
Computing (2017) 99:1149–1177
DOI 10.1007/s00607-017-0552-y

vmBBProfiler: a black-box profiling approach to
quantify sensitivity of virtual machines to shared cloud
resources

Javid Taheri1 · Albert Y. Zomaya2 ·
Andreas Kassler1

Received: 22 August 2016 / Accepted: 15 March 2017 / Published online: 25 March 2017
© The Author(s) 2017. This article is an open access publication

Abstract Virtualized Data Centers are packed with numerous web and cloud services
nowadays. In such large infrastructures, providing reliable service platforms depends
heavily on efficient sharing of physical machines (PMs) by virtual machines (VMs).
To achieve efficient consolidation, performance degradation of co-located VMs must
be correctly understood, modeled, and predicted. This work is a major step toward
understanding such baffling phenomena by not only identifying, but also quantifying
sensitivity of general purpose VMs to their demanded resources. vmBBProfiler, our
proposed system in this work, is able to systematically profile behavior of any general
purpose VM and calculate its sensitivity to system provided resources such as CPU,
Memory, and Disk. vmBBProfiler is evaluated using 12 well-known benchmarks,
varying from pure CPU/Mem/Disk VMs to mixtures of them, on three different PMs
in our VMware-vSphere based private cloud. Extensive empirical results conducted
over 1200h of profiling prove the efficiency of our proposed models and solutions; it
also opens doors for further research in this area.

Keywords Performance degradation · Virtualization · Cloud computing

Mathematics Subject Classification 68M20 · 68M14

B Javid Taheri
javid.taheri@kau.se

Albert Y. Zomaya
albert.zomaya@sydney.edu.au

Andreas Kassler
andreas.kassler@kau.se

1 Karlstad University, Karlstad, Sweden

2 University of Sydney, Sydney, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-017-0552-y&domain=pdf
http://orcid.org/0000-0001-9194-010X

1150 J. Taheri et al.

1 Introduction

The demand for cloud computing has been constantly increasing during recent years.
Nowadays, Virtualized Data Centers (vDCs) accommodate thousands of Physical
Machines (PMs) to host millions of Virtual Machines (VMs) to fulfill today’s large-
scale web applications and cloud services. Many organizations even deploy their own
private clouds to manage their computing infrastructure [1]; it is shown that more than
75%of current enterpriseworkloads are currently running on virtualized environments
[2]. Despite the massive capital investments however, their resource utilization rarely
exceeds 20% of their full capacity [2,3]. This is because, alongside its many benefits,
sharing PMs also leads to performance degradation of sensitive co-located VMs and
could undesirably reduce their quality of service (QoS) [4].

Figure 1 shows relative throughput (with regard to their isolated run) of eight high
resource demanding VMs when co-located with another VM running a Mem+Disk
intensive application (unzipping large files). All VMs had 2vCPU, 2GB of RAM, and
20GB of Disk. For each test, VMs were pinned on the same set of CPUs/Cores and
placed on the same disk to compete for CPU cycles, conflict on L1/L2/L3 memory
caches, and interfere with each others’ disk access. As can be inferred, despite being
classified as “resource demanding”, five of these applications could be safely co-
located with the background resource intensive application (Mem+Disk), while a
conservative view would have separated all VMs to allocate on separate PMs. This
simple example shows that conservative methods could be unnecessary for many
high demanding VMs; it also justifies the importance of understanding performance
degradation to identify VMs that can be safely co-located with minimum interference
to each other.

This work is a major step toward quantifying such interferences through profiling
a variety of benchmarks under different working scenarios. Such profiles are then
used to identify sensitivity of each VM to its allocated resources, and consequently
to identify/link the importance of each resource to its actual throughput. We used 12
well-known benchmarks with different resource usage signatures (CPU/Mem/Disk
intensive and various combinations of them) to run on three different PMs. Results
were collected and used to model sensitivity of each VM to its allocated resources.
We finally aligned our results with actual throughput of these benchmarks to show
accuracy of our approach: VM Black-Box Profiler (vmBBProfiler).

Our contributions in this work are: unlike all available similar approaches,
vmBBProfiler (1) only uses Hypervisor level metrics to identify sensitivity of a VM
to its allocated resources. No code/agent is required to be developed, installed, and/or
executed inside VMs; (2) provides a systematic approach to calculate sensitivity of
VMs to their resources; (3) uses a wider range of benchmarks to calculate sensitivity
values; and (4) produces a sensitivity number for each resource instead of binary-
labeling it as either ‘sensitive’ or ‘insensitive’.

The remainder of this paper is structured as follows. Section 2 reviews the related
work. Section 3 explains the architecture of vmBBProfiler. Section 4 demonstrates
vmBBProfiler’s procedures. Section 5 lays out our experimental setup. Results are
discussed and analyzed in Sect. 6, followed by conclusion and future directions in
Sect. 7.

123

vmBBProfiler: a black-box profiling approach to quantify… 1151

ai
o-
st
re
ss

ap
ac
he

bu
ild
-a
pa
ch
e

bu
ild
-p
hp

co
m
pr
es
s-
gz
ip

dc
ra
w

un
pa
ck
-li
nu

x

bo
rk

0

0.2

0.4

0.6

0.8

1 Acceptable Level

Fig. 1 Relative performance of eight applications when co-located with a Mem+Disk (unzipping large
files) intensive application. The “acceptable-level” is an arbitrary threshold that a service provider can
tolerate when delivering its services

2 Related work

The ever increasing popularity of virtualization [5] in vDCs is one of the most signif-
icant shifts in the IT industry for the twenty first century. Through virtualization, PM
resources are partitioned for VMs to run cloud services. Running a highly efficient
vDC is however not a trivial task. Firstly, vDCs are envisaged to be able to properly
partition resources and run several VMs on each PM. Though resources like CPU
and Network seem to be fairly partition-able, Mem and Disk are proven to be much
more cumbersome. Last Level Cache (LLC) in particular has been the focus of many
approaches because of its profound, yet unpredictable effect on co-located VMs [3].
Secondly, vDCs need to accurately provide online operational information to both
administrator and users so that functionality of deployed services can be monitored,
controlled, and ensured at all times.Management systems are also required to dynami-
cally (re)organize—via cold or livemigration—VMplacements.Because optimization
techniques to perform efficient allocations are heavily linked to understanding the true
behavior of co-located VMs under contention, to date, VM (re)allocation decisions are
either made manually based on administrators’ experience, or automatically based on
very fewparameters such asCPU load ofVMs andPMs [5]. Thirdly, vDCmanagement
systems must be able to identify performance bottlenecks in virtualized environments
to make certain that all services are able to perform in such complex digital ecosys-
tems. This demands the ability to accurately predict the performance of different VMs
in various working scenarios; ie, isolated or co-located as well as under or free of
resource contentions. This concern, in particular, seems to be more important than the
other two because it can directly lead to significant increase of vDCs’ productivity.

To date, many approaches are proposed to solve the performance degradation of
VMs in vDCs, although none actually models and/or proposes a metric/criterion to
measure/reflect it; they can be categorized into the following four main themes.

2.1 Agent based approaches

Approaches in this group use foreign agents/codes to constantlymonitor throughput of
applications and report them to a central decision making system for further analysis
and decision making. They rely on developing a tailor-made module/agent for each
application, installing it in the VM, and giving it enough system privileges to collect
and send out performance data.

123

1152 J. Taheri et al.

Xu et al. [6] proposed two Fuzzy based systems (global and local) to monitor
resource utilization of workloads in VMs. The local system—injected into a VM—
compares its performance with the desired SLA, and request or relinquish resources
(eg,CPUshare) if required. The global controller receives all local requests and decides
what VMs should get more resources in cases of contention. Rao et al. [7] proposed
VCONF, an auto-configuration RL-based approach, to automatically adjust CPU and
Memory shares of VMs to avoid performance degradation. Other approaches [8–12],
including Q-cloud [8] and TRACON [10], control applications’ response times inside
VMs only through adjusting their CPU-shares. Bartolini et al. [12] proposed AutoPro
to take a user-defined metric and adjust VMs’ resources to close the gap between
their desired performances and their current ones. AutoPro uses a PI controller to
asymptotically close this gap and can work with any metric (eg, frame/s) as long as
developers can provide it.Delimitrou andKozyrakis [13] proposed iBench to inject/run
a series of 15 snippets into a VM to pressure its running application and identify the
amount of contention it can tolerate before violating its QoS.

Agent based approaches are generally more accurate than others because they
use direct measurements from applications inside VMs to adjust control variables.
Their usage however could be very limited, because (1) they all reply on inside
tailor-made agents to report the exact throughput of applications/VMs, and (2) their
focus is to improve performance of VMs rather than model and/or measure resource
contention.

2.2 Model based approaches

Approaches in this group perform engineered experiments to model performance
degradation of co-located VMs. They co-locate and run VMs in isolated environments
to observe how they clash to access resources.

Akoush et al. [14] co-located VMs 2-by-2 and proposed a semi-linear performance
model for consolidated VMs; they identified three sources for contention: visible
resources (eg, CPU), invisible resources (eg, shared cache), andHypervisor overheads.
Doyle et al. [15] used various queuing models to estimate response time of services
under various working scenarios; their model assumes a fair amount of knowledge
about the application, and response times of both servers and storage services. Bennani
et al. [16] studied application-aware systems to predict throughput and response time
of both online and batch workloads. Auto-regressive models [17] and Fuzzy logic [6]
were also proposed tomodel/link performance of VMs to their CPU-allocations.More
complicated approaches—such as Auto-regressive moving average model [18] and
Artificial Neural Network (ANN) [5]—modeled/linked performance of applications
to multiple parameters. Dai et al. [19] proposed a multi-linear regression technique to
measure howa ‘background’ application/VMcan influence performance of a ‘forward’
one. Performing a large number of experiments to build a rich library, they could predict
performance degradation of an unknown application/VM through weight-averaging
its similarity with the ones from this library. Chen et al. [20] used a few Hypervisor
metrics to model/calculate slowdown of VMs and migrate them according to these
slowdown values.

123

vmBBProfiler: a black-box profiling approach to quantify… 1153

Model based approaches are generally very accurate for the exact applications for
which models are produced. Their three main drawbacks are: (1) they need to prepare
isolated environments to put VMs in direct competition with each other, (2) their
results usually lack generality, and (3) their focus is to improve performance of VMs
rather than model and/or measure resource contention.

2.3 Classification based approaches

Approaches in this group first classify applications into several groups and then
decrease performance degradation through co-locating VMs from different groups.
These approaches do not identify, model, and/or measure the exact sources/causes of
contention, but ways to avoid it.

