Computing (2018) 100:151-181 @ CrosMark
hitps://doi.org/10.1007/500607-017-0569-2

Trust strategy implementation in OppNets

Asma’a Ahmad! - Robin Doss! -
Majeed Alajeely! - Sarab F. Al Rubeaai?

Received: 1 December 2016 / Accepted: 15 July 2017 / Published online: 22 July 2017
© Springer-Verlag GmbH Austria 2017

Abstract With the natural characteristics of Opportunistic networks (OppNets) where
delivery is delayed with frequent disconnections between mobile nodes in dynami-
cally changing routes to destinations, malicious nodes can perform selective packet
dropping attacks easily without been identified easily. This is why securing the data
flow without any loss becomes challenging in OppNets. In this paper, we present a
solid trust based node and path detection technique against selective packet dropping
attacks. Using the trust attribute with the Merkle hashing technique, a node’s identity
can be validated, and malicious nodes can be detected. We integrate our proposed tech-
nique with Epidemic routing and use simulation to show how effective the technique
works against selective packet dropping attacks. We use simulation to show how the
node detection accuracy increases with time, as intermediate nodes have more time
to establish trust with destination nodes. We also use simulation to show that delivery
rates increase with increased storage, and show how our trust model improves and
secures routing compared to non-trust models.

Keywords Opportunistic networks - OppNets - Trust - Selective packet dropping
attack - Merkle tree - Malicious node detection

Mathematics Subject Classification 60A10

B Asma’a Ahmad
asmaa.ahmad @deakin.edu.au

Center for Research and School of Information Technology, Deakin University, Geelong,
Australia

Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-017-0569-2&domain=pdf

152 A. Ahmad et al.

1 Introduction and motivation
1.1 Introduction

In an opportunistic network (OppNet), when a source node needs to send a message
to a destination node, it forwards the message to the destination node through nodes it
meets with opportunistically. Having evolved from Delay Tolerant Networks (DTNs),
the connection between nodes is not constant and the path to the destination node is
not known. A node is chosen to deliver the message to the destination based on its
ability and history to deliver the message competently. However, delays are normal,
and message delivery is not guaranteed [1]. What differentiates OppNets from DTNs,
is that there is never a fixed path to the destination node to forward the message. So the
message forwarding is always opportunistic, and is based on the availability and ability
of the node to forward the message to the destination. In DTNs however, a search for
an existing path to the destination is made first. If the search gives no results, then an
opportunistic approach is used to forward the message to the destination.

1.2 Motivation

Sometimes, the use of OppNets becomes mandatory when traditional networking is
exposed to failures resulting from natural catastrophes or unexpected emergencies. In
such unusual conditions, exchanging essential messages can only be done through an
OppNet [2]. Some of the growing uses of OppNets include their use in Zebranets [3],
a sensor network with tracking sensors attached to the animals (zebras). OppNets are
also used in the military [4], in inter-planetary networks [5], and for natural disas-
ter recoveries where opportunistic communication between people becomes the only
option.

Selective packet dropping attacks cause a threat to OppNets because they breach
the integrity and completeness of the message. To elaborate, a message is composed
of a number of packets and the attack aims for dropping some of these packets as they
are transferred from node to node towards their destination. Arriving at the destination
with missing packets results in an altered message. This type of attack affects the
integrity of the message once it reaches the destination and results in the degradation
of network performance and can sometimes completely disrupt communication in the
network [6]. Preserving the integrity of the message from the source to the destination
nodes is very important in OppNets, yet a challenging task at the same time.

Existing non trust/reputation based techniques used to deal with packet dropping
attacks [7-10] have limitations, some of them focus on redirecting or replicating mes-
sages, or detecting the malicious path but do not detect malicious nodes. Some methods
aim for malicious behaviour or node detection but with a very high network cost and
decreased delivery rates. To deal with attack detection, and deal with different types of
malicious behaviour more efficiently, researchers have invested in developing security
methods that are based on the trust and reputation attributes. The two attributes are
essential to validate a node’s identity and avoid malicious nodes. Trust and reputation

@ Springer

Trust strategy implementation in OppNets 153

are used in P2P networks [11], ad hoc networks [12], MANETSs [13], WSNs [14],
DTNs [15], and OppNets [16].

1.3 Overview of solution

We define trust as how much confidence a node has towards another node and is used
as a guide for nodes to make their routing decisions. For instance, assume two nodes—
A and B—opportunistically met in a network. Node A needs to forward a message
to the destination, so node A has the choice to decide whether it will trust node B
to pass the message to it or not. Node A will make its decision based on how much
confidence it has towards node B, or how much it trusts node B. The level of trust
node A has towards node B defines the level of honesty and the good service that node
A believes node B will provide. So, in our work, trust defines the level of honesty and
the good service a node has in the network, and this is derived and built from direct
past interactions a node has with others.

Trust is used to enhance and improve security in a network, however, at the start
of the network, it is hard for nodes to trust each other knowing that they have never
encountered each other before. In our work, we propose a dynamic trust model where
over time the trust ratings of nodes are varied as nodes move, meet, and interact with
each other in the network.

In this paper, we present a malicious path and a malicious node detection mechanism
that detects malicious paths with nodes that attempt selective packet dropping attacks
using the Merkle tree hashing technique [17]. Based on the path detection (whether
legitimate or malicious) a trust value is built for nodes in each path. The built trust
value for each node in each path the destination is involved with is stored locally in
each destination’s trust table. Malicious nodes are detected when their trust values fall
below the required threshold. The advantage of using trust to identify malicious nodes
is that nodes have more than one chance to prove themselves legitimate before they
are listed as malicious.

Contribution The main contributions of this paper are:

1. Efficient algorithms to detect a malicious path using the Merkle tree hashing tech-
nique, where the Merkle root will be used to detect if a selective packet dropping
attack has occurred.

2. An efficient algorithm that builds a trust value for nodes as they forward complete
packets to destination nodes. Destination nodes create local trust tables for nodes
with their trust values and are then used by destination nodes to classify malicious
nodes and non-malicious nodes.

The remainder of this paper is organized as follows. In Sect. 2, we present the
related work. In Sect. 3, we present the proposed trust strategy. In Sect. 4, we present
the mathematical analysis. In Sect. 5, we present the simulation results. In Sect. 6, we
present extended results on the impact of mobility speed and storage on malicious node
detection accuracy. In Sect. 7, we compare our trust based approach with a non-trust
based approach. Finally, in Sect. 8, we present the conclusion with future work.

@ Springer

154 A. Ahmad et al.

2 Related work

Various defense methods have been established to secure and improve routing in
OppNets from selective packet dropping attacks, which are common attacks in an
OppNet. Trust and reputation took a great role and attention by researchers to create
trust relationships in OppNets. Trust and reputation are important to authenticate a
node’s identity and avoid malicious nodes. Trust is a very important feature that needs
good management in networks.

Li et al. [18] used probability to estimate the trust value of nodes sending honest
information to other nodes. The authors developed a model that utilized legitimate
nodes in the network. Initially, each node in the network was assigned a fixed trust
value. Nodes then started to exchange information. When a node received the correct
information from a node, it would update the trust value of the node it received the
information from. To confirm a trust value of a node, a node might request from a node
information that it already had and can compare with, making this request a couple of
times it could confirm that the node was indeed honest. Legitimate nodes trust values
were exchanged in the network until the trust value of legitimate nodes was spread in
the network.

