Computing (2017) 99:493-506 @ CrossMark
DOI 10.1007/s00607-017-0553-x

A methodology for measuring structure similarity of
fuzzy XML documents

Zhen Zhao'-? . Zongmin Ma3

Received: 25 February 2016 / Accepted: 25 March 2017 / Published online: 10 April 2017
© Springer-Verlag Wien 2017

Abstract Document matching has become a crucial task for data integration. A con-
siderable amount of algorithms for comparing XML documents have been proposed
in the literature. Yet, the existing approaches fall short in ability to identify structural
similarities of fuzzy XML documents. To fill this gap, in this paper, we provide an
integrated comparison approach to cope with structural similarities of the fuzzy XML
documents. Firstly, we propose a new fuzzy XML document tree model to represent
fuzzy XML document. Secondly, we offer element/attribute features similarity mea-
sure approach to identify matching nodes. Thirdly, we present an effective algorithm
based on the tree edit distance to detect the structural similarities between fuzzy XML
document trees represented with the proposed model. Finally, the experimental results
demonstrate that our approach can efficiently perform structural similarity measure of
the fuzzy XML documents.

Keywords Data integration - Fuzzy XML document - Matching - Structural
similarity - Tree edit distance

Mathematics Subject Classification 68Q42(05C05)

B Zongmin Ma
zongminma@nuaa.edu.cn

Zhen Zhao

zhaozhen @bhu.edu.cn

School of Computer Science and Engineering, Northeastern University, Shenyang 110819,
Liaoning, People’s Republic of China

School of Information Science and Technology, Bohai University, Jinzhou 121013, Liaoning,
People’s Republic of China

College of Computer Science and Technology, Nanjing University of Aeronautics and
Astronautics, Nanjing 211106, Jiangsu, People’s Republic of China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-017-0553-x&domain=pdf

494 Z.Zhao, Z. Ma

1 Introduction

In the past few years, with the rapid development of the Internet, the management of
Web data becomes ever more significant. XML (Extensible Markup Language) has
rapidly emerged as the de-facto standard for representing an ever-increasing amount
of data available on the Internet. As a new generation language of the Internet, XML
is playing a key role in numerous applications. The application of XML includes data
description and storage, information interchange, data integration, and so on [1].

Since XML data sources are independently developed and highly autonomous, the
demand for integrating multiple XML documents which come from different applica-
tion systems becomes ever more urgent. It is necessary to find similar XML documents
referring to the same real-world object. Similarity measure of XML documents has
also received significant attentions from academic communities due to its significant
to many practical applications. At the same time, in many domains, it is sometimes dif-
ficult to state all information with crisp data. XML documents with fuzzy information
are called fuzzy XML documents. Generally speaking, the increasing applications of
fuzzy XML documents motivate us to investigate similarity comparison of heteroge-
neous fuzzy XML documents. It is necessary to identify the fuzzy XML documents
and then consolidate multiple fuzzy XML documents to a single one. Unfortunately,
to the best of our knowledge, there are not any reports discussing the similarity mea-
sure of the fuzzy XML documents. Aiming at developing an effective comparison
approach to efficiently detect fuzzy XML structural similarity, in this paper, we devise
an effective and efficient approach to support the similarity measure of the fuzzy XML
documents which are gathered from different data sources and may not conform to
the same grammar (DTD/XSD).

Treating the fuzzy XML documents as ordered trees, in this paper, we focus on
comparing fuzzy XML document tree structures. We take a first step in construc-
tion of a new fuzzy XML document tree model, which makes it easier to describe
fuzzy data and capture the structural information of fuzzy XML documents. On this
basis, we propose an effective algorithm based on the tree edit distance to detect the
structural similarity between fuzzy XML document trees. We identify corresponding
information (i.e., element/attribute labels) in tree nodes and then decide the similarity
of nodes from different fuzzy XML documents. Then the structural similarity relation-
ships between two fuzzy XML documents can be determined from their corresponding
nodes. The experimental results validate our approach and show the practicability of
our matching algorithm.

The rest of the paper is organized as follows: in Sect. 2, we review the past related
works on this subject. After a presentation of preliminaries in Sect. 3, we introduce a
novel fuzzy XML document tree model in Sect. 4. The similarity measure approach
of the fuzzy XML document is proposed based on this model in Sect. 5. Experimental
evaluations are given in Sect. 6, and finally Sect. 7 concludes this paper.

