
Computing (2018) 100:557–595
https://doi.org/10.1007/s00607-017-0581-6

Locality-aware task scheduling for homogeneous
parallel computing systems

Muhammad Khurram Bhatti1 · Isil Oz2 ·
Sarah Amin1 · Maria Mushtaq1 · Umer Farooq3 ·
Konstantin Popov4 · Mats Brorsson5

Received: 10 March 2017 / Accepted: 24 October 2017 / Published online: 1 November 2017
© Springer-Verlag GmbH Austria 2017

Abstract In systems with complex many-core cache hierarchy, exploiting data local-
ity can significantly reduce execution time and energy consumption of parallel
applications. Locality can be exploited at various hardware and software layers. For
instance, by implementing private and shared caches in a multi-level fashion, recent
hardware designs are already optimised for locality. However, this would all be use-
less if the software scheduling does not cast the execution in a manner that promotes
locality available in the programs themselves. Since programs for parallel systems
consist of tasks executed simultaneously, task scheduling becomes crucial for the per-
formance in multi-level cache architectures. This paper presents a heuristic algorithm
for homogeneous multi-core systems called locality-aware task scheduling (LeTS).
The LeTS heuristic is a work-conserving algorithm that takes into account both local-
ity and load balancing in order to reduce the execution time of target applications.
The working principle of LeTS is based on two distinctive phases, namely; working
task group formation phase (WTG-FP) andworking task group ordering phase (WTG-
OP). The WTG-FP forms groups of tasks in order to capture data reuse across tasks
while the WTG-OP determines an optimal order of execution for task groups that
minimizes the reuse distance of shared data between tasks. We have performed exper-
iments using randomly generated task graphs by varying three major performance

B Muhammad Khurram Bhatti
khurram.bhatti@itu.edu.pk

1 Embedded Computing Lab, Information Technology University (ITU), 346-B Ferozpur Road,
Lahore, Pakistan

2 Computer Engineering Department, Izmir Institute of Technology, Izmir, Turkey

3 Department of Electrical and Computer Engineering, Dhofar University, 211 Salalah, Oman

4 SICS, Isafjordsgatan 22, 164 29 Kista, Sweden

5 KTH Royal Institute of Technology, Isafjordsgatan 22, Box 1263, 164 29 Kista, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-017-0581-6&domain=pdf
http://orcid.org/0000-0002-1974-8268


558 M. K. Bhatti et al.

parameters, namely: (1) communication to computation ratio (CCR) between 0.1 and
1.0, (2) application size, i.e., task graphs comprising of 50-, 100-, and 300-tasks per
graph, and (3) number of cores with 2-, 4-, 8-, and 16-cores execution scenarios. We
have also performed experiments using selected real-world applications. The LeTS
heuristic reduces overall execution time of applications by exploiting inter-task data
locality. Results show that LeTS outperforms state-of-the-art algorithms in amortizing
inter-task communication cost.

Keywords Runtime resource management · Parallel computing · Multicore
scheduling · Homogeneous systems · Directed acyclic graph (DAG) · Embedded
systems

Mathematics Subject Classification 68U01

1 Introduction

Recent trend in architecture design is to integratemore cores onto a single chip in order
to meet the higher performance demand of computationally intensive applications
[1,2]. With the increasing number of cores on a single processor die, the on-chip
cache hierarchy that support these cores is also becoming more complex and larger.
Consequently, the effects of non-uniformmemory access are prevalent even on a single
chip [3]. In such scenario, in order to reduce execution time and energy consumption
of complex parallel applications, data access locality should be exploited. This is
particularly important in task-based programming systems, where a computation is
broken down into small code segments (i.e., tasks) and a scheduler decides when and
where on the chip these tasks should execute. Specifically, a scheduler generates a task
schedule by grouping tasks to execute on the same thread, and by applying ordering
across the tasks. For load balancing among various cores, the runtime system may
employ stealing to redistribute tasks from loaded threads to idle threads. However,
to capture locality in a task-based system, the scheduling algorithm should be made
locality-aware.

Programming of parallel systems for executing single application is more chal-
lenging than programming a single processor for a single application due to multiple
reasons. One such reason is the larger degree of freedom in scheduling tasks over
multiple computing resources that increases algorithmic complexity. Having many
degrees of freedom implies many grouping and ordering choices for tasks. Another
reason is that various code segments of application have precedence constraints and
data dependencies among them and the complexity of many-core cache hierarchies
makes the process all the more complicated. Thus, task grouping and ordering deci-
sions taken by the scheduler must optimise locality across all cache levels, whether
the hierarchy being shared or private. Due to arbitrary sizes, precedence constraints,
and data dependencies among tasks, scheduling on multicore systems is considered as
an NP-hard problem, i.e., it is not possible to find an optimal schedule in polynomial
time (unless NP = P) [2,4–7]. Therefore, proposed scheduling algorithms are based
on heuristics that try to reduce execution time on bounded computing resources [5,6].

123



Locality-aware task scheduling for homogeneous parallel… 559

While the heuristics usually provide fair results, there is no guarantee that solutions
are always close to optimal [8,9].

With scheduling already an NP-hard problem in parallel systems, avoiding the
high latency to access remote caches and main memory is increasingly critical for
performance. The same holds for energy efficiency too: Moving data from a remote
cache or from an off-chip memory requires 10 and 20 times more energy than an
arithmetic operation [10], respectively. Thus, consensus exists [3,11,12] that memory
access locality should be exploited to reduce execution time and energy to improve
the performance of parallel systems.

In this paper, we propose a scheduling heuristic, called the LeTS (Locality-aware
Task Scheduling) heuristic, for structured parallel programming systems, i.e., systems
with explicit data and control dependencies across tasks. The contributions of this
paper are as follows: (1) We develop a locality analysis framework and an offline list
scheduler that takes the target application’s profile information as input in the form
of a directed acyclic graph (DAG) and generates schedules that are optimised for data
access locality. (2) We then evaluate the effectiveness of the proposed scheduler using
applications with 50-, 100-, and 300-tasks per graph benchmarks of Standard Task
Graph (STG) [2,13]. We have also evaluated LeTS heuristic using selected real world
application graphs. We analyze results for 2-, 4-, 8-, and 16-cores system execution
scenarios, with variable degree of parallelism (DoP), and variable number of edges in
the task graphs.

Rest of this paper is organized as follows: We discuss related work on task schedul-
ing in Sect. 2. In Sect. 3, we present our systemmodel and related definitions. Section 4
presents our proposed locality-aware task scheduling heuristic in detail. Experimental
setup and results are discussed in Sect. 5. We conclude this paper in Sect. 6.

2 Background and related work

Task scheduling techniques are broadly classified into two main categories, i.e., List
scheduling and Clustering [5,14,15]. Most of the algorithms that have been proposed
for task scheduling fall into one of these two classes. Therefore, task scheduling
algorithms can only be compared within their respective class. Both list scheduling
and clustering can be considered as heuristic skeletons. An algorithm applying either
of these techniques has the freedom to define the two, so far unspecified, criteria:
the priority scheme for the nodes and the choice criterion for the processor [14].
Algorithms proposed under both list scheduling as well as clustering generate their
schedule before the execution of applications, i.e., at compile time.

The list scheduling structure comprises of two distinct parts; in the first part, certain
priority order/scheme is used to sort tasks while respecting their precedence con-
straints. Such sorting creates a topological order containing all ready tasks. In the
second part, tasks are successively scheduled onto a processing unit (a core) that
allows their earliest start time [2,14,16,17]. There are significantly large number of
algorithms proposed in this category, such as [5,16–22]. The heterogeneous earli-
est finish time (HEFT) [18] is one of the well-known scheduling algorithms that uses
recursive approach in the bottom-up direction in order to determine the order of nodes.
Such node ordering is based on computation costs. This node order is then used to

123



560 M. K. Bhatti et al.

process tasks. Critical path nodes are being preferred by HEFT, which leads it to
Depth-First Search (DFS) based node ordering and execution subsequently. In a sim-
ilar work proposed in [19], critical path nodes are scheduled first by the proposed
algorithm and non-critical path nodes, their bottom level is considered for ordering.

