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Abstract
This study addresses the multi-objective multi-mode resource-constrained project
scheduling problem with payment planning where the activities can be done through
one of the possible modes and the objectives are to maximize the net present value and
minimize the completion time concurrently. Moreover, renewable resources includ-
ing manpower, machinery, and equipment as well as non-renewable ones such as
consumable resources and budget are considered to make the model closer to the
real-world. To this end, a non-linear programming model is proposed to formulate the
problem based on the suggested assumptions. To validate the model, several random
instances are designed and solved by GAMS-BARON solver applying the ε-constraint
method. For the high NP-hardness of the problem, we develop two metaheuristics of
non-dominated sorting genetic algorithm II and multi-objective simulated annealing
algorithm to solve the problem. Finally, the performances of the proposed solution
techniques are evaluated using some well-known efficient criteria.

Keywords Multi-mode resource-constrained project scheduling problem · NPV ·
Payment planning · ε-Constraint method · NSGA-II · MOSA

Mathematics Subject Classification 90Cxx · 90-08 · 68Txx · 90B35 · 90B50

1 Introduction

Resource investment is one of the most important issues in the resource-constrained
project scheduling problem (RCPSP) which tries to reduce the resource employment
costs of a project. In other words, many project activities are allowed to have a delay
and in this situation, completion costs of projects, as well as the level of investment in
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resources, are targeted in the planning stage before starting the project. So decision-
makers seek to create a desired balance between time and cost in projects. For example,
in capabilities planning project ofmilitary industrieswith the aims of achieving defined
military capabilities according to the investment constraints, optimizing the amount
of resources invested in the project with respect to the two factors of time and cost is
very critical [4].

In RCPSP, minimization of the cost related resource is done by determining the
desirable level of resources required for project activities, mainly at the planning stage.
In resource investment, considering the resources needed to carry out activities as well
as the precedence relationships, the desired level of access to resources is considered
as a decision variable and all activities are scheduled according to determined levels.
The resource investment problem was originally introduced by Möhring [30]. He
tried to minimize required resources cost while considering the due date of projects.
According to Möhring [30], project scheduling problem (PSP) is divided into two
categories with respect to the completion time and available resources:

(1) RCPSP: the access level to all kinds of resources is constrained and the goal is to
achieve the shortest possible completion time of the project.

(2) Time-constrained project scheduling problem (TCPSP): the total time available
to complete the project is constrained and the goal is to determine the optimal
level of resources and minimize the utilization cost of resources, assuming that
the required resources are unlimited.

The first category is studied in this research with a wide range of applications in the
real world. In other words, RCPSP is the most comprehensive subject of scheduling
problemswhich even includes job shop, flow shop and open shop scheduling problems.
Generally, RCPSP seeks to find a suitable sequence for performing the activities of
a project in such a way that the precedence relationships of the project network and
different types of resource constraints on the project are satisfied simultaneously. All
of these limitations are in line with a particular measure like time or cost which should
be optimized.

RCPSP is one of the problems with rich literature in the field of project man-
agement. So far numerous articles and books have been published due to two main
reasons. Firstly, this problem is various in terms of the objective function, the character-
istics of the activities, resources and precedence relationships, according to practical
and industrial conditions and secondly, due to the NP-hardness of these problems,
researchers have always sought to develop more efficient solution techniques. Some
of the most applicable fields of the project scheduling is product design [8], software
design and engineering [7, 29], military capability planning [4, 48] as well as research
and development projects for goods and services [13].

Normally, the duration of an activity is fixed and cannot be changed, but in some
cases, this time is changeable by incurring additional costs. In fact, the duration of
the project activities depends on its importance for the project manager where it can
be reduced by considering more expenses. In the multi-mode RCPSP (MMRCPSP),
there are a set of acceptable execution modes for each activity such that each one has
its own specific and unique duration and consumption level of resources [39]. The time
and cost of performing each activity are characterized by the selection of its execution
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modes [19]. The aim is to determine the optimal execution mode and the start time of
each activity to minimize the total completion time of the project. Brucker et al. [5]
proved that if the number of non-renewable resources and execution modes of each
activity is more than two, MMRCPSP is an NP-Complete problem.

Project management utilizes the knowledge, skills, tools, and techniques required
to manage the execution of activities in order to meet the requirements and expecta-
tions of the project managers. It employs three powerful tools including required data
collection, project planning and project scheduling [38].