2 Related work

Various methods to estimate structural similarity for XML documents have been pro-
posed in the literature [2-7]. In [2], the authors develop a structural similarity metric

@ Springer

A methodology for measuring structure similarity... 495

for XML documents based on the “XML aware” edit distance between ordered labeled
trees. To overcome the limitations of earlier approaches, Dalamagas et al. present a
framework for clustering XML documents by structure based on tree edit distance
in [3]. In [4], the authors discuss a variety of algorithms utilizing reference sets and
bounds providing solutions to the approximate XML join problem between a pair
of XML sources. In [5], entity matching framework considers support for blocking
and the combination of different match algorithms. In [6], the authors introduce an
approach of entity identification in XML documents based on approximate joins. In a
previous work [7], the authors propose a benchmark for duplicate detection to XML.
Note that most similarity measure algorithms of XML documents mentioned above
make use of techniques for finding the edit distance between tree structures [2,3,6].

Previous similarity measurement methods [2,3] often assume that data in XML
documents denote deterministic objects in the real-world. In fact, this assumption is
often invalid since they may involve in fuzzy information. At the same time, some
data are inherently vague rather than definite since their values are subjective in real-
world applications [8]. There have been some efforts in the uncertain XML data
processing. A simple model for representing and querying XML with incomplete
information are proposed in [9], and a straightforward probabilistic XML model to
manage probabilistic data is introduced in [10]. Fuzzy sets have been widely used in
the quantification of fuzzy data since Zadeh proposed the theory of fuzzy sets [11].
Fuzzy data are modeled in the XML document in [12] and an approach which deals
with fuzzy information based on the XML data are proposed in [13].

Besides,the authors introduce XML validation approach which exploits the concept
of tree edit distance to effectively compare XML documents and grammar struc-
tures in [14]. Some approaches integrate semantic and syntactic assessment to the
edit distance computation process and enable one to analyze the structure of fuzzy
XML documents more precisely and get more realistic results [15—-17]. However, The
establishment, maintenance, and use of large scale domain lexicon/thesaurus require
additional expenses, and it is laborious, time consuming. At the same time, the result of
semantic similarity calculation is influenced greatly by the quality of lexicon [15,18].

3 Preliminaries
3.1 Fuzzy XML document

In order to represent uncertain information naturally in fuzzy XML data, a representa-
tive model of the fuzzy XML document based on “membership degree and possibility
distributions” is developed in [19]. In this representation model, an element may be
associated with a membership degree. The membership degree associated with an ele-
ment means the possibility of being its parent’s child element. Also the attribute values
of elements may be represented by possibility distributions. It can be seen that there
are two semantics for a fuzzy attribute value represented by a possibility distribution:
conjunctive and disjunctive. Here we do not present the detailed definitions of fuzzy
XML representation model in this paper and only give an example fragment of fuzzy
XML document shown in Listing 1. One can refer to [19] for more details.

@ Springer

496 Z.Zhao, Z. Ma

Listing 1 A fragment of fuzzy XML document

1 | <College>

2 | <Teacher Tid = "007100">

3 <Dist Type = "disjunctive">

4 <Val Poss = 0.8>

5 <Position>associate professor</Position>
6 </Val >

7 <Val Poss = 0.6>

8 <Position>professor</Position>
9 </Val >

10 </Dist>

11 <Name>Tom< /Name>

12 </Teacher>
13 | <Teacher Tid = "007101">
14 <Dist Type = "disjunctive">

15 <Val Poss = 0.8>

16 <Position>associate professor</Position>
17 </Val >

18 <Val Poss = 0.7>

19 <Position>professor</Position>

20 </Val >

21 </Dist>

22 <Name>Jack</Name>
23 </Teacher>

24 |</College>

3.2 Fuzzy XML document tree

The basic data structure of the XML document is the XML document tree. Following
the Document Object Model (DOM) [20], XML document which represents hierar-
chically structured information can be represented as a rooted ordered labeled tree. A
fuzzy XML document can be directly transformed into a fuzzy XML document tree
according to the DOM. But this fuzzy XML document tree is clearly different from
the crisp XML document tree because this fuzzy XML document tree contains new
attribute and element types, which are attribute Poss and Type, in addition to element
Val and Dist. After a fuzzy XML document was transformed into a DOM model, we
can identify four kinds of Val element nodes as follows:

They only have Poss nodes as child node (type-1).

They only have leaf nodes as their child nodes except the Poss nodes (type-2).

— They only have nonleaf nodes as their child nodes except the Poss nodes (type-3).
They have leaf nodes as well as nonleaf nodes as their child nodes except the Poss
nodes (type-4).

4 A simplified tree model for fuzzy XML document
4.1 A novel fuzzy XML document tree model

Hereunder, we present a Novel Fuzzy XML document Tree Model (NFXTM for
short) by modifying the structure of the original fuzzy XML tree model.

@ Springer

A methodology for measuring structure similarity... 497

Definition 1 (NFXTM) Let NFXTM be an ordered tree T (N, E), where N and E are
the sets of nodes and edges of T, respectively. In NFXTM, a 5-tuple (NodeLabel,
NodeDepth, NodeFuzzy, NodeType, NodePoss) is used to represent the nodes of T for
the fuzzy XML documents. Here

— NodeLabel is the label name of the node.