Critical path/most immediate successors first (CP/MISF) algorithmproposed in [16]
also uses the method of bottom level ordering. CP/MISF breaks ties in favour of the
task that has higher number of successors. The constrained earliest finish time (CEFT)
has been proposed in [17]. CEFT heuristic uses the constrained critical path (CCP)
notion that refers to a task window representing only ready nodes at any given time
instance. Critical paths are being calculated by CEFT at first and then the tasks in pre-
computedCCPs are scheduled using combined finish time of entire CCP, subsequently.
Authors in [5] analyze priority schemes in which the node orders are decided based
on the bottom level, which is the same as LeTS heuristic but at different granularity.
Other metrics such as; communication of nodes and critical path are also important in
determining such node ordering as discussed in [19,20]. Another heuristic proposed
in [21] is called the dynamic critical path (DCP). DCP is based on a critical pattern
traversal approach. Basic idea in this work is to minimize overall schedule length at
each execution step by using remaining critical path. DCP produces the final schedule
only after processing all nodes. The use of static graph analysis and parameters like
node levels (bottom level and top level) stretched back to work proposed in [22] where
authors have proposed the modified critical path (MCP) algorithm. The nodes under
MCP are ordered by their bottom level and ties are broken in favour of successor nodes
with larger bottom levels.

In rather recent work related to static task scheduling, authors in [23] have proposed
multi-objective list scheduling (MOLS), a general framework and heuristic algorithm
for multi-objective static scheduling of scientific workflows in heterogeneous com-
puting environments. Although theMOLS algorithm considers 04 different objectives
(makespan, economic cost, energy consumption, and reliability), their results show
that makespan has the largest impact on all other objectives as it is the only structure-
dependent objective that preserves the precedence constraints of target application in
the ordered list. This result supports LeTS heuristic’s focus on optimizing mainly the
makespan through static scheduling.MOLSuses similarworkflowmodel ofDAGs and
bottom-level (B-level) criteria for ranking nodes as LeTS, which we have elaborated in
Sect. 3.MOLS heuristic works in three distinctive phases namely; the constraint vector
partitioning, the task ordering, and the task mapping phases, compared to two phase
solution of LeTS. Authors in [24] present a list-based scheduling algorithm called pre-
dict earliest finish time (PEFT) for heterogeneous computing systems. PEFT claims
to offer makespan improvements by introducing a look-ahead feature. PEFT heuristic
relies on a so-called optimistic cost table for task prioritization and allocation, how-
ever, it does so without considering the availability of processors while computing cost
table. Similar to LeTS, PEFT heuristic also uses randomly generated graphs with var-
ious characteristics and selected graphs of real-world applications to analyze results
in terms of schedule length ratio, efficiency, and frequency of best results.

Clustering algorithms consider collections or sets of tasks to be mapped to appro-
priate processing resources [4–6,15,25–27]. Such a collection is termed as cluster.
The clusters are then processed further to adapt for a bounded number of processing

123



Locality-aware task scheduling for homogeneous parallel… 561

resources. Among the earlier works on clustering, Kim and Browne [27] proposed
a path clustering algorithm that select a longest path p that consists of previously
unvisited edges in each iteration of clustering and merge every nodes of p into a single
cluster and mark every edge in p as visited. Similarly, Sarkar [28] proposed a heuristic
based on single edge clustering that sorts the edges in descending order of their com-
munication cost. Then for each sorted edge, computes the schedule length considering
the value of selected edge as zero. If the schedule length improves, then it merges the
two nodes on which the selected edge is incident. The dominant sequence cluster-
ing (DSC) algorithm proposed in [15] takes an unbounded number of processors and
creates clusters of tasks to schedule. DSC algorithms is proposed for homogeneous
processing systems. TheDSCalgorithmmerges the the clusters in order to adapt sched-
ule to available computing resources. Similarly, authors in [25] propose an algorithm
that perform level sorting, i.e., at any particular depth level in a task graph, the tasks
are arranged in an order such that they are independent of one another. The algorithm
then allocates processing resources using the earliest finish time of any given level.
At any given level, the tasks offering smaller execution times are merged together in
order to adhere to the number of available processors. The resource allocation is thus
based on minimising the total computation and communication costs.

In recently publishedwork, authors in [29] propose a clustering-based task schedul-
ing algorithm called clustering for minimizing the worst schedule length (CMWSL) to
minimize the schedule length in a large number of heterogeneous processors. CMWSL
considersDAG-based applicationmodel and consists of four phases to statically sched-
ule aDAG. It first derives the lower bound of the total execution time for each processor
using theworst schedule length (WSL) and then the processor that minimizes theWSL
is chosen for the cluster assignment target. In the next two phases, task clustering and
scheduling is performed, respectively. CMWSL, compared to LeTS, takes more iter-
ations to effectively decide on the clustering and task ordering.

Most of the proposed scheduling techniques work with a fine granularity, i.e., by
computing priorities at node-level in the task graph. The LeTS heuristic assigns an
execution order between topologically arranged nodes at a coarse-grain level by group-
ing nodes into working task groups (WTGs), which favour intra-group data locality.
Moreover, earlier proposed techniques base their prioritization mechanisms on the
computation costs mainly and do not explicitly prioritise nodes in order to minimize
inter-task communication. LeTS heuristic gives equal weight-age to both computation
and communication costs while computing priorities. Section 4 gives details on the
priority mechanism used by the LeTS heuristic.

3 Definitions and system model

In this section, we provide our system model, definitions, and properties/assumptions
that are taken in this work.

3.1 Application model

A given program/application can be represented in the form of a DAG. In such repre-
sentation, code segments are represented via nodes and inter-node dependencies are

123



562 M. K. Bhatti et al.

represented via edges. A function G = (V, E, w, c) represents such task graphs, where
V is a set of nodes that represent a non-divisible sequential task of the program, i.e.,
n ε V . An edge ei, j ε E represents the precedence constraint between task ni and n j .
Both control-flow and data-flow dependency can be represented through edges. The
positive weight w(ni ) of task ni ε V represents its computation time cost. Explicit
communication cost between tasks ni and n j is represented by a non-negative weight
c(ei, j ) on the edge ei, j ε E as shown in [2,6,30]. In this systemmodel, the architecture
and the application task graph is fully known (i.e., topology, computation cost, com-
munication costs, data and precedence constraints) at compile-time.We do not impose
any restrictions on the input–task graphs can have arbitrary structure, computation,
and communication costs. Please note that, like all other static scheduling techniques,
the LeTS heuristic works with pre-built/known task graphs only, i.e., it does not deal
with the dynamic data.

3.2 Architecture model

We consider a set of homogeneous multicores, with their associated caches, connected
by a communication network to run application DAGs. Considered system possesses
the following properties/assumptions.

1. The parallel system does not have any workload other than the scheduled appli-
cation task graph.

2. Execution is non-preemptive and allows one task at a time per core.
3. Local communication (i.e., between tasks executed on the same core) is negligible

and therefore considered as zero. This is because, for parallel systems, remote
communication is more expensive than local communication by one or more
orders of magnitude [14]. Therefore, we consider local communication cost as
negligible or zero.

4. Computing resources are not involved in communication, i.e., communication
subsystem is dedicated.

5. Inter-task communication is performed concurrently; there is no contention taken
into account for communication resources.

6. The communication network is fully connected. Every core can communicate
directly with every other core via a dedicated identical communication link.

Given the identical processing units and the fully connected network of identi-
cal communication links, the system is completely homogeneous. Note that earlier
research work has used such system model as well in order to analyze the perfor-
mance of scheduling algorithms such as [2,14,18,24,31]. We consider this model to
permit a fair comparison with state-of-the-art algorithms.

3.3 Definitions

In this section, we introduce some relevant definitions, which will be used throughout
this paper.

123



Locality-aware task scheduling for homogeneous parallel… 563

Task Graph Paths: Multiple paths of arbitrary length exist in an application’s task
graph G, starting from source node to sink node. The total length of a path in a graph
can be represented as cumulative weight of nodes and edges, starting from source
node to the sink node, as shown in Eq. 1.

pl(p) =
∑

n∈p,V

w(n) +
∑

eεp,E

c(e) (1)

The computational length of a path in the graph, i.e., without including communi-
cation, is the cumulative weight of nodes only as shown in Eq. 2.