In the same vein, another important issue is the project payment planning (PPP),
which determines the time and the amount of payment flows and can be done through
one of the four existing models [45]:

– Lump-Sum Payment (LSP): the total cost is paid to the contractor when the project
is successfully completed.

– Payments at Event Occurrence (PEO): the payments aremade during the occurrence
of the events.

– Payments at activities’ completion times (PAC): the payments are made when each
activity is finished.

– Progress Payments (PP): the payments are made at regular intervals and the last
payment is made at the completion of the project.

In this research, a bi-objective MMRCPSP with discounted cash flows and PEO-
based payments is studied, which is an extension of the research done by He et al.
[19]. In the proposed problem, renewable resources (including manpower, machin-
ery, and equipment), as well as non-renewable resources (including consumption and
money), are also taken into account to be assigned to the activities during the project.
The aim of considering the discounted cash flow is to calculate and maximize the
NPV of the project. Moreover, the second objective is to minimize the completion
time of the project based on the occurrence of the last event. In other words, the
main goals are to determine and allocate the amount of payments and to schedule the
activities considering the appropriate execution modes with respect to the time–cost
trade-off. To validate the proposed model, the ε-constraint method is applied to cope
with the bi-objectiveness of the model, then it is implemented by CPLEX solver of
GAMS software. Furthermore, two efficient Pareto-based metaheuristics including
non-dominated sorting genetic algorithm II (NSGA-II) and multi-objective simulated
annealing (MOSA) algorithm are developed to solve the problem approximately.

The remaining sections of the paper are organized as follows. Section 2 represents
the literature review of the research, then the proposed problem and mathematical
model are described in Sect. 3. Section 4 introduces the applied ε-constraint method,
NSGA-II and MOSA, and the computational results are presented in Sect. 5. Finally,
the conclusions and outlook of the research are described in Sect. 6. Moreover, the
proposed flow graph of the research is shown in Fig. 1.

2 Literature review

The objective of this section is to investigate the shortcomings of the studies on RSP-
SPs. During the last decades, RCPSP was widely investigated by researchers [20, 23].
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Providing concluding remarks and future research directions

Implementing and comparing these different solution methods 
using differnent measures

Developing different solution methods of ε-constraint, NSGA-II 
and MOSA to validate and solve the model

Describing the problem in terms of objectives, variables and 
constraints

Studying the previous works done in the literature

Fig. 1 The proposed flow graph of the research

Although the main focus is on the minimization of completion time of project [17]
while some other objective functions implicate on maximizing the net present value
(NPV) of the project [19].

Since the discussion of cash flows in PSP was introduced by Russell [36], the
problem of scheduling the activities of a project aimed at maximizing the NPV has
attracted much attention in the literature. The efforts of many research works have
led to the examination of models and methods for solving a large variety, along with
the representation of critical path method (CPM), cash payment patterns, resource
constraints, and time–cost exchanges. In the context of a review on the PSPs with
regard to PPP with the aim of maximizing NPV, the studies conducted by Icmeli and
Erenguc [22], Özdamar et al. [34] and Hartmann and Briskorn [17] can be referred.

Dayanand and Padman [9] presented several deterministic models for maximizing
contractor’s NPVwhere the delivery time and the amount of pre-determined payments
are determined for the project. In the next study, they determined a set of payments
regarding the scheduling, and then, in the second step, re-scheduled them to improve
the NPV [10]. Szmerekovsky [41] presented a Branch and Bound (B&B) method to
solve the project payment scheduling problem (PPSP), which provides the scheduling
of the project’s payments on the customer request, and the contractor can defend his
interests by selecting activities scheduling and rejecting payment schedules.

Ulusoy and Cebelli [44] developed a genetic algorithm (GA) to solve the PPSP
considering a timely payment plan that provides the benefits of both customer and
contractor. He and Xu [18] examined the effect of the incentive-fining policy on the
payment schedules and found that the existence of such a structure would improve
the flexibility of a payment schedule. He et al. [19] developed two metaheuristics of
simulated annealing (SA) algorithm and Tabu Search (TS) algorithm for multi-mode
PPSP (MMPPSP) and examined their performance by generating and solving random
samples.