Calgar et al. [21,22] proposed two approaches to classify performance of soft-
real-time applications from Google trace data. Using ANN [21] or K-means [22] to
investigate the effect of several inputs, they packed VMs onto PMs to reduce perfor-
mance degradation. Qian et al. [23] proposed a Fuzzy based performance interference
system tomodel all sorts of resource contention between co-locatedVMs; an influence
matrix is then produced to (re)allocate VMs. Using five network metrics, Hayashi et
al. [24] deployed machine learning to train several classes and measure performance
degradation for Apache servers. This is probably among the very few approaches that
uses a non-intrusive approach to gauge performance of a system although they added
many servers/PCs to just collect these metrics.

Classification based approaches usually lead to contention free environments, and
thus can directly improve performance of a vDC as a whole. These approaches,
however, have no intention to understand, model, and/or measure contention, but
to effectively avoid it. In fact, they reduce contention only because they reduce the
chance of clashing for resources by allocating VMs from different classes on each
PM.

2.4 Last Level Cache (LLC) based approaches

Other approaches are also proposed to solve contention from very specific angles.
For example, many approaches try to predict/model performance degradation of VMs
according to LLC metrics for the Memory; this is mainly because LLC has shown to
have a significant impact on the performance of co-located VMs. These approaches
mostly focused on reducing conflicts in cache rather than directly modeling/relating
LLC to performance degradation.

Efficient resource partitioning [25], throttling [26], and adaptive cache replace-
ment policies [26] are examples of such methods. Because most of these approaches
unrealistically demand physical access and/or ability to change hardware designs,
more recent ones mostly focus on practical software partitioning techniques [27]. For
example, Govindan et al. [25] proposed Cuanta to measure performance degradation
of co-located applications (VMs) due to their LLC contention. Microsoft researchers,
Roytman et al. [28], introduce PACman to consolidate VMs on PMs considering both
their energy consumption and mutual performance degradation. They too identified

123

1154 J. Taheri et al.

cache and memory bandwidth as the two most important metrics to reduce perfor-
mance degradation of VMs.

The major flaw with these approaches is that they are generally too narrow. In fact,
LLC based approaches are not very accurate for general purpose VMs, such as most
CPU and disk intensive applications that are usually insensitive to LLC cache misses.

After close examination of many techniques presented to date, we have noticed
the following shortcomings. Firstly, many techniques require an agent/code to be
injected to a VM to either report its throughput or put pressure on its shared resources.
The need to have access to VMs and permission to run tailor-made foreign codes is
neither acceptable not practical in most general cases. Secondly, many techniques aim
to identify contention so that they can avoid it, not to model and/or measure it. No
approach, to the best of our knowledge, has aimed to calculate quantitative sensitivity
values for VMs. To date, sensitivity is either defined as binary or the level of pressure
a VM can tolerate before violating its QoS. Finally, most approaches do not target
multidimensional resource demands.

To address these shortcomings, we designed vmBBProfiler to not only identify, but
also quantify sensitivity of VMs to shared resources. vmBBProfiler is an application-
agnostic non-intrusive approach that does not require access to VMs to run foreign
agents/codes. Using Hypervisor level controls/metrics, it systematically pressures
working VMs to model their behavior under pressure.

3 Architecture of vmBBProfiler

The key idea of our solution, vmBBProfiler, is to identify how a VM behaves
under resource contention. Its two main components (Fig. 2) are vmProfiler and
vmDataAnalyser. The vmProfiler—consists of vmLimiter and vmDataCollector in
turn—commands aHypervisor to impose resource limits to aVM, and collects/records
its behavior under the imposed limitations. To further detail vmBBProfiler’s compo-
nents, we refer to our actual deployment using our private VMware [29] based cloud.
Other systems such as Xen, KVM, etc. can easily adopt our detailed descriptions
to perform similar procedures. They only need to collect similar metrics as we col-
lected through VMware. For example, the ‘virsh nodecpustats-percent
<vm-name>’ command in KVMwill report the cpu utilization of a VM. More com-
prehensive tools/commands such as ‘virt-top--csv <file-name>’ can also
be used to collect and store online statistics of running VMs to machine readable
CSV (Comma Separated Values) files. vmDataAnalyser of vmBBProfiler can then be
launched to use this collected CSV file instead of the one collected by vmProfiler
currently designed for VMware.

vmProfiler aims to emulate ‘contention’ through ‘limitation’. That is, instead
of challenging a VM to compete with other co-located VMs to access/use shared
resources (CPU, Mem, and/or Disk), the vmLimiter limits resource usage of a VM
so that it reveals its behavior under hypothetical contentions. For example, vmLimiter
commands a Hypervisor to restrict a VM to use only up to 25%, 50%, and 75% of
its allocation CPU, Mem, and Disk allowances, respectively. Although resource star-
vation under contention is fundamentally different than starvation under limitation,

123

vmBBProfiler: a black-box profiling approach to quantify… 1155

VMware vSphere

VMware vCenter Server

Manage

VMware vSphere

vmBBProfiler

vmProfiler vmDataAnalyser

vmLimiter vmDataCollector

VMware vSphere

VMware vCenter Server

Manage

VMware vSphere

vmBBProfiler

vmProfiler vmDataAnalyser

vmLimiter vmDataCollector vmProfiler

vmLimiter vmDataCollector

vCenter

VM

vmDataAnalyser

(a) (b)

Fig. 2 a Architecture of vmBBProfiler and b connections among its components

we empirically show that (1) ‘limitation’ can fairly emulate ‘contention’, and (2) it
relieves us from encountering too many unknowns, such as the exact usage profile of
all other VMs, the exact cache architecture of PMs, etc.

Hypothesis 1 Based onour extensive experiments,we observed and then hypothesized
that behavior of a VM in ‘contention’ with other VMs is fairly similar to when it is
‘limited’ to access shared resources. It is based on the fact that an application/VM
always needs specific amounts of CPU cycles, Memory bandwidth, and Disk I/O
to perform its computation. Any shortage of resources, for any reason, would lead
to its performance degradation according to its internal processes. We observed that
regardless of why a VM cannot access enough resources, it would always behave the
same when performing its internal processes.

To validate this hypothesis, we performed a series of engineered experiments to
starve various VMs of resources and reveal their behavior under true contention. Each
VM’s behavior is then aligned with its behavior when it was limited to access that
specific amount of resources. Figure 3 shows our setup in which VM1 is running a
benchmark (eg, aio-stress), while VM2 is producing a predefined amount of load; we
used Sys-Bench [30] to consume specific amounts of CPU and Mem, and FIO [31] to
perform specific amount of Disk I/O. Both VMs are pinned on the same CPUs/Cores
and placed on the same hard-disk to compete for CPU cycles, clash onMemory caches
at all levels (L1/L2/L3), and clash on disk buffers. To reflect one of our experiments,
Fig. 4 overlaps CPU/Mem/Disk utilization of VM1 for 5min when running the aio-
stress benchmark, while it is using only 25% of its CPU, Mem, and Disk allocations.
Lines marked as ‘Limitation’ are to show when resources were available but VM1
was limited to use only 25% of them; lines marked as ‘Contention’ are to show when
VM2 is using 75% of resources, and thus VM1 is forced to use only 25%.

123

1156 J. Taheri et al.

Fig. 3 Limitation versus
contention validation setup VM1

(aio-stress)
VM2

(Sys-Bench + FIO)

0
20
40
60
80

100

0 1min 2min 3min 4min 5min 0 1min 2min 3min 4min 5min 0 1min 2min 3min 4min 5min

cpu.usage.average(%)

Contention Limitation

0
20
40
60
80
100

mem.usage.average(%)

Contention Limitation

0
10
20
30
40
50

disk.usage.average(MBps)

Contention Limitation

Fig. 4 Resource utilization of aio-stress under ‘Limitation’ versus ‘Contention’

Figure 5 shows the final throughput of aio-stress under other contention scenarios.
Performing the same procedure to validate our hypothesis for all benchmarks we used
in this article,we observed thatVMs’ behavior under ‘limitation’ is always very similar
to their behavior under ‘contention’ because they always produce fairly similar graphs
such as the ones in Figs. 4 and 5; in fact, their final throughput differed less than 5%
(on average) for all cases. Based on our experiments, we conclude that limitation can
fairly represent a VM’s behavior under contention, and thus we hypothesize/believe
that our deductions in this work can be extended to true contention scenarios. ��

It is worth noting that the limitation cannot always emulate contention when appli-
cations inside VMs have specific resource usage patterns that can significantly benefit
from running inside non-virtualized operating systems; for example, (1) two cache
sensitive cpu-intensive applications or (2) two disk-intensive applicators with mostly
sequential reads/writes. Our complementary results—not shown here due to page
limitation—proves that in both cases, the gap between the final throughput of a VM
under limitation to its throughput under contention could in fact raise up to ∼20% for
VMs performing sequential read/writes and ∼10% when performing cache-sensitive
computations.

vmLimiter(vmName,cpuLimit,memLimit,diskLimit) in Fig. 2 directly
communicates with a Hypervisor and sets specific limits for each resource so that its
under-stressed behavior could be monitored and analyzed. vmName is a unique ID
to identify a VM; eg, ‘VirtualMachine-vm-12’ in VMware. cpuLimit ∈ [0, 1] sets
the percentage of CPU that the VM can use; if a VM, for example, has two 2.4GHz
vCPUs, cpuLimit=0.25 would limit its CPU usage to 0.25× 2× 2.4 = 1.2GHz.
memLimit ∈ [0, 1] imposes a similar limit to its memory usage. diskLimit ∈
[0, 1] limits the number of IOPs (I/O operations per second); the maximum number
of IOPs is related to the storage technology, its buffer size, and its block size. For our
experiments with VMware ESXi 5.5, and VMFS version 5.61 on HDDs, we measured

