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Abstract Traffic analysis is a core element in network operations and management
for various purposes including change detection, traffic prediction, and anomaly detec-
tion. In this paper, we introduce a new approach to online traffic analysis based on a
pattern-based representation for high-level summarization of the traffic measurement
data. Unlike the past online analysis techniques limited to a single variable to summa-
rize (e.g., sketch), the focus of this study is on capturing the network state from the
multivariate attributes under consideration. To this end, we employ clusteringwith its
benefit of the aggregation of multidimensional variables. The clustered result repre-
sents the state of the network with regard to the monitored variables, which can also be
compared with the observed patterns from previous time windows enabling intuitive
analysis. We demonstrate the proposed method with two popular use cases, one for
estimating state changes and the other for identifying anomalous states, to confirm its
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feasibility. Our extensive experimental results with public traces and collected moni-
toring measurements from ESnet traffic traces show that our pattern-based approach is
effective for multivariate analysis of online network traffic with visual and quantitative
tools.

Keywords Network traffic analysis ·Clustered patterns ·Change detection ·Anomaly
detection · Multivariate analysis

Mathematics Subject Classification 68Uxx Computing methodologies and
applications

1 Introduction

Monitoring network traffic is an integral part of network operations and management.
The basic requirement for network monitoring is to effectively capture the traffic
dynamics in a timely manner. For example, some anomalies are the indication of
performance bottlenecks with a huge number of simultaneous connections, whichmay
be caused by several reasons such as flash crowds, denial of service attacks, or network
component failures. The monitored results are then used for reconfiguring the network
to optimize performance or to reinforce security with the historical information.

A crucial challenge for traffic analysis for monitoring is the exponential increase in
the volume of data [1,2]. This should bemore critical to online monitoring with a large
number of incoming/outgoing packets to be processed within a limited time interval.
For example, it can be over tens of millions of packets per second for a single 10Gbps
link. For this reason, in-depth analysis (e.g., on a per-flow basis) would not be feasible
for online monitoring, particularly in a large-scale network (e.g., ISP or enterprise
networks). In response to this, data streaming computation has been studied to provide
a summary of network traffic within a time interval. For instance, sketch is a statistical
summary technique based on counting with hashing to analyze the network traffic
data [3–7]. While decent for streaming computation without keeping extravagant per-
flow data, a sketch is limited to producing the statistics for a single traffic variable. The
probabilistic density information was also considered as the snapshot of the network
traffic in a fixed amount of time [8]. However, the techniques in this class have the
same problem, and are limited to one dimensional variable to analyze. As a result,
the individual variables need to be analyzed independently, and how to combine the
observations from multiple variables is left to the administrators.

In this paper, we propose a new approach that offers a high-level summary of the
online network traffic in regard to the multivariate attributes under consideration.With
this approach, what the administrators see is an abstract pattern compiled from the
traffic variables being monitored, rather than observing a bunch of the independent
statistical information for the variables. By doing so, the detection problems in traffic
analysis (e.g., change detection and anomaly detection) can be reduced to the pattern
comparison problem. For ease of exposition, we use a term “network state” defined as
the recap of the network traffic with respect to the monitored variables. The observed
pattern represents the network state for the associated time interval, and it can be
compared with the patterns in the archive to interpret the traffic dynamics.

123



Multivariate network traffic analysis using clustered… 341

To represent the network state, we employ clustering with its benefit of the aggre-
gation of multidimensional attributes. The clustering result is taken as a pattern that
tells the network state for a given time interval. In addition, the connected clustering
statistics (e.g., centroid positions) can be used to compare patterns to provide a tool for
the quantitative analysis. Note that the focus of this paper is fundamentally different
from the past studies employed clustering for anomaly detection [9–12], the primary
concern of which is to test individual data points to classify into either normal or
anomalous. The main interest of our research is to develop a method to define network
states from the given multivariate traffic variables.

In this paper, we present our new approach along with two use cases: change
detection and anomaly detection. The first use case is the estimation of traffic changes
between two different time intervals. The network state is capturedwith a static number
of clusters, and the change is measured with the “degree of changes” established based
on the movement of the centroid coordinates. The second use case we demonstrate
is anomaly detection. In this use case, we assume a dynamic number of clusters for
a time window, and the abnormality of a cluster is estimated with the patterns of
suspicious activities clusters using a new measure of “likelihood” constructed based
on the centroid positions and the sum of squares information.

The key contributions of this paper can be summarized as follows:

– We present a new multivariate traffic analysis technique using clustered patterns
to provide a high-level summary of the traffic data to enable intuitive network
monitoring with visual patterns;

– We establish a set of quantitativemeasures (“degree of changes” and “likelihood of
suspicious activities”) as supportivemeans to the visual patterns for comprehensive
analysis;

– We demonstrate the proposed technique with two common network traffic analysis
applications of change detection and anomaly detection with two public data sets
(UNIBS data [13] and KDDCup 1999 data [14]);

– Weapply our technique to the trafficmeasurement collection fromEnergySciences
Network (ESnet) [15] recently collected (May 2016) to confirm the feasibility.