— NodeDepth is the nesting depth of the node in the document. The depth of the root
node is defined to be 1.

— NodeFuzzy is used to indicate if the node is a fuzzy or crisp one. If the value of
NodeFuzzy is 1, the node is a fuzzy one. If the value of NodeFuzzy is 0, the node
is a crisp one. In particular, the value of NodeFuzzy of the node “Dist” or “Val” is
0.

— NodeType denotes the type of possibility distribution, disjunctive or conjunctive
distributions. For a crisp node, the value of NodeType is equal to Null.

— NodePoss is the memberships of the node or the possibility of attribute values of
elements. For a crisp node, the value of NodePoss is equal to Null.

NFXTM is a rooted ordered tree, in which the nodes represent the fuzzy XML
elements/attributes. Element nodes are ordered following their order of appearance in
the fuzzy XML document. Attribute nodes appear as children of their encompassing
element nodes, sorted left-to-right by attribute name. Suppose that there is a global
order defined over all nodes in the fuzzy XML document. The position of a node is
consistent with the global order.

Similarity measure is a procedure of evaluating document trees similarity. In order
to reduce the complexity of the similarity evaluation, Element/attribute values can be
disregarded from the crisp XML document tree. But, in this paper, we cannot simply
disregard all element/attribute values from the fuzzy XML document tree. We need
to keep the fuzzy values of nodes for computing of the nodes similarity (cf. Sect. 5.1)
when the NFXTM tree is constructed. The fuzzy values of nodes can be included into
5-tuple of sibling (element/attribute) nodes in NFXTM.

4.2 NFXTM model construction methods

Compared with the crisp XML document tree model, it can be seen that the fuzzy
XML document tree model mentioned in Sect. 3.2 contain four new nodes: Type,
Val, Poss and Dist. The values of these nodes include fuzzy information. We need to
transform fuzzy values under Poss nodes into 5-tuple of sibling (element/attribute)
nodes as mentioned in Sect. 4.1, and then Poss nodes can be deleted in processing of
transformation. Of course, Type node will not appear in the comparison of structural
similarity. Similarly, if the fuzzy XML document tree structure is not influenced, we
can disregard the Val and Dist nodes. That is to say, the operation of deleted the Val
and Dist nodes should not affect the depth of other nodes. Based on the discussion
above, we need to carry on processing to these four types of nodes according to the
following rules so as to obtain NFXTM model.

— Rule I For the Type node, we copy Type node value to NodeType of its siblings,
and delete Type node and its sub-tree.

@ Springer

498 Z.Zhao, Z. Ma

Algorithm 1 MCA

Input: A //a fuzzy XML document tree A

Output: MCA (A) //a NFXTM model of fuzzy XML document tree A
Begin

1: for each tree node tnode in A

2: inherit NodeFuzzy , NodeType, NodePoss value from its parent node
3: if (tnode label is identified as a “Type”)

4: process Type node by applying Rule 1

5. if (tnode label is identified as a “Val”)

6: process Val node by applying Rule 2

7. if (tnode label is identified as a “Poss”)

8: process Poss node by applying Rule 3

9: if (tnode label is identified as a “Dist”)

10: process Dist node by applying Rule 4

11: end for

12: return A

— Rule 2 For the Val node, if it is the Val node of type-1 (cf. Sect. 3.2), we delete the
Val and its sub-tree. If it is the Val node of type-2, type-3, type-4, we don’t do any
treatment.

— Rule 3 For the Poss node, we will copy Poss node value to NodePoss of its siblings,
and delete Poss node and its sub-tree.

— Rule 4 For the Dist node, if Dist node became a leaf node after the above processing,
we delete Dist node and its sub-tree.

According to these rules, we propose a Model Construction Algorithm (MCA for
short) based on the preceding analysis. To sum up, we can delete all Type, Poss nodes
(Algorithm 1, lines 3—4, 7-8), and a part of the Val and Dist nodes (lines 5-6, 9-11).
The rest of the Dist and Val node can’t be ignored. Although Dist and Val node are
related to fuzzy data, but Dist and Val nodes are no different with crisp nodes and just
indicate that node label name is “Dist” and “Val”. We can view them as crisp nodes
in the structural similarity comparison. So far, fuzzy information is embedded into
element/attribute nodes as mentioned in Sect. 4.1. And then, a NFXTM tree shown in
the Fig. 1 can be constructed corresponding to the Listing 1. Our method seems to be
quite simple, but it is a more detailed description of each fuzzy node. Without loss of
generality, when we use “node” we mean “element node” or “attribute node”.

