obtained for FFT task graphs as 25 -
a function of input points
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18.20,43.35, 28.68, and 12.17 percent over the EZ, LC, CPPS and LOCAL scheduling
algorithms respectively.

5.3.3 Systolic array task graphs

In systolic array task graphs, the number of nodes is n2> and number of edges are
2n(n + 1) where n is the number of nodes on a path from the start node to the centre
node. A systolic array task graph for n = 3 is shown in Fig. 15. The values of n
used in this experiment are varied from 5 to 20 with an interval of 5. As the structure
of this graph is known, we use different values of CCR as [0.1, 1, 10] to carry out
experiments.

The average NSL results of systolic array graphs for the different number of nodes
are shown in Fig. 16. For each set of task graphs, the ECP algorithm produces better
schedules than other algorithms. Overall, the ECP algorithm gives an improvement
of 9.35, 41.55, 37.08, 35.13, and 21.64 percent over the EZ, LC, CPPS and LOCAL
scheduling algorithms respectively.

The average NSL results of systolic array graphs for the different values of CCR
are shown in Fig. 17. For CCR = 0.10, the ECP algorithm provides an improvement
of 2.40, 1.04, 2.14, and 1.38 percent over the EZ, LC, CPPS and LOCAL scheduling
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Fig. 15 A systolic array task
graph forn =3

Fig. 16 Average NSL results
obtained for systolic array task
graphs as a function of number
of nodes

Fig. 17 Average NSL results
obtained for systolic array task
graphs as a function of CCR
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algorithms respectively. For CCR = 1, the ECP algorithm provides an improvement
of 7.58, 6.34, 12.02, and 4.55 percent over the EZ, LC, CPPS and LOCAL scheduling
algorithms respectively. For CCR = 10, the ECP algorithm provides an improvement of
11.36, 52.06, 27.59, and 7.56 percent over the EZ, LC, CPPS and LOCAL scheduling

algorithms respectively.
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Fig. 18 Average speedup results WEZ mLC mCPPS mLOCAL mECP
obtained for systolic array task 6 -
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The average Speedup results of systolic array graphs for the different number of
nodes are shown in Fig. 18. For each set of task graphs, the ECP algorithm produces
better schedules than other algorithms. Overall, the ECP algorithm gives an improve-
ment of 5.39, 8.48, 58.09, 49.61, and 8.38 percent over the EZ, LC, CPPS and LOCAL
scheduling algorithms respectively.

The average Speedup results of systolic array graphs for the different values of CCR
are shown in Fig. 19. For CCR = 0.10, the ECP algorithm provides an improvement
of 2.59, 0.92, 2.43, and 2.24 percent over the EZ, LC, CPPS and LOCAL scheduling
algorithms respectively. For CCR = 1, the ECP algorithm provides an improvement
of 8.08, 5.65, 13.15, and 5.43 percent over the EZ, LC, CPPS and LOCAL scheduling
algorithms respectively. For CCR = 10, the ECP algorithm provides an improvement of
10.55,50.33, 21.94, and 8.35 percent over the EZ, LC, CPPS and LOCAL scheduling
algorithms respectively.

6 Conclusion

We have proposed and explained here a clustering-based scheduling algorithm that
makes use of critical path, and we name it Effective Critical Path (ECP) algorithm,
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for the problem of task scheduling in multiprocessors. The ECP algorithm goes for
edge zeroing on critical paths for clustering the tasks. The complexity of the ECP
algorithm works out to be O(|V|?(|V| + | E])), where |E| represents the number of
edges and |V| denotes the number of tasks in the task graph. The performance of
this ECP algorithm is compared with four well-known clustering-based scheduling
algorithms such as EZ, LC, CPPS, and LOCAL. The comparative study is based on
two types of task graphs such as randomly generated benchmark task graphs and
task graphs that correspond to real-world applications. The task graphs derived from
real-world applications are Gaussian Elimination, fast Fourier transform and systolic
array. The ECP algorithm proposed here significantly outperforms the said algorithms
in terms of average NSL and average speedup for all types of task graphs considered
in this work. For future work, the proposed task scheduling algorithm may be suitably
extended for heterogeneous multiprocessors or may be integrated with the existing
duplication-based task scheduling strategies for different real-world applications.
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