Cho etal. [19] proposed a history based trust model for DTNs. The model examined
the data that is received from nodes in addition to the nodes that passed the data. The
stochastic Petri net technique was used to evaluate the model. Legitimate nodes used a
group key to interact with each other, the key was managed by a trust authority. Trust
was formed from direct and indirect experiences, and changed dynamically according
to environmental changes. The model worked effectively in dealing with increased
network overhead when selfish and malicious nodes started affecting the network.
However, even though the model used trusted authorities for group management only,
they are costly and hard to provide in large networks.

Nguy et al. [20] used context to enhance a Bayesian network trust model in ad
hoc networks. To improve trust in a network, the authors specified that context was
composed of a group of facilities that were publicly available to all nodes in the
network. For a node to choose the most suitable utility, it used past records with a
given utility provider, and then made its choice. Trust was defined in their model
as the probability of a utility provider to satisfactory provide a utility to the node
that requested its utility. A Bayesian network was created for each utility’s measured
trust from direct and indirect trust. The authors used context information (such as the
node, the utility, the service provided by the utility, and the date of the interaction)
to make conditions that may affect the outcome of an interaction experience between
two nodes. The Bayesian network sorted these experiences based on their creation
date. The model does not consider the mobility or the density context of the network
when calculating trust.

To safeguard the Quality of Service (QoS) of data availability, Bijon et al. [21]
proposed a probability based model that adopted the Dempster—Shafer theory (reason-
ing with uncertainty) that competently collected recommendations from intermediate
nodes and effectively discarded malicious ones. Trust values were assigned and
stored in the intermediate nodes of a path, the recommendations were prioritized
based on the trust values of nodes in a path. Recommendations from nodes with

@ Springer

Trust strategy implementation in OppNets 155

a higher trust value were prioritized over recommendations from nodes with lower
trust values. Recommendations from shorter distanced nodes were given more prior-
ity over longer distanced nodes. The model also enhanced the trust values of nodes
by measuring their ability to develop their trust, a node was given the choice to
whether or not it wished to trust another node regardless of its recommendation
value. This technique might not give fair results in a network with randomly mobile
nodes.

A social based dynamic trust model was proposed by Yao et al. [22]. As nodes
moved in the network, they exchanged messages with nodes that had a higher social
similarity with destination nodes. The more common features nodes had with each
other, the more trust they had towards each other. The trust that was formed is dynamic
though, which meant it would change when the behavior of a node changed, thus trust
was formed as a result of social similarity as well as the routing behaviors of nodes. The
proposed model achieved improved performance against different attacks by allowing
packets to flow through trusted nodes only, and isolating malicious and selfish nodes.
More work is required to preserve the privacy protection for users, as the model
relied on the assumption that users always share their social features to help other
nodes.

A communal reputation and an individual trust based model in a WSN was presented
by Zia et al. [23]. The model built reputation from trust formed by feedback from nodes
about each other. To build trust in the network the model used voting and implemented
the watchdog mechanism [24] where each node monitored its neighbour. Each node
issued a trust vote for other nodes, and recorded their trust vote in a trust table. Positive
votes (resulting from successful message delivery) increased the trust value of a node,
and negative votes decreased the trust value of a node. If a node’s trust value fell
below the required threshold, it would be notified and reported as malicious to other
nodes to bring awareness regarding this malicious node. Once this awareness reached
the cluster head through multiple nodes, it would isolate the malicious node from the
cluster by informing the nodes in the cluster to abandon any messages from the reported
malicious node. In addition to the trust table that each node maintained in the network,
each node also maintained a reputation table that included the evaluated reputation
values for all other nodes in the network. Each node built the reputation table from its
own trust table and other node’s trust tables which were broadcast occasionally in a
cluster. Using monitoring nodes requires to have nodes transmit messages within the
same transmission range, also the scheme consumes a large overhead on the network.

Jaimes et al. [25] proposed an anonymous reputation system for vehicular ad hoc
networks. The message forwarding was opportunistic and was forwarded through
intermediate nodes. Intermediate nodes verified nodes using a set of pseudonyms,
and checked the reputation value of nodes before accepting or rejecting any messages.
When the message reached the destination node, the message was verified using the sig-
nature and the public key obtained from the pseudonyms set. The destination reported
the result of message verification to the reputation server that updated the reputation
values of the vehicles that were involved in passing the message to the destination.

A reputation system was proposed by Dini et al. [26] where every node locally
assigned a reputation value to nodes it interacted with and used this reputation value
in the future by choosing nodes with a high reputation to forward its message to. The

@ Springer

156 A. Ahmad et al.

Fig. 1 A selective packet dropping attack

integrity of messages was protected using digital signatures. Each node maintained
the reputation of other nodes using acknowledgments from the destination, a node list,
and aging. When a source sent a message to a certain destination through intermediate
nodes, the destination would send an acknowledgment back to the source once it
received the message. When the acknowledgment arrived at the source; the source
would update the reputation of intermediate nodes. Because the reputation system
was built locally among nodes, this technique reduced the overhead cost of having to
maintain a reputation system globally.

3 Trust strategy in OppNets

Selective packet dropping attacks are categorized under denial of service attacks
because they breach the integrity of data flowing in the network, which affects the
communication between nodes in the network and impacts its performance.

Selective packet dropping attacks don’t always happen due to malicious reasons.
Sometimes, packets are dropped by the node as a result of limited storage or loss or
damage of the device. Sometimes the packet is dropped due to collisions or its life
[(time to live (TTL)] has ended.

An example of a selective packet dropping attack is shown in Fig. 1. The path
includes five nodes (represented by N,). N receives four packets from Ny, when N;
is in contact with N3, it forwards to N3 the four packets it received from Nj. After
dropping two packets, when N3 is in contact with Ny it passes it only two packets. We
clarify that the term ’selective’ is used to indicate that not all packets in a message are
dropped.

With the implementation of the developed algorithms, the path in Fig. 1 will be
detected as malicious, and the trust values for the intermediate nodes N», N3, and N4
will be impacted negatively. When any node’s trust value falls below the minimum
threshold; it is then classified as malicious.

The technique developed in this paper to detect selective packet dropping attacks
aims to achieve:

1. Malicious path detection using the Merkle tree technique.
2. Malicious node detection using trust.

@ Springer

Trust strategy implementation in OppNets 157

3.1 Assumptions

The following are assumed:

— Intermediate nodes may be malicious but the source and destination nodes are
assumed to be legitimate.

— Since we are considering selective packet dropping attacks, we assume that at least
one legitimate packet reaches the destination.

3.2 Malicious path detection using Merkle trees

In OppNets, Merkle trees can be used to verify that data transferred in a path is
complete. If one packet is removed, the hash of its parent will change. Which will
change the hash of its parent, and so on, resulting in the Merkle root’s hash to change
as well.