5 Similarity measures
5.1 Node similarity measures

Given a fuzzy XML document tree, a node is a fundamental data item for the similarity
measures. We use Simy,qz. (N1, N2) to represent the similarity degree of two nodes
N; and Nj.

To accurately assess the similarity of document node-pairs, a similarity measure
should exploit the features of nodes. The characteristics associated with each node in a
fuzzy XML document tree are called the node features. Each feature has an associated
value. NodeLabel, NodeType, NodePoss are the most commonly used features of nodes.

@ Springer

A methodology for measuring structure similarity... 499

Tree A

M1 [College [1]0] Null [Null |

M2 Teacher[2 [0] Null [Null | N , njo[Teacher] 2 [0] Null [Null|
11

3 9 17
[Tid [3]0]Null[Null] [Name] 3 [0[Null[Null]||[Tid] 3]0] Nun]Nun\’\Nameb [o] Null [Null |
ny [Dist] 3 [0[Null[Null] ny, [Dist [3 [0O] Null [Null]

ny n;s

ns Val| 4[0] disjunctive[Null ||| |, [Val[4 [0] disjunctive [Null]
[Val [4 [0[disjunctive [Null] [Val [4]0] disjunctive [Null] s
[Position[5 [1] disjunctive[0.7]

[Position][5 [1]disjunctive[0.6 |
ng

Ne
[Position[5 [1 [disjunctive[0.8 |

N4
[Position[5 |1 [disjunctive]0.8]

A] A2
Fig. 1 A NFXTM tree corresponding to the fuzzy XML document in Listing 1

The more similar those features are, the more similar two nodes are. Consequently,
these features are commonly used for assessing the similarity of document node-pairs.
Depending on the different exploited feature, we present some of the commonly used
similarity measures.

The node label name (NodeLabel) is considered an important source of information
for node matching. Node label names can be syntactically similar (“Stu”, “Student”) or
semantically similar (“Worker”, “Staff”). In this paper, we only consider syntactically
similarity measures to compute the similarity degree of node label names. According
to our understanding, syntactic measures take the advantage of the representation of
label names as strings to assess the similarity of two nodes. Various algorithms for a
similarity measure between two strings have been proposed in the literature, including
Jaro Similarity [21], Lin’s similarity measure [22], Levenshtein distance [23], N-gram
distance [24]. Most of them make use of techniques for finding the edit distance
between strings. The EditDistance measure has the advantages of simple calculation
and easy to understand [21-23]. So it has been applied to syntactic similarity measure
of element label/name and achieved the anticipated effects [16,17]. Here we adopt
Lin’s similarity measure method in [22] based on the edit distance. The Lin’s similarity
measure of two strings is given by the minimum number of operations needed to
transform one string into the other. To compute the similarity degree between the
values of NodeLabel L1 and L,, the following formula is used:

1

Si Li, L) = 1
imaper (L1, L2) 1+ editDistance(L1, Lp) M

Here editDistance (L1, L) is the minimum number of single character insertion,
deletion, and substitution operations that are needed to transform L; to L. Each edit
operation is assigned a unit cost.

Sometimes it is insufficient that the node label name is considered an only necessary
feature for determining the node similarity. Thus, it is necessary that fuzzy information
sources are used to compute the node similarity and some false positive matches will

@ Springer

500 Z.7Zhao, 7. Ma

be eliminated. The node values of NodeType and NodePoss are fuzzy information
source that makes a contribution in determining the node similarity. These two kinds
of similarity are called fuzzy information similarity.

Note that the NodeType value of a node in a fuzzy XML document tree is of either
disjunctive or conjunctive. So we distinguish the NodeType similarity of them, i.e.
the possibility that two disjunctive (or conjunctive) nodes from two different fuzzy
XML document trees are similar is higher than that one disjunctive (conjunctive)
node and one conjunctive (disjunctive) are similar. NodeType similarity is represented
as Simrype (T1, T2). For the nodes having the same NodeType value, the NodeType
similarity is set to be 1, while the NodeType similarity of the nodes having different
NodeType value is set to be 0.5. It can be shown in following formula.

Simype(Ty. To) = { A @

Furthermore, the NodePoss value of nodes in a fuzzy XML document tree varies
between 0 and 1. The similarity degree of two nodes with small difference value of
NodePoss is higher than the similarity degree of two nodes with big difference value
of NodePoss . NodePoss similarity is represented as Simp,ss (P1, P2). We proposed a
formula to measure the NodePoss similarity between nodes from two different fuzzy
XML document trees.