On the other hand, other problems were studied as capital-constrained PSP
(CCPPSP). A number of studies have been done on CCPPSP by Özdamar and Dündar
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[33], Ulusoy et al. [45], Mika et al. [28], and many others who examined the CCPPSP
problem in a single-mode and multi-mode context. Chen and Zhang [6] examined the
RCPSP to maximize the NPV of the project under uncertain conditions. They consid-
ered random stochastic time and cost for each activity and solved the problem using
ant colony optimization (ACO) algorithm.

Aboutalebi et al. [1] presented a bi-objective mathematical model to solve a multi-
mode resource-constrained project scheduling problem with discounted cash flows
(MMRCPSP-DCF) with the objectives of minimizing the completion time and max-
imizing the NPV of projects. They applied NSGA-II and a multi-objective particle
swarm optimization (MOPSO) algorithm to solve the proposed problem. Hosseini
et al. [21] presented a mathematical model to solve MMRCPSP with positive and
negative cash flows aimed at maximizing the NPV of the project. They designed an
efficient GA to solve the problem.

Leyman and Vanhoucke [26] presented a single-objective model for MMRCPSP
with renewable and non-renewable resources and positive and negative cash flows to
minimize the NPV of the project. They studied three different payments of PAC, PEO
and PP and applied a GA to solve the problem. Sebt et al. [37] proposed a hybrid meta-
heuristic algorithm including GA and particle swarm optimization (PSO) algorithm
to solve MMRCPSP with the aim of the completion time minimization. Geiger [15]
developed an iterated variable neighborhood search (IVNS) to solve a multi-project,
multi-mode resource-constrained project scheduling problem (MPMMRCPSP). They
tested the performance of their proposed algorithm on some benchmark instances.

Oztemel and Selam [35] designed a bee colony optimization (BCO) algorithm for
MMRCPSP in a molding industry. They demonstrated that their proposed algorithm
could generate suitable schedules for the projects with a high number of activities and
limited resources.

Nabipoor Afruzi et al. [31] studied a robust multi-project resource-constrained
scheduling problem (MPRCSP)with uncertainty in activity duration. Themain goal of
this studywas tomaximize the total weighted tardiness of the projects. Küçüksayacıgil
and Ulusoy [25] studied a bi-objective MPMMRCPSP. Their proposed objectives
were to minimize the completion time of projects and the mean of the flow times for
individual projects as well as maximizing the NPV of all projects. They implemented
a hybrid GA to solve the problem.

In Table 1, briefly, important studies are presented, taking into account the payment
method and modeling according to the objective functions.

According to the literature review, the main contributions are described as follows:

• Developing a novel bi-objective mathematical model to consider the two practical
objectives of NPV maximization and completion time minimization which is the
extension of the proposed model by He et al. [19],

• Integrating the decisions of optimal allocation of payments to the events, optimal
modes of activities, calculation of the income and expenses of the project on each
event,

• Considering the real-world conditions of activities demand for renewable and non-
renewable resources and possible multi-mode of activities which leads to the time
and cost trade-off,
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• Developing three efficient solution techniques the of ε-constraint method, NSGA-II
and MOSA,

• Applying different comparing measures to test the performance of the solution
methods.

3 Problem definition

Assume that there are several activities which have several required resources and
several execution modes that each mode has a specific duration, cost and the amount
of the required resources. The objectives of the proposed problem are to maximize
the NPV and minimize the completion time of the project concurrently. The main
questions of the problem are:

1. When and how much payment should be assigned to each event?
2. Which execution mode should be considered for each activity?
3. When is each event completed?
4. How much is the cost of each event?
5. How much is the income of each event?

Consider a project that its contractor’s initial capital is equal to ICA. Duration,
cost, and demand of activity i for rth resource under mode j are defined by duri j ,
cos ti j , demi jr , respectively, where i � 1, 2, …, n; r � 1, 2, …, R and j � 1, 2,
…, J . The available resources are also defined as ar that can be either renewable or
non-renewable. The cost of each event m (m � 1, 2, …, M) is defined as follows:

em �
∑

i∈Sstartm

⎡

⎣ζi

J∑

j�1

costi j yi j

⎤

⎦+
∑

i∈Sendm

⎡

⎣(1 − ζi )
J∑

j�1

costi j yi j

⎤

⎦ (1)

where Sstartm is the set of activities starting from mth event, Sendm is the set of activities
that end at event m and ζi (0 ≤ ζi ≤ 1) is the cost ratio distribution of the ith activity
during its execution. The income amount of eventm is calculated by vm � ∑

i∈Sendm
wi ,

where wi is amount of the gained income from activity i. The final payment is done
at the last event of the project which is pK � U − ∑K−1

k�1 pk . Here, U, D and α are
the contract cost, the considered completion time of the project and the return rate for
each period, respectively where U � ∑n

i�1 wi .