This paper is organized as follows. Section 2 summarizes the related studies with
respect to networkmonitoring techniques based on graphical tools, probabilistic distri-
butions, hashing-based sketch, and clustering techniques.We then discuss a traditional
approach to network traffic analysis using probabilistic distributions as preliminary
studies in Sect. 3, and introduce our new approach of clustered pattern for multivariate
traffic analysis with the use case of change detection in Sect. 4. Section 5 presents
how the clustered patterns can be used to identify anomalous network states using the
pattern-based approach. Section 6 demonstrates the analysis of the ESnet [15] tstat
trace using the clustered pattern technique. Finally, we conclude our presentation in
Sect. 7.

2 Related work

Monitoring network traffic using graphical means have been studied in several past
studies. In the BLINCwork [16,17], the authors focused on the patterns of host behav-
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ior at the transport layer, using four tuples of source and destination IP addresses
and port numbers, particularly for traffic classification. The BLINC idea was further
extended using a traffic dispersion graph (TDG) that models “social behavior of hosts”
using graph notations, which can capture patterns of node interactions [16]. A bench-
mark tool known asNeTraMark [18] implements BLINKandTDG, aswell asmachine
learning algorithms including C4.5 Decision Tree, k-Nearest Neighbors, and Support
VectorMachines, for the purpose of network traffic classification. Recently, the authors
in [19] developed a visualization tool (ReView) to discover traffic dependency. The
focus of this study is on detecting malicious events based on the causality analysis.
Compared to the past work, we take a different approach that aggregates multivariate
variables into clustered patterns to show a high-level summary of network states to
enable intuitive analysis.

With the heavy increase in traffic volumes, flow-level traffic analysis would not be
feasible for high-speed networkmonitoring. The sketch technique has been extensively
studied to build high-level summaries of the traffic data (rather thanmaintaining expen-
sive per-flow information) to deal with the change detection and heavy-hitter detection
problems [3–7]. Sketch is a probabilistic summary technique using a set of hash func-
tions. A single variable is aggregated in the sketch data structure based on hashing
for a time interval. The change is then measured by comparing the summary with the
predicted summary using forecasting techniques (e.g., ARIMA). A recent study [20]
enhances the sketch technique to catch up the rising line rates (10–100Gbps per port
over 10–100 ports) using a concept of HashPipe that maintains counts of heavy flows
in a pipeline of hash tables to track the k heaviest flows (i.e., for heavy-hitter detection).

Probabilistic models and samplings have also been considered to summarize the
network traffic data by employing frequency counting [21], histogram [22], sliding
windows [23], random sampling [24], wavelets [25], and dimensionality reduc-
tion [26]. One of the promising studies in [8] proposed a dynamic sampling technique
to reduce the size of streaming data based on the difference of the probabilistic den-
sity. The authors employed the Kolmogorov–Smirnov test (KS test) to calculate the
distance of two summaries observed in different time intervals to measure the change.
The sketch and probabilistic modeling techniques are however limited to capture a sin-
gle traffic variable only, and individual variables should be independently analyzed.
The key difference of the proposed approach is the ability to capture the multivariate
traffic variables to provide a comprehensive view of the traffic data.

A large body of studies employed clustering for intrusion/anomaly detection [27–
31]. The main focus of many of the past studies was on identifying intrusive events
individually with a trained model consisting of normal or anomalous behaviors. The
first use of clustering was by [9], in which the authors made an assumption that
anomalous events would be much smaller than the normal events in quantity. The
clustering information is then used to test whether the input is anomalous or not,
based on this assumption. Similarly, a recent work [32] proposed a method using co-
clustering to improve the detection performance for individual connections. The main
focus of our work is fundamentally different from the past work. Our interest in this
work is in building aggregated summaries to enable the traffic analysis process in a
collective way.
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Clustering is the most widely used tool for unsupervised learning. Several differ-
ent types of clustering have been developed, including centroid-based, hierarchical,
density-based, and model-based method. According to a recent comparison study
of clustering techniques with a large data set in smart grid [33], the centroid-based
method (e.g., k-means) works better than the other clustering methods with respect to
compactness (i.e., the elements in a cluster are very close to one another). The authors
in [34] stress the speed and simplicity of k-means technique for clustering in practice,
which is the main reason why it has maintained its popularity. In addition, it can be
more scalable through optimizations including parallelism (e.g., a parallel version of
the k-means++ [34]). In this work, we employ k-means clustering to create clustered
patterns with its simplicity and popular use. As we will discuss shortly, the centroid-
based clustering is also beneficial with a low complexity for the representation of a
pattern, which is a vector of cluster centroid position and density that is derived from
the population and the sum of squares in the cluster.