(plw(p)) =
∑

n∈p,V

w(n) (2)

Nodes that belong to a single path p possess an inherently sequential order due to
precedence among them, which prevents their concurrent execution. This precedence
helps in interpreting the total path length plw(p) to be the time a path takes for
sequential execution of all its nodes.Moreover, when the communication cost between
these nodes is also taken into account as inter-processor communication, the path
length can be referred as pl(p). Communication cost can no more be neglected when
each node of p is executed on a different processor than its predecessor.

Critical Path (cp): The longest path in task graph in terms of execution time, starting
from the source to the sink node, is referred as Critical Path (cp) as shown in Eq. 3.

(pl(cp)) = max
p∈G {(pl(p))} (3)

Length of critical path, based on the computational cost only, serves as a yard-stick
or a lower bound on the minimum achievable execution time for the whole program,
i.e., any scheduler cannot achieve a schedule length shorter than critical path length
[2,5,14].

Node Levels: For any node nεV , there exist paths in the graph for which node n serves
as the last node, whereas for some other paths it serves as the start node. All such paths
can have arbitrary lengths. A node level is defined as the length of the longest path
containing the concerned node. Two distinct levels can be defined for each node.

TopLevel (tl(n)): It is the length of the longest path that ends at noden, while excluding
its own computation cost w(n). Top level can be expressed by Eq. 4. Here, ance(n)
refers to the set of ancestor nodes of n and source(G) represents the root node of the
graph. With no ancestor nodes, tl(n) = 0.

123



564 M. K. Bhatti et al.

tl(n) = max
ni εance(n)∩source(G)

{pl(p(ni → n))} − w(n) (4)

Bottom Level (bl(n)): It is the length of the longest path that starts at node n, while
including its own computation cost w(n). Bottom level can be expressed by Eq. 5.
Here, desc(n) refers to the set of descendent nodes of n whereas (sink(G) represents
the exit node of the graph. With no descendant nodes, bl(n) = w(n).

bl(n) = max
ni εdesc(n)∩sink(G)

{pl(p(n → ni ))} (5)

Schedule Length (SL): Let S be a schedule for task graph G = (V, E, w, c) on
system P . The schedule length (SL) of S is given by Eq. 6

SL(S) = max
nεV

{t f (n)} − min
nεV

{ts(n)} (6)

Here, ts(n) and t f (n) are the start and finish time for task node n, respectively.
All schedules considered in this paper start at time unit 0; thus, minnεV {ts(n)} = 0
and expression in Eq. 7 suffices as the definition of the schedule length. Alternative
designations for schedule length that are commonly used in the literature aremakespan
and execution time.

SL(S) = max
nεV

{t f (n)} (7)

4 Locality-AwarE Task Scheduling (LeTS)

While mapping tasks to cores, a locality-aware scheduler should take into account
both locality and load balancing in order to reduce execution time. Two approaches
to construct such a scheduler are: (1) task grouping and (2) task ordering [3]. In the
former approach, executing a group of tasks on cores that share one or more levels
of cache captures data reuse across tasks. In the later approach, executing tasks in an
optimal order minimizes the reuse distance of shared data between tasks, which makes
it easier for caches to capture the temporal locality. Thus, constructing a locality-aware
scheduler depends on understanding how task groups should be formed, and when the
task ordering will matter.

The LeTS heuristic, being a work-conserving algorithm, combines these two
approaches in its two distinct phases: aworking task group formation phase (WTG-FP)
and aworking task group ordering phase (WTG-OP). Both phases take a DAG as input
with nodes (tasks) and edges with computation cost on nodes and communication cost
across nodes on edges, respectively. In WTG-FP, the former phase, multiple working
task groups (WTGs) are formed based on the parent-child relationship information
available through the input task graph. Once the WTGs are formed using appropriate
criterion to favour locality, in the later phase of WTG-OP, an inter-group ordering is
defined using criterion that optimises resource utilisation (load balance). Note that
WTG-OP follows the WTG-FP and intra-group ordering of tasks is not explicitly
defined. Intra-group task ordering is captured in WTG-FP. In the following, we elab-
orate both these phases of LeTS heuristic in detail.

123



Locality-aware task scheduling for homogeneous parallel… 565

4.1 Working task group formation phase (WTG-FP)

This phase of LeTS heuristic ensures that an arbitrary number of tasks should be
grouped together for execution such that the data reuse across those tasks ismaximized,
hence the locality. In order to form such WTGs, we statically analyze the task graph
of target parallel application that is obtained using representative input data.

As stated in Sect. 3.3, intuitively, scheduling nodes from critical path first produces
an effective schedule. However, at runtime, critical path nodes may not be ready while
the resources are available to run them. A task with all its predecessor tasks completed
is referred as ready task [17]. Hence, precedence constraints play an important role is
creating a partial order of execution across tasks. In our static analysis of task graphs,
we use this inherently present partial ordering to form WTGs. In the following, we
explain how WTGs are formed.

The principle criterion to form WTGs within a task graph is: To identify tasks that
possess a partial order due to precedence and, as soon as they become ready, could be
executed in-lineon the samecorewithout gettingblockedondata. That is, all data being
shared across tasks within a WTG must be available in the cache hierarchy for reuse,
thus reducing the communication cost to local or zero. Task graph is initially traversed
in order to identify tasks that can potentially form aWTG. All paths, including critical
paths, leading from start node to exit node are identified along with their lengths using
Eqs. 1 and 3. Moreover, during the same traversal, the parent-child relationship of
each node is learned in order to determine precedence. Nodes with single and multiple
(more than one) parent tasks (aka join nodes) are also identified. This information is
used by the WTG-FP in order to form working task groups.

Once all paths within a task graph are identified, each path is analyzed indepen-
dently. On each path, nodes between the start node and the first encountered join node
along the path forms a temporaryWTGor t-WTG (excluding the join node itself). Such
t-WTGs are formed on each path in the same fashion. Note that these t-WTGs may
share start or fork node at this stage. All t-WTGs are compared for their respective
lengths (which includes computation and communication costs). The graph is then
pruned of the longest t-WTG that constitutes a final WTG. The process repeats itself
unless all nodes become part of a WTG.While nodes are being removed from the task
graph by becoming part of WTGs, some pseudo-edges are required to be added to the
graph so that the graph remains to be connected. For a node having turned into a free
node (not existing in any path from the start node to the exit node) after pruning, a
pseudo-edge to the start node is added if it has no predecessors left outside WTGs.
Note that a join node cannot become part of anyWTG that has any of its parent tasks as
member. However, a join node can always become part of any WTG with its children
tasks, if any. This is due to the fact that join nodes share data across parent tasks that
belong to multiple paths, which leads to a situation where a WTG cannot complete its
execution on the same core without getting blocked on data. The idea behind LeTS
heuristic is to execute a WTG on the same core to reduce communication cost. For
a join node, however, its parent tasks might be executed apart from each other either
temporally (on the same core but at a different time) or spatially (on different cores),
which requires a join node to wait for the data ready. Hence, theWTG formation phase
is repeated between start node to join node in the first step and then between join node

123



566 M. K. Bhatti et al.

Fig. 1 Illustrative task graph to
demonstrate working task group
formation phase (WTG-FP) of
LeTS heuristic

to join node until the whole graph is traversed and all nodes belong to any WTG. A
WTG may contain any arbitrary number of nodes with a minimum of one member.

The task group formation criterion used by LeTS heuristic favours the execution
of those tasks on the same core that (1) already have a partial order due to prece-
dence and, in addition, (2) they either have longest communication cost across them
or largest computation time requirements. In either case, grouping such tasks together
improves data access locality in the cache hierarchy due to the fact that most recent
data produced by the formerly executed tasks is readily available for the later tasks
scheduled to execute on the same core in the order of precedence. Consider the graph
shown in Fig. 1 with WTG-FP applied. In the first step, following paths are identified:

p1 = {A, B, D, H, J, L}, p2 = {A, B, D, H, K , L}
p3 = {A, B, E, H, J, L}, p4 = {A, B, E, H, K , L}
p5 = {A,C, F, I, L}, p6 = {A,C,G, I, L}.