To describe the proposed network of the project, activity on arc (AOA) network is
employed so that arcs show the activities and nodes represent the events. The suggested
example is depicted in Fig. 2.

3.1 Mathematical model

Indices and sets

i Index of activities
j Index of activity modes
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Fig. 2 General scheme of proposed AOA network [19]

k Index of payments
m Index of events
r Index of resources
t Index of time period
I Set of activities
J Set of activity modes
M Set of events
R Set of resources including renewable and non-renewable
K Set of payments
T Set of time periods
Sstartm Set of activities that begin at event m
Sendm Set of activities that end at event m

Parameters

ICA Initial capital of the contractor amount
duri j Duration of activity i under mode j
cos ti j Execution cost of activity i under mode j
demi jr Demand of activity i for resource r under mode j
ar Available amount of resource r
Em Earliest occurrence time of event m
Lm Latest occurrence time of event m
ζi Cost distribution ratio of activity i during the start and end of the activities
wi Income amount of activity i
U Contract price of the project
D Project delivery time
α Rate of return in each period

Decision variables

xkm Binary variable; it is equal to 1 if payment k is assigned to event m, otherwise,
it is 0

yi j Binary variable; it is equal to 1 if activity i is done in mode j, otherwise, it is 0

123



Multi-objective multi-mode resource constrained project… 555

zmt Binary variable; it is equal to 1 if the event m is completed in period t is equal
to 1, otherwise, it is 0

em Cost of event m
vm Income of event m
pk Amount of payment k

Now, the proposed bi-objective model for our MMRCPSP-DCF is defined as fol-
lows:

(2)

Maximize NPV �
K∑

k�1

⎧
⎨

⎩pk

M∑

m�1

⎡

⎣xkm

Lm∑

t�Em

(exp(−αt)zmt )

⎤

⎦

⎫
⎬

⎭

−
M∑

m�1

⎧
⎨

⎩em

Lm∑

t�Em

(exp(−αt)zmt )

⎫
⎬

⎭

Minimize makespan �
LM∑

t�EM

t .zMt

subject to (3)

M−1∑

m�1

xkm � 1 k � 1, 2, . . . , K − 1 (4)

xKM � 1 (5)

K∑

k�1

xkm ≤ 1 m � 1, 2, . . . , M (6)

em �
∑

i∈Sstartm

⎡

⎣ζi

J∑

j�1

costi j yi j

⎤

⎦+
∑

i∈Sendm

⎡

⎣(1 − ζi )
J∑

j�1

costi j yi j

⎤

⎦ m � 1, 2, . . . , M

(7)

n∑

i�1

J∑

j�1

demi jr yi j ≤ ar r � 1, 2, . . . , R (8)

Lm∑

t�Em

zmt � 1 m � 1, 2, . . . , M (9)

Lsi∑

t�Esi

(
zsi t .t

)
+

J∑

j�1

(
duri j yi j

) ≤
Lei∑

t�Eei

(
zei t .t

)
i � 1, 2, . . . , n (10)

M∑

m�1

(
em

T∑

t�0

zmt

)
≤ IC A +

K∑

k�1

[
pk

M∑

m�1

(
xkm

T∑

t�0

zmt

)]
T � 1, 2, . . . , D (11)
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K∑

k�1

pk � U k � 1, 2, . . . , K (12)

J∑

j�1

yi j � 1 i � 1, 2, . . . , n (13)

LM∑

t�EM

(zMt .t) ≤ D (14)

xkm, zmt , yi j ∈ {0, 1} (15)