3 Preliminary study using distributions

A simple form of network traffic monitoring that keeps track of the volume of incom-
ing/outgoing traffic in the network would not be comprehensive, and can only provide
a partial characteristic of the network state. One of the traditional approaches is to
scrutinize probabilistic distributions of essential variables related to traffic statistics,
obtained from the data set collected within a predetermined time interval (known
as a time window). For example, the distribution of packet lengths can be referred
to the characterization of the network state in the current time window. However, a
non-trivial challenge with this approach is an exponential increase of computational
complexity with additional variables to be monitored and larger time windows [8].
Since the network administrator may want to include multiple traffic-related attributes
in the monitoring process, multivariate analysis is commonly needed for network
monitoring, making it less attractive to employ such distribution-based monitoring.

For this study, we employed a 16-h trace excerpted from the UNIBS traffic trace,
between 10a.m. on September 30, 2009 and 2a.m. on October 1, 2009 [13]. The
data set contains the information for network flows1 with timing, and the ground-
truth data with the associated application for each connection is provided [35]. The
average number of flows is 789 flows/hour with a high degree of variance (min = 20,
max = 7052).

Figure 1 shows cumulative distributions for twovariables (flowduration and average
number of packets in flows) over 16monitoring timewindows, each ofwhich has 1-h in
length. From the figure, we observed that some time windows show somewhat similar
plots, while some others look different one another. For instance, we can see that the
two CDF plots at 10 and 11a.m. look largely different. In contrast, for example, the
plots from 11a.m. to 5p.m. are fairly similar each other although not quite clear.

1 A flow is identified with five tuples of source IP address, source port number, destination IP address,
destination port number, and protocol in TCP/IP header.
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Fig. 1 Normalized cumulative distributions of two network traffic attributes (flow duration and average
number of packets in flows) over 16 consecutive time windows, on UNIBS trace between 10a.m. on Sep.
30, 2009 and 2a.m. on Oct. 1, 2009

To better understand the characteristics of the given traffic data set, we analyzed the
composition of applications in each window. The breakdown of applications was per-
formed using the associated ground-truth data provided together with the traces [35].
We agree that it is hard to explain the network state only through the compositions of
applications. However, we believe that it is a good reference to infer network states.
Figure 2 shows the compositions of applications over the time windows. It shows that
some time frames are highly related, such as 11a.m.–5p.m. and 8–10p.m.,with respect
to application compositions. In contrast, some show strongly unrelated breakdowns
with other windows, such as in 10a.m., 11p.m., 12p.m., and 1a.m..

From the distributions shown in Fig. 1, those related timewindows in the application
breakdowns also show similar patterns (e.g., 11a.m.–5p.m.) in the plots. However,
some plots do not seem to agree on the breakdown information. For example, two
windows for 12 and 1a.m. show a very close pattern although the compositions of
applications for those windows are highly distinctive each other. From the result,
network monitoring using distributions would be useful but only to some extent. In
addition to visual monitoring, one may want to measure the difference of the distri-
butions of time windows using distribution comparison methods such as KS test [36].
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Fig. 2 Breakdown of applications for time windows (10–1a.m.), compiled from the ground-truth data

In general, this traditional approach is optimized with a single variable but hard to
extend it to the analysis of multiple variables [37,38].

These challenges motivate us to explore possible alternative approaches that may
have greater potential in scalability and feasibility. As will be introduced, clustering,
with its strong benefit of aggregation, enables to yield a predetermined number of
clusters regardless of the number of variables considered in monitoring. Therefore,
network monitoring using clustering would provide a consistent way to keep track of
patterns for network states.

4 Clustered patterns for traffic analysis

In this section, we present our approach to network traffic analysis using clustered
patterns. The key idea of the proposed approach is to capture the network state from
themonitored variables and represent itwith a clustered pattern.Again, “network state”
is defined as the recap of the network traffic with respect to the monitored variables.
What makes our new approach unique and more efficient than traditional approaches,
such as sketches and distribution-based analysis, is that the clustering method has
the ability to combine multivariate attributes in a straightforward manner without an
excessive extra cost, which is a critical challenge when relying on the probabilistic
distributions as discussed in the previous section. In addition, the calculated patterns
can be utilized to evaluate “similarity” of network states over time for the purpose of
networkmonitoring. Thus comparing similarity of given network states can be reduced
to a straightforward pattern comparison problem.