Lengths of paths are computed usingEq. 1: pl(p1) = 120, pl(p2) = 116, pl(p3) =
109, pl(p4) = 104, pl(p5) = 95, and pl(p6) = 94, respectively. In Fig. 1, nodes H,
I, and L could be easily identified as join nodes in the graph. While analysing each
path individually, following t-WTGs could be formed as shown in Fig. 2 (regions with
broken lines): t − WTG1 = {A, B, D} from p1 and p2 (Fig. 2-1), t − WTG2 =
{A, B, E} from p3 and p4 (Fig. 2-2), t −WTG3 = {A,C, F} from p5 (Fig. 2-3), and
t − WTG4 = {A,C,G} from p6 (Fig. 2-4). Note that the t-WTGs do not include any

123



Locality-aware task scheduling for homogeneous parallel… 567

join node as a member. Starting from the start node, the WTG-FP completes its first
iteration with all t-WTGs formed on each path up to the first join node encountered. At
this stage, the length of t-WTGs is compared among themselves in order to form final
WTGs. The longest t-WTGs aswell asmutually exclusive t-WTGs form the finalWTGs.
Any twoWTGs are said to be mutually exclusive if they do not have any member node
in common. At this stage, however, t-WTGsmay contain common nodes, such as node
A is shared between all t−WTGs, node B is shared among t−WTG1 and t−WTG2
only, and nodeC is shared between t−WTG3 and t−WTG4 only.Mutually exclusive
t-WTGs, if any, can form final WTGs in the same iteration.

Since the longest t-WTG is the t −WTG1 (with a length of 58), therefore, it forms
the finalWTG and all its nodes are pruned of the graph and replaced by a pseudo-edge
as shown in Fig. 3 (edges with broken lines). As there are no more mutually exclusive
t-WTGs, the WTG-FP performs next iteration to identify remaining t-WTGs. In the
second iteration, t −WTG5 = {E}, t −WTG6 = {C, F}, and t −WTG7 = {C,G}
are formed. Since t − WTG5 is mutually exclusive with t − WTG6 and t − WTG7,
it can directly form a final t-WTGs. Between t − WTG6 and t − WTG7, t − WTG7
happens to be the longest one, hence it forms another finalWTG and both t − WTG5
and t − WTG7 are pruned of the graph as shown in Fig. 3-2. WTG-FP in its next
iteration prunes of t − WTG8 = {F}, which is a mutually exclusive t-WTG. As
shown in Fig. 2-5, 2-6, starting from the join node H, two mutually inclusive t-WTGs
are formed namely; t − WTG9 = {H, J } and t − WTG10 = {H, K }. Out of these
two, t−WTG9 forms the finalWTG as compared to t−WTG10 as shown in Fig. 3-4.
Note that the join node H forms a t-WTG with one of its children nodes. In its final
iteration, WTG-FP forms two more final WTGs with nodeK and I as single members,
respectively, and prunes them of the graph as shown in Fig. 3-5. Sink node L forms
the final WTG directly.

Please note that theWTG-FP is independent from the available computing resources
(cores and their associated caches) and it entirely depends on the graph structure and
precedence among the graph nodes. It is pertinent to highlight here that the scope of
LeTS heuristic is limited to static tasking scheduling, therefore, the graph structure is
considered as known.

4.1.1 Algorithms used by LeTS heuristic

Figure 4 shows pseudocode of algorithm that is being used in identification of paths
in given task graph. The algorithm implements a function named, AddToPathList
(v, p, P) for each node v that belongs to task graph G. In lines 6–14, the algorithm
initialises a path starting with its first node and subsequently, each of its children
nodes is analyzed. If a node is the last child of parent node v, then it becomes part of
the created path p, otherwise, each such node creates a new path. Once all paths are
created, LeTS heuristic can use these paths in WTG-FP andWTG-OP phases (Fig. 5).

The pseudocode for second algorithm is shown in Fig. 6, which creates working
task groups by traversing the task graph. The algorithm takes input the set of paths
created using algorithm shown in Fig. 4. After creating empty sets for temporary and
final WTGs and initialising variables, the algorithm analyzes each path individually
(lines 6–18). For each node belonging to each path, the algorithm verifies the number

123



568 M. K. Bhatti et al.

Fig. 2 Illustrative task graph to
demonstrate Working Task
Group Formation Phase
(WTG-FP) of LeTS

123



Locality-aware task scheduling for homogeneous parallel… 569

Fig. 3 Working Task Group (WTG) formation and graph pruning by LeTS

of its parent tasks. In case it has multiple parent tasks, a temporary working task group
(t-WTG) is created and next path is selected for exploration. Otherwise, the algorithm
continues to explore further nodes on the same path (lines 7–16). Once all paths are
traversed, the algorithm sorts all t-WTGs present in t-WTG-S in descending order of
their size and identifies mutually exclusive t-WTGs. All mutually exclusive t-WTGs
form the finalWTGs and the algorithm replaces them with pseudo-edges in the graph
(lines 19–23). The process continues until all nodes in the graph become part of any
WTG (lines 24–28).

123



570 M. K. Bhatti et al.

Fig. 4 Pseudocode of algorithm
identifying paths in the task
graph

Fig. 5 Pseudocode of execution
time calculation algorithm used
in LeTS

The working task group formation phase is based on traversing task graph using a
sliding windowwith arbitrary window size. Since the size of window is caped between
any two consecutive join nodes (or source node and first encountered join node for
the start of graph), therefore, the window is very small and the iterations performed
by WTG-FP are very fast too. Figure 7 shows the pseudocode representation of the
algorithm used for scheduling WTGs obtained from WTG-FP. In order to amortize
the communication cost within a WTG, it is essential to execute a given WTG on a
single core. The present algorithm (lines 5–14) ensures that nodes within a WTG are
sequentially executed on the same core without getting blocked on data. It traverses
the set of ready nodes for each executed node to determine the next ready node in
the WTG that is currently being executed. If a ready and executed node belong to
the same WTG, then the core previously allocated to the executed node is assigned
to that particular ready node. The algorithm further reduces the communication cost
between a child node, that is also the first node of a ready WTG, and one of its parent
nodes by assigning them the same core on the condition that the core is free (lines 15–
33). Lastly, processors are assigned to remaining ready nodes. Pseudocode in Fig. 7
suggests that the complexity of LeTS heuristic is O(N 3).

123



Locality-aware task scheduling for homogeneous parallel… 571

Fig. 6 Pseudocode of algorithm
used to form WTGs in WTG-FP

c(n) = CCR · w(n) (8)

Figure 5 shows the pseudocode representation of the algorithm used to calculate
time required by a node for its completion. LeTS is communication aware heuristic
and works on the fact that communication cost between two nodes is minimal if both
of them are executed on the same core. The algorithm adds communication cost to
the execution time of the process only if both parent and child nodes get executed
on different cores. If the communication cost is not incorporated in the input graph,
it is systematically produced through Eq. 8. Here, CCR refers to Communication to
Computation Ratio and is the sum of all edge weights (communication costs) divided
by the sum of all node weights (computation costs) [5]. This is further elaborated in
the experimental section where we study the impact of CCR, when it is varied from
low to medium values, on scheduling length.

123



572 M. K. Bhatti et al.

Fig. 7 Pseudocode of algorithm
used for LeTS schedular

4.2 Working task group ordering phase (WTG-OP)

The order in which nodes of task graph are considered for scheduling has a significant
influence on the resulting schedule length. Gauging the importance of nodes with a
priority scheme is therefore a fundamental part of scheduling schemes. Many existing
scheduling techniques [5,8,18,32,33] evaluate the importance of nodes in different
ways. The earlier a node is considered for scheduling, the earlier it can acquire a
computing resource for its execution. The challenge, however, is to find priorities that
well reflect the importance of the node. The provision of relative importance to nodes
(rather than absolute importance w.r.t. each other) results in smaller schedule length
(SL) of the application.