The objective function (2) represents the amount of contractor’s NPV which is
equal to the current value of payments minus all costs associated with the project. The
objective function (3) represents the minimization of the total completion time of the
project,which is equal tominimizing the final event of the project. Equation (4) denotes
the assignment of payment k (k � 1, 2, …, K− 1) to a particular event. Equation (5)
ensures that the last payment K should be assigned to the last event M. Equation (6)
represents that only one payment occurs in a particular event. Equation (7) calculates
total costs of an event. Equation (8) indicates the amount of available resources for
activities under each mode. Equation (9) shows the occurrence time of event m in
the possible time window [Em, Lm]. Equation (10) denotes the precedence relation-
ships. Here, Esi and Lsi are the earliest and lateness occurrence time of the event that
the activity i begins at it. Furthermore, Eei and Lei denote the earliest and lateness
occurrence time of the event that the activity i ends at it. Equation (11) ensures that
the sum of the contractor’s output financial flows should not exceed its initial capital
plus the amount of the input financial flows. Equation (12) ensures that the sum of all
payments is equal to the contract price of the project. Equation (13) ensures that each
activity should be performed only by one execution mode. Equation (14) also ensures
that the occurrence time of the final event should not exceed the project delivery time.
Equation (15) defines types of the variables.

4 Solutionmethods

The proposed model is a mixed integer non-linear programming (MINLP) and due to
its high complexity, it is NP-Complete [19]. Therefore, implementing heuristic and
meta-heuristic approaches is necessary to solve the problem. On the other hand, in
order to validate the proposed mathematical model, small-sized samples are solved
by GAMS software-BARON solver using the ε-constraint method to cope with the
bi-objectiveness of the model.

To solve the problemswith large sizes, NSGA-II andMOSAalgorithm are designed
to solve the problem as the main methods and are evaluated in comparison with
each other and the ε-constraint method. NSGA-II is one of the most common and
powerful algorithms available to solve multi-objective optimization problems so that
its effectiveness in solving various problems has been proven [11].MOSA algorithm is
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a fast local search algorithm that has the ability to escape local optimum solutions [16].
This algorithm has much efficiency in solving problems with a discrete or on-convex
solution space.

4.1 ε-Constraint method

The ε-constraint method is one of the well-known approaches to deal with multi-
objective problems which can generate Pareto solutions [14]. The formulation of the
ε-constraint method is as follows:

Minimize f1(x)

subject to

f2(x) ≤ ε2,

. . .

fn(x) ≤ εn,

x ∈ X . (16)

The ε-constraint method steps are as follows:

Step 1: Choose one of the objective functions to be introduced as the main objective
function.
Step 2: Solve the problem according to each single objective function, then obtain
the optimal values of each objective function and the other obtained values for
remaining objective functions. If we have n objective functions, we should solve
the single-objective model for n times with all objectives. In each single-objective
model, n values are determined for all n objective functions.
Step 3: Find the two best values for each sub-objective functions. Divide the differ-
ence between these two values to a given number (the number of breakpoints) and
create a table of values for ε2, . . . , εn.
Step 4: Now, solve the single-objective model with the main objective function for
each value of ε2, . . . , εn.
Step 5: Report Pareto solutions findings.

In our proposed model, the first objective is considered as the main objective and
the second objective is the sub-objective with 10 breakpoints. So the formulation is
presented as follows:

Maximize f1(x)

subject to

f2(x) ≤ ε2,

x ∈ X . (17)
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4.2 NSGA-II

GA is an efficient algorithm which has been extensively applied to different optimiza-
tion problems [27, 42, 47].

Srinivas andDeb [40] proposed the non-dominated sorting genetic algorithm for the
first time; it divided the evolutionary group into several levels based on a dominance
relation for selection and solution. Deb et al. [12] optimized an operational NSGA
scale, such that elite mechanism was used instead of sharing coefficient of density
function; this algorithm is known as NSGA-II. The proposed pseudo-code of the
applied NSGA-II in this research is shown in Fig. 3.

The main information about the mechanism of the proposed NSGA-II is as follows:
two-point crossover operator and one-point mutation operator are used for crossover
and mutation, respectively. Furthermore, the stopping condition of this algorithm is
metwhen there is no improvement in 50 consecutive iterations.Moreover, the values of
the parameters are determined by trial and error method which is described in Table 2.