123

vmBBProfiler: a black-box profiling approach to quantify… 1157

0
10
20
30
40
50

C0
25

!M
02
5!
D0

25
C0

25
!M

02
5!
D0

50
C0

25
!M

02
5!
D0

75
C0

25
!M

02
5!
D1

00
C0

25
!M

05
0!
D0

25
C0

25
!M

05
0!
D0

50
C0

25
!M

05
0!
D0

75
C0

25
!M

05
0!
D1

00
C0

25
!M

07
5!
D0

25
C0

25
!M

07
5!
D0

50
C0

25
!M

07
5!
D0

75
C0

25
!M

07
5!
D1

00
C0

25
!M

10
0!
D0

25
C0

25
!M

10
0!
D0

50
C0

25
!M

10
0!
D0

75
C0

25
!M

10
0!
D1

00
C0

50
!M

02
5!
D0

25
C0

50
!M

02
5!
D0

50
C0

50
!M

02
5!
D0

75
C0

50
!M

02
5!
D1

00
C0

50
!M

05
0!
D0

25
C0

50
!M

05
0!
D0

50
C0

50
!M

05
0!
D0

75
C0

50
!M

05
0!
D1

00
C0

50
!M

07
5!
D0

25
C0

50
!M

07
5!
D0

50
C0

50
!M

07
5!
D0

75
C0

50
!M

07
5!
D1

00
C0

50
!M

10
0!
D0

25
C0

50
!M

10
0!
D0

50
C0

50
!M

10
0!
D0

75
C0

50
!M

10
0!
D1

00
C0

75
!M

02
5!
D0

25
C0

75
!M

02
5!
D0

50
C0

75
!M

02
5!
D0

75
C0

75
!M

02
5!
D1

00
C0

75
!M

05
0!
D0

25
C0

75
!M

05
0!
D0

50
C0

75
!M

05
0!
D0

75
C0

75
!M

05
0!
D1

00
C0

75
!M

07
5!
D0

25
C0

75
!M

07
5!
D0

50
C0

75
!M

07
5!
D0

75
C0

75
!M

07
5!
D1

00
C0

75
!M

10
0!
D0

25
C0

75
!M

10
0!
D0

50
C0

75
!M

10
0!
D0

75
C0

75
!M

10
0!
D1

00
C1

00
!M

02
5!
D0

25
C1

00
!M

02
5!
D0

50
C1

00
!M

02
5!
D0

75
C1

00
!M

02
5!
D1

00
C1

00
!M

05
0!
D0

25
C1

00
!M

05
0!
D0

50
C1

00
!M

05
0!
D0

75
C1

00
!M

05
0!
D1

00
C1

00
!M

07
5!
D0

25
C1

00
!M

07
5!
D0

50
C1

00
!M

07
5!
D0

75
C1

00
!M

07
5!
D1

00
C1

00
!M

10
0!
D0

25
C1

00
!M

10
0!
D0

50
C1

00
!M

10
0!
D0

75
C1

00
!M

10
0!
D1

00

Throughput (MB/s)
Conten�on
Limita�on

Fig. 5 Throughput of aio-stress under ‘Limitation’ versus ‘Contention’. Cx!My!Dz implies using x% of
CPU, y% of Memory, and z% of its Disk allowances

Table 1 Sample Hypervisor metrics for a VM

Timestamp CPU (%) Mem (%) Disk (KBps)

6-Jun-2016 17:16:00 0.47 1.65 0.00

6-Jun-2016 17:16:20 10.05 18.32 5.43

6-Jun-2016 17:16:40 24.47 33.62 4.43

· · · · · · · · · · · ·
6-Jun-2016 17:45:20 0.20 3.23 4.23

that up to 2000 IOPs (≈50MBps disk read/write) can be performed on our HDDs, and
thusdiskLimit=0.25would limit a VM to use up to 500 IOPs for our experiments.

vmDataCollector(vmName,startTime,finishTime) collects/records per-
formance of a VM under imposed limitations through polling several Hypervisor level
metrics (eg, CPU utilization): it neither demands nor needs any specific metric from
the VM itself. This makes vmBBProfiler unique when compared with many other sim-
ilar approaches that either ask developers to provide specific metrics to reflect a VM’s
performance [5,6,8,11–13,21], or use peripheral systems to collect external metrics
to reflect such performance [24]. Because, the vmBBProfiler remains fully agnostic
to the actual internal processes of a VM, we refer to our approach as a ‘Black-Box’
technique. startTime and finishTime define the measurement period. Table 1
shows a sample dump for one of our experimentswith the defaultmeasurement interval
of 20 s in VMware-vSphere [29,32].

vmDataAnalyser is invoked upon profiling behavior of a VM under several limita-
tion profiles to analyze the collected data (eg, Table 1) and calculate sensitivity of aVM
to its CPU, Memory, and Disk allowances; they are respectively named Senc, Senm ,
and Send and are aimed to reflect generalizable conclusions about a VM’s sensitivity
to cloud resources.

4 Procedures of vmBBProfiler

Figure 6 shows procedural steps of profiling an unknown application/VM to identify its
sensitivity to CPU, Mem, and Disk. Profiling can be performed in two modes: offline
and online. In the offline mode, it is assumed that an application can be repeatedly

123

1158 J. Taheri et al.

vmProfiler

vmLimiter

Impose Limitations

Wait for few minutes

Launch application
inside VM (e.g. via ssh)

vmDataCollector

Contact VMware
vCenter to collect
performance data

1 2

3

VM
w
ar
e
vC

en
te
r

4

VM
w
ar
e
vC

en
te
r

1 2 4

1 2 3 4

Online:

Offline:

Fig. 6 Procedural steps of vmBBProfiler

started and stopped to perform a set of predefined tasks. In the online mode, the
application is assumed running and limitations are imposed to it while it is still in
service. The online mode is well aligned with many online services where interruption
might not be acceptable. Regardless of the mode, vmBBProfiler needs to challenge a
VM to work under pressure so that it can quantify its sensitivity. In fact, accurate
results can only be achieved when VMs are pushed to their limits for delivering
their services. Thus, for the online mode where service interruption is unacceptable,
redundant services must certainly be switched on before using vmBBProfiler.

In the offline mode however, because profiling is performed in a controlled envi-
ronment, its impact on any cloud/virtualized service is minimal. Nevertheless, unlike
similar systems, vmBBProfiler does not demand an isolated PM to perform its profil-
ing. It only needs a PM that is able to comfortably accommodate a target VM: ie, not on
over-provisioned PMs that can barely allocate resources to any VM. For example, all
our experiments in this workwere performed in a production cloud environment where
PMs were shared among 50 VMs. We only made certain that, in no circumstances, the
average CPU, Mem, and Disk utilization of our PMs exceeded 70% of their capacity
(mostly about 40–50%) during our experiments. The safe margin of 70%was enforced
because of direct VMware recommendations in practical guidelines [29].

Additional notes: in this article, (1) we will elaborate on the online method first,
and then explain how similar procedures could be performed for the offline mode; and
(2) we use the words ‘run’ and ‘experiment’ interchangeably.

4.1 Profiling VMs

To profile a VM, a set of profile limitations is first designed and then imposed on a
VM one after another. Table 2 shows a sample profiling table in which cpuLimit∈

123

vmBBProfiler: a black-box profiling approach to quantify… 1159

Table 2 Limitation scenarios to stress a VM

Run # cpuLimit memLimit diskLimit

1 c1 m1 d1
2 c1 m1 d2
· · · · · · · · · · · ·
nd c1 m1 dnd
nd + 1 c2 m1 d1
· · · · · · · · · · · ·
nc × nm × nd cnc mnm dnd

{c1, . . . , cnc},memLimit∈ {m1, . . . ,mnm}, anddiskLimit∈ {d1, . . . , dnd} to pro-
duce a total number of nc × nm × nd profiling scenarios. Upon spending a specific
amount of time on each scenario, vmDataCollector is invoked to collect Hypervisor
metrics (eg, Table 1). vmLimiter is invoked again to enforce the next set of limita-
tions, followed by invoking vmDataCollector. This procedure is repeated for all rows
of Table 2 to finalize the “profiling” stage.

4.2 Analyzing collected data

After profiling a VM and collecting its metrics for all nc×nm×nd different profiling
scenarios, vmDataAnalyser is invoked to analyze collected information and produce
Senc, Senm , and Send to reflect sensitivity of a VM to its allocated CPU, Mem, and
Disk allocation, respectively. The following steps elaborate on how to calculate Senc

when cpu/mem/diskLimit ∈ {0.25, 0.50, 0.75, 1.00} (64 scenarios) for one of
our benchmarks; Senm/d can be calculated following very similar procedures.

4.2.1 Group experiments/runs

The first step is to group different runs based on their cpuLimit. Figure 7 shows
such a grouping when running the ‘apache’ benchmark on a VM (Ubunto 14.04) with
2vCPU (2 × 2.4GHz), 2GB of Mem, and 20GB of Disk on the AMD machine in
Table 3. The first column of these sub-figures shows CPU, Mem, and Disk utilization
profile of all 64 runs: one run per limitation set according toTable 2. The second column
(C025) overlays 16 runs when cpuLimit=0.25; the third (C050), fourth (C075),
and fifth (C100) columns each overlays 16 runs when cpuLimit=0.50,0.75,1.00,
respectively. Overlaying C025, C050, C075, and C100 columns would produce the
first column. The x-axis in all sub-figures is time in seconds.

A close look at these sub-figures reveals that ‘apache’ uses all its allocated CPU
allowance, while using very little of memory and disk for all its runs—regardless of its
CPU demand. This is why runs are perfectly grouped according to their cpuLimit.
Figure 8 shows grouping of these 64 runs according to their memLimit. A visual
analysis on sub-figures in Figs. 7 and 8 makes us to speculate that ‘apache’ is most
probably very sensitive to its CPU-share while insensitive to its Memory-shares. This

123

1160 J. Taheri et al.

Fig. 7 Grouping ‘apache’ runs based on cpuLimit; x-axis represents time in seconds

Table 3 Characteristics of used physical machines

PM name CPU family # Cores (speed) Memory Cache (L1/L2/L3)

AMD AMD Opteron 6282 SE 64 (2.599GHz) 256GB (768KB/16MB/16MB)

DELL Intel i7-3770 8 (3.40GHz) 16GB (256KB/1MB/8MB)

SGI Intel Xeon(R) E5420 8 (2.493GHz) 32GB (256KB/12MB/–)

is because unlike Fig. 7, different memLimit could not perfectly group runs; very
similar sub-figures were obtained when grouping runs based on their diskLimit.
Thuswe expect a high Senc and lowSenm/d ; wewill confirmour expectation in Sect. 6.
It is also worth noting that applications/VMs that are sensitive to multiple resource
types (eg, ‘bork’ in Table 4) grouping runs would not result in clear-cut behavioral
patterns as seen for ‘apache’.

4.2.2 Calculate coefficient of variance margins

After grouping runs, Coefficient of Variance (CV) margins are calculated for each
group. Figure 9 illustrates such CV margins for sub-graphs of Fig. 7. The x-axis
represents the normalized times; the y-axis represents the normalized CPU/Mem/Disk
utilization.