Figure 3 demonstrates the basic idea of clustered patterns. Each window shows the
snapshot of the network state with a set of clusters. The number of clusters for each
window in the example is preset to three. In the figure, each cluster has the centroid
position and size of the cluster. A partition-based clustering such as k-means algorithm
provides a set of properties for a cluster, such as the centroid coordinate, the number of
data points within the cluster, the sum of squared errors, and so forth, which could be
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Fig. 3 An example of clustered patterns in two different time windows. Each window shows the snapshot
of the network state with a set of clusters and the number of clusters for each window in the example is
three. A pattern is a vector of clusters with cluster properties, such as the centroid coordinate, the number of
data points within the cluster, the sum of squared errors, etc. The patterns can be compared with the defined
cluster properties. For example, the centroid position moves between two patterns (as the arrow lines in the
figure) can be considered as a measure to quantitatively compare two clustered patterns (which is discussed
in Sect. 4.2)

used to define the property of the cluster (i.e., the centroid position and size of cluster).
Thus, a pattern is simply a vector of clusterswith the defined cluster properties. The two
patterns can then be compared based on the cluster property information. In this study,
we chose a conventional partitioning-based clustering (k-means) with its manageable
complexity and scalability [34].

We next discuss our approach of the clustered patterns with the UNIBS data dis-
cussed in the previous section. The degree of changes measure will then be introduced
as a quantitative analysis tool.

4.1 Clustered patterns of the UNIBS data

In our preliminary work, we used the cumulative distribution function to analyze the
UNIBS data trace, with two traffic variables of flow duration and the average number
of packets in flows (as shown in Fig. 1). We apply the clustering technique against the
same data set to construct multivariate patterns. Figure 4 demonstrates the clustering
patterns over 16 time windows. We set the number of clusters to 4 (k = 4) for a single
timewindow, which is derived from the total sum of squares using an “elbow”method.
As shown in the figure, the clustered results show the captured network states, as well
as the correlated patterns (Δ in the figure will be explained shortly). For example,
the pattern for 10a.m. time window is quite different from the one for 11a.m. time
window. In contrast, the clustered patterns from 11a.m. to 5p.m. are visually similar.
The three patterns for 8–10p.m. time windows are also resembling, whereas the last
three time windows (11p.m.–1a.m.) have somewhat distinctive patterns.

From Figs. 2 and 4, we can see a strong correlation. For example, the breakdown
graph (Fig. 2) shows a high degree of similarity from 11a.m. to 5p.m. and from
8p.m. to 10p.m., respectively, which agrees with similarity of the clustered patterns
in Fig. 4. On the other hand, there is a high degree of difference in the breakdown graph
between 10 and 11a.m.. Similarly, we can see huge differences from the windows of
11p.m.–1a.m. in Fig. 2.
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Fig. 4 Clustered patterns for 16 consecutive hourly time windows on UNIBS data trace for flow duration
on x-axis and the average number of packets per flow on y-axis, between 10a.m. on Sep. 30, 2009 and
2a.m. on Oct. 1, 2009. The number of clusters is set to 4, based on the sum of squares in groups. Note that
cluster IDs were randomly selected by the clustering tool. Δ stands for degree of changes calculated based
on the centroid positions move between two clustered patterns, to quantitatively measure the similarity of
the patterns. The smaller, the more similar the patterns are (see details in Sect. 4.2)

The clustering-based monitoring is helpful to intuitively identify similarity of pat-
terns among time windows. However, some patterns may not be clear enough to
determine the similarity of them only through the visual monitoring. Any quantitative
measures would be helpful to perceive the degree of similarity with greater confidence
if provided. For this purpose, we define a metric based on the centroid position move
(in the Euclidean space) between two compared windows in the next section.

4.2 Quantitative measure: degree of changes (Δ)

We introduce a new measure of “degree of change” (Δ) that computes the difference
of two patterns based on the movement of the centroid positions of the clusters. The
basic intuition behind this is that the centroid coordinates of two patterns would be
close without a heavy change if the network states in comparison are tightly related.
That is why we fixed the number of clusters in this use case.

Suppose two time windows Wi and Wj , and the associated cluster sets Ci =
{c0i , c1i , ..., cki } and C j = {c0j , c1j , ..., ckj }, respectively, where k is the number of clus-
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ters. Each cluster cyx has its centroid pyx . Without knowing which cluster in Wi is
mapped with one in Wj , we find a set of pairs showing the minimal move. Suppose a
distance function D : Ci × C j → R. Then the problem is reduced to the assignment
problem that finds a bijection f : Ci → C j with the minimal distance function:

Δi, j =
∑

l∈Ci

D(l, f (l))

Hungarian algorithm is a well-known method for this type of problem with O(k3)
of the computational complexity [39]. As k (the number of clusters) is generally not
large (k = 4 in Fig. 4), the complexity overhead would not be unacceptable.

The Δ values in Fig. 4 represent the degree of changes for two adjacent windows.
From the Δs, we see relatively small Δs from 11a.m. to 6p.m. and from 8p.m.
to 10p.m. (Δ ≤ 0.2). On the other hand, large Δs were observed for the adjacent
windows of (10a.m., 11a.m.), (7p.m., 8p.m.), (11p.m., 12a.m.) and (12a.m., 1 a.m.)
(Δ > 1.0). While strong correlations are observed overall, the Δ(10p.m., 11p.m.) is
the only exception with a small value (Δ = 0.1) although the twowindows are slightly
different visually. This indicates that the visual patterns and quantitative measures are
complementary and need to be considered together to properly read the state of the
network.