Fig. 3 Pseudo-code of NSGA-II [2]

Table 2 Optimal levels of the
parameters for the proposed
NSGA-II

Parameter Value

Initial population 300

Probability of crossover 0.8

Probability of mutation 0.2
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4.3 MOSA algorithm

SA is another well-known fast metaheuristic algorithm has been studied to improve
the solutions generated initially in different optimization problems [3, 43]. On the
other hand, MOSA attempts to generate non-dominated solutions by using a simple
probability function that tries to generate solutions on the Pareto optimal front. The
probability function is varied in such a way that the total space of objective is covered
uniformly obtaining as many possible non-dominated and well-dispersed solutions
[46]. These features have madeMOSA a fast efficient algorithm compared to the other
existing multi-objective algorithms. Figure 4 illustrates the pseudo-code of MOSA
algorithm. Furthermore, the mechanism of the suggested MOSA is adopted from that
proposed by Kubotani and Yoshimura [24]. Note that MOSA is designed on the basis
of SA considering the non-dominance concept, which is implemented by NSGA-II.

The values of MOSA parameters are determined by trial and error method which
is represented in Table 3.

5 Numerical results

In this section, model validation, sample problems generation and solution methods
evaluation are presented and described.

Fig. 4 MOSA pseudo-code [32]

Table 3 Optimal levels of the
parameters for the proposed
MOSA algorithm

Parameter Value

Maximum number of iterations in each temperature 5

Initial temperature 300

Temperature reduction rate 0.85

Boltzmann constant 0.2

Final temperature 1
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5.1 Sample problems generation

To validate the proposed model and evaluate the developed solution techniques, 12
sample problems are designed in different scales where the input parameters are gen-
erated randomly. The required information about these samples is provided in Table 4.
Moreover, Fig. 2 represents AOA network of problem 1, and Figs. 5, 6 and 7 depict
AOA networks of problems 2–4, respectively. The other samples are so large to show
their related AOA networks.

Table 4 Input information about
samples

Sample no. Events no. Activities no. Possible modes no.

1 6 6 2

2 10 10 2

3 12 12 3

4 18 18 3

5 20 26 4

6 25 33 4

7 30 40 5

8 35 46 5

9 40 52 5

10 42 55 5

11 45 58 6

12 50 68 6

Fig. 5 AOA network of sample 2

1

2

3

4

5

6

3 5, 350
10,250 450

2 4, 400
7,300 520

11
3, 530
5,500
6,410

720

4 5, 400
7,300 565

5 5, 250
9,200 350

6 2, 300
4,150 470

7

8

9

11

10

12
8 2, 300

3, 200
4,150

470

7 2, 300
4,150 470

9 5, 250
9,200 350

10 5, 250
9,200 350

13 3, 550
4,450
6,400

720

12 3, 550
6,400 720

14 3, 550
6,400 720

15 3, 550
5,500
6,400

720

Fig. 6 AOA network of sample 3
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Fig. 7 AOA network of sample 4

Table 5 Optimal values of
objective functions for sample
problems

Sample no. Max f 1 Min f 2 Run time
(s)

f 1 f 2 f 1 f 2

1 − 1245.494 29 − 1853.184 15 81.05

2 − 3709.171 43 − 4346.223 31 1157.68

3 − 4182.31 49 − 4890.108 29 11,823.19

4 − 6316.22 58 − 7426.003 37 12,000

5–12 – – – – 12,000

Table 6 Pareto solutions
obtained by NSGA-II, MOSA
and ε-constraint method

Pareto point no. ε-constraint NSGA-II MOSA

f 1 f 2 f 1 f 2 f 1 f 2

1 − 1352 29 − 1412 33 − 1487 29

2 − 1433 28 − 1490 31 − 1546 28

3 − 1497 27 − 1572 29 − 1614 27

4 − 1544 26 − 1639 28 − 1652 26

5 − 1582 25 − 1728 25 − 1870 23

6 − 1664 23 − 1938 21 − 1982 19

7 − 1722 21 − 1978 20 – –

8 − 1785 19 − 2010 19 – –

9 − 1802 18 – – – –

10 − 1842 17 – – – –

It has been concluded that the ε-constraint method cannot solve the samples 5–12
by considering the run time constraint of 12,000 s. Thus, these samples are considered
as large-sized problems.

Table 5 represents the obtained results by the ε-constraint method. It’s worth men-
tioning that problems are run on a laptop with specs (Intel Core i7-RAM 8 GB) by
GAMS software and BARON MINLP Solver.