The LeTS heuristic uses the concept of node levels introduced in Sect. 3.3 and
used in [6,14,30] to gauge the importance of nodes in an offline analysis. Although
the bottom level bl(n), as defined, is a node-specific parameter and gives its relative
distance from the sink node (or exit node), it is used for an inter-WTG ordering in
a post WTG formation phase. Note that WTG-FP forms WTGs on individual paths
by selecting nodes that can execute sequentially on the same core without getting

123



Locality-aware task scheduling for homogeneous parallel… 573

blocked on data. Therefore, intra-WTG node ordering is already captured in WTG-FP
phase. Hence, it is the inter-WTG ordering that matters in order to optimise resource
utilisation or load balance across cores and further reduce schedule length.

The LeTS heuristic allocates one WTG to one core at a time with no pre-emption
and migration allowed, i.e., a WTG runs to its completion on the same core. As soon
as the first node within a WTG gets ready, the whole WTG can be considered as
ready and non-blocking (on data). Thus, the WTG-OP compares the bottom levels of
the first nodes of all ready WTGs and prioritises the allocation of WTG(s) having
larger bottom levels. A larger value for bottom level indicates the WTG belongs to
a longer path (i.e., remaining critical path) in the graph. Such an inter-WTG priority
mechanism ensures that WTGs are always selected from remaining critical paths in
the graph and all paths advance in execution in a proportionate manner. Ties in WTG
ordering are broken in favour of larger WTGs in size.

5 Experimental evaluation

In this section, we provide simulation results of LeTS heuristic and analyze its perfor-
mance against the variation in application parameters. The simulationswere performed
on workstation with an Intel Xeon E5-2643 processor, operating at a fixed clock of
3.40GHz, and 256GB of RAM. The operating system used was Ubuntu 16.04 LTS
with kernel Linux 4.2.0-42-generic. We have performed experiments and analysis of
results using two types of target applications. We have demonstrated performance
of LeTS heuristic using randomly generated benchmark task graphs from Standard
Task Graph Set (STG) [13] that allow parameter variations as well as with selected
real-world application task graphs.

STG is extensively used by [2,34,35] in their evaluations for scheduling algorithms.
It provides randomly generated task graphs with variable application sizes and crit-
ical path lengths, allowing to experiment with diverse application behaviours. STGs
also provide, along with their graphs, a pre-computed optimal computational sched-
ule length (i.e., without incorporating communication costs) using exhaustive search
method. We perform experiments for LeTS heuristic using application graphs that
consist of 50-, 100-, and 300-tasks per graph. To validate our results, we have used
315 task graphs in total: 150 task graphs from 50-tasks per graph category, 150 task
graphs from 100-tasks per graph category, and 15 task graphs from 300-tasks per
graph category. Please note that in Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and
19, we have shown results of only 40 randomly selected task graph instances out of
150 instances being tested in each case. This is for the sole purpose of improving
readability of results. Experiments have been performed for all 315 task graphs.

Table 1 shows characteristics of STG graphs. For instance, in the category of 50
tasks per graph, the number of edges are minimum 46, maximum 953, and on average
262.02 per graph. The results are being evaluated on homogeneous multicore systems
with hierarchical caches and connected by a contention-free communication network.
We have considered 2-, 4-, 8-, and 16-cores execution scenarios for the execution of
variable size application DAGs. Moreover, in each of these execution scenarios, we
induce systematic variation in CCR in each task graph from 0.1 (i.e., communica-

123



574 M. K. Bhatti et al.

Fig. 8 Comparison of schedule
length between LeTS and
existing heuristics:
50-tasks/graph, 2-cores. a 50
Task/graph with 0.1 CCR, b 50
task/graph with 0.3 CCR, c 50
task/graph with 0.5 CCR, d 50
task/graph with 0.7 CCR, e 50
task/graph with 0.9 CCR

123



Locality-aware task scheduling for homogeneous parallel… 575

Fig. 9 Comparison of schedule
length between LeTS and
existing heuristics:
50-tasks/graph, 4-cores. a 50
Task/graph with 0.2 CCR, b 50
task/graph with 0.4 CCR, c 50
task/graph with 0.6 CCR, d 50
task/graph with 0.8 CCR, e 50
task/graph with 1.0 CCR

123



576 M. K. Bhatti et al.

Fig. 10 Comparison of
schedule length between LeTS
and existing heuristics:
50-tasks/graph, 8-cores. a 50
Task/graph with 0.1 CCR, b 50
task/graph with 0.3 CCR, c 50
task/graph with 0.5 CCR, d 50
task/graph with 0.7 CCR, e 50
task/graph with 0.9 CCR

123



Locality-aware task scheduling for homogeneous parallel… 577

Fig. 11 Comparison of
schedule length between LeTS
and existing heuristics:
50-tasks/graph, 16-cores. a 50
Task/graph with 0.2 CCR, b 50
task/graph with 0.4 CCR, c 50
task/graph with 0.6 CCR, d 50
task/graph with 0.8 CCR, e 50
task/graph with 1.0 CCR

123



578 M. K. Bhatti et al.

Fig. 12 Comparison of
schedule length between LeTS
and existing heuristics:
100-tasks/graph, 2-cores. a 100
Task/graph with 0.1 CCR, b 100
task/graph with 0.3 CCR, c 100
task/graph with 0.5 CCR, d 100
task/graph with 0.7 CCR, e 100
task/graph with 0.9 CCR

123



Locality-aware task scheduling for homogeneous parallel… 579

Fig. 13 Comparison of
schedule length between LeTS
and existing heuristics:
100-tasks/graph, 4-cores. a 100
Task/graph with 0.2 CCR, b 100
task/graph with 0.4 CCR, c 100
task/graph with 0.6 CCR, d 100
task/graph with 0.8 CCR, e 100
task/graph with 1.0 CCR

123



580 M. K. Bhatti et al.

Fig. 14 Comparison of
schedule length between LeTS
and existing heuristics:
100-tasks/graph, 8-cores. a 100
Task/graph with 0.1 CCR, b 100
task/graph with 0.3 CCR, c 100
task/graph with 0.5 CCR, d 100
task/graph with 0.7 CCR, e 100
task/graph with 0.9 CCR

123



Locality-aware task scheduling for homogeneous parallel… 581

Fig. 15 Comparison of
schedule length between LeTS
and existing heuristics:
100-Tasks/graph, 16-cores. a
100 Task/graph with 0.2 CCR, b
100 task/graph with 0.4 CCR, c
100 task/graph with 0.6 CCR, d
100 task/graph with 0.8 CCR, e
100 task/graph with 1.0 CCR

123



582 M. K. Bhatti et al.

Fig. 16 Comparison of
schedule length between LeTS
and existing heuristics:
300-tasks/graph, 2-cores. a 300
Task/graph with 0.1 CCR, b 300
task/graph with 0.3 CCR, c 300
task/graph with 0.5 CCR, d 300
task/graph with 0.7 CCR, e 300
task/graph with 0.9 CCR

123



Locality-aware task scheduling for homogeneous parallel… 583

Fig. 17 Comparison of
schedule length between LeTS
and existing heuristics:
300-tasks/graph, 4-cores. a 300
task/graph with 0.2 CCR, b 300
task/graph with 0.4 CCR, c 300
task/graph with 0.6 CCR, d 300
task/graph with 0.8 CCR, e 300
task/graph with 1.0 CCR

123



584 M. K. Bhatti et al.

Fig. 18 Comparison of
schedule length between LeTS
and existing heuristics:
300-tasks/graph, 8-cores. a 300
Task/graph with 0.1 CCR, b 300
task/graph with 0.3 CCR, c 300
task/graph with 0.5 CCR, d 300
task/graph with 0.7 CCR, e 300
task/graph with 0.9 CCR

123



Locality-aware task scheduling for homogeneous parallel… 585

Fig. 19 Comparison of
schedule length between LeTS
and existing heuristics:
300-tasks/graph, 16-cores. a 300
Task/graph with 0.2 CCR, b 300
task/graph with 0.4 CCR, c 300
task/graph with 0.6 CCR, d 300
task/graph with 0.8 CCR, e 300
task/graph with 1.0 CCR

123



586 M. K. Bhatti et al.

Table 1 Standard task graphs (STG) parameters

50-tasks per graph 100-tasks per graph 300-tasks per graph

Number of edges 46/262.02/953 93/629.81/1677 309/1835.69/2958

Maximum predecessors 3/14.23/42 4/18.05/40 6/19.06/32

Maximum proc. time 7/22.27/70 7/24.09/83 8/27.81/76

Degree of parallelism 1.66/5.62/11.92 2.85/7.06/19.55 7.16/13.55/27.27

tion cost being 10% of computation cost of parent task) to 1.0 (i.e., communication
cost being 100% of computation cost of parent task). Since STGs do not incorporate
communication cost on edges in their graphs, we have calculated the values of commu-
nication cost using the method described in Sect. 4 (Eq. 8). Using Eq. 8, we calculate
communication cost with the hypothesis that if a task is computingmore then it has the
tendency to produce more data that is shared with child/children task(s). Communica-
tion cost, however, can also be calculated as random. The variation in CCR allows to
observe the impact of communication cost relative to computation cost while running
the same task graph over different number of cores. We have explained the effect of
each of these variations (i. e., number of cores, CCR, size of application task graphs
etc) on Schedule Length (SL) and have subsequently compared the SL obtained under
LeTS with all other heuristics described below.