Simposs(P1, P2) =1—|P) — P,| 3)

It is clear that each individual node similarity measure exploits a specific feature
of the node, e.g. the label name measure only makes use of the node label name. But
assessing the similarity of nodes using an individual measure is not sufficient. To get
node similarity value of node-pairs, we should combine their feature similarity values
resulted from different features similarity measures. Following mentioned above, the
node similarity of two nodes Njand N», Simy 4. (N1, N»2), is evaluated as the weighted
average of their features similarity (Label similarity (Simp,pes, cf. Form. 1), Type
similarity (Sim7ype, cf. Form. 2), Poss similarity (Simp,y;, cf. Form. 3)) scores:

Simnode(N1, N2) = wr X Simpaper (L1, L2)
+wr X SimType(Tl, T2) +wp x Simpess(P1, P2) (4)

Here w;, wr and wp are provided as input, and w; + wr + wp = 1. The user can
thus assign which features similarity value is more important to the node similarity
by varying parameter wy, wr, wp. For wy = 1, wr = wp =0, we only consider label
similarity and ignore fuzzy information similarity.

Generally speaking, in order to effectively combine feature similarity, the weighting
parameter wz, wr, wp come down to an optimization problem such as weighting
parameter should be chosen to maximize the overall node similarity function (cf.
Form. 4). This can be addressed using a number of known techniques that apply
machine learning in order to identify the best weights for a given problem [25]. We
do not further address the weighting parameter here since it is out of the scope of

@ Springer

A methodology for measuring structure similarity... 501

this paper. As for whether nodes are matching or not, we can solve this problem via
setting a threshold. If the node similarity degree is greater than the given threshold (cf.
Sect. 5.2), we say they are matching.

5.2 Structural similarity measures of fuzzy XML documents

Two fuzzy XML documents, which are collected from different data sources and do not
conform to the same grammar (DTD/XSD), can have very different sizes on account of
optional and repeating elements. Edit distance measure will necessarily find a distance
between such a pair of documents, and will recognize similarity of these documents.
In this section, we introduce an edit distance measure with regard to the structural
similarity. First we present the tree edit distance definition.

Definition 2 (Tree edit distance) The edit distance between two trees A and B is
defined as the minimum cost of all edit scripts that transforms A to B, TED (A,
B)=Min{Costggs}.

An edit script £ S between two trees A and B is a sequence of edit operations turning
A into B. The cost of E'S is the sum of the costs of the operations in ES. An optimal
edit script between A and B is an edit script between A and B of minimum cost.
This minimum cost is called the tree edit distance. In order to capture the structural
similarities of fuzzy XML document trees, we need to firstly introduce the notion of
matching nodes between two document trees.

Definition 3 (Matching nodes between document trees) Given two document trees A
=(ajy, ..., ay) and B = (by, ..., b,) and a threshold 6, we define the matching nodes
between A and B, as the set of pairs of matching nodes N from of A and B, N = (a;,
b;) AxB, a; and b; include in A and B, respectively, with the same depth and relative
order (in preorder traversal), having Simy,g. (a;, bj) > 0.

Following Definition 3, the problem of computing the edit distance between two
trees A and B is equivalent to find the minimal cost of edit operations that can transform
A to B, in a roundabout way, identifying the maximum number of matching nodes in A
and B. In other words, the more number of matching nodes, the lesser number of edit
operations, the lesser the edit distance. Associated with each of these edit operations
is a nonnegative cost. Our algorithms work with general costs, but in this paper we
restrict our presentation and experimentation to constant (unit) costs. In the following,
we assume the general case where atomic insertion/deletion operations are of unit
costs is equal to 1.

Now we use CostpeTree(Ai) to represent the costs of deleting sub-tree A; and
CostynsTree (B) to represent the costs of inserting sub-tree B ; when comparing two
fuzzy XML document trees. These costs of tree insertion and deletion operations are
obtained by traversing of sub-tree and are exploited with an adaptation of tree edit
distance algorithm (given in Algorithm 2), which provides a similarity measure for
fuzzy XML documents. Following the Nierman and Jagadish’s main edit distance
algorithm [2] and Tekli and Chbeir’s improved edit distance algorithm [15], we intro-
duce our Modified Tree Edit Distance (MTED for short) algorithm. Algorithm MTED

@ Springer

502 Z.7Zhao, 7. Ma

Algorithm 2 MTED

Input: A, B //fuzzy XML document tree to be compared
Output: MTED (A, B) //Edit distance between A and B

Begin

1: M = Degree(A) // The number of first level sub-trees of A
2 N = Degree(B) // The number of first level sub-trees of B

3 Dist[][]=new[0- - -M][0- - -N]

4: If (A[O]. NodeDepth == B[0]. NodeDepth and Simpy,q, (A[0], B[0]) > 6) //node matching
5:
6.