In the following, 10 values of epsilons (breakpoints) are considered based on the
third step of the ε-constraint method and then 10 Pareto points are obtained after
implementing steps 4 and 5. These results are presented in Table 6 for the first sample
in comparison with the other solution techniques.
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M1 M5 M1 M5 M4M2 M6 M2 M6 M1 M5M4 M4 M3... ...

...
K1 K2 Kk

M3 MM... M3 MM ... M2

J1 J5 J1 J5 J4J2 J6 J2 J6 J1 J5J4 J4 J3... ...

...
I1 I2 II

J3 JJ... J3 JJ ... J2

M1 M5 M1 M5 M4M2 M6 M2 M6 M1 M5M4 M4 M3... ...

...
T1 T2 TT

M3 MM... M3 MM ... M2

Fig. 8 Chromosome-based solution representation

5.2 Solution representation

In meta-heuristic algorithms, a solution string including binary matrices of K *M,
I*J andM*T is used to display a feasible solution. Figure 8 shows the defined string
related to solution representation.

In the first part, if the payment k is assigned to the event m, the corresponding cell
takes the value of 1; otherwise it takes 0. In the second part, if activity i is executed
under mode j, the corresponding cell takes the value of 1; otherwise, it takes 0, and
finally in the last one, if the event m occurs at period t, the corresponding cell takes
the value of 1; otherwise, it takes 0.

5.3 Solution results

In this section, the numerical results obtained by the proposed solution methods are
analyzed. First, in small and medium-sized problems, the results of NSGA-II and
MOSA algorithms are compared with the results of the ε-constrained method. Since
the ε-constrainedmethod is not possible to solve the larger problemswithin 12,000 run
time limitation, these problems are solved by the proposed metaheuristic algorithms
and the obtained results are compared using different measures. It should be noted
that the proposed algorithms are coded in MATLAB programming language.

Table 6 represents the obtained Pareto solutions by these three solution methods
for sample 1. As is clear, NSGA-II could find 8 Pareto solutions andMOSA algorithm
has found 6 Pareto solutions for the first sample.

According to Fig. 9, it is clear that the Pareto frontiers obtained by MOSA and
NSGA-II are close to one obtained by the ε-constraint method. MOSA algorithm has
a better and closer performance than NSGA-II for solving the sample 1. However,
for more accurate evaluation of the proposed algorithms, some well-known measures
including mean ideal distance (MID) measure, spacing metric (SM), diversification
metric (DM) and run time are used. The definition of these measures is explained in
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Fig. 9 Pareto frontiers obtained by different solution methods for the first sample

Table 7 Comparison of the
proposed solution methods in the
small and medium sized samples

Sample no. Method MID SM DM

1 ε-Constraint 0.49 0.37 0.92

NSGA-II 0.72 0.43 0.89

MOSA 0.54 0.41 0.81

2 ε-Constraint 0.79 0.95 1.74

NSGA-II 0.85 1.1 1.59

MOSA 0.8 1.07 1.43

3 ε-Constraint 0.58 1.31 0.49

NSGA-II 0.73 1.39 0.38

MOSA 0.61 1.45 0.32

4 ε-Constraint 0.82 0.56 1.81

NSGA-II 0.92 0.59 1.41

MOSA 0.89 0.71 1.09

Zitzler et al. [49]. The obtained results based on these measures are reported in Table 7
and also depicted in for the proposed methods.

As can be seen in Fig. 10, the proposed meta-heuristic algorithms perform close to
the ε-constraint method. MOSA has been better in the measure of MID and NSGA-
II could obtain the superior results in terms of DM. However, they are very similar
in terms of SM where each one may be better in different small and medium-sized
samples. According to the obtained results in these samples, we can conclude that
MOSA algorithm is slightly better than NSGA-II, but the important point is that the
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Fig. 10 Comparison of the proposed solution techniques based on different measures in small and medium-
sized samples

output of both algorithms is reliable and valid in comparison with the ε-constraint
method. Therefore, they can be used as a suitable solution for large-sized problems.

For further investigation, these algorithms are tested on large-sized samples too
(Table 8 and Fig. 11).

According to Table 8 and Fig. 10, MOSA algorithm has a better performance just
in MID measure while NSGA-II outperforms it in terms of SM and DM measures.
Therefore, NSGA-II has a better overall performance and can be introduced as the
most efficient algorithm to solve large-sized problems.