To calculate CV margins, assume that K runs, {r1, . . . , rK }, belong to a group
(K = 16 in Fig. 9). Also assume that each run, rx , is composed of three time series:
{rcx , rmx , rdx } to respectively represent the time series of its CPU, Mem, and Disk uti-
lization. The average (μ), the standard deviation (σ), and the CV (cv) of these K
runs are then calculated at specific time slots. For example, μc

C025(t), σ c
C025(t), and

cvcC025(t) for the C025 group is calculated as:

123

vmBBProfiler: a black-box profiling approach to quantify… 1161

Fig. 8 Grouping ‘apache’ runs based on memLimit; x-axis represents time in seconds

Table 4 Benchmark list

Benchmark Util.a Short description

apache H/–/– Requests per second an apache server can sustain

john-the-ripper H/–/– A fast password cracker to detect weak Unix passwords

n-queens H/–/– Solves the N-queens problem on a 18 × 18 board

build-apache H/–/– Builds an Apache HTTP Server

build-php H/–/– Build a PHP-5 with the Zend engine

dcraw L/–/– Converts high-resolution RAW NEF image files to the PPM image format

x264 L/–/– x264 H.264/AVC encoder on a CPU with disabled OpenCL

unpack-linux L/L/L Extract the .tar.bz2 Linux kernel package

blogbench –/H/L Replicate load (read/write) on a blog with fake content and pictures

bork –/L/L A java based utility to encrypt files for long-term storage

compress-gzip –/L/H Compress files using Gzip

aio-stress –/–/H An a-synchronous I/O benchmark created by SuSE

a The utilization (util.) profiles are in CPU/Mem/Disk format for H high, L low, and–negligible

μc
C025(t) = 1

K

K∑

k=1

rck (t)

σ c
C025(t) = 2

√√√√ 1

K − 1

K∑

k=1

(
rck (t) − μc

C025(t)
)

cvcC025(t) = σ c
C025(t)

μc
C025(t)

123

1162 J. Taheri et al.

Fig. 9 Color-coded CV margins for ‘apache’ from green (insensitive) to red (very-sensitive) (color figure
online)

where t ∈ [0, 1] is the normalized time, rck (t) is the CPU utilization value of the
k-th run at time ‘t’; rck (t) is either directly calculated from original measurements, or
interpolated using immediate preceding and subsequent measurements. All values of
μc
Cxx (t), σ

c
Cxx (t), and cvcCxx (t) for Cxx ∈ {C025, C050, C075, C100, ALL} can be

calculated using similar formulas.
If ‘t’ is incremented in ‘Δt’ steps; ie, T = {0,Δt, 2Δt, . . . , 1}, then:

μc
Cxx = 1

|T |
∑

t∈T
μc
Cxx (t) σ c

Cxx = 1

|T |
∑

t∈T
σ c
Cxx (t) cvcCxx = 1

|T |
∑

t∈T
cvcCxx (t)

4.2.3 Calculate improvement bars

After calculating all values of μc
Cxx , σ c

Cxx , and cvcCxx for each group, their relative
improvement bars are calculated to reflect the “effect” of each grouping based on its
resource limitation. The last columnof sub-figures in Figs. 9 and 10 show improvement
bars for each group. Before delving into mathematical formulas, it is essential to
explain the hypothesis/rationale behind them so that they can be better perceived.

Hypothesis 2 It is a fact that if a VM is so sensitive to one of its resources, then
starving it of that specific resource should have a major impact on its performance. We
hypothesize that through gauging similarity between different runs of an experiment
we can detected such phenomenon.

This hypothesis is made after scrutinizing and aligning characteristics of various
grouped runs (eg, Figs. 9, 10) with each other. We observed that when a benchmark is

123

vmBBProfiler: a black-box profiling approach to quantify… 1163

Fig. 10 Memory color-coded CV margins for ‘apache’

sensitive to one of its resources, there would be a great similarity between character-
istics of grouped runs for that specific resource with the actual throughput of the VM.
For example, the first row of sub-graphs in Fig. 9 shows that all runs in each group
have the same throughput as can be seen in the last row of these sub-figures. In fact,
the more sensitive a VM is to one of its resources (CPU, Mem, Disk) the more similar
(bundled) is the overall characteristics of grouped runs based on that specific resource.
We used cv to capture the level of such similarity/boundlessness in each group. For
‘apache’ as an instance, the cv of runs in C025, C050, C075, and C100 (16 runs in
each group) groups is much smaller than the average cv for ALL with 64 runs. Such
an observation is well aligned with our prior knowledge from the Phoronix Test Suites
[33] that ‘apache’ is very sensitive to its CPU. For better explanation, by comparison,
observing Fig. 10 shows that ‘apache’ is insensitive to its Mem allocation. This can
also be observed from cv values in different groups: unlike the previous case, the
average cv of all runs in M025-M100 groups does not differ much from the ALL.
In other words, variety/irregularity of runs in the M025 groups is not better than the
overall variation of all runs at all situations. As a result, ‘apache’ does not care much
about its memory allocation.

It is also worth mentioning that the actual throughput of applications is usually
inaccessible because of the need to install agents in VMs. Nevertheless, we could have
access to these values for our experiments because Phoronix benchmarks do in fact
provide such numbers at the end of their runs. Taking advantage of this opportunity, we
used such directly reported throughput values to discover, in a reverse engineer fashion,
significant relations and only to build our hypotheses and produce formulas in this
articles. For actual deployments, vmBBProfiler does not need to have access to actual
throughput of VMs, and thus vmBBProfiler perceives “throughput” as a normalized
number, ie Thr ∈ [0, 1], where Thr=1 implies the maximum performance. ��

123

1164 J. Taheri et al.

Tomathematically capture such behavior and produce the improvement bars (shown
in last columns of sub-figures in Figs. 9, 10), we designed the following formula to
compute point-by-point improvement of cv for each group.

Bc
Cxx =

(
1

|T |
∑

t∈T

cvcCxx (t)

cvcALL(t)

)
(1)

In Sect. 6wewill show that defining improvement bars as Eq. 1would result in accurate
sensitivity values for all sorts/types of VMs.

4.2.4 Calculate performance values and indicators

Using Bc
Cxx values, we designed the following formulas to reflect critical performance

values and indicators for each benchmark.

Senc = 1 −
(

1

|Cxx |
∑

Cxx

Bc
Cxx

)
(2)

UDc
0σ = 1

|T |
∑

t∈T

(
μc
C100(t)

)

UDc
1σ = 1

|T |
∑

t∈T

(
μc
C100(t) + σ c

C100(t)
)

UDc
2σ = 1

|T |
∑

t∈T

(
μc
C100(t) + 2 × σ c

C100(t)
)

(3)

Senc ∈ [0, 1] (Eq. 2) highlights the overall sensitivity of a VM to its CPU allocation.
Senc = 0 implies that a VM does not show any behavior change when its CPU
allowance is changed/limited; Senc = 1 implies that theVMshows extremely different
resource usage patterns according to its CPU allowance; other values of Senc show
other levels of sensitivity: the higher the more sensitive. In Sect. 6, we will show that
considering sensitivity values for VMs, when co-locating, would have a great impact
on the overall performance degradation of all VMs.

UDc
xσ ∈ [0, 1] (Eq. 3) is to reflect the “usual CPU demand” for a benchmark so that it

can comfortably work under different situations and provide its intended services. This
value is calculated based on runs in the C100 group (16 runs in Fig. 9) where there is
no restriction on the CPU. UDc

0σ , UD
c
1σ , and UD

c
2σ respectively compute the average

(μ), one standard deviation above the average (μ + σ), and two standard deviations
above the average (μ + 2σ) CPU demands of a VM. In Sect. 6, we will show that
reserving resources according to these usual demands yields negligible performance
degradation for VMs.

123

vmBBProfiler: a black-box profiling approach to quantify… 1165

5 Experimental results

To validate vmBBProfiler, we ran≈1200h of actual running and profiling benchmarks
onourVMware-basedprivate cloud.Weused three different PMs (Table 3) andprofiled
12 benchmarks (Table 4), varying from pure CPU/Mem/Disk intensive to various
combination of CPU+Mem+Disk intensive ones.

5.1 Benchmark selection

Performance and accuracy of vmBBProfiler is evaluated using the Phoronix Test Suite
[33] as one of the most comprehensive testing and benchmarking platform; it contains
≈450 test profiles and ≈100 test suites to effectively carry out both qualitative and
quantitative benchmarks. Table 4 lists the 12 benchmarks (out of 168 available ones in
v5.2.1) we used for our experiments. We deliberately picked benchmarks with differ-
ent intensities of resource usage (CPU,Mem, and Disk) to cover realistic applications.
In this table ‘H’, ‘L’, and ‘–’ respectively mean High, Low, and Negligible resource
utilization. From the 12 benchmarks, eight run CPU intensive, five runMemory inten-
sive, and five run Disk intensive processes.

5.2 Experimental results

Table 5 shows experimental results of using vmBBProfiler; three rows exist for each
benchmark: one row for each PM in Table 3. For our experiments: PowerShell [34]
scripts were developed to systematically perform each task and minimize human
errors; PowerCLI [35] commands are used to make directly communicate with the
VMware-vCenter [32] and poll/record various metrics for VMs. Results are saved
into separate csv files; MATLAB (2014b) andMicrosoft Excel (2013) are used to read
csv files for each benchmark, analyze their data, and produce the figures/graphs in this
article.

6 Discussion and analysis

To better analyze data in Table 5, as one of our many tables produced after collecting
data during weeks of experiments, we highlight the most stimulating ones in this
section.

6.1 Validity of Senc/m/c

Because no other method exists in the literature with which to directly compare our
results, we used statistical analysis on our own collected data to show accuracy as well
as validity of vmBBProfiler’s calculations. To this end, we first define Sencτ and Corr

c
τ

to respectively reflect the sensitivity of an application to its actual throughput and the
correlation between actual CPU utilization of an application to its actual throughput.
We then show that there are great relations between Senc, Sencτ , and Corrcτ . Note
that Sencτ and Corrcτ can only be measured for our benchmarks in this article because