7

8

Dist[0][0] = 0; // matching nodes are associated null costs
MatchNode add 1 // Counting matching nodes

o

9: Else

10: {

11: Dist[0][0] = 1

12: 1}

13: For (i =1 to M) Dist[i][0] = Dist[i-1][0] + Cost pe;Tree(Ai)
14: For (j=1 to N) Dist[0][j]=Dist[0][j-1]+ Cost;ysTree(B)
15: For (i=1 to M)

16: {

17: For (j=1 to N)

18: { //identifies the set of insertion/deletion operations having the minimum overall cost
19: Dist[i][j]=Min{

20: Dist[i-1][j-1] + MTED(A;, B}),

21: Dist[i-11[j] + CostpeiTree(Ai),

22: Dist[i][j-1] + CostyysTree(B)

23: }

24: }

25: }

26: Return DistfM][N]

provides an improved and more accurate structural similarity measure of the fuzzy
XML document trees. The algorithm starts by counting the total number of match-
ing nodes between A and B (Algorithm 2, lines 4-7), Note that the update operation
is specifically disregarded in MTED in order to allow the identification of matching
nodes. Then MTED computes the sum of the costs of deleting every node in the source
document tree (line 13) and inserts every node of the destination tree (line 14). Conse-
quently, MTED identifies the set of insertion/deletion operations having the minimum
overall cost (lines 15-25). In short, algorithm MTED recursively goes through the
fuzzy XML document trees being compared, combining tree insertion and tree dele-
tion operations so as to identify those of minimal cost. The node matching is applied to
the roots of the fuzzy XML document trees being compared, as well as the roots of each
pair of sub-trees considered in the recursive process (line 4—7), whereas tree insertion
and tree deletion operations are applied to corresponding first-level sub-trees (lines
13-14, 21-22). Hence, the number of matching nodes between fuzzy document trees
is identified by this algorithm. At the same time, we can determine the edit distance
of transforming a source tree A into a destination tree B.

We normalize a similarity coefficient « to measure the effect of matching nodes on

the edit distance. 1

= MatchNode
Ut 55 Max(ALIBD

(&)

o

@ Springer

A methodology for measuring structure similarity... 503

Tree Edit Distance (cf. Definition 2) is defined as follows.

TED(A,B)=MTED(A,B) X« (6)

Following [15], we give the formal definition of similarity of the fuzzy XML docu-
ments. This similarity measure is also consistent with the formal definition of similarity
in [22].

|A|+ |B|—TED (A, B)

Simpxpoc (A, B) = A+ |B] @)

6 Experimental evaluations
6.1 Evaluation criteria and data sets

In the context of documents matching, let us look at the similarity evaluation criteria
adopted in our experimental evaluation. Owing to the proficient use of predecessors,
we make use of the precision, recall and F-measure metrics defined in [3], to evaluate
the effectiveness (quality) of our approach. The effectiveness of similarity measure
is commonly determined with the standard measures precision (P), recall (R) and F-
measure with respect to a manually determined “perfect” result. Therefore, as with
traditional information retrieval evaluation, high precision and recall, F- measure char-
acterize a good matching method.

To test our method’s effectiveness in evaluating fuzzy XML structural similarity, we
used the following data sets [26] generated based on real fuzzy XML documents for the
experimental evaluation. For this real data sets, we considered the SigmodRecord.xml,
DBLP.xml and NASA.xml. Of course, we need to make use of a random data genera-
tion method that transformed the data sets based on these documents into a fuzzy data
set. Thatis, we add artificially fuzzy nodes to these documents. After that, they are con-
verted into fuzzy XML document. Due to their relatively large size, we carefully split
each fuzzy XML document into several documents (the document size according to
the arithmetic progression distribution, from 10 KB to 10 MB). We experimented on a
set of 90 documents corresponding to SigmodRecord.xml (30 documents), DBLP.xml
(30 documents) and NASA.xml (30 documents).The characteristics of the real data
sets are summarized in Table 1.

Table 1 Characteristics of the real data sets

Filename Size No. of element No. of attributes Avg-depth
dblp.xml 23MB 3,332,130 404,276 2.90228
nasa.xml 3MB 476,646 56,317 5.58314
SigmodRecord.xml 467 KB 11,526 3737 5.14107