4.3 Evaluation with another day trace

To further investigate the effectiveness of identifying patterns and the correlation
between the clustered patterns and the metric of the degree of changes, we experiment
on a data set collected in a different day in the UNIBS data set. In this experiment,
we did not consider application breakdowns, but compared the plotted patterns with
the associated quantitative information. The new data set is a part of the UNIBS data
trace, collected in a different day of October 2, 2009. Since the data set includes a
relatively large number of flows, we performed clustering with every 5min trace from
8:00a.m. to 9:20a.m.. The average number of flows is 973 flows/hour with a low
variance (min = 599, max = 1350). The configuration for clustering is the same as
the previous experiment with four clusters, based on the sum of squares within groups.

Figure 5 demonstrates the clustering results on the 5-min time window data set.
For ease of presentation, we identify individual time windows with the unique ID
in addition to their beginning time. As in Fig. 4, the figure shows clustered pattern
changes over time with discernible similarity/dissimilarity between windows. We can
see that several pairs of time windows such as (3,4), (6,7), (8,9) and (10,11) look pretty
similar. On the other hand, some others such as (1,2), (2,3), (12,13) and (15,16) show
highly distinctive patterns.

Figure 6 shows the corresponding degree of changes (Δs) computed. In the figure,
x-axis shows a pair of adjacentwindows compared to one another, and y-axis shows the
calculatedΔ for the associated pair of windows (normalized). For the clustered results
with two attributes of flow duration and the number of packets in flow (“2 attributes”),
pairs of windows of (1,2), (4,5), (5,6), (9,10), (12,13) and (15,16) show relatively
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Fig. 5 Clustered patterns for 16 consecutive 5-min time windows on UNIBS data trace, between 8:00 and
9:20a.m. on October 2, 2009

high Δs, whereas windows of (3,4), (6,7), (8,9), (10,11) and (13,14) reported minor
changes, overall agreeing on the visual patterns. Although not adjacent, two windows
of 1 and 4 look alike in Fig. 5, and its calculated degree of changes is fairly low with
Δ(1,4) = 0.34 (not shown in Fig. 6). Also, the windows of (5,11) has a moderate
difference of Δ(5,11) = 0.42, supporting the soundness of our approach.

The figure also includes a plot (“3 attributes”) with an additional variable of the
number bytes in flow for clustering, showing concurring trends with the other (“2
attributes”). We observed very negligible variations (σ ≈ 0) in this experiment with a
relatively large number of flows in each window, indicating that the impact of random-
ness introduced by the k-means algorithm would not be significant with a sufficiently
large number of samples.

To sum it up, we observed a strong correlation between the clustered patterns and
traffic composition that confirms the feasibility of the proposed method for change
detection of network states. We also introduced the measure of “degree of changes”
(Δ) to quantitatively estimate the similarity of two patterns. In the next section, we
apply the clustered pattern technique to identify anomalous network states as another
use case model.
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Fig. 6 Degree of changes (Δ) based on the centroid positions move with the trace from 8a.m. to 9:20a.m.
on Oct. 2, 2009. All the observed variances are negligible and almost zeros (σ ≈ 0)

5 Anomalous state detection using clustered patterns

Clustering has been employed for network anomaly detection in previous studies [27,
29,31,32]. The main focus of the past studies is on determining whether individual
connections are anomalous or not. For example, a connection in question would be
anomalous if it is closer to an anomaly cluster than a normal cluster. We are not
interested in the binary classification of individual connections in this study. Rather,
our primary interest is to help the network operator to determine whether the current
network state is anomalous (due to many reasons such as intrusions and failures) or
not in a collective way.

For this use case, we employed theKDDCup 1999 data (“kddcup.data_10_percent_
corrected”) [14] that has been widely used in the anomaly detection study. A data
instance in the data set is a record of a single TCP connection. The individual record
also contains a label for: a normal connection (“NORMAL”), a denial of service
attack (“DOS”), an unauthorized access from a remote host (“R2L”), an unauthorized
access to root functions (“‘U2R”), and one employed for probing for vulnerabilities
(“Probe”). Since no timing information is provided in the data set, we formed 16
partition windows (“AA”–“AP”) serially from the beginning of the data file, each of
which contains 1000 connections.