123

1166 J. Taheri et al.

Ta
bl
e
5

R
re
su
lts

of
vm

B
B
Pr
ofi

le
r
on

th
e
se
le
ct
ed

be
nc
hm

ar
ks

in
Ta
bl
e
4

B
en
ch
m
ar
k

PM
Se

nc
/S
en

m
/S
en

d
U
D
c 0σ

/U
D
m 0σ

/U
D
d 0σ

U
D
c 1σ

/U
D
m 1σ

/U
D
d 1σ

U
D
c 2σ

/U
D
m 2σ

/U
D
d 2σ

Se
nc τ

/S
en

m τ
/S
en

d τ

ap
ac
he

A
M
D

0.
95

/0
.0
0/
0.
00

0.
97

/0
.1
4/
0.
01

0.
99

/0
.1
6/
0.
01

1.
00

/0
.1
8/
0.
02

0.
91

/0
.0
0/
0.
00

D
E
L
L

0.
97

/0
.0
0/
0.
00

0.
97

/0
.1
9/
0.
02

0.
98

/0
.2
0/
0.
02

0.
99

/0
.2
2/
0.
03

0.
83

/0
.0
0/
0.
00

SG
I

0.
97

/0
.0
3/
0.
00

0.
97

/0
.1
9/
0.
01

0.
98

/0
.2
1/
0.
01

0.
99

/0
.2
3/
0.
02

0.
97

/0
.0
0/
0.
00

jo
hn

-t
he
-r
ip
pe
r

A
M
D

0.
93

/0
.0
0/
0.
00

0.
86

/0
.0
4/
0.
00

0.
89

/0
.0
5/
0.
00

0.
92

/0
.0
6/
0.
00

0.
79

/0
.0
0/
0.
00

D
E
L
L

0.
96

/0
.0
0/
0.
00

0.
90

/0
.0
3/
0.
00

0.
92

/0
.0
4/
0.
00

0.
94

/0
.0
5/
0.
00

0.
98

/0
.0
0/
0.
00

SG
I

0.
96

/0
.0
0/
0.
00

0.
83

/0
.0
4/
0.
00

0.
84

/0
.0
5/
0.
00

0.
86

/0
.0
6/
0.
00

0.
97

/0
.0
0/
0.
00

n-
qu

ee
ns

A
M
D

0.
95

/0
.0
0/
0.
00

0.
98

/0
.0
2/
0.
00

0.
99

/0
.0
3/
0.
00

1.
00

/0
.0
4/
0.
00

0.
98

/0
.0
0/
0.
00

D
E
L
L

0.
97

/0
.0
0/
0.
00

0.
97

/0
.0
4/
0.
00

0.
99

/0
.0
5/
0.
00

1.
00

/0
.0
6/
0.
00

0.
99

/0
.0
0/
0.
00

SG
I

0.
97

/0
.0
0/
0.
00

0.
97

/0
.0
3/
0.
00

0.
98

/0
.0
4/
0.
00

1.
00

/0
.0
4/
0.
00

0.
99

/0
.0
0/
0.
00

un
pa
ck
-l
in
ux

A
M
D

0.
19

/0
.1
0/
0.
40

0.
34

/0
.2
6/
0.
29

0.
40

/0
.2
8/
0.
36

0.
47

/0
.3
0/
0.
42

0.
19

/0
.0
4/
0.
40

D
E
L
L

0.
21

/0
.0
9/
0.
25

0.
30

/0
.3
1/
0.
51

0.
39

/0
.3
6/
0.
61

0.
49

/0
.4
2/
0.
72

0.
15

/0
.0
5/
0.
20

SG
I

0.
18

/0
.0
9/
0.
35

0.
37

/0
.3
0/
0.
35

0.
45

/0
.3
3/
0.
45

0.
54

/0
.3
6/
0.
55

0.
17

/0
.0
9/
0.
30

bu
ild

-a
pa
ch
e

A
M
D

0.
94

/0
.0
0/
0.
00

0.
89

/0
.1
7/
0.
02

0.
92

/0
.1
8/
0.
03

0.
95

/0
.2
0/
0.
03

0.
91

/0
.0
0/
0.
00

D
E
L
L

0.
96

/0
.0
0/
0.
00

0.
91

/0
.1
9/
0.
04

0.
94

/0
.2
3/
0.
05

0.
96

/0
.2
7/
0.
06

0.
94

/0
.0
0/
0.
00

SG
I

0.
96

/0
.0
4/
0.
00

0.
87

/0
.1
9/
0.
02

0.
88

/0
.2
2/
0.
02

0.
90

/0
.2
4/
0.
03

0.
97

/0
.0
0/
0.
00

bu
ild

-p
hp

A
M
D

0.
95

/0
.0
2/
0.
00

0.
97

/0
.2
5/
0.
01

0.
99

/0
.2
8/
0.
02

1.
00

/0
.3
1/
0.
03

0.
91

/0
.0
0/
0.
00

D
E
L
L

0.
96

/0
.0
0/
0.
00

0.
94

/0
.2
5/
0.
03

0.
96

/0
.2
8/
0.
04

0.
99

/0
.3
1/
0.
05

0.
89

/0
.0
0/
0.
00

SG
I

0.
97

/0
.0
7/
0.
00

0.
96

/0
.2
5/
0.
01

0.
98

/0
.2
7/
0.
02

0.
99

/0
.3
0/
0.
02

0.
94

/0
.0
0/
0.
00

dc
ra
w

A
M
D

0.
54

/0
.0
0/
0.
00

0.
44

/0
.1
9/
0.
07

0.
47

/0
.2
1/
0.
09

0.
49

/0
.2
2/
0.
11

0.
78

/0
.0
0/
0.
00

D
E
L
L

0.
55

/0
.0
0/
0.
00

0.
42

/0
.2
2/
0.
12

0.
46

/0
.2
4/
0.
15

0.
51

/0
.2
5/
0.
18

0.
75

/0
.0
0/
0.
03

SG
I

0.
48

/0
.0
4/
0.
00

0.
42

/0
.2
5/
0.
07

0.
45

/0
.2
6/
0.
08

0.
47

/0
.2
7/
0.
10

0.
73

/0
.0
0/
0.
00

x2
64

A
M
D

0.
33

/0
.0
1/
0.
00

0.
56

/0
.2
7/
0.
01

0.
89

/0
.3
1/
0.
02

1.
00

/0
.3
4/
0.
03

0.
36

/0
.1
8/
0.
00

D
E
L
L

0.
39

/0
.0
0/
0.
00

0.
76

/0
.2
6/
0.
02

0.
79

/0
.2
8/
0.
06

0.
81

/0
.3
0/
0.
11

0.
35

/0
.0
0/
0.
00

SG
I

0.
41

/0
.0
2/
0.
00

0.
62

/0
.2
2/
0.
01

0.
88

/0
.2
4/
0.
03

1.
00

/0
.2
7/
0.
05

0.
44

/0
.2
2/
0.
00

123

vmBBProfiler: a black-box profiling approach to quantify… 1167

Ta
bl
e
5

co
nt
in
ue
d

B
en
ch
m
ar
k

PM
Se

nc
/S
en

m
/S
en

d
U
D
c 0σ

/U
D
m 0σ

/U
D
d 0σ

U
D
c 1σ

/U
D
m 1σ

/U
D
d 1σ

U
D
c 2σ

/U
D
m 2σ

/U
D
d 2σ

Se
nc τ

/S
en

m τ
/S
en

d τ

bl
og

be
nc
h

A
M
D

0.
09

/0
.7
4/
0.
16

0.
18

/0
.8
9/
0.
22

0.
40

/1
.0
0/
0.
33

0.
61

/1
.0
0/
0.
44

0.
04

/0
.5
0/
0.
16

D
E
L
L

0.
00

/0
.7
5/
0.
20

0.
05

/0
.7
0/
0.
55

0.
08

/1
.0
0/
0.
74

0.
11

/1
.0
0/
0.
93

0.
01

/0
.4
8/
0.
05

SG
I

0.
11

/0
.8
1/
0.
18

0.
25

/0
.8
9/
0.
13

0.
61

/1
.0
0/
0.
18

0.
96

/1
.0
0/
0.
22

0.
17

/0
.4
7/
0.
20

bo
rk

A
M
D

0.
00

/0
.4
7/
0.
18

0.
14

/0
.4
5/
0.
62

0.
19

/0
.7
2/
0.
92

0.
23

/0
.9
9/
1.
00

0.
00

/0
.5
9/
0.
00

D
E
L
L

0.
00

/0
.4
5/
0.
09

0.
03

/0
.4
4/
0.
31

0.
04

/0
.7
0/
0.
45

0.
05

/0
.9
6/
0.
59

0.
00

/0
.3
0/
0.
00

SG
I

0.
00

/0
.5
3/
0.
20

0.
07

/0
.6
2/
0.
56

0.
11

/0
.9
4/
0.
84

0.
14

/1
.0
0/
1.
00

0.
00

/0
.3
1/
0.
00

co
m
pr
es
s-
gz
ip

A
M
D

0.
00

/0
.0
0/
0.
55

0.
20

/0
.3
0/
0.
67

0.
24

/0
.3
1/
0.
72

0.
28

/0
.3
3/
0.
77

0.
03

/0
.0
0/
0.
50

D
E
L
L

0.
00

/0
.0
0/
0.
45

0.
04

/0
.4
0/
0.
21

0.
05

/0
.6
7/
0.
24

0.
06

/0
.9
3/
0.
27

0.
00

/0
.0
0/
0.
50

SG
I

0.
00

/0
.0
0/
0.
47

0.
13

/0
.6
1/
0.
74

0.
21

/0
.9
4/
0.
89

0.
28

/1
.0
0/
1.
00

0.
00

/0
.0
0/
0.
46

ai
o-
st
re
ss

A
M
D

0.
00

/0
.3
1/
0.
84

0.
07

/0
.7
0/
0.
66

0.
10

/0
.7
4/
0.
73

0.
12

/0
.7
9/
0.
79

0.
00

/0
.0
3/
0.
75

D
E
L
L

0.
00

/0
.3
2/
0.
91

0.
02

/0
.4
7/
0.
78

0.
03

/0
.7
0/
0.
83

0.
04

/0
.9
3/
0.
89

0.
00

/0
.0
0/
0.
84

SG
I

0.
00

/0
.3
0/
0.
80

0.
04

/0
.7
4/
0.
36

0.
05

/0
.8
0/
0.
38

0.
06

/0
.8
6/
0.
40

0.
00

/0
.1
0/
0.
84

123

1168 J. Taheri et al.

0.00

0.20

0.40

0.60

0.80

1.00
ap
ac
he

jo
hn

-t
he

-r
ip
pe

r

n-
qu

ee
ns

un
pa
ck
-li
nu

x

bu
ild
-a
pa
ch
e

bu
ild
-p
hp

dc
ra
w

x2
64

bl
og
be

nc
h

bo
rk

co
m
pr
es
s-
gz
ip

ai
o-
st
re
ss

Senᶜ Senᶜᴛ Corrᶜᴛ

0.00

0.20

0.40

0.60

0.80

1.00

ap
ac
he

jo
hn

-th
e-
rip

pe
r

n-
qu

ee
ns

un
pa
ck
-li
nu

x

bu
ild
-a
pa
ch
e

bu
ild
-p
hp

dc
ra
w

x2
64

bl
og
be

nc
h

bo
rk

co
m
pr
es
s-
gz
ip

ai
o-
st
re
ss

Senᵐ Senᵐᴛ Corrᵐᴛ

0.00

0.20

0.40

0.60

0.80

1.00

ap
ac
he

jo
hn

-th
e-
rip

pe
r

n-
qu

ee
ns

un
pa
ck
-li
nu

x

bu
ild
-a
pa
ch
e

bu
ild
-p
hp

dc
ra
w

x2
64

bl
og
be

nc
h

bo
rk

co
m
pr
es
s-
gz
ip

ai
o-
st
re
ss

Senᵈ Senᵈᴛ Corrᵈᴛ

Fig. 11 Bar graph alignment of Senc/m/d versus Senc/m/d
τ versus Corrc/m/d

τ for AMD

0.00

0.20

0.40

0.60

0.80

1.00

ap
ac
he

jo
hn

-t
he

-r
ip
pe

r

n-
qu

ee
ns

un
pa
ck
-li
nu

x

bu
ild
-a
pa
ch
e

bu
ild
-p
hp

dc
ra
w

x2
64

bl
og
be

nc
h

bo
rk

co
m
pr
es
s-
gz
ip

ai
o-
st
re
ss

Senᶜ Senᶜᴛ Corrᶜᴛ

0.00

0.20

0.40

0.60

0.80

1.00

ap
ac
he

jo
hn

-th
e-
rip

pe
r

n-
qu

ee
ns

un
pa
ck
-li
nu

x

bu
ild
-a
pa
ch
e

bu
ild
-p
hp

dc
ra
w

x2
64

bl
og
be

nc
h

bo
rk

co
m
pr
es
s-
gz
ip

ai
o-
st
re
ss

Senᵐ Senᵐᴛ Corrᵐᴛ

0.00

0.20

0.40

0.60

0.80

1.00

ap
ac
he

jo
hn

-t
he

-r
ip
pe

r

n-
qu

ee
ns

un
pa
ck
-li
nu

x

bu
ild
-a
pa
ch
e

bu
ild
-p
hp

dc
ra
w

x2
64

bl
og
be

nc
h

bo
rk

co
m
pr
es
s-
gz
ip

ai
o-
st
re
ss

Senᵈ Senᵈᴛ Corrᵈᴛ

Fig. 12 Bar graph alignment of Senc/m/d versus Senc/m/d
τ versus Corrc/m/d

τ for DELL in Table 3

0.00

0.20

0.40

0.60

0.80

1.00

ap
ac
he

jo
hn

-th
e-
rip

pe
r

n-
qu

ee
ns

un
pa
ck
-li
nu

x

bu
ild
-a
pa
ch
e

bu
ild
-p
hp

dc
ra
w

x2
64

bl
og
be

nc
h

bo
rk

co
m
pr
es
s-
gz
ip

ai
o-
st
re
ss

Senᶜ Senᶜᴛ Corrᶜᴛ

0.00

0.20

0.40

0.60

0.80

1.00

ap
ac
he

jo
hn

-t
he

-r
ip
pe

r

n-
qu

ee
ns

un