Finally, the optimal Pareto frontier obtained by these algorithms for a large-sized
sample (No. 5) is depicted in Fig. 12.

As it is clear in Fig. 12, NSGA-II can find more Pareto solutions than MOSA
algorithm. In addition, the distance between two successive Pareto solutions is lower
in NSGA-II. But Pareto frontier quality created by MOSA algorithm is much better
because this algorithm is able to generate Pareto solutions closer to the ideal point
(origin coordinates). Now, as a final comparison of the proposed solution methods,
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Table 8 The comparison results
of NSGA-II and MOSA
algorithm in large-sized samples

Samples
no.

SM MID DM

MOSA NSGA-
II

MOSA NSGA-
II

MOSA NSGA-
II

5 0.34 0.59 1.49 1.24 2.03 1.74

6 0.83 0.96 1.17 0.92 0.73 0.51

7 0.69 0.91 1.45 1.21 1.24 0.76

8 1.54 1.88 1.39 1.31 1.39 0.92

9 0.48 0.69 1.16 0.91 0.88 0.81

10 1.91 2.12 1.51 1.37 2.19 1.69

11 0.98 1.09 1.1 0.96 0.44 0.32

12 2.12 2.41 1.09 0.92 1.82 1.31

Average 1.11 1.33 1.30 1.11 1.34 1.01

Fig. 11 Comparison of NSGA-II and MOSA algorithm based on different measures in large-sized samples
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Fig. 12 Pareto frontier of the NSGA-II and MOSA algorithm for the 5th sample

Fig. 13 Run time comparison of the proposed solution techniques in all samples

they are compared in terms of run time. Figure 13a, b illustrates these comparisons
for all the proposed solution methods and two suggested algorithms, respectively.

As it is obvious, the required run time to solve the samples 1–4 by the ε-constraint
method is growing exponentially to the extent that it cannot solve the samples 5–12
within the considered time limitation of 12,000 s. However, meta-heuristic algorithms
could solve them in amuch shorter time. Based on Fig. 13b, NSGA-II requires less run
time to find its Pareto frontiers, and it can be the advantage of this algorithm against
MOSA.

Consequently, the proposed NSGA-II and MOSA algorithms in this study can be
regarded as effective tools for solving large-sized problems in reasonable time. As an
important managerial insight, we can see that the time–cost trade-offs would generate
solutions with negative NPV, which needs to be analyzed for different situations and
goals. Accordingly, the management needs to investigate whether more resources
should be provided or not, which can be done by the proposed methodology of this
research.
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6 Conclusions and suggestions

In this research, a multi-mode resource-constrained project scheduling problem with
discounted cash flow (MMRCPSP-DCF) is proposed and formulated based on the
real-world conditions considering renewable resources (includingmanpower, machin-
ery and equipment) as well as non-renewable resources (including consumption and
money). Furthermore, payments’ planning is studied in the problem which is realized
by payments at event occurrence (PEO)model. Thus a bi-objectivemixed-integer non-
linear programming (MINLP)model is developedwith the aims of NPVmaximization
and completion time minimization of the project. In order to solve and investigate the
validity of the proposed model, different random samples are generated and solved by
the ε-constraint method to cope with the bi-objectiveness of the model. On the other
hand, two efficient metaheuristic algorithms include non-dominated sorting genetic
algorithm II (NSGA-II) and multi-objective simulated annealing (MOSA) algorithm
are also developed and implemented to solve the large-sized problems and generate
optimal Pareto solutions. Finally, the performance of these solution methodologies is
analyzed in terms of mean ideal distance (MID) measure, spacing metric (SM), diver-
sification metric (DM) and run time. The obtained results demonstrate that MOSA
algorithm has better efficiency in small-sized problems and NSGA-II outperforms
MOSA algorithm in large-sized problems.

The outlook of the research is listed as follows:

(1) Studying uncertainty in the problem, especially in activities demand, cost, or
execution time and develop themodel using efficient techniques such as stochastic
programming, robust optimization, etc.,

(2) Designing and testing other meta-heuristic algorithms such as multi-objective
particle swarm optimization (MOPSO) and multi-objective variable neighbor-
hood search (MOVNS),

(3) Considering energy minimization in the project besides the other objectives so
that there are a different interval of energy consumptions in each time period,

(4) Investigating different levels of the required skills for each activity under each
mode.
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