Computing (2017) 99:865-888 @ CrossMark
DOI 10.1007/s00607-016-0535-4

A methodology pruning the search space of six compiler
transformations by addressing them together as one
problem and by exploiting the hardware architecture
details

Vasilios Kelefouras!

Received: 2 May 2016 / Accepted: 22 December 2016 / Published online: 9 January 2017
© Springer-Verlag Wien 2017

Abstract Today’s compilers have a plethora of optimizations-transformations to
choose from, and the correct choice, order as well parameters of transformations have
a significant/large impact on performance; choosing the correct order and parameters
of optimizations has been a long standing problem in compilation research, which
until now remains unsolved; the separate sub-problems optimization gives a different
schedule/binary for each sub-problem and these schedules cannot coexist, as by refin-
ing one degrades the other. Researchers try to solve this problem by using iterative
compilation techniques but the search space is so big that it cannot be searched even
by using modern supercomputers. Moreover, compiler transformations do not take
into account the hardware architecture details and data reuse in an efficient way. In
this paper, a new iterative compilation methodology is presented which reduces the
search space of six compiler transformations by addressing the above problems; the
search space is reduced by many orders of magnitude and thus an efficient solution is
now capable to be found. The transformations are the following: loop tiling (including
the number of the levels of tiling), loop unroll, register allocation, scalar replacement,
loop interchange and data array layouts. The search space is reduced (a) by addressing
the aforementioned transformations together as one problem and not separately, (b)
by taking into account the custom hardware architecture details (e.g., cache size and
associativity) and algorithm characteristics (e.g., data reuse). The proposed method-
ology has been evaluated over iterative compilation and gcc/icc compilers, on both
embedded and general purpose processors; it achieves significant performance gains
at many orders of magnitude lower