@ Springer

504 Z.Zhao, Z. Ma

6.2 Experimental results

In the following, we show several evaluation scenarios reporting on the experimental
results. The first scenario is to evaluate the quality of real data sets described in the
preceding paragraphs. In the first step, the similarity degree between every pair of dif-
ferent fuzzy XML documents is first computed by using our method. All the matching
tasks have been performed and the values were derived after a set of experiments. Sec-
ond Step, we started a series of classification tasks by varying the similarity threshold
in the [0, 1] interval. The fuzzy XML documents which similarity degrees are greater
than a given threshold will be grouped together. Lastly, according to the clustering
results, we compute precision, recall and F-measure for each of the classification sets
in the multilevel classification phases, the results of these evaluations are reported in
Fig. 2. From Fig. 2, we can see that inconsistent documents are gradually filtered from
the classification sets, while varying the classification threshold from O to 1. Results
show that our algorithm yields optimal classes at a very early stage of the multilevel
classification process (with thresholds < 0.5). We also note that higher threshold values
(e.g. thresholds > 0.8) are not much improved performance in these sets of tasks due
to the fact that it was very hard to find more right matches at such a higher threshold
value. In second scenario, we experimented with real data sets (chose ten document,
size from 100 KB to 2 MB) for runtime performance analysis. We can know that the
complexity of our structural comparison algorithm is polynomial following the size of
the fuzzy XML document trees being compared. This polynomial dependency on the
size of each tree (document) is experimentally verified, timing results being presented
in Fig. 3. The timing experiments were implemented in JDK 1.6, and performed on a
system with Intel Core i5 processor, 4 GB RAM and running on Windows 7. The results
in Fig. 3 reflect that the time to identify the structural similarity between fuzzy XML
document trees grows in a linear dependency on the size of each tree being compared.

Fig. 2 Matching quality for 1.0

real-world data sets —e— prcision
0.9
—v— recall

0.8 |

—+— F—measure

0.7
0.6
0.5 |
0.4
03 |
02 r

0.1

v

O L L L L L L L L L
0 01 02 03 04 05 06 0.7 08 09 1.0
thresholds

@ Springer

A methodology for measuring structure similarity... 505

Fig. 3 Timing results to 600
compare similarity for pair-wise
fuzzy XML documents
500
400
)
g 300
&
200
100

Size of fuzzy XML document(MB)

7 Conclusion

In order to deal with the issue of the similarity measure of the fuzzy XML documents
effectively, in this paper, we propose a novel fuzzy XML document tree model to
capture the structural information of fuzzy XML documents. Based on the exploited
information in node, we categorize node similarity computation into label similarity
measures and fuzzy information similarity measures. Among them, the former captures
the element label names and the latter exploits fuzzy information of the node itself. We
compare the similarity of document structures based on the fuzzy XML document tree
model by modified tree edit distance algorithm. The experimental results show that our
approach can efficiently perform matching on the fuzzy XML documents. Note that
this paper concentrate on the structural similarities between fuzzy XML documents
without considering their contents (i.e., element/attribute values). In the near future,
we will investigate the similarity of fuzzy XML documents, combining the structural
similarities and the content similarities together. In addition, the similarity calculation
developed in this paper is based only on the syntactic level in calculating similarity
of labels. It has been unveiled that the semantic aspect plays an important role in the
similarity calculation [16]. Some efforts have proposed the integration of the semantic
aspect in the similarity calculation with the help of a lexicon (i.e.,WordNet) [15,17].
We plan to enhance our approach proposed in this paper by using lexicon and then
label normalization [27] in future work.

Acknowledgements This work was supported by the National Natural Science Foundation of China
(61370075 & 61572118) and the Program for New Century Excellent Talents in University (NCET- 05-
0288).

References

1. Thomo A, Venkatesh S (2008) Rewriting of visibly pushdown languages for xml data integration. In:
Proceedings of the 17th ACM conference on information and knowledge management. ACM, Napa
Valley, pp 521-530