pa
ck
-li
nu

x

bu
ild
-a
pa
ch
e

bu
ild
-p
hp

dc
ra
w

x2
64

bl
og
be

nc
h

bo
rk

co
m
pr
es
s-
gz
ip

ai
o-
st
re
ss

Senᵐ Senᵐᴛ Corrᵐᴛ

0.00

0.20

0.40

0.60

0.80

1.00

ap
ac
he

jo
hn

-t
he

-r
ip
pe

r

n-
qu

ee
ns

un
pa
ck
-li
nu

x

bu
ild
-a
pa
ch
e

bu
ild
-p
hp

dc
ra
w

x2
64

bl
og
be

nc
h

bo
rk

co
m
pr
es
s-
gz
ip

ai
o-
st
re
ss

Senᵈ Senᵈᴛ Corrᵈᴛ

Fig. 13 Bar graph alignment of Senc/m/d versus Senc/m/d
τ versus Corrc/m/d

τ for SGI in Table 3

Phoronix provides the actual throughput of each benchmark. Nevertheless, by showing
that they are fairly aligned with Senc, which its calculation is independent of the actual
throughput measurement of applications, we validate the procedures for computing
Senc in Eq. 2. Similar to Eqs. 1–2 we defined:

Bτ
Cxx =

(
1

|T |
∑

t∈T

cvτ
Cxx (t)

cvτ
ALL(t)

)
(4)

Sencτ = 1 −
(

1

|Cxx |
∑

Cxx

Bτ
Cxx

)
(5)

Corrcτ = E[(X − μX) × (Y − μY)]
σXσY

(6)

where rck = 1
|T |

∑
t∈T rck (t); r

τ
k = 1

|T |
∑

t∈T r τ
k (t); X =

[
rc1 , r

c
2 , . . . , r

c
K

]
; and Y =

[
r τ
1 , r τ

2 , . . . , r τ
K

]
. μ(·), σ(·), and E(·) respectively represent the average, the standard

deviation, and the expected value of a vector.
Figure 11 illustrates and aligns bar graph representation of Senc/m/d , Senc/m/d

τ , and
Corrc/m/d

τ for all benchmarks in Table 4 for the AMD machine in Table 3. As can be

123

vmBBProfiler: a black-box profiling approach to quantify… 1169

Ideal AMD DELL SGI Linear (AMD) Linear (DELL) Linear (SGI)

0

0.5

1

0 0.5 1

Se
nᶜ
ᴛ

Senᶜ

0

0.5

1

0 0.5 1

Se
nᵐ

ᴛ

Senᵐ

0

0.5

1

0 0.5 1

Se
nᵈ
ᴛ

Senᵈ

Fig. 14 Point-by-point alignment of Senc/m/d versus Senc/m/d
τ

observed, there is a very tight alignment between these values across all benchmarks
and all resource types for this PM (Figs. 12, 13). Note that although Senc/m/d

τ , and
Corrc/m/d

τ are only obtainable for our benchmarks in this articles, their very tight
alignment with Senc/m/d conductivity proves not only usefulness but also the accuracy
of Eqs. 1–2 to quantify the true sensitivity signature of applications/VMs to shared
resources.Very similar alignments/resultswere observed forDELLandSGI inTable 3;
their graphs are not shown because of page limitation. Figure 14 provides a point-by-
point representation of aligning Senc/m/d with Senc/m/d

τ to also prove that these two
values are fairly aligned with each other.

6.2 Accuracy/usefulness of Senc/m/d

6.2.1 Accuracy

Figure 11 show different levels of accuracy for different resource types. Knowing that
Senc/m/d

τ truly reflect sensitivity of an application to resources, the closer the values
of Senc/m/d to their Senc/m/d

τ counterparts, the more accurate they are. Figure 14 also
depicts the “Ideal” line where all (Senc/m/d ,Senc/m/d

τ) pairs must be laid on to have
a perfect alignment and achieve the highest accuracy. According to sub-figures of 14,
we can conclude that Senc/d are fairly aligned with their Senc/dτ counterparts. Table 6
reflects the average, minimum, and maximum distance of all points to the “Ideal” line
in each category. Senm showed less accuracy across all benchmarks. Scrutinizing the
results and diving deeper into possible sources of this inaccuracy, we identified the
following two reasons.

The first reason is related to the caching structure (L1/L2/L3) of PMs. Memory
structure has always been seen as one of the most influential resource types in causing
performance degradation for co-located VMs. Having less accurate Senm—as com-
pared with Senc/d—is well aligned with other findings in this field and is the first
source of such inaccuracy. Figure 14b shows Senm for the AMD is slightly better than
the other two, most probably because it has larger L1/L2/L3 caches (Table 3). The
second reason is related to the virtualization itself. To illustrate this reason, we used our
validation setup in Fig. 3 in which VM1 was switched off and VM2 was programmed
to use 75% of CPU (5.1GHz), Memory (1.5GB), and Disk (1500 IOPs, 37.5MBps)

123

1170 J. Taheri et al.

Table 6 Euclidean dist. of (Senc, Sencτ) points to the “Ideal” line in Fig. 14

PM
∥∥(Senc, Sencτ), Ideal

∥∥
2

∥∥(Senm ,Senmτ), Ideal
∥∥
2

∥∥∥(Send ,Sendτ), Ideal
∥∥∥
2

Avg Min Max Avg Min Max Avg Min Max

AMD 0.04 0.00 0.17 0.05 0.00 0.20 0.02 0.00 0.13

SGI 0.03 0.00 0.14 0.05 0.00 0.22 0.03 0.00 0.11

DELL 0.03 0.00 0.18 0.07 0.00 0.24 0.02 0.00 0.14

0

20

40

60

80

100

0 2min 4min 6min 8min 10min 12min 14min

cpu.usage.average(%)
mem.usage.average(%)
disk.usage.average(%)

Fig. 15 Cool down process of DELL after 5min of heavy CPU, Mem, and Disk usage

for the duration of 5min. Figure 15 depicts CPU, Mem, and Disk utilization of VM2
during and after this 5min. As can be seen in Fig. 15, VMware-vSphere [29] treats
memory differently than CPU and Disk because CPU and Disk utilization of VM2
are immediately dropped to ≈5–10%, while it takes almost 5min for its Memory
to cool down. This simple experiment shows that the VMware-ESXi Hypervisor is
very conservative when taking memory fromVMs—as compared with CPU and Disk.
According to VMware documentation and guidelines, this conservative process would
eventually result in higher productivity ofVMsbecause it results in fewer cache-misses
for VMs. This conservative view also leads to less accurate measurements for actual
memory usage of applications/VMs. This is because Hypervisor metrics still record
memory cleaning-up procedures of a VM as “activity”, while its inside application is
actually not using any memory.

It is also worth noting that vmBBProfiler is designed to profile sensitivity of in-
service VMs with fairly steady load. That is, if the targeted VM is an ‘apache’ server
for example, its request rate per second should stays fairly steady (eg, ≈1000 requests
per second) during the whole profiling period. To check this concern, we checked
vmBBProfiler for unsteady loads also and noticed that it can tolerate up to 15% load
deviation during the profiling phase.

6.2.2 Usefulness

To show the usefulness of using Senc/m/d , we conducted a series of contention sce-
narios similar to the one in Fig. 3; here seven VMs with different sensitivity profiles

123

vmBBProfiler: a black-box profiling approach to quantify… 1171

Table 7 Consolidation scenarios

Scenario VMs
∑

Senc/
∑

Senm/
∑

Send
∑

CPU/
∑

Mem/
∑

Disk APD

1 3 × dcraw, 2 × unpack-linux,
1 × compress-gzip,
1 × aio-stress

1.63/1.69/1.67 2.51/2.99/2.40 0.50

2 3 × dcraw, 2 × blogbench,
2 × unpack-linux,
1 × compress-gzip

1.99/0.51/2.20 2.26/ 2.10/2.30 0.62

3 3 × dcraw, 3 × unpack-linux,
1 × aio-stress

2.18/0.61/2.05 2.40/2.06/1.92 0.71

APD average performance degradation

and resource demands are pinned on the same CPU/Cores and placed on the same
hard-drive to compete with each other to access CPU cycles, clash on all levels of
cache, and buffer reads/writes to the same disk. Table 7 shows three scenarios to place
these seven VMs on the AMD machine while their collective CPU, Mem, and Disk
utilization were respectively capped to 2×2.6GHz, 2GB, and 50MBps.