Two connection-related attributes were considered in this case study: “src_bytes”
is the number of bytes from the source to destination host and “dst_bytes” is the
number of bytes from the destination to source. Due to a high degree of skewness,
we normalized the data using a log function. For example, the summary of src_byte
before normalizing is: 0 (min), 45 (1st quartile), 520 (median), 3026 (mean), 1032 (3rd
quartile), 693,400,000 (max); the summary after the normalization is: 0.00 (min), 1.65
(1st quartile), 2.72 (median), 2.16 (mean), 3.01 (3rd quartile), and 8.84 (max). The
normalization makes sense since a 10-byte difference is still critical to the connections
in the 1st quartile group (≤ 46 bytes), while it is insignificant to the right-skewed
connections such as one with 693,400,000 bytes (max).
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Fig. 7 Clustering results: Each window contains 1000 connections without overlapping. The k-means
algorithm is used and the number of clusters is estimated using the partitioning around medoids technique.
The clusters in a thick circle are not found from a cluster with normal connections only

5.1 Representation using clustered patterns

As in the previous section, we employ the k-means clustering to obtain the patterns.
One difference is that the number of clusters is dynamically determined for each
time window, while it was fixed in the first use case that focuses on the degree of
changes. The number of clusters for a time window is estimated by the optimum
average silhouette width. The procedure for clustering is as follows: For each window
Wi , the number of clusters (ki ) is estimated with the data instances in that window
(Di and |Di | = 1000). Then the clustering algorithm is executed with an input of ki to
obtain a clustered pattern for Wi .

Figure 7 shows the clustering result and Table 1 provides a summary of the win-
dows with labels. From Table 1, we can see the windows from AH to AL have a lot
of DOS connections and three windows of AA, AE and AP include some malicious
connections. From the figure, we can see noticeable similarity from many clean win-
dows (AB–AD, AF, AM–AO). The windows containing malicious events (AA, AE,
AH–AL, and AP) yield quite different shapes from the ones observed in the clean
windows. We can see that DOS makes a specific pattern as shown in the windows of
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AH–AL.Window AA has a cluster around the position of (1.5,0) (red-circled); it does
not include any of DOS connections but some of U2R attack connections. AE and AP
both contain several malicious connections and look similar each other, although the
windows have different types of attacks. AG has no attack connection and looks partly
similar to AE and AF, thus making it somewhat unclear to figure out.

5.2 Measuring likelihood of attacks

We next present a metric of “likelihood” as a quantitative tool for operators to test
the potential of a cluster as an attack class. One simple way to compare two clusters
would be to use the Euclidean distance d(c1, c2), where ci is the centroid position
of cluster Ci in a multi-dimensional space; hence, d ∈ R and d ≥ 0. Then we can
assume a greater likelihood for two clusters with a smaller distance. When d = 0, it
implies that the given clusters have the same centroid position, and it will result in the
greatest likelihood by definition. While simple, the limitation of this method is that
none of d other than zero may not be adequately interpreted to estimate the likelihood
since it can be any positive real number. For instance, it could be d = 1 or d = 100;
what do they mean in terms of the likelihood? To establish a metric of the likelihood,
we want to scale it between zero (the least likely) and one (the most likely) for the
relative comparison.

We assume that a cluster is represented by two parameters of 〈c, v〉, where c is
the centroid position and v is a degree of variation in the cluster. A larger v thus
indicates that the elements in the cluster are further dispersed in the space. Obtaining
the centroid position is straightforward with the k-means clustering as any cluster has
a centered point that minimizes the total squared sum of the elements (“within-SS”
or simply wss). We utilize this parameter (wss) to characterize a degree of variation,
which is defined as v = wss

n , where n is the number of elements in the cluster. With
this representation of a cluster, we establish two measures for the likelihood defined,
one is based on a percentile in the Gaussian distribution (l pv), and the other is based
on a diameter of a cluster (ldr ).

To define the first measure for the likelihood (l pv), we employ a concept of the
statistical percentile in a Gaussian distribution using p value. The first measure (l pv)
is derived from the statistical percentile, by assuming that the centroid position of the
compared cluster as the mean and the

√
v as the standard deviation. Suppose a cluster

C ′ = 〈c′, v′〉 and an attack cluster C = 〈c, v〉, and we would like to determine the
likelihood of an attack of C for C ′. The normal score (z score) is calculated by c−c′√

v
,

where (c−c′) is the distance in the Euclidean space. With the calculated normal score,
l pv is defined as the two-fold percentile using the associated p value. Note that we
assumed v = min(v, 0.01) to prevent the divide-by-zero error.

Then we test a p value with the centroid position of the comparing cluster The basic
idea for this measure is that we assume a cluster The attack cluster is represented with
(c, n, e), where c is the centroid coordinate, n is the number of data points, and e is
the minimum of either the total sum of squares in the cluster or 0.01 (an arbitrary
small value to avoid divide-by-zero for calculating normal score below). Then we
assume e/n as its variance. Thus, the smaller cluster size, the smaller variance is, and
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vice versa. To test likelihood of the attack for a cluster with centroid position c′, we
compute p value by calculating the normal score by z = c−c′√

v
, where c − c′ is simply

a Euclidean distance. Finally, we define l pv is the two-sided p value of z.
We next introduce the second measure (ldr ) based on the centroid positions and the

radius of the cluster. While l pv tests how close the center of the cluster is to the attack
cluster’s center, we consider a cluster as a circle with a radius that is assumed equal to
the deviation of the cluster to establish ldr . Thus, cluster C ′ = 〈c′, v′〉 is represented
as a circle with the center of c′ and the radius of r ′ = √

v′. To test the likelihood of an
attack represented with C = 〈c, v〉, we compare the two center points c and c′ with
the radius r ′. In the comparison step, we compute ldr as follows:

ldr = max
(
1 − c − c′

√
v′ , 0

)