A Merkle tree [17] is a special binary tree that starts with hashing every packet
using a one-way hash function that takes an input and turns it into a unique hash using
a mathematical algorithm. The resulting hashes of these packets are called the leafs of
the tree ([Hool, [Hot1l, [Hozl, [Ho3], [Ho4l, [Hos], [Hosl, and [Ho7] in Fig. 2). Every
pair of leafs are then concatenated and hashed to derive child hashes ([Hiol, [H11],
[H12], and [H;3] in Fig. 2). Depending on the size of the tree, the child hashes are
then also concatenated and hashed to derive further child hashes ([Hyg], and [H>;] in
Fig. 2). This process is repeated until only one value is left, the root, or the Merkle
root ([H3o] in Fig. 2). The Merkle root can be used to authenticate messages, and can
also reduce the authentication overhead needed.

Merkle trees are usually binary trees, and they are perfectly complete when the
number of leaves/packets is even, and in each level of the tree (except the root), the
number of hashes is also even. If the number at any level of the tree is odd, then we

Fig. 2 A Merkle tree

@ Springer

158 A. Ahmad et al.

Merkle root

Level 2

Level 1

Fig. 3 A Merkle tree with number of hashes that needs completion

refer to the tree as a complete (but not perfect) tree. In our work, both of perfectly
complete trees and trees that require completion are considered. At every level of the
tree, if the number of hashes is not even, the odd hash is concatenated with itself to
form a new parent hash value.

An example is shown in Fig. 3, the leaf hash value of the fifth packet is single
(Hoa), so it will be concatenated with itself to generate the parent hash value (Hj2).
Atlevel 1, Hy, is concatenated with itself to generate the parent hash value (H31), and
at level 2, H; is merged with the rest of the tree. The concatenation process needs to
happen at every level of the tree only when the resulting hashes in the level is not even.
For example, in Fig. 3, the hashes needed self-concatenation at the “Leaf hashes” and
“Level 1 levels, but not in “Level 2”.

Advantages of using Merkle trees include:

1. The advantage of using Merkle trees over cryptographic verifications is that packets
can be verified using the root only first, if the received Merkle root matches with
the calculated Merkle root, then there is no need to do further calculations, thus
limiting the amount of data transferred which saves time and network resources
[27].

2. They save computational resources needed to verify each packet. Hash calcula-
tions perform significantly fast because of their small size (about 100 or 200 bits
long), thus they don’t consume a lot of computational resources when compared
to cryptographic verifications.

3. Sending and verifying all of the hashes individually is more expensive than the
verification process we perform using Merkle trees where only the Merkle roots
were verified.

In our technique, the sender (source node) performs algorithm 1, embeds the Merkle
root in each packet’s header and sends them to the destination through intermediate
nodes, Fig. 4. Upon receipt, the destination node performs algorithm 1 to compute a
new Merkle root.

@ Springer

Trust strategy implementation in OppNets 159

Destination

Fig. 4 Source sends the packets with embedded Merkle root to the destination

The reason why we choose to send the root in each packet’s header, is to guarantee
the arrival of the root even if only one packet is received.
In Algorithm 1:

— The source/destination hashes each packet to generate leaf hashes (lines 2-3).
— It builds a Merkle tree from the leaf hashes (lines 4—12).
— It computes the Merkle root (lines 13—15).

The source sends the packets along with the Merkle root inside each packet’s header.
The destination receives the packets; it performs Algorithm 1 to compute the hashes
for the packets, builds a Merkle tree, and computes a new Merkle root.

Algorithm 1 Hash each packet, build Merkle tree, and compute the Merkle root
1: READ: packets

2: For all packets

3: hash[i] = createHash(packet[i])

4: For all hashes in each level

5: if numberOfHashes = even then

6

7

8

hash[i] = createHash(hash([i] + hash[i])
: else
if !lastHash then
9: hash[i] = createHash(hash[i] + hash[i + 1])

10: else
11: hash[i] = createHash(hash[i] + hash[i])
12: endif

13: if level = last then
14: rootValue = hash[i]
15: endif

16: end if

The destination then performs Algorithm 2 to use the computed Merkle root to
compare with the original Merkle root sent by the source. If the 2 roots match, it
means that the destination received the correct number of packets. If the 2 roots
don’t match, the destination reports the path as malicious, and reports that a selective

@ Springer

160 A. Ahmad et al.

packet dropping attack has occurred. At this stage, the destination cannot identify the
malicious node, and thus suspects that any node in the path could be malicious.
In Algorithm 2:

— If the 2 roots are not equal, the destination reports that the path is malicious, and
the path is added to the malicious paths list (lines 2-6).

Original hash sent by the source is denoted with the symbol (*).

Algorithm 2 Identify malicious paths

1: READ: merkleRoot’

2: if merkleRoot # merkleRoot’ then

3: Path is malicious

4 maliciousPaths[maliciousPathCounter] = currentPath
5: maliciousPathCounter++

6: end if

3.3 Malicious node detection using trust

All nodes in the network are initially trusted in the network, and are assigned an initial
trust value of 0.5. If a node’s trust value decreases below 0.2 (nodes with trust values
of 0.1 or 0.0), it is classified as malicious. Destination nodes perform the detection
process based on the data they receive from source nodes through intermediate nodes.

As detection is done at the destination, the destination in this case acts as a central
authority. Each destination maintains a trust table that records the direct trust value of
each node that contributed in passing the message along a given path.

When the destination authenticates the message by matching the received Merkle
root and the calculated Merkle root, it increments the trust value of each node in the
path by x, where x could be any value in the range 0.1 and 0.4. The best value for x
was identified through evaluations and happened to be 0.1. If the 2 roots don’t match,
the destination subtracts x from the trust value of each node in the path, as indicated in
Algorithm 3. Because at this stage, the destination cannot identify the exact node that
may have dropped the packets, and cannot know if they were dropped for malicious
or non-malicious reasons. It subtracts x from the trust value of each node in the path
and only counts a node as malicious if its trust value falls below 0.2 to give them
an opportunity to prove in other paths that they are not malicious (if they are indeed
legitimate). If a node’s trust value falls below 0.2, and encounters the destination,
the destination would still run Algorithms 1 and 2 because that node may have been
falsely identified as malicious. The roots are still checked even if the node’s trust value
is below threshold. If the roots equal each other, the trust value of that node increases
by x. This makes our trust mechanism dynamic to consider falsely identified nodes
and non-malicious packet dropping reasons.

In Algorithm 3:

— If the 2 roots are equal, then no packets were dropped. The trust value for each
node in the path that passed the message is increased by x (lines 2—4).

@ Springer

Trust strategy implementation in OppNets 161

1l

2 PATH 1

3

4 Nodes: [S]-> [t24]-> [D]

5 Packets received: [6] (5]

6

7, Root value sent by source node: [a4c4f6eb2930a935142bfce94ca225815e92a273]
8 Reot value created by destination node: [ba674f88a616c7590c43533726a456126da6f06]
9

10 The 2 roots are different, the path is malicious

11 A selective packet dropping attack have occured

1

13 | Destination D |

IFAR — = = mmr o mmmimm

15 | Nede |Trust value|

(IO === === mmrmmesnmaee

17 | t24| e.a |

Fig. 5 Trust table maintained by destination node [D] at path 1

— If the 2 roots are not equal, the trust value for each node in the path that passed the
message is decreased by x (lines 5-7).