Scenario #1 shows a balanced view of co-locating VMswith
∑

Senc ≈ ∑
Senm ≈∑

Send ≈ 1.65. Here, the total summation of normalized CPU, Mem, Disk demands
from the Hypervisor is respectively 2.51 (2.51×2×2.6GHz), 2.99 (2.99×2GB), and
2.40 (2.40×50MBps) times the capacity of this PM. In other words, these seven VMs
reflect an overbooking of 2.51, 2.99, and 2.40 on CPU, Mem, and Disk, respectively.
Similar to throughput, Performance Degradation (PD)—also known as the ‘Slow-
Down’ factor—is defined as a normalized number to reflect howaVM’s functionality is
effected. PD=0 implies no performance degradation when compared with throughput
of an isolated VM; PD=1 implies absolute performance degradation with almost
no productivity of a VM; PD=0.5 implies the VM is performing at almost half of
its full capacity. The last column of this table shows that the Average Performance
Degradation (APD) of all VMs in this scenarios is 50% of what could have been
achieved if theseVMswere placed in contention-free environments. Scenario #2 shows
a slightly skewed placement where

∑
Senc = 1.99 and

∑
Send = 2.20 are greater

than
∑

Senc/d in Scenario #1, while
∑

Senm = 0.51 is less than
∑

Senm in Scenario
#1. As can be seen, although the total normalized summation of CPU, Mem, and Disk
is less than those of the placement in Scenario #1, they suffer from a higher APD (12%
more). Scenario #3 presented an even more skewed version where

∑
Senc/m/d values

are more imbalanced. In this case, APD is even worst than Scenario #2, although VMs
in this placement still collectively demand less resources than those of Scenario #1.

This simple example empirically showed that different placements could ask for the
same amount of resources, while encounter different levels of performance degrada-
tion. Using sensitivity values in this study, we showed the importance of considering
VMs’ Senc/m/d values when making placement decision. It is worth noting that VM
placement is an NP-Complete problem and is beyond the scope of our work in this
article. In a follow up study, we showed that, for the same amount of power, using
sensitivity values to place VMs can lead to ∼10% performance improvement in cloud
data centers [36].

123

1172 J. Taheri et al.

0.00
0.20
0.40
0.60
0.80
1.00

AM
D

DE
LL SG
I

AM
D

DE
LL SG
I

AM
D

DE
LL SG
I

AM
D

DE
LL SG
I

AM
D

DE
LL SG
I

AM
D

DE
LL SG
I

AM
D

DE
LL SG
I

AM
D

DE
LL SG
I

AM
D

DE
LL SG
I

AM
D

DE
LL SG
I

AM
D

DE
LL SG
I

AM
D

DE
LL SG
I

apache john-the-
ripper

n-queens unpack-linux build-apache build-php dcraw x264 blogbench bork compress-
gzip

aio-stress

T(UD-0σ) T(UD-1σ) T(UD-2σ)

Fig. 16 Relative throughput of benchmarkswhen resources are reserved according toUDc/m/d
0σ , UDc/m/d

1σ ,

and UDc/m/d
2σ

6.3 Accuracy/usefulness of UDc/m/d
0σ , UDc/m/d

1σ , and UDc/m/d
2σ

Besides calculating resource sensitive values for VMs, vmBBProfiler also computes
three “usage demand” values for each VM. These were calculated to reflect three dif-
ferent levels of conservatism to assure minimum performance degradation for VMs.
To show that reserving resources according to these values would in fact lead to
minimum performance degradation, we conducted another series of engineered exper-
iments using our validation setup in Fig. 3. Figure 16 reflects the actual throughput of
all applications when hypervisor reserves UDc/m/d

0σ/1σ/2σ amount of resources for VM1
(in Fig. 3), while running a background load in VM2 (90% CPU, 90%Mem, and 90%
Disk).

Figure 16 shows that reserving resources according to UDc/m/d
0σ would lead to an

average throughput of 86% for all benchmarks. In this case, while throughput of most
benchmarks is above 90% of their isolated runs, a few benchmarks such as blogbench
(65%) could significantly underperform. Reserving resources according to UDc/m/d

1σ
values is more conservative, and consequently has greater throughput values across
all benchmarks: 93% on average with the minimum of 80%. The most conservative
reservation recommendation of UDc/m/d

2σ leads to 99% of average throughput with the
minimum of 97%.

Besides their overall usage to reserve resources to ensure minimum performance
degradation of applications/VMs, these values also highlight how resources could be
traded to assure desired throughput values per VM. For example, allocating 20–25%
more CPU to blogbench could significantly improve its performance from 80 to 97%,
while it would not improve performance of other benchmarks such as aio-stress. It
is worth noting that making resource reservation decisions according to UDc/m/d

0σ/1σ/2σ
to achieve VM-by-VM performance assurance is also another NP-Complete problem
and beyond the scope of this study as well.

6.4 The effect of vmBBProfiler on running applications

In this section, we elaborate on how performance of a running application is affected
during the profiling procedures of vmBBProfiler. Table 8 reflects the average through-
out of each benchmark during the whole profiling phase of vmBBProfiler. As can
be expected, VMs have different levels of throughput when going through differ-

123

vmBBProfiler: a black-box profiling approach to quantify… 1173

Table 8 vmBBProfiler effect on
benchmarks

Benchmark PM Throughput

Average Min Max

apache AMD 0.58 0.21 1.00

DELL 0.63 0.25 1.00

SGI 0.65 0.26 1.00

john-the-ripper AMD 0.69 0.23 1.00

DELL 0.71 0.31 1.00

SGI 0.77 0.36 1.00

n-queens AMD 0.60 0.22 1.00

DELL 0.63 0.25 1.00

SGI 0.63 0.25 1.00

unpack-linux AMD 0.75 0.36 1.00

DELL 0.59 0.29 1.00

SGI 0.59 0.29 1.00

build-apache AMD 0.66 0.26 1.00

DELL 0.63 0.25 1.00

SGI 0.67 0.27 1.00

build-php AMD 0.61 0.23 1.00

DELL 0.65 0.25 1.00

SGI 0.64 0.26 1.00

dcraw AMD 0.83 0.41 1.00

DELL 0.81 0.37 1.00

SGI 0.83 0.47 1.00

x264 AMD 0.64 0.09 1.00

DELL 0.66 0.24 1.00

SGI 0.58 0.16 1.00

blogbench AMD 0.74 0.40 1.00

DELL 0.75 0.17 1.00

SGI 0.53 0.25 1.00

bork AMD 0.47 0.09 1.00

DELL 0.73 0.26 1.00

SGI 0.45 0.09 1.00

compress-gzip AMD 0.87 0.64 1.00

DELL 0.64 0.42 1.00

SGI 0.54 0.13 1.00

aio-stress AMD 0.61 0.25 1.00

DELL 0.60 0.24 1.00

SGI 0.77 0.46 1.00

123

1174 J. Taheri et al.

ent limitation scenarios (Table 2). Sometimes, vmBBProfiler has no effect on their
throughput, while they could significantly struggle at other times. Nevertheless, as
explained before, accurate computations can only be achieved if applications/VMs
are pushed/challenged to perform under severe limitations. Therefore, if performance
degradation of a profiling VM is absolutely unacceptable, parallel services/VMs must
be switched on during the whole profiling phase to minimize downside effects of
vmBBProfiler.

In practice, vmBBProfiler did not significantly impact the average relative through-
put (≈60%) of any application/VM during its profiling phase of ≈6h:30m (64 ×
5m+63×1m=383m ≈ 6h:30m (64 limitation scenarios plus 1m transition between
two consecutive scenarios). We also tested both shorter and longer profiling periods to
gauge how the accuracy of vmBBProfiler would have been affected should a different
number of profilingpointswere collected/used.Using the defaultmeasurement interval
of 20 s inVMware-vCenter [29,35], vmBBProfiler used5m/20s×64 = 15×64 = 960
measurement-points for each metric per benchmark. We also noticed that using more
measurement-points has little effect on our results. This is mainly because VMs are
usually under steady loads during operations, and thus even 5min of observing is
quite enough to discover their behavior under pressure, and consequently judge their
sensitivities. To make certain about our claim however, we also all benchmarks for 1,
2, 3, 4, 10, 15, and 20m intervals as well. We found that profiling periods less than
3m usually leads to fragile situations where the smallest fluctuations during profil-
ing could lead to outliers and untrustworthy measurement-points; profiling periods of
10m and above were absolutely unnecessary because they lead to identical results to
those computed with 5m profiling periods. Thus, we conclude that a profiling period
of 5m is probably the shortest possible period to not only produce accurate results,
but also detect measurement outliers should they occur during profiling.

6.5 Transferability of results across PMs

One of the most valuable attributes of vmBBProfiler is its ability to detach findings
for a VM from its underlying PM. Table 5 and Figs. 11, 12 and 13 show the striking
similarity of results despite their totally different PMs: one AMD, one Intel Xeon, and
one Intel-i7. Results look more similar between the two Intel machines (DELL and
SGI) than across the Intel and the AMD machine. Although it is perfectly justifiable
because of their internal CPU architecture, it is still very desirable that even results
from profiling on an AMD machine can be fairly generalized on an Intel machine,
and vice versa. This phenomenon also proves that procedures of vmBBProfiler so
efficiently target the application inside the VM that a change of PM has a little effect
on them.

6.6 vmBBProfiler in the offline mode

For the offline mode, where an application with predefined tasks can be repeatedly
launched, an extra step to launch an application inside a VMneeds to be added (Fig. 6).
To compare results, we also launched vmBBProfiler in the offline mode for all bench-

123

vmBBProfiler: a black-box profiling approach to quantify… 1175

marks in Table 4; results were astonishingly similar to those in Table 5 that we decided
to only reflect results of the online mode in this article.

6.7 vmBBProfiler limitations

vmBBProfiler in its current design has a few limitations that need to be carefully
considered to compute accurate sensitivity values for VMs. Firstly, the VM under
the profiling procedure must remain under a fairly steady workload. This is rational,
because if a VM changes its behaviour during the profiling phase, it is inherently
changing its nature as well. For example, assume a VM is responding to three different
types of requests: 20% typeA, 40% typeB and 40% typeC. In this case, as long as these
requests are sent with a more or less same distribution, it would have negligible affect
on the profiling. However, if the VM receives %100 type A for few minutes/hours
followed by %100 type B for another few minutes/hours, then it can be inferred that
the VM is actually performing a different activity; this would be similar to having
a different VM altogether. Secondly, resources must be fairly available for the PM
that is hosting the under profiling VM. This is because, the observed performance
degradation of a VM cannot be confidently related to any specific resource otherwise.
For example, if a PM is using 95% of its CPU during the profiling phase of one of its
hosted VMs, we cannot confidently identify the source of performance degradation
for the VM as it could also be the result of CPU saturation of the PM.

7 Conclusion and future directions

In thiswork,we presented vmBBProfiler to identify and quantify the sensitivity of gen-
eral purpose VMs to their allocated CPU,Memory, and Disk resources. vmBBProfiler
consists of two parts: vmProfiler and vmDataAnalyser to respectively impose resource
limitations on VMs and analyze their collected profiled data. After validating that con-
tention can be fairly emulated by limitation, we imposed many variations of resource
limitations to VMs to disclose their behavior under contention.