We have performed experiments using three real-world applications to evaluate
performance consistency of LeTS heuristic. First application is Sparse Matrix Solver
with n tasks and m edges. Sparse matrices often appear in scientific or engineering
applications when solving partial differential equations. Second application is a Robot
Control application with n tasks and m edges, and our third application is SPEC95
subroutine fpppp with n tasks and m edges.

In order to quantify improvements offeredbyLeTS,wehaveperformedcomparative
analysis of results using the following heuristics [5,14,36]:

• Greedy (Random): There is no prioritization rule for Random Greedy and nodes
are executed as they get ready irrespective of any specific order.

• Noodle: Priority for nodes decreases exponentially at each depth level in a graph
on those paths for which ready nodes are being executed. That is, nodes on those
paths that have remaining length greater than other paths have higher priorities. In
case of ties, preference is given to nodes with larger task weights.

• BL-comm: Nodes that have the highest bottom level are prioritised over all other
ready nodes. Both communication and computation costs are considered while
calculating bottom level of a node.

• BL-comp: Nodes are prioritised on the basis of their decreasing computation
bottom-levels. Here, only computation is taken into account while calculating
bottom level of a node.

• CP-BL-TL: Under this heuristic, priority is given to the nodes belonging to critical
path compared to all other ready nodes. All remaining ready nodes are ordered
based on their bottom-level. In case of tie, it is broken in favor of node with the
smallest top-level.

123



Locality-aware task scheduling for homogeneous parallel… 587

Table 2 Difference between SL of LeTS and other heuristics (2-cores)

CCR Number of cores=2

50-tasks/graph 100-tasks/graph 300-tasks/graph
min./max./avg. min./max./avg. min./max./avg.

0.1 19/388/89.6 33/613/217.8 128/1146/572

0.3 40/867/202 82/1463/493 258/2701/1246

0.5 50/1334/308.3 111/2429/747 367/4102/1794.5

0.7 75/2144/443.6 155/3601/1071.3 560/5968/2624.6

0.9 108/2571/572 197/4408/1364.7 670/7667/3362.6

Table 3 Difference between SL of LeTS and other heuristics (4-cores)

CCR Number of cores=4

50-tasks/graph 100-tasks/graph 300-tasks/graph
min./max./avg. min./max./avg. min./max./avg.

0.2 2/314/1.5 6/261/88.8 36/511/234.7

0.4 4/546/80.1 22/557/163.8 72/894/415.1

0.6 4/629/114.3 36/789/235 114/1265/599.8

0.8 4/818/152.1 12/1009/313.1 118/1839/786

1.0 3/978/181.7 29/1206/365.7 172/2104/931

• CP-TL: Similar to CP-BL-TL, priority is given to the nodes belonging to critical
path compared to all other ready nodes, while all other ready nodes are ordered by
their top-level.

• LeTS: Each node is assigned to a working task group and the groups are ordered
by the methods described in Sect. 4.2. In case of tie, it is broken in favor of WTGs
that are larger in size.

In the Sect. 5.1, we provide our observations and comparative analysis based on
the impact of variation in CCR, size of application task graphs, and number of cores.
Note that we do not claim LeTS being the optimal algorithm. The results obtained
demonstrate relative gains in terms of SL. Moreover, STG [13] does not provide opti-
mal schedule lengths with communication cost being applied, therefore, the optimal
SL is unknown for the obtained results.

5.1 Comparative analysis

In this section, we have provided in details the impact of variations in applica-
tion parameters such as CCR ration, application size, and the number of computing
resources.

123



588 M. K. Bhatti et al.

Table 4 Difference between SL of LeTS and other heuristics (8-cores)

CCR Number of Cores = 8

50-tasks/graph 100-tasks/graph 300-tasks/graph
min./max./avg. min./max./avg. min./max./avg.

0.1 1/186/19.3 1/93/26.5 6/59/31.5

0.3 2/440/43.4 1/250/63.8 5/168/79.3

0.5 1/651/64.4 1/464/101.1 15/235/112.8

0.7 1/727/92 1/525/141.3 23/397/175.9

0.9 9/914/116.6 1/621/180.2 32/578/225.07

Table 5 Difference between SL of LeTS and other heuristics (16-cores)

CCR Number of cores=16

TGs with 50 tasks TGs with 100 tasks TGs with 300 tasks
min./max./avg. min./max./avg. min./max./avg.

0.2 2/314/27.7 1/161/43.3 3/92/52.3

0.4 5/546/51.2 1/318/81.1 3/189/99.2

0.6 4/629/73.3 1/448/115.1 6/323/143.8

0.8 2/818/97.1 11/658/155.9 14/396/177.9

1.0 6/978/114.47 3/906/183.3 15/474/213.36

5.1.1 Impact of variation in CCR

Since LeTS heuristic aims at amortizing mainly the communication cost, therefore,
the impact of variations in CCR values is themost important observation in our results.
We have varied CCR from 0.1 to 1.0 (i.e., 10–100% of computation cost of parent
task) with a step size of 0.1 and studied its impact on the final schedule length for
each algorithm. We have obtained results for CCR variation in 2-, 4-, 8-, and 16-cores
execution scenarios with applications of 50-, 100-, and 300-tasks per graph. In favour
of space, we have shown results with CCR values either 0.1, 0.3, 0.5, 0.7 and 0.9 in
some cases or 0.2, 0.4, 0.6, 0.8 and 1.0 in other cases. Our observations on experiments
performed for all other CCR values remain valid.

The collective results obtained for 2-core execution scenario for 50-, 100-, and 300-
tasks per graph are shown in Figs. 8, 12, and 16, respectively. These graphs clearly
show that LeTS outperforms other algorithms specifically when CCR is increased.
We observe in Figs. 8, 12, and 16 that, for the same number of cores, increasing the
number of tasks per graph did not effect the difference in obtained SL under LeTS and
other heuristics despite increased CCR. That is, the pattern in obtained SL remains the
same as long as the number of cores remain the same. The absolute value of SL is just
increased by almost the same proportion as CCR increases. This is due to the fact that
scheduler finds the same choices in terms of number of cores to run the application
task graph. The difference in obtained SL under LeTS and other heuristics is more

123



Locality-aware task scheduling for homogeneous parallel… 589

significant for smaller number of cores, thus more amortization of communication
cost is obtained in this case. This observation correlates with our other observations
in Sect. 5.1.3, where we have discussed the effect of running larger applications with
larger number of cores.

Table 2 shows the minimum, the maximum, and the average difference in SL
obtained under LeTS and other algorithms for 2 core execution scenario. The entries
in table clearly show that the difference between obtained SL also becomes signifi-
cantly large with increasing values of CCR. For instance, in case of 50 tasks per graph,
the average difference in SL for CCR=0.1 is 89.6 units, whereas for CCR=0.9, this
difference increases to 572 units. Similar kind of results have also been depicted in
case of applications with 100 and 300 tasks per graph as shown in Table 2 for 2-cores
execution scenario. The CCR has been varied is the same fashion for 4, 8, and 16 cores
scenarios as well and results are presented through Figs. 9, 10, 11, 13, 14, 15, 17, 18,
and 19. Precise difference is SL is quantified in Tables 3, 4, and 5. Our observations
on these results are similar in case of 2 cores scenario.