Figure 8 demonstrates two examples for ldr . In the figure, the large circle is a cluster
in question, and the small circle is an attack cluster. As shown in the left figure, we
compute the likelihood by ldr = 1 − c−c′√

v′ , since the center of the attack cluster is
located within the large circle. In contrast, it is a zero (ldr = 0) in the right figure as
the two circles have no overlap, and the center of the attack cluster is located outside
the large circle.

To evaluate the defined measures, we precalculated the patterns of the attack clus-
ters for each attack class. Table 2 shows the number of clusters for each attack type
obtained in the precalculation process, with two variables of <sbytes,dbytes> and
three variables of<sbytes,dbytes,dur>. The precalculated attack patterns will then be
compared with the clustered patterns obtained in each time window to measure the
likelihood of attack. Using the patterns for individual attacks, we compute likelihood
using l pv and ldr for each window. As there can be multiple clusters for a single attack
type and a window can have more than a single cluster, we define a collective measure
L that takes the max from the set of the likelihood values. In detail, suppose a window

Fig. 8 Estimating likelihood based on the radius of the circle (ldr ): The large circle is a cluster in question
and the small circle is an attack cluster. In the left figure, the center of the attack cluster is located within the
large circle and the likelihood is defined as the relative distance compared to the radius of the large circle

(ldr = 1 − c−c′√
v′ ). The right figure show an example that the two circles have no overlap since the center

of the attack cluster is located outside the large circle (ldr = 0)
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Table 2 Number of clusters
observed in the precalculated
attack patterns, with two
variables of <sbytes,dbytes>
and three variables of
<sbytes,dbytes,dur>

Attack 2D
<sbytes,dbytes>

3D
<sbytes,dbytes,dur>

DOS 6 6

U2R 4 2

R2L 10 9

Probe 10 10

Table 3 Evaluation of measures
(number of cases and
percentage)

Measure L ≥ 0.5 L ≥ 0.7

FP FN FP FN

L pv (2D) 8 (50%) 3 (19%) 6 (38%) 4 (25%)

Ldr (2D) 1 (6%) 2 (13%) 0 (0%) 3 (19%)

L pv (3D) 0 (0%) 4 (25%) 0 (0%) 5 (31%)

Ldr (3D) 0 (0%) 3 (19%) 0 (0%) 3 (19%)

with a set of clusters {C ′
1,C

′
2, ...,C

′
m}, and an attack class (e.g., DOS) with another

set of clusters {C1,C2, ...,Cn}. Then the collective likelihood Lα for attack type α is
defined as:

Lα = max
i, j

l(C ′
i ,C j ), where 0 < i ≤ m and 0 < j ≤ n

Table 1 also shows L pv and Ldr when using two variables (2D) and three variables
(3D), respectively. To evaluate the measures, we considered two threshold values of
0.5 (italicized in the table) and 0.7 (bold-fonted). As seen from the table, the windows
with attack connections have high values for the likelihood. In contrast, the normal
windowswithout any attack connections show relatively small values for the likelihood
measure. The following illustrates the steps to evaluate the quality of the likelihood
measure (L), with respect to anomaly detection:

1. If the window has no attack and none of L is greater than or equal to the threshold,
it is a true negative (TN);

2. If the window has any types of attacks and any of the associated L is greater than
or equal to the threshold, it is a true positive (TP);

3. If the window has any types of attacks and any of the associated L is less than the
threshold, it is a false negative (FN);

4. Otherwise, it is a false positive (FP).

We examined with two threshold values, L ≥ 0.5 and L ≥ 0.7, using two attributes
(src_bytes and dst_bytes) and using three attributes (plus “connection duration”). We
refer to the former as “2D” and the latter as “3D”. Table 3 shows the calculated FPs
and FNs. From the result, we can see using three features reduces the number of the
false decisions but with a slight increase of false negatives. Also we can see that Ldr

works conservatively compared to L pv .

123



356 J. Kim et al.

5.3 Evaluation with another trace

We also conducted the same experiment with another data set (“dataset B”) from
KDDCup 1999 for estimating the likelihood of attacks with the three variables (3D).
All the evaluation methods are equal to the ones used in the past section, and the only
difference is the data set itself.