Using 12 well known benchmarks to cover all sorts of possible applications,
vmBBProfiler managed to successfully identify and quantify sensitivity of VMs to
their CPU, Memory, and Disk allocations. vmBBProfiler was implemented on our
VMware-vSphere based private cloud and proved its efficiency across 1200h of empir-
ical studies. vmBBProfiler is the first Black-Box Profiler, to the best of our knowledge,
that uses only basic Hypervisor level metrics for its very systematic calculations.
Besides sensitivity values for each resource, vmBBProfiler also produces three usage
demand values to guide cloud administrators how to reserve resources for important
VMs. Through engineered experiments we also showed the importance of considering
(1) sensitivity values in allocating/packing VMs on PMs, and (2) usage demands to
guarantee minimum performance degradation of VMs.

To continue this work, we would like to (1) design smart strategies to check just
enough limitation scenarios—e.g., not all 64 scenarios in our case—to significantly
shorten vmBBProfiler’s profiling time, (2) design algorithms/heuristics to place and/or
migrate VMs according to their sensitivity profiles—our preliminary results show

123

1176 J. Taheri et al.

at least 20% performance improvement for small vDCs, (3) add other dimensions
(eg, network) to vmBBProfier; considering vmBBProfiler’s very modular structure,
it would be very straight forward, yet needs careful planning as every dimension
introduces its own characteristics/complexities, and (4) extent vmBBProfiler to also
profile linked/cascaded systems (eg, 3-tier web applications and Hadoop clusters).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Banga G, Druschel P, Mogul JC (1999) Resource containers: a new facility for resource management
in server systems. In: Proceedings of the third symposium on operating systems design and implemen-
tation, OSDI ’99, pp 45–58

2. Chen H, Wang S, Shi W (2011) Where does the power go in a computer system: experimental analysis
and implications. In: 2011 International green computing conference and workshops, pp 1–6

3. Mars J, Tang L, Hundt R, Skadron K, Soffa ML (2011) Bubble-up: increasing utilization in modern
warehouse scale computers via sensible co-locations. In: Proceedings of the 44th annual IEEE/ACM
international symposium on microarchitecture, pp 248–259

4. Tang L,Mars J, Vachharajani N, Hundt R, SoffaML (2011) The impact of memory subsystem resource
sharing on datacenter applications. In: Proceedings of the 38th annual international symposium on
computer architecture, pp 283–294

5. Kundu S, Rangaswami R, Dutta K, Zhao M (2010) Application performance modeling in a virtualized
environment. In: The sixteenth international symposium on high-performance computer architecture,
pp 1–10

6. Xu J, Zhao M, Fortes J, Carpenter R, Yousif M (2008) Autonomic resource management in virtualized
data centers using fuzzy logic-based approaches. Clust Comput 11(3):213. doi:10.1007/s10586-008-
0060-0

7. Rao J, Bu X, Xu CZ, Wang L, Yin G (2009) VCONF: a reinforcement learning approach to vir-
tual machines auto-configuration. In: Proceedings of the 6th international conference on autonomic
computing, pp 137–146

8. Nathuji R, Kansal A, Ghaffarkhah A (2010) Q-clouds: managing performance interference effects for
QoS-aware clouds. In: Proceedings of the 5th European conference on computer systems, pp 237–250

9. Watson BJ, MarwahM, Gmach D, Chen Y, Arlitt M,Wang Z (2010) Probabilistic performance model-
ing of virtualized resource allocation. In: Proceedings of the 7th international conference on autonomic
computing, pp 99–108

10. Chiang RC, Huang HH (2011) TRACON: Interference-aware scheduling for data-intensive applica-
tions in virtualized environments. In: 2011 International conference for high performance computing,
networking, storage and analysis (SC), pp 1–12

11. Wang L, Xu J, Zhao M, Fortes J (2011) Adaptive virtual resource management with fuzzy model
predictive control. In: Proceedings of the 8th ACM international conference on autonomic computing,
pp 191–192

12. Bartolini DB, Sironi F, Sciuto D, SantambrogioMD (2014) Automated fine-grained CPU provisioning
for virtual machines. ACM Trans Archit Code Optim (TACO) 11(3):27

13. Delimitrou C, Kozyrakis C (2013) iBench: quantifying interference for datacenter applications. In:
2013 IEEE international symposium on workload characterization (IISWC), pp 23–33

14. Akoush S, Sohan R, Rice A, Moore AW, Hopper A (2010) Predicting the performance of virtual
machine migration. In: 2010 IEEE international symposium on modeling, analysis and simulation of
computer and telecommunication systems, pp 37–46

15. Doyle RP, Chase JS, Asad OM, JinW, Vahdat AM (2003) Model-based resource provisioning in a web
service utility. In: Proceedings of the 4th conference on USENIX symposium on internet technologies
and systems, vol 4, p 5

123

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/s10586-008-0060-0
http://dx.doi.org/10.1007/s10586-008-0060-0

vmBBProfiler: a black-box profiling approach to quantify… 1177

16. Bennani MN, Menasce DA (2005) Resource allocation for autonomic data centers using analytic
performance models. In: Second international conference on autonomic computing (ICAC’05), pp
229–240

17. Liu X, Zhu X, Singhal S, Arlitt M (2005) Adaptive entitlement control of resource containers on shared
servers. In: 2005 9th IFIP/IEEE international symposium on integrated network management, 2005.
IM 2005, pp 163–176

18. Padala P, Shin KG, ZhuX, UysalM,Wang Z, Singhal S,Merchant A, SalemK (2007) Adaptive control
of virtualized resources in utility computing environments. SIGOPS Oper Syst Rev 41(3):289. doi:10.
1145/1272998.1273026

19. Dai Y, Yang L, Xing H, Zhang B (2013) Predicting performance interference of application in virtual-
ized environments. In: Sixth international conference on machine vision (ICMV 2013), pp 90672B–16

20. ChenX,Rupprecht L,OsmanR, PietzuchP, Franciosi F,KnottenbeltW (2015)CloudScope: diagnosing
and managing performance interference in multi-tenant clouds. In: 2015 IEEE 23rd international
symposium on modeling, analysis, and simulation of computer and telecommunication systems, pp
164–173

21. Caglar F, Shekhar S, Gokhale A (2014) Towards a performance interference-aware virtual machine
placement strategy for supporting soft real-time applications in the cloud. In: Proceedings of the 3rd
international workshop on real-time and distributed computing in emerging applications, pp 15–20

22. Caglar F, Shekhar S, Gokhale A (2013) A performance interferenceaware virtual machine placement
strategy for supporting soft realtime applications in the cloud. Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN, Tech. Rep. ISIS-13-105

23. Qian Z, Tung T (2012) A performance interference model for managing consolidated workloads in
QoS-aware clouds. In: 2012 IEEE fifth international conference on cloud computing, pp 170–179

24. Hayashi T, Ohta S (2014) Performance degradation detection of virtual machines via passive measure-
ment and machine learning. Int J Adapt Resil Auton Syst (IJARAS) 5(2):40

25. Govindan S, Liu J, Kansal A, SivasubramaniamA (2011) Cuanta: quantifying effects of shared on-chip
resource interference for consolidated virtual machines. In: Proceedings of the 2nd ACM symposium
on cloud computing, pp 22:1–22:14

26. Jaleel A,HasenplaughW,QureshiM, Sebot J, Steely Jr. S, Emer J (2008)Adaptive insertion policies for
managing shared caches. In: Proceedings of the 17th international conference on parallel architectures
and compilation techniques, pp 208–219

27. BlagodurovS, Zhuravlev S, FedorovaA,TransACM(2010)Contention-aware scheduling onmulticore
systems. Comput Syst 28(4):1

28. RoytmanA, Kansal A, Govindan S, Liu J, Nath S (2013) PACMan: performance aware virtual machine
consolidation. In: Proceedings of the 10th international conference on autonomic computing (ICAC
13), pp 83–94

29. VMware-vSphere (2016) Vmware-vsphere (www.vmware.com/products/vsphere/)
30. Sys-Bench (2016) Sys-bench (www.manpages.ubuntu.com/manpages/utopic/man1/sysbench.1.html)
31. FIO (2016) Fio (www.manpages.ubuntu.com/manpages/natty/man1/fio.1.html)
32. VMware-vCenter (2016) Vmware-vcenter (www.vmware.com/products/vcenter-server)
33. Phoronix (2016) Phoronix test suite (www.phoronix-test-suite.com/)
34. PowerShell (2016) Microsoft powershell (msdn.microsoft.com/en-us/mt173057.aspx)
35. VMware-PowerCLI (2016) Vmware-powercli (www.vmware.com/support/developer/powercli/)
36. Nasim R, Taheri J, Kassler AJ (2016) Optimizing virtual machine consolidation in virtualized datacen-

ters using resource sensitivity. In: 2016 IEEE international conference on cloud computing technology
and science (CloudCom), pp 168–175

123

http://dx.doi.org/10.1145/1272998.1273026
http://dx.doi.org/10.1145/1272998.1273026
www.vmware.com/products/vsphere/
www.manpages.ubuntu.com/manpages/utopic/man1/sysbench.1.html
www.manpages.ubuntu.com/manpages/natty/man1/fio.1.html
www.vmware.com/products/vcenter-server
http://www.phoronix-test-suite.com/
www.vmware.com/support/developer/powercli/

	vmBBProfiler: a black-box profiling approach to quantify sensitivity of virtual machines to shared cloud resources
	Abstract
	1 Introduction
	2 Related work
	2.1 Agent based approaches
	2.2 Model based approaches
	2.3 Classification based approaches
	2.4 Last Level Cache (LLC) based approaches

	3 Architecture of vmBBProfiler
	4 Procedures of vmBBProfiler
	4.1 Profiling VMs
	4.2 Analyzing collected data
	4.2.1 Group experiments/runs
	4.2.2 Calculate coefficient of variance margins
	4.2.3 Calculate improvement bars
	4.2.4 Calculate performance values and indicators

	5 Experimental results
	5.1 Benchmark selection
	5.2 Experimental results

	6 Discussion and analysis
	6.1 Validity of Senc/m/c
	6.2 Accuracy/usefulness of Senc/m/d
	6.2.1 Accuracy
	6.2.2 Usefulness

	6.3 Accuracy/usefulness of UDc/m/d0σ, UDc/m/d1σ, and UDc/m/d2σ
	6.4 The effect of vmBBProfiler on running applications
	6.5 Transferability of results across PMs
	6.6 vmBBProfiler in the offline mode
	6.7 vmBBProfiler limitations

	7 Conclusion and future directions
	References