Algorithm 3 Build trust

1: READ: merkleRoot’

2: if merkleRoot = merkleRoot’ then

Packets are all legitimate

trustValueForEachNode = trustValueForEachNode + x
: else

trustValueForEachNode = trustValueForEachNode - x
: end if

Norkw

Destination nodes utilize the trust tables they construct to identify good nodes from
malicious ones. In this work, only destination nodes make use of the trust table. If the
destination meets with a node that it did not work with before as an intermediate node
in passing a message, then it assumes the default trust value assigned to it at the start
of the network, which is 0.5.

For example, the trust table of destination node [D] right at the start of the network
is shown in Fig. 5, the first node it comes in contact with is node [#24], which happens
to be malicious. Since the Merkle roots don’t match, the destination node decreases
the trust value of node [#24] by x, where x is 0.1.

The trust table of destination node [D] at path 2 is shown in Fig. 6, when the Merkle
roots didn’t match, the destination node decreased the trust value of nodes [#9] and
[t24]. It cannot identify at this stage the malicious node, but using this trust mechanism,
eventually, it will detect the malicious node later in the network.

4 Mathematical analysis
As indicated in Sect. 3, to attempt a selective packet dropping attack, the malicious

node attempts to drop some but not all of the packets, thus, the assumption that at least
one legitimate packet must reach the destination node was developed. Based on that,

@ Springer

162 A. Ahmad et al.

19 PATH 2

20

21 Nodes: [S]-> [t2e]-> [t24]-> [D]
22 Packets received: [e] [5] [5]

23

24 Root value sent by source node: [bd432db3c574b5d69ea@7db694d7e45879512d4d]
25 Root value created by destination node: [ba674f88a616c7590c435f33726a456126da6f@6]

27 The 2 roots are different, the path is malicious

28 A selective packet dropping attack have occured
29 mmmmeememeeeeeeeao
3e | Destination D |
31 mmmmemmmemeeeeeees
32 | Node |Trust value|
33 memememmmmmeeeeee-
34 | ta| .3 |
35 e
36 | t0]| o.4 |
37 oo

Fig. 6 Trust table maintained by destination node [D] at path 2

in this section we develop an expression for the probability of having a malicious path,
resulting from a selective packet dropping attack with the condition that at least one
legitimate packet reaches the destination. We assume that the dropping of the packets
themselves is purely random. The notations used are as follows:

n is the total number of nodes in the path

— m is the number of malicious nodes in the path

k is the number of packets

p is the probability that a packet is dropped by a malicious node

— P is the probability that at least one legitimate packet reaches the destination
— D; is the probability of dropping j packets out of k packets

Since f is the probability that at least one legitimate packet reaches the destination.
Thus:

B = 1 — probability of no packets reaching the destination

Given p, representing the probability that a packet may be dropped by a malicious
node, therefore a packet to survive a malicious node is 1 — p. This means that the
probability for a packet to survive a malicious path of m nodes is (1 — p)™. As a
result, the probability of a packet to be dropped along a malicious path of m nodes is
1 — (1 — p)™, which is denoted by A. Therefore, the probability for k packets to be all
dropped in a path of m malicious nodes is (A)¥, which means that the probability of
no packets reaching the destination equals (1 — (1 — p)"™)¥. Hence the formula which
represents the probability that at least one legitimate packet reaches the destination is,

B=1—(1—(1-p™*

From this formula, the minimum number of packets required to ensure packets delivery
can be found to be:

1-B=(10-(1-p™F

@ Springer

Trust strategy implementation in OppNets 163

This means,
log(1 — B) = klog(1 — (1 — p)™)
Therefore,

__ log1—p)
log(1 - (1 - p)™)

Now the probability of dropping j packets out of k packets in a path that has m
malicious nodes can be represented by Pr(Dj) and can be calculated as:

Pr(Dj) = <I;>)J(l — ki

However, the probability of that there is j packets dropped out of k packets sent,
with one legitimate packet reaching the destination can be calculated as:

k—1

k—1
K\ .
Y Prpjy =Y (.)Mu — ki
j=1 =1
So the probability of having a malicious path, which represents the probability
that a selective packet dropping attack has happened, given that there is at least one

legitimate packet reaching the destination (as assumed in Sect. 3.1) can be written as:

k=1 (k\ .)
2: J(1 — 3\k—J
= (j)A -
B

The probability of receiving at least one legitimate packet at the destination with 1,
2, and 5 malicious nodes is shown in Figs. 7, 8, and 9 respectively. The mathematical
analysis showed that when the number of malicious nodes was low, the probability
of receiving at least one legitimate packet at the destination node was high, and when
the number of malicious nodes increased, the probability of receiving at least one
legitimate packet at the destination node decreased. This was because the higher the
number of malicious nodes, the higher the chances of dropping all (k) packets. The
results of the probability also showed that the probability of receiving at least one
legitimate packet to reach at the destination increased when the transfer of packets
increased.

The probability of having a malicious path with 1, 2, and 5 malicious nodes in
the path is shown in Figs. 10, 11, and 12. The results of the probability showed that
the probability of packet dropping increased when the number of packets increased.
The probability of having a malicious path increased with the increasing probability
of dropping the packets. With a high number of malicious nodes, the probability of
packet dropping would be high, as a result the probability of having a malicious path
would be high.

Pr(D|B) =

@ Springer

164 A. Ahmad et al.

g
Z 4 Value of k
9 —|—k=2
§ 0.9 —h—k=5
.‘3 —4—k=10
o 0.8 —¥—k =20
T
£
= 07
(2]
£
L
o 0.6
©
o
-
o 05
x
®
o 04
(]
5
0.3
®
©
[}
= 0.2
©
k]
= 0.1 b
=
8 ! ! ! i i ! ! !
c 0
-g 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
=4
o

Probability of packet dropping at malicious node

Fig. 7 Probability of receiving at least one legitimate packet at the destination with 1 malicious node in a
path

1

4 Value of k
—-—K=2

0.9 —A—k=5
—4—k=10

0.8 —¥—k =20

e
3

e
)

=2
IS

e
w

e
N

e
IS

0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9

Probability of at least one packet reaching the destination (5}
o
o

Probability of packet dropping at malicious node

Fig. 8 Probability of receiving at least one legitimate packet at the destination with 2 malicious nodes in
a path

The relationship between the number of packets and the probability of at least one

legitimate packet being dropped () across malicious paths with 1, 2, and 5 malicious
nodes in the path is shown in Figs. 13, 14, and 15. In order to detect a malicious node

@ Springer

Trust strategy implementation in OppNets 165

1
Value of k
—.—K=2
0.9 —h—k=5
—4—k=10
0.8 —¥H—k =20

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 h
0 0.1 02 03 04 05 06 07 08 09
Probability of packet dropping at malicious node

Probability of at least one packet reaching the destination (5)

Fig. 9 Probability of receiving at least one legitimate packet at the destination with 5 malicious nodes in
a path

Value of k
~B—k=2
k=5
—4—k=10

—¥—k =20

Probability of having a malicious path

L L L L L L L 1

0 0.1 02 03 04 05 06 07 08 09
Probability of packet dropping

Fig. 10 Probability of detecting a malicious path with 1 malicious node

dropping a packet, the condition of dropping the packet by a malicious node needed
to be achieved. A higher probability of packet dropping was achieved when higher
number of packets were sent. When increasing the number of malicious nodes, larger
number of packets needed to be sent in order to achieve § values of 0.85, 0.90, and 0.95.