Like the result with the first dataset, we can see that the estimated measures largely
agree with the network states, showing greater likelihood for anomalous windows.
As shown in Table 4, L pv made 3 FNs and 2 FPs with L ≥ 0.5 and 3 FNs and 1
FP with L ≥ 0.7. With Ldr , we obtained 3 FPs and 2 FPs respectively for the two
thresholds with no FN. From the results, the proposed measures are overall working
well, although there is also a room for future optimizations.

In sum, the clustering result with dataset B yielded somewhat distinctive patterns
between normal and anomalous states, and the normal patterns are closely similar to
the ones observed in the first data set (i.e., dataset A). From the experimental results
with two independent datasets, we can see that the patterns can be helpful for network
operators to intuitively estimate the network state whether it is anomalous or not.

6 Evaluation with ESnet trace

ESnet [15] provides the high-bandwidth, reliable network connections that link sci-
entists at national laboratories, universities and other research institutions. ESnet is
funded by the DOE Office of Science, and managed and operated by the Scientific
Networking Division at Lawrence Berkeley National Laboratory. The tstat data
used in this paper comes from the test ESnet Data Transfer Nodes (DTNs)2. Data
Transfer Nodes are an important part of ESnet’s Science DMZ network design pat-
tern [40]. ESnet is collecting tstat logs in order to analyze how various network
tuning settings impact TCP behavior and network throughput.

To collect TCP instrumentation data for each flow, the tstat tool is used [41].
tstat can be used to analyze either real-time or captured packet traces. It rebuilds
eachTCPconnection by looking at theTCPheader in the forward and reverse direction.
tstat reports the source and destination host/port information, and the number of
bytes/packets sent and received. It also reports a number of useful TCP statistics,
including congestion window size and number of packets retransmitted, which can be
used to analyze the health and performance of the link.

In this study, we analyze the tstat data to monitor the network state change
over time. We selected a subset of the measurement collection between 12:00p.m.
and 2:40p.m. on May 9, 2016, to form sixteen 10-min windows. The windows have
367 connections for each on average. We chose two variables of <number of packets,
max throughput> to keep track of changes. From the distribution of the variables,

2 The details of DTNs are described at https://fasterdata.es.net/performance-testing/DTNs/.
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Fig. 9 Clustering results over 16 consecutive 10-min time windows on ESnet data trace, with two variables
of the number of packets on x-axis and max throughput on y-axis. We randomly selected data between
12:00p.m. and 2:40p.m. on May 2, 2016. The number of clusters is set to 4, based on the sum of squares
in groups. Note that cluster IDs were randomly selected by the clustering tool

we observed a very high degree of skewness. Thus, we normalized data using a log
function. We set the number of clusters to 4 (K = 4) using an elbow method, as in the
previous sections.

Figure 9 demonstrates the clustered patterns for the 16 windows. We can see some
patterns look closely similar each other, e.g., (5,6), (9,10), and (14,15), while some
adjacent patterns are visually distinctive, e.g., (3,4), (7,8), and
(11,12).

Figure 10 shows the associated degree of changes between the adjacent windows.
Since the ESnet data set does not contain any annotation information, we conducted
KS test for the two traffic variables. The first two plots in the figure show the KS
test statistic for (a) the number of packets and (b) max throughput. Lower statis-
tic values indicate greater similarity in terms of probabilistic distribution. The next
plot (Fig. 10c) shows the degree of changes (Δ). The horizontal lines in each figure
represent the averages over the 16 time windows. From the plots in Fig. 10, the proba-
bilistic distribution similarity largely agree on our degree of changes measure for this
data set.
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Fig. 10 Comparison between KS test similarity for individual variables and degree of changes

7 Conclusion

This paper proposes a new approach to the high-level online networkmonitoring using
clustered patterns. Themain goal of this study is to enable network traffic analysis with
multivariate attributes. We demonstrated the feasibility of the proposed technique for
two popular network monitoring applications. For the detection of state changes, we
demonstrated our analysis on the clustering results with the associated ground-truth
information, with the established measure of “degree of changes”. We also presented
the network anomaly detection as the second use case. We defined a new metric to
estimate the likelihood of a cluster to be an attack class and set up two measures with
the clustering information, one based on percentile in the Gaussian distribution and
the other based on the radius of a cluster. The presented method was also applied to a
recent ESnet traffic trace to keep track of state changes. The evaluation results support
the effectiveness of the new approach with the pattern-based representation of network
states and the quantitative measures.

This research is an on-going project, and there are several interesting challenges
to be addressed in future. Scalable analysis is one of the key requirements in network
operation. For example, we observed that it takes approximately 10 seconds to con-
struct clusters with 16,000 data points in a commodity PC with the simple k-means
that is known as a scalable method for clustering. Sampling could be an option for
scalability, but we observed that a simple sampling may result in somewhat devi-
ated ones compared to the output with the entire data points. In addition, clustering
can be affected by a small set of noises. Thus, developing a noise-resistant method
for representing network states would be an interesting topic to explore for greater
robustness.
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