An important observation for the reader here is that, as the number of cores increases
for the same application size (i. e., task graph size) and the same pattern of variation in
CCR values, the difference in SL obtained under LeTS and other algorithms reduces.
For instance, when the same application graphs with 50 tasks per graph are run on
2-, 4-, 8-, and 16-cores, the obtained difference in average SL significantly reduces as
shown in Figs. 8, 9, 10, and 11 as well as in Tables 2, 3, 4, and 5. Similar observation
can be made in cases where the application task graphs have 100 and 300 tasks per
graph. LeTS, however, still outperforms other algorithms in these cases. Reasons for
this reduction in difference of SLwith increasing number of cores have been discussed
in Sect. 5.1.2.

5.1.2 Impact of number of cores

Variation in the number of cores is another significant parameter thatwe have analyzed.
For application task graphs ranging from 50 to 300 tasks per graph, we have run them
on 2-, 4-, 8-, and 16-cores to observe if LeTS can still reduce the communication
cost between tasks. With larger number of cores to execute a given task graph, the
choice for the scheduler to run tasks on different cores naturally increases. With this
increased choice, a work-conserving scheduler would run tasks as soon as cores get
free and therefore, the impact of unavoidable communication cost between tasks will
also increase.

Figures 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19 show that when the number
of cores increase, there are two variations in obtained SL that can be observed: (1)
The overall SL decreases as there are more cores to execute any given application task
graph with same CCR value. (2) The difference in SL produced by the LeTS and other
heuristics decreases for any given application task graph with the same CCR. This is
due to the fact that, with increased number of cores, LeTS heuristic faces the similar
difficulty ofmaintaining its work-conserving naturewhileminimizing communication
cost. As a result, tasks are executed on different cores and thus the communication
cost between tasks cannot be amortized. Tables 2, 3, 4, and 5 show the minimum,
maximum, and average quantified difference in SL obtained under LeTS and other

123



590 M. K. Bhatti et al.

Fig. 20 Comparison of
schedule length between LeTS
and existing heuristics: sparse
matrix solver application with
CCR variation from 0.1 to 0.9 on
2, 4, 8, and 16 cores. a Sparse
matrix solver application with
CCR=0.2, b sparse matrix
solver application with
CCR=0.4, c sparse matrix
solver application with
CCR=0.6, d sparse matrix
solver application with
CCR=0.8, e sparse matrix
solver application with
CCR=1.0

16842

Number of Cores

0

200

400

600

800

1000

1200

1400

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e) Sparse Matrix Solver- CCR = 0.2

Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

200

400

600

800

1000

1200

1400

1600

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e)

Sparse Matrix Solver- CCR = 0.4
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

200

400

600

800

1000

1200

1400

1600

1800

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e)

Sparse Matrix Solver- CCR = 0.6
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

500

1000

1500

2000

2500

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e)

Sparse Matrix Solver- CCR = 0.8
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

500

1000

1500

2000

2500

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e)

Sparse Matrix Solver- CCR = 1.0
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

(a)

(b)

(c)

(d)

(e)

123



Locality-aware task scheduling for homogeneous parallel… 591

Fig. 21 Comparison of
schedule length between LeTS
and existing heuristics: robot
control application with CCR
variation from 0.1 to 0.9 on 2, 4,
8, and 16 cores. a Robot control
application with CCR=0.1, b
robot control application with
CCR=0.3, (c) robot control
application with CCR=0.5, (d)
robot control application with
CCR=0.7, (e) robot control
application with CCR=0.9

16842

Number of Cores

0

200

400

600

800

1000

1200

1400

1600

1800

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e)

Robot Control- CCR = 0.1
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

500

1000

1500

2000

2500

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e)

Robot Control- CCR = 0.3
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

500

1000

1500

2000

2500

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e)

Robot Control- CCR = 0.5
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

500

1000

1500

2000

2500

3000

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e)

Robot Control- CCR = 0.7
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

500

1000

1500

2000

2500

3000

3500

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e)

Robot Control- CCR = 0.9
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

(a)

(b)

(c)

(d)

(e)

123



592 M. K. Bhatti et al.

Fig. 22 Comparison of
schedule length between LeTS
and existing heuristics:
SPEC955 Subroutine fpppp
application with CCR variation
from 0.1 to 0.9 on 2, 4, 8, and 16
cores. a SPEC95 subroutine
application with CCR=0.1, b
SPEC95 subroutine application
with CCR=0.3, c SPEC95
subroutine application with
CCR=0.5, d SPEC95
subroutine application with
CCR=0.7, e SPEC95
subroutine application with
CCR=0.9

16842

Number of Cores

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e) Subroutine FPPPP (SPEC95)- CCR = 0.1

Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

0.5

1

1.5

2

2.5

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e) Subroutine FPPPP (SPEC95)- CCR = 0.3

Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

0.5

1

1.5

2

2.5

3

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e) Subroutine FPPPP (SPEC95)- CCR = 0.5

Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e) Subroutine FPPPP (SPEC95)- CCR = 0.7

Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

1

2

3

4

5

6

S
ch

ed
u

lin
g

 L
en

g
th

 (
E

xe
cu

ti
o

n
 T

im
e)

10 4

10 4

10 4

10 4

Subroutine FPPPP (SPEC95)- CCR = 0.9
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

(a)

(b)

(c)

(d)

(e)

123



Locality-aware task scheduling for homogeneous parallel… 593

heuristics when the number of cores vary. We observe that for all three cases of
different application sizes (50-, 100-, and 300-tasks per graph), when there are larger
number of cores available, the difference between SL obtained under LeTS and other
heuristics always reduces. Despite a decrease in the margin, LeTS still outperforms
other heuristics.

5.1.3 Impact of application size

Another important aspect thatwehave analyzed is the impact of variation in application
size, i.e., the task graph size. As stated above, we have analyzed a total of 315 task
graphs out of which, we have analyzed 150 graphs with size of 50-tasks/graphs, 150
graphs with 100-tasks/graph, and 15 graphs with 300-tasks/graph.

We have observed that when larger applications (for instance, applications with
100- and 300-tasks/graph) are run on larger number of cores (for instance, 8- and 16-
cores), the resultant SL produced by almost all algorithms is pretty much comparable
as shown in Figs. 10, 11, 14, 15, 18, and 19. This is due to the fact that applications
with larger number of tasks per graph offer sufficiently large degree of parallelism to
execute tasks frommultiple pathswithin a graph onto the available cores and therefore,
makes it difficult to amortize communication cost between tasks. For smaller number
of cores, however, this is not the situation as the degree of parallelism in application
task graph is often larger than the cores available to run.

Primarily, we have performed experiments with randomly generated task graphs
from STG [13] with self-introduced variation is parameters. However, in order to
validate the performance consistency of LeTSheuristic, we have also performed exper-
iments with 03 real world applications. We have analyzed the impact of variation in
CCR and number of cores on these fixed sized applications. Figure 20, 21, and 22 show
our results for Sparse Matrix Solver, Robot Control, and SPEC95 fpppp applications,
respectively. The results obtained and discussed in Sect. 5.1.1, 5.1.2, and 5.1.3 were
found consistent with the real applications. As Figs. 20, 21, and 22 show, LeTS heuris-
tic performs better than other heuristics on real applications as well. As discussed in
Sect. 5.1.2, the most significant difference in SL of real applications is also observed
with smaller number of cores as larger number of cores to execute a given task graph
increases the choice for scheduler to run tasks on different cores, thus amortizing
communication cost becomes difficult, irrespective of CCR values. Variation in CCR
affects magnitude of SL mainly in this case. These observations are valid for all three
applications.