@ Springer

166 A. Ahmad et al.

Value of k
——k =2
k=5
£ —4—k=10
® —¥%—k =20
%
72
S
o
S
®
E
©
o
£
>
m©
£
5
2
2
©
2
o
2
o
0 01 02 03 04 05 06 07 08 09
Probability of packet dropping
Fig. 11 Probability of detecting a malicious path with 2 malicious nodes
Value of k
——k =2
k=5
—4—k=10
—X—k =20

Probability of having a malicious path

I L 1 1 L L L L

0 01 02 03 04 05 06 07 08 09
Probability of packet dropping

Fig. 12 Probability of detecting a malicious path with 5 malicious nodes

@ Springer

Trust strategy implementation in OppNets 167

30 T T T T T T T T

Value of 8
—8— 3= 0.85
—A— =090
25] |[—#=8=0.95
.
@8 20F .
]
X
3]
©
Q
B 15 i
B
[
e}
E
=}
Z 10 g
5| 4
o L L L L L L L

0 01 02 03 04 05 06 07 08 09
Probability of packet dropping

Fig. 13 Number of packets required to accomplish g = (0.85, 0.90, 0.95) with 1 malicious node in a path

300 T T T T T T
Value of 8
—8—5=0.85
—A—5=0.90
250] |—4#—8=0.95
h
w 200 [4
-
9]
X
]
©
o
‘S 150 F .
B
]
o)
E
=
Z 100 [4
50 T
o# X L L L
0.2 03 04 0.5 0.6 0.7 0.8 0.9

Probability of packet dropping

Fig. 14 Number of packets required to accomplish B = (0.85, 0.90, 0.95) with 2 malicious nodes in a path

5 Simulation, results and analysis
5.1 Simulation settings

Using the Opportunistic Network Environment simulator (ONE) [28]—designed for
OppNets—the developed algorithms were tested for their functionality and effective-

@ Springer

168 A. Ahmad et al.

3 %105
Value of 8
—8— 3= 0.85
—A—3=0.90
25] |—4#=8=0.95
.
e 2F]
7]
X
3]
©
Q
G151 .
ol
[
el
E
S
Z 1+ .
0.5 g
o T .
0.7 0.75 0.8 0.85 0.9

Probability of packet dropping

Fig. 15 Number of packets required to accomplish g = (0.85, 0.90, 0.95) with 5 malicious nodes in a path

ness. Using the simulator, a scenario was created and run to produce a dataset that
was composed of many paths with various nodes with different speeds and types. All
the nodes in the generated dataset were legitimate. The dataset was then fed into a
written C++ program that manipulated the data by turning legitimate nodes malicious
depending on the number of malicious nodes required. The malicious nodes dropped
some packets and forwarded the rest to the next hop node. The algorithms were then
implemented to detect the malicious nodes.

The settings defined for this scenario follow. The simulation time for this scenario
ranfor 1 h, 2 h, and then 3 h. Bluetooth was the interface chosen for all nodes transmitted
within a range of 10m at an 8 Mbps speed. The routing protocol used was Epidemic
routing.

3 different groups of nodes were defined, each group contained 10 nodes. The
first group had only walkers with a walking speed of 1-5 km/h, and buffers with
a size of 10MB. The hosts in this group walked on the MapBasedMovement map
model. The second group had only cars with driving speeds of 35—-60 km/h and 10MB
storage space. The hosts in this group drove on roads on the MapBasedMovement map
model. The third group contained only trams that drove at a speed of 25-35 km/h,
and could store up to 50 MB in their buffers. The hosts in this group drove on the
MapRouteMovement map model. Nodes in all groups created new messages with a
size ranging between 500 and 700kB every 1-5 s.

5.2 Results and analysis

The following metrics were used to evaluate Algorithms 1, 2, and 3:

@ Springer

Trust strategy implementation in OppNets 169

1. Malicious path detection accuracy: Defined as the ratio of the total number of
detected malicious paths to the total number of actual malicious paths.

2. Malicious node detection accuracy: Defined as the ratio of the total number of
correctly detected malicious nodes to the total number of actual malicious nodes.

3. False positive rate: Defined as the ratio of legitimate nodes categorized as malicious
nodes.

The malicious path detection accuracy was always 100% for each simulation time
because the proposed technique relied on the root values. To achieve a 100% mali-
cious path detection accuracy through evaluation, a path was marked as malicious
based on the equality of the Merkle roots. To maintain the 100% path detection
accuracy, the destination still ran Algorithms 1, 2, and 3 for nodes with trust values
below 0.2. That was done to give an opportunity for good nodes that had been falsely
classified as malicious which later appeared in good paths to have their trust values
incremented.

The malicious node detection accuracy and the false positive rate for node detection
over 1 h, 2h, and 3 h duration of simulation time are shown in Figs. 16, 17, 18, 19, 20,
and 21. The malicious node detection accuracy and the false positive rate for node
detection are shown on the y-axis, and the percentage of malicious nodes increasing
until all intermediate nodes acted malicious is shown on the x-axis. The results were
plotted using the simulation settings defined in Sect. 5.1, but with increasing the
simulation time from 1 h to 3 h to show how the results changed over time. Each point
on the graph was a result of averaging 30 values resulting from 30 simulation runs.

As can be seen in Figs. 16, 17, and 18, when the simulation time increased, the
malicious node had a higher chance to be repeated in paths, so the accuracy was
higher. As the number of malicious nodes increased, the algorithms still maintained
the accuracy level for detecting the malicious node. Also, the accuracy was its highest
when x = 0.4, then 0.3 and 0.2, and lowest when x = 0.1, but as can be observed next,
the increased accuracy came at the cost of increased false positive rate.

It can be observed from Figs. 19, 20, and 21 that when the simulation time increased,
the false positive rate also increased. Although the malicious node detection rate
increased (in Figs. 16, 17, 18), however, because the algorithms were based on path
detection, legitimate nodes were affected as well which resulted in increased false
positive rates. With a shorter simulation time, a node had a less chance of being
identified as malicious, because the node may have not had the time to appear in
enough paths to be falsely classified as malicious. With the increase of malicious
node percentage, the false positive rate decreased as the proposed method was relying
on path based calculations to build trust among nodes, the nodes became malicious
indeed. When x = 0.1, the false positive rate was the lowest, and highest when x = 0.4.
x = 0.1 resulted in a constant rate for the 3 h of simulation time, while keeping a good
malicious node detection accuracy. When x = 0.4, good nodes didn’t get the chance
to prove themselves legitimate in other paths, increasing the simulation time did not
make a difference in this case.