@ Springer

506 Z.7Zhao, 7. Ma

2. Nierman A, Jagadish HV (2002) Evaluating structural similarity in XML documents. In: Proceedings
of ACM SIGMOD WebDB, vol 2. ACM, Madison, pp 61-66
3. Dalamagas T, Cheng T, Winkel KJ et al (2006) A methodology for clustering XML documents by
structure. Inf Syst 31(3):187-228. doi:10.1016/j.is.2004.11.009
4. Guha S, Jagadish HV, Koudas N, Srivastava D, Yu T (2006) Integrating XML data sources using
approximate joins. ACM Trans Database Syst 31(1):161-207
5. Kopcke H, Rahm E (2010) Frameworks for entity matching: a comparison. Data Knowl Eng 69(2):197—
210. doi:10.1016/j.datak.2009.10.003
6. Ribeiro L, Harder T (2006) Entity identification in XML documents. In: 18th GI-workshop on the
foundations of databases, pp 130-134
7. Weis M, Naumann F, Brosy F (2006) A duplicate detection benchmark for XML (and relational) data.
In: SIGMOD 2006 workshop on information quality for information systems. Chicago
8. Oliboni B, Pozzani G (2008) Representing fuzzy information by using XML schema. In: Proceedings
of the 19th international conference on database and expert systems application. Turin, pp 683-687.
doi:10.1109/DEXA.2008.44
9. Abiteboul S, Segoufin L, Vianu V (2006) Representing and querying XML with incomplete informa-
tion. ACM Trans Database Syst 31(1):208-254
10. Nierman A, Jagadish HV (2002) ProTDB: probabilistic data in XML. In: Proceedings of the 28th
international conference on vary large data bases. Hong Kong, VLDB Endowment, pp 646—657. doi: 10.
1016/B978-155860869-6/50063-9
11. Negoita C, Zadeh L, Zimmermann H (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy
Sets Syst 1:3-28
12. Gaurav A, Alhajj R (2006) Incorporating fuzziness in XML and mapping fuzzy relational data into
fuzzy XML. In: Proceedings of the 2006 ACM symposium on applied computing. ACM, Dijon, pp
456-460. doi:10.1145/1141277.1141386
13. Turowski K, Weng U (2002) Representing and processing fuzzy information-an XML-based approach.
Knowl Based Syst 15(1):67-75. doi:10.1016/S0950-7051(01)00122-8
14. Tekli J, Chbeir R, Traina AJ, Traina C, Fileto R (2015) Approximate XML structure validation based
on document- grammar tree similarity. Inf Sci 295:258-302
15. Tekli J, Chbeir R (2012) A novel XML document structure comparison framework based-on sub-tree
commonalities and label semantics. Web Semant 11:14-40. doi:10.1016/j.websem.2011.10.002
16. Algergawy A, Nayak R, Saake G (2010) Element similarity measures in XML schema matching. Inf
Sci 180(24):4975-4998. doi:10.1016/j.ins.2010.08.022
17. Wojnar A, Mlynkova I, Dokulil J (2010) Structural and semantic aspects of similarity of document
type definitions and XML schemas. Inf Sci 180(10):1817-1836
18. Sabbah T, Selamat A, Ashraf M, Herawan T (2014) Effect of thesaurus size on schema matching
quality. Knowl Based Syst 71:211-226. doi:10.1016/j.knosys.2014.08.002
19. Ma ZM, Yan L (2007) Fuzzy XML data modeling with the UML and relational data models. Data
Knowl Eng 63(3):972-996. doi:10.1016/j.datak.2007.06.003
20. Nicol G, Wood L, Champion M et al (2001) Document object model (DOM) level 3 core specification.
W3C Work Draft 13:1-146
21. Cohen W W, Ravikumar P, Fienberg S E (2003) A comparison of string distance metrics for name-
matching tasks. In: Kdd workshop on data cleaning and object consolidation, vol 3. Washington, pp
73-78
22. Lin D (1998) An information-theoretic definition of similarity. In: Proceedings of the international
conference on machine learning. Madison, pp 296-304
23. Levenshtein VI (1966) Binary codes capable of correcting deletions. Insertions Revers Sov Phys
Doklady 6:707-710
24. Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33(1):31-88
25. Marie A, Gal A (2008) Boosting schema matchers. In: Proceedings of the OTM 2008 confederated
inter. Conferences. Springer, Monterrey, pp 283-300
26. XML Data Repository. http://www.cs.washington.edu/research/xmldatasets/
27. Sorrentino S, Bergamaschi S, Gawinecki M, Po L (2010) Schema label normalization for improving
schema matching. Data Knowl Eng 69(12):1254—1273. doi:10.1016/j.datak.2010.10.004

@ Springer

http://dx.doi.org/10.1016/j.is.2004.11.009
http://dx.doi.org/10.1016/j.datak.2009.10.003
http://dx.doi.org/10.1109/DEXA.2008.44
http://dx.doi.org/10.1016/B978-155860869-6/50063-9
http://dx.doi.org/10.1016/B978-155860869-6/50063-9
http://dx.doi.org/10.1145/1141277.1141386
http://dx.doi.org/10.1016/S0950-7051(01)00122-8
http://dx.doi.org/10.1016/j.websem.2011.10.002
http://dx.doi.org/10.1016/j.ins.2010.08.022
http://dx.doi.org/10.1016/j.knosys.2014.08.002
http://dx.doi.org/10.1016/j.datak.2007.06.003
http://www.cs.washington.edu/research/xmldatasets/
http://dx.doi.org/10.1016/j.datak.2010.10.004

	A methodology for measuring structure similarity of fuzzy XML documents
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Fuzzy XML document
	3.2 Fuzzy XML document tree

	4 A simplified tree model for fuzzy XML document
	4.1 A novel fuzzy XML document tree model
	4.2 NFXTM model construction methods

	5 Similarity measures
	5.1 Node similarity measures
	5.2 Structural similarity measures of fuzzy XML documents

	6 Experimental evaluations
	6.1 Evaluation criteria and data sets
	6.2 Experimental results

	7 Conclusion
	Acknowledgements
	References