6 Conclusions and future work

The LeTS heuristic focuses on amortizing the communication cost between tasks by
exploiting inter-task data locality and minimizes the overall schedule length (SL) of
the target application. It takes into account both locality and load balancing in order to
reduce the execution time of target applications in multi-level cache hierarchy. Exten-
sive experimental evaluation, conducted using task graphs taken from Standard Task
Graph (STG) shows that LeTS outperforms best known state-of-the-art algorithms

123



594 M. K. Bhatti et al.

in amortizing the inter-task communication cost. We have performed experiments by
varying three major performance parameters, namely: (1) CCR between 0.1 and 1.0,
(2)Application size, i.e., task graphs that consist of 50-, 100-, and 300-tasks/graph, and
(3) Number of cores with 2-, 4-, 8-, and 16-cores execution scenarios. Results show
that conscious decision-making by the scheduler regarding data reuse across tasks and
optimal task ordering to minimize reuse distance of shared data between tasks can
play an important role in minimising inter-task communication cost. Our results show
in depth how variations in the application size and number of cores available to run
these applications impact the overall execution time. The LeTS heuristic achieves load
balancing through its work-conserving nature and the WTG-OP phase of its working
principle. The working principal of LeTS requires the application task graph to be
known a priori. The future extensions of LeTS heuristic will work for heterogeneous
computing systems and partially-known task graphs.

References

1. Wolf W, Jerraya AA, Martin G (2008) Multiprocessor system-on-chip (MPSoC) technology. IEEE
Trans CAD ICs Syst 27(10):1701–1713

2. BhattiMK,Oz I, PopovK,BrorssonM,FarooqU (2016) Scheduling of parallel taskswith proportionate
priorities. Arab J Sci Eng 41(8):3279–3295. https://doi.org/10.1007/s13369-016-2180-9

3. Yoo RM, Hughes CJ, Kim C, Chen Y-K, Kozyrakis C (2013) Locality-aware task management for
unstructured parallelism: a quantitative limit study. In: Proceedings of the twenty-fifth annual ACM
symposium on parallelism in algorithms and architectures, ser. SPAA ’13. ACM, New York, NY, pp
315–325. https://doi.org/10.1145/2486159.2486175

4. Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to parallel computing, 2nd edn. Pearson
A. Wesley, Reading

5. Sinnen O, Sousa L (2004) List scheduling: extension for contention awareness and evaluation of node
priorities for heterogeneous cluster architectures. Parallel Comput 30(1):81–101

6. Sinnen O (2014) Reducing the solution space of optimal task scheduling. Comput OR 43:201–214
7. Bhatti MK, Belleudy C, Auguin M (2011) Hybrid power management in real time embedded systems:

an interplay of DVFs and DPM techniques. Real-Time Syst 47(2):143–162
8. Shahul AS, Sinnen O (2010) Scheduling task graphs optimally with a*. J Supercomput 51(3):310–332
9. Sinnen O, Sousa LA (2005) Communication contention in task scheduling. IEEE Trans Parallel Distrib

Syst 16(6):503–515
10. Dally W (2009) The future of GPU computing. In: The 22nd annual supercomputing conference
11. Hill M, Kozyrakis C (2012) Advancing computer systems without technology progress. In:

DARPA/ISAT workshop
12. Consortium CC (2012) 21st century computer architecture. A community white paper
13. Set STG http://www.kasahara.elec.waseda.ac.jp/schedule
14. Sinnen O (2007) Task scheduling for parallel systems. Wiley, New York. ISBN 978-0-471-73576-2
15. Yang T, Gerasoulis A (1994) Dsc: scheduling parallel tasks on an unbounded number of processors.

IEEE Trans Parallel Distrib Syst 5(9):951–967
16. Kasahara H, Narita S (1984) Practical multiprocessor scheduling algorithms for efficient parallel pro-

cessing. IEEE Trans Comput C–33(11):1023–1029
17. Khan MA (2012) Scheduling for heterogeneous systems using constrained critical paths. Parallel

Comput 38:175–193
18. Topcuouglu H, Hariri S, youWuM (2002) Performance-effective and low-complexity task scheduling

for heterogeneous computing. IEEE Trans Parallel Distrib Syst 13(3):260–274
19. Kwok Y-K, Ahmad I (2000) Link contention-constrained scheduling and mapping of tasks and mes-

sages to a network of heterogeneous processors. Cluster Comput 3(2):113–124
20. Ahmad I, KwokY-K (1998) On exploiting task duplication in parallel program scheduling. IEEE Trans

Parallel Distrib Syst 9(9):872–892

123

https://doi.org/10.1007/s13369-016-2180-9
https://doi.org/10.1145/2486159.2486175
http://www.kasahara.elec.waseda.ac.jp/schedule


Locality-aware task scheduling for homogeneous parallel… 595

21. Kwok Y-K, Ahmad I (1996) Dynamic critical-path scheduling: an effective technique for allocating
task graphs to multiprocessors. IEEE Trans Parallel Distrib Syst 7(5):506–521

22. Wu M-Y, Gajski D (1990) Hypertool: a programming aid for message-passing systems. IEEE Trans
Parallel Distrib Syst 1(3):330–343

23. Fard HM, Prodan R, Barrionuevo JJD, Fahringer T (2012) A multi-objective approach for workflow
scheduling in heterogeneous environments. In: 2012 12th IEEE/ACM international symposium on
cluster, cloud and grid computing (ccgrid 2012), pp 300–309

24. Arabnejad H, Barbosa J (2014) List scheduling algorithm for heterogeneous systems by an optimistic
cost table. IEEE Trans Parallel Distrib Syst 25(3):682–694

25. Iverson MA, Ozguner F, Follen GJ (1995) Parallelizing existing applications in a distributed hetero-
geneous environment. In: HCW ’95, pp 93–100

26. Bertrand Cirou EJ (2001) Triplet: a clustering scheduling algorithm for heterogeneous systems. New
York. https://doi.org/10.1109/ICPPW.2001.951956

27. Kim S, Browne J (1988) General approach to mapping of parallel computations upon multiprocessor
architectures. Unknown J 3:1–8

28. Sarkar V (1989) Partitioning and scheduling parallel programs for multiprocessors. MIT Press, Cam-
bridge, MA

29. Kanemitsu H, Hanada M, Nakazato H (2016) Clustering-based task scheduling in a large number of
heterogeneous processors. IEEE Trans Parallel Distrib Syst 27(11):3144–3157

30. Shahul AZ, Sinnen O (2010) Scheduling task graphs optimally with a*. J Supercomput 51(3):310–332
31. Deelman E, Singh G, Su M-H, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman GB, Good J,

Laity A, Jacob JC, Katz DS (2005) Pegasus: a framework for mapping complex scientific workflows
onto distributed systems. Sci Program 13(3):219–237

32. Darte A, Robert Y, Vivien F (2002) Scheduling and automatic parallelization. BirkhŁuser, New York.
ISBN 0-8176-4149-1

33. Suter F, Desprez F, Casanova H (2004) From heterogeneous task scheduling to heterogeneous mixed
parallel scheduling. In: Euro-Par 2004 parallel processing, pp 230–237

34. Orsila H, Kangas T, Salminen E, Hamalainen TD, Hannikainen M (2007) Automated memory-aware
application distribution for multi-processor system-on-chips. JSA 53(11):795–815

35. de Langen P, Juurlink B (2009) Leakage-aware multiprocessor scheduling. J Signal Process Syst
57(1):73–88

36. Bhatti MK, Oz I, Popov K, Muddukrishna A, Brorsson M (2014) Noodle: a heuristic algorithm for
task scheduling in MPSoC architectures. In: 2014 17th Euromicro conference on digital system design
(DSD). IEEE, pp 667–670

123

https://doi.org/10.1109/ICPPW.2001.951956

	Locality-aware task scheduling for homogeneous parallel computing systems
	Abstract
	1 Introduction
	2 Background and related work
	3 Definitions and system model
	3.1 Application model
	3.2 Architecture model
	3.3 Definitions

	4 Locality-AwarE Task Scheduling (LeTS)
	4.1 Working task group formation phase (WTG-FP)
	4.1.1 Algorithms used by LeTS heuristic

	4.2 Working task group ordering phase (WTG-OP)

	5 Experimental evaluation
	5.1 Comparative analysis
	5.1.1 Impact of variation in CCR
	5.1.2 Impact of number of cores
	5.1.3 Impact of application size


	6 Conclusions and future work
	References