It can be noted from Figs. 16, 17, and 18, that the state of output depended on the
value of x. For values where x = 0.2 to 0.4, with 2 and 3h of simulation time, the
output was steady because malicious nodes were caught with an increased value of

@ Springer

170 A. Ahmad et al.

1 hour
1 £ * L L * ¥ I i
o0 Value of x
~8— x=0.1
90 7 |=de—x=0.2
—4—x=0.3
8| p | —¥—x=0.4

N
70\/—/ T
60 [.
50

40

30 1

Malicious Node Detection Accuracy (%)

10

10 20 30 40 50 60 70 80 9 100
Number of Malicious Nodes (%)

Fig. 16 Malicious node detection accuracy, 1h of simulation time

x. We found that the detection accuracy increased when the value of x increased and
when the simulation time increased, but the increase in node detection accuracy came
with an increased false positive rate as noted in Figs. 19, 20, and 21. Based on this,
we chose the value of x to be 0.1 when running Algorithm 3 for further tests, because
although the accuracy was not the highest (however, very reasonable), but the false
positive rate was the lowest.

5.3 Our approach in Epidemic routing vs our approach in PRoOPHET routing

The malicious node detection accuracy (obtained above in Figs. 16, 17, 18) through
Epidemic routing, and obtained and compared with PROPHET routing (with x = 0.1
in Algorithm 3) is shown in Figs. 22, 23, and 24. PRoPHET achieved an accuracy
similar to Epidemic routing, only slightly more. This is because both Epidemic and
PRoPHET routing replicated multiple copies of the message in the network to increase
the chances of message delivery.

It can be noted that with 2 and 3h of simulation time, the results were almost
identical. This is because when x = 0.1, nodes that had very slow speed like pedestrians
(as defined in Sect. 5.1) didn’t get a chance to be repeated in paths even when the
simulation time increased, thus when they were malicious, they didn’t get detected
with a threshold value of 0.2 and x = 0.1. However, increasing the value of x gave a
full detection accuracy with 2 and 3 h of simulation time (as shown in Figs. 16, 17, 18).
However, as explained previously, x = 0.1 was chosen because of the low false positive
rates.

@ Springer

Trust strategy implementation in OppNets 171

Y & & %hour§ Y &
10 b g b g g hd hd hd
Value of x
~8— x=0.1
90 1 [—#—x=0.2
I —4—x=0.3
= 80 W ——x=0.4
Q
©
s
o 70 1
Q
<
c 60 1
o
S
8]
8 sor 4
[+
(=]
[+]
8§ 40 1
o
z
72} - .
2 30
]
Q
= 20 1
T
=
10 1
0 A A L . . A A .
10 20 30 40 50 60 70 80 90 100
Number of Malicious Nodes (%)
Fig. 17 Malicious node detection accuracy, 2 h of simulation time
& & §.hour§ & & &
10 g g b g g g > g
Value of x
i x=0.1
90 1 [—#—x=0.2
§ IW —#—x=03
- 80 § | —¥—x=0.4
0
©
5
o 70 1
Q
4
c 60 1
9
S
(8]
8 501 4
[+
(=]
[+} L .
- 40
o
4
72} - .
3 30
o
o
= 20 1
©
=
10 1
0) L L)) . L)

10 20 30 40 50 60 70 80 9 100
Number of Malicious Nodes (%)

Fig. 18 Malicious node detection accuracy, 3 h of simulation time

@ Springer

172 A. Ahmad et al.

1 hour
40 T T T T T T T T VAo
~ 8 x=0.1
—dh— x=0.2
—4—x=0.3
—¥—x=0.4
g
[
2
©
14
o
2
=
7
o
o
[
17
©
'S
10 20 30 40 50 60 70 80 9 100
Number of Malicious Nodes (%)
Fig. 19 False positive rate for node detection, 1 h of simulation time
2 hours
40 T T T T T T T T YR
~8— x=0.1
35 1 |—&—x=0.2
y ——x=0.3
—¥e—x=0.4
30 1
§ 4
o 5[1
©
[0 4 b
[L 4
2 2
=
7]
o
Q. 151 1
(]
48
&
10 1
5k -

10 20 30 40 50 60 70 80 90 100
Number of Malicious Nodes (%)

Fig. 20 False positive rate for node detection, 2h of simulation time

@ Springer

Trust strategy implementation in OppNets

173

False Positive Rate (%)

3 hours

40 T T T T T T T

L L 1 ! L 1

Value of x

~ i x=0.1
b x=0.2
—4—x=03

—¥—x=0.4

20 30 40 50 60 70 80

Number of Malicious Nodes (%)

Fig. 21 False positive rate for node detection, 3 h of simulation time

Malicious Node Detection Accuracy (%)

1 hour
100 T T T T T T T T

100

90

80‘

Our approach in

~&— Epidemic
~&— PROPHET

50

40

30

20

0 L L L L L L L L

20 30 40 50 60 70 80 90
Number of Malicious Nodes (%)

100

Fig. 22 Malicious node detection accuracy using PROPHET, 1 h of simulation time

@ Springer

174 A. Ahmad et al.

2 hours
100 T T T T T T T T

Our approach in
~—&— Epidemic
0 7 | A—PRoPHET

4
[
80 W'

70 -

60 1

50 1

20 =1

Malicious Node Detection Accuracy (%)

0 L L L L L L L L

10 20 30 40 50 60 70 80 90 100
Number of Malicious Nodes (%)

Fig. 23 Malicious node detection accuracy using PROPHET, 2 h of simulation time

3 hours
100 T T T T T T T T

Our approach in
~&-— Epidemic
—A— PROPHET

9 .
A
'Wﬁ:ﬁ:‘:‘

80 [3

70 1

60 9

50 1

40 .

30 g

Malicious Node Detection Accuracy (%)

0 L L L L L L L L

10 20 30 40 50 60 70 80 9 100
Number of Malicious Nodes (%)

Fig. 24 Malicious node detection accuracy using PROPHET, 3 h of simulation time

6 Impact of mobility speed and storage on malicious node detection
accuracy

The evaluation was extended to study the impact of mobility speed and storage on the
malicious node detection accuracy. Algorithms 1,2, and 3 (with x =0.1 in Algorithm 3)

@ Springer

Trust strategy implementation in OppNets 175

Table 1 Node speed, transmit speed, transmit range, and buffer settings

Node type Speed (km/h) Transmit speed (Mbps) Transmit range (m) Buffer space (MB)

Pedestrians 1-5 8 10 10
Cars 35-60 8 10 10
Trams 25-35 8 10 50
_ 1 hour _
100 [1 | T | T [Type of node
~&—Trams
90 7 |-#—cars
—4— Pedestrians
80 - —¥—All

s —— s ey S e

60 =t

Malicious Node Detection Accuracy (%)

50 A A A
404 .
-— +
30 E
20 | E
10 F E
20 30 40 50 60 70 80 90 100

Number of Malicious Nodes (%)

Fig. 25 Malicious node detection accuracy (impact of mobility and storage), 1 h of simulation time

were tested with each type of node (trams, cars, and pedestrians) from 1h to 3h of
simulation time.

The malicious node detection accuracy, and the false positive rate for node detection
are shown in Figs. 25, 26, 27, 28, 29, and 30.

It can be observed from Figs. 25, 26, and 27, that trams achieved a 100% detection
accuracy at all times when increasing the percentage of malicious nodes in the network,
and when increasing the simulation time. Cars started off with achieving 50% accuracy,
and when increasing the simulation time, the accuracy increased to 75% then up to
100%. Pedestrians achieved the lowest detection accuracy that started to decrease
with the increase in percentage of malicious nodes. The accuracy did not show much
rise over time. Because of their slow speed and limited storage, pedestrians were not
repeated in enough paths to be detected as malicious.

It can further be observed from Figs. 28, 29, and 30, that trams always had the
highest false positive rates. This is because of their frequent occurrence in paths which
resulted in misclassifying other good nodes that existed in the same path. Whereas
cars and pedestrians didn’t occur in paths as much as trams to mis-classify good nodes
as malicious.

@ Springer

176 A. Ahmad et al.

_ 2 hours _
100 » » » Type of node
~&—Trams
90 7 [—#—cars
—4— Pedestrians
80 W Al
A A A

70 1

60 1

4
30 b

20 1

Malicious Node Detection Accuracy (%)

0 L L L L L L L

20 30 40 50 60 70 80 90 100
Number of Malicious Nodes (%)

Fig. 26 Malicious node detection accuracy (impact of mobility and storage), 2 h of simulation time

The settings used are captured in Table 1, it is noted that although cars drove faster
than trams, trams still achieved a higher detection rate because they were able to
carry information more than other nodes and this is due to their large buffers. The
large buffers gave trams the space for storing messages, thus they accepted more new
messages. So trams were chosen by nodes to transfer messages which stayed on their
buffers until reaching destination nodes, unlike cars and pedestrians who were more
likely to drop the message when their buffers were full. This is why trams reoccurred
in multiple paths more than cars and pedestrians did, so when a tram was chosen to
be malicious, it meant more paths became malicious.

7 Comparison with other solutions

In this comparison section, a comparison analysis showing the performance of the
proposed trust-based approach with other non-trust based OppNet routing approaches
is presented. The most popular OppNet protocols are Epidemic routing and PRoPHET.
These protocols are non-trust based. The comparison was done with non-trust methods
for the purpose of showing the level of importance of using trust in an OppNet, and to
determine if trust based methods contributed in controlling the packet dropping rate
in an OppNet. A quick brief about Epidemic routing and PROPHET follows:

— The basic idea of Epidemic routing (Vahdat and Becker [29]), is that when two
nodes meet each other in a network, they first exchange their summary vectors
which has a record of all the messages a node is storing. The two nodes then look
into the received summary vectors to see which messages they don’t have and
request those messages from the other node.

@ Springer

Trust strategy implementation in OppNets

177

= 3 hours 2
100 T faad T e e T
Type of node
~—&—Trams

90 7 |—#&—cars
§ |) N L —4— Pedestrians
= 80 =" T | %Al
o
©
5
2 70 =1
5]
P4
c 60 T
2
=
o
£ 504 1
©
[a]
]
- 40 .
<]
=z p
7] +]
g 30
L2
]
= 20 =1
©
=

10 A

0 s s L L L L L
20 30 40 50 60 70 80 90 100

Fig. 27 Malicious node detection accuracy (impact of mobility and storage), 3 h of simulation time

Number of Malicious Nodes (%)

1 hour
40 T T T T T T T
Type of node
~&—Trams
35 | [-4—cars
—4— Pedestrians
—¥—All
30 1
S
L 25} .
]
o
[
2 20 1
=
7]
o]
o
o 15 4
]
©
'S
10 1
5| 4
04 + +
20 30 40 50 60 70 80 90 100

Fig. 28 False positive rate for node detection (impact of mobility and storage), 1 h of simulation time

Number of Malicious Nodes (%)

— PRoPHET [30] improves Epidemic routing by adding the delivery predictability
(calculated from past records) in the summary vector which gives further infor-
mation to nodes about the probability of a node to reach the destination. If the
delivery predictability of a node is high, then it will get a copy of the message,
otherwise it won’t.

@ Springer

178 A. Ahmad et al.

2 hours
40 T T T T T T T
Type of node
~&—Trams
35 1 |—&—cars
~4— Pedestrians
—¥—All
30 1
<
< 25t .
[}
<
©
+4
o 20 4
2
=
4
a 151 1
[
]
©
W 10 1
5t 4
A n A A
v v v v
20 30 40 50 60 70 80 90 100

Number of Malicious Nodes (%)

Fig. 29 False positive rate for node detection (impact of mobility and storage), 2 h of simulation time

3 hours
40 T T T T T T T
Type of node
~&—Trams
35 1 |-&—cars
—4&— Pedestrians
—¥—All
30 1
S
)
® 5r g
14
[
>
S 20 g
7]
o
o
@b 157 8
©
W
10 1
5r i
i A A i A i
0 v > >
20 30 40 50 60 70 80 90 100

Number of Malicious Nodes (%)

Fig. 30 False positive rate for node detection (impact of mobility and storage), 3 h of simulation time

The metric used to compare our technique with the 2 OppNet protocols mentioned
above is the packet dropping rate, which is defined as the ratio of the total dropped
packets to the total number of packets in the network.

The packet dropping rate over time tested in a network with 50% (50% was chosen
because it was the moderate rate) malicious nodes using the developed algorithms
(with x = 0.1 in Algorithm 3) and 2 non-trust OppNet protocols is shown in Fig. 31.

@ Springer

Trust strategy implementation in OppNets 179

Comparison with other solutions
50 T T T T T

Packet dropping
rate with 50%
malicious nodes

S
a

Our approach
in Epidemic
Our approach
in PROPHET
—4— Epidemic

—¥—PROPHET

—

H
(=)

w
@
T

w
o
T

[N
(=)

Packet dropping rate (%)
& &

W
T

-
=)

3]
T

60 80 100 120 140 160 180
Time (minutes)

Fig. 31 Comparison between our approach and other non-trust based approaches

It can be noted that under attack conditions with no trust strategy implemented
there was no difference in performance between the two routing protocols, and the
dropping rate was not controlled. It can be observed that there was significant improve-
ment with our proposed approach implemented with both routing strategies. Hence,
the benefits were not inherent or dependent on the routing strategy used. The algo-
rithms worked as they minimized packets dropped when destination nodes identified
malicious nodes and prevented them from forwarding incomplete packets. Thus, over
time, the dropping rate was controlled and reduced, and this proved the effectiveness
of the proposed algorithms. The results show that a trust based model worked more
efficiently than a non-trust based model, results have shown how the proposed trust
mechanism improved routing by controlling the packet dropping rate.

8 Conclusion and future work

Evolved from DTNs, OppNets have taken a great attention by researches. Research
continues to make OppNets better. Securing OppNets is a challenge problem due to
their features such as the irregular connections between nodes and the dynamically
changing paths. Selective packet dropping attacks develop from malicious interme-
diate nodes by dropping some packets while transferring them. This is a denial of
service attack that may severely degrade the network performance. Malicious path
and malicious node detection techniques designed to detect selective packet dropping
attacks were presented in this paper. For malicious path and malicious node detection,
the techniques used the Merkle tree hashing technique and trust to create trust rela-
tionships between nodes and destination nodes. Our simulation results showed that
the technique achieved 100% malicious path detection accuracy, and over time, the

@ Springer

180 A. Ahmad et al.

technique achieved a high malicious node detection accuracy as intermediate nodes
had more time to establish trust with destination nodes. Based on extensive simulation
tests, we showed that delivery rates increased with increased storage. Results also
showed how our trust mechanism improved routing by controlling the packet drop-
ping rate. We also showed that a trust model worked more efficiently than a non-trust
model. Our next step is to adopt the algorithms by intermediate nodes and not only
by destination nodes. In addition to direct dynamic trust, reputation will be added to
utilize legitimate nodes in the network.

References

1. TangL, Chai Y, Li Y, Weng B (2012) Buffer management policies in opportunistic networks. J Comput
Inf Syst 8(12):5149-5159
2. Chaintreau A, Hui P, Crowcroft J, Diot C, Gass R, Scott J (2005) Pocket switched networks: real-world
mobility and its consequences for opportunistic forwarding. Technical Report, UCAM-CL-TR-617,
University of Cambridge, Feb 2005
3. Juang P, Oki H, Wang Y, Martonosi M, Peh L, Rubenstein D (2002) Energy-efficient computing for
wildlife tracking: design tradeoffs and early experiences with ZebraNet. Proc Tenth Int Conf Archit
Support Progr Lang Oper Syst 37(10):96-107
4. Rigano C, Scott K, Bush J, Edell R, Parikh S, Wade R, Adamson B (2008) Mitigating naval network
instabilities with disruption tolerant networking. In: IEEE conference on military communications,
Nov 2008, pp 1-7
5. Burleigh S, Hooke A, Torgerson L, Fall K, Cerf V, Durst B, Scott K, Weiss H (2003) Delay-tolerant
networking: an approach to interplanetary internet. IEEE Commun Mag 41(6):128-136
6. Ahmad A, Alajeely M, Doss R (2014) Defense against packet dropping attacks in opportunistic net-
works. In: Advances in computing, communications and informatics (ICACCI, 2014 IEEE international
conference), Sept 2014, pp 1608-1613
7. Lee S, Gerla M (2001) Split multipath routing with maximally disjoint paths in ad hoc networks. IEEE
Int Conf Commun 10:3201-3205
8. Baadache A, Belmehdi A (2012) Fighting against packet dropping misbehaviour in multi-hop wireless
ad hoc networks. J Netw Comput Appl 35(3):1130-1139
9. Zhang X, Jain A, Perrig A (2008) Packet-dropping adversary identification for data plane security. In:
Proceedings of the 2008 ACM CoNEXT Conference, Dec 2008
10. Chuah M, Yang P, Han J (2007) A Ferry-based intrusion detection scheme for sparsely connected
ad hoc networks. In: Proceedings of the 2007 fourth annual international conference on mobile and
ubiquitous aystems: networking services, Aug 2007, pp 1-8
11. Shang-Fu G, Jian-Lei Z (2012) A survey of reputation and trust mechanism in peer-to-peer network.
In: Proceedings of the 2012 international conference on industrial control and electronics engineering,
Aug 2012, pp 116-119
12. Pirzada A, Datta A, McDonald C (2004) Trusted routing in ad-hoc networks using pheromone trails.
IEEE Congr Evol Comput 2:1938-1943
13. Yajun G, Yulin W (2007) Establishing trust relationship in mobile ad-hoc network. In: International
conference on wireless communications, networking and mobile computing, Sept 2007, pp 1562—1564
14. YuY, Li K, Zhou W, Li P (2012) Trust mechanisms in wireless sensor networks: attack analysis and
countermeasures. J Netw Comput Appl 35(3):867-880
15. Chen I, Bao F, Chang M, Cho J (2014) Dynamic trust management for delay tolerant networks and its
application to secure routing. IEEE Trans Parallel Distrib Syst 25(5):1200-1210
16. Gongalves M, Moreira E, Martimiano L (2010) Trust management in opportunistic networks. In:
Proceedings of the 2010 ninth international conference on networks, April 2010, pp 209-214
17. Merkle R (1980) Protocols for public key cryptosystems. IEEE Symp secur priv 1109:122—-134
18. LiY, Gouda M (2008) Sources and monitors: atrust model for peer-to-peer networks. In: Proceedings
of seventeenth international conference on computer communications and networks, Aug 2008, pp
1-6

@ Springer

Trust strategy implementation in OppNets 181

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Cho J, Chen I (2016) PROVEST: provenance-based trust model for delay tolerant networks. IEEE
Trans Dependable Secur Comput 99:1-1

Nguyén C, Camp O (2008) Using context information to improve computation of trust in ad hoc net-
works. In: Proceedings of the 2008 IEEE international conference on wireless and mobile computing,
networking and communications, Oct 2008, pp 619-624

Bijon K, Haque M, Hasan R (2014) A trust based Information sharing model (TRUISM) in MANET in
the presence of uncertainty. In: Twelfth annual international conference on privacy, security and trust
(PST), July 2014, pp 347-354

Yao L, Man Y, Huang Z, Deng J, Wang X (2016) Secure routing based on social similarity in oppor-
tunistic networks. IEEE Trans Wirel Commun 15(1):594-605

Zia T, Islam M (2010) Communal reputation and individual trust (CRIT) in wireless sensor networks.
In: Proceedings of the 2010 international conference on availability, reliability and security, Feb 2010,
pp 347-352

Marti S, Giuli T, Lai K, Baker M (2000) Mitigating routing misbehaviour in mobile ad hoc networks.
In: Proceedings of the sixth annual international conference on mobile computing and networking, pp
255-265

Jaimes L, Ullah K, Moreira E (2016) ARS: anonymous reputation system for vehicular ad hoc networks.
In: Eighth IEEE Latin-American conference on communications (LATINCOM), Nov 2016, pp 1-6
Dini G, Duca A (2012) Towards a reputation-based routing protocol to contrast blackholes in a delay
tolerant network. Ad Hoc Netw 10(7):1167-1178

DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramania S,
Vosshall P, Vogels W (2007) Dynamo: amazon’s highly available key-value store. In: Proceedings of
twenty first ACM SIGOPS symposium on operating systems principles, Oct 2007, pp 205-220

ONE version 1.4.1. http://www.netlab.tkk.fi/tutkimus/dtn/theone/

Vahdat A, Becker D (2000) Epidemic routing for partially-connected ad hoc networks. Technical
Report, CS-200006, Duke University

Lindgren A, Doria A, Schelén O (2003) Probabilistic routing in intermittently connected networks.
ACM SIGMOBILE Mob Comput Commun Rev 7(3):19-20

@ Springer

http://www.netlab.tkk.fi/tutkimus/dtn/theone/

	Trust strategy implementation in OppNets
	Abstract
	1 Introduction and motivation
	1.1 Introduction
	1.2 Motivation
	1.3 Overview of solution

	2 Related work
	3 Trust strategy in OppNets
	3.1 Assumptions
	3.2 Malicious path detection using Merkle trees
	3.3 Malicious node detection using trust

	4 Mathematical analysis
	5 Simulation, results and analysis
	5.1 Simulation settings
	5.2 Results and analysis
	5.3 Our approach in Epidemic routing vs our approach in PRoPHET routing

	6 Impact of mobility speed and storage on malicious node detection accuracy
	7 Comparison with other solutions
	8 Conclusion and future work
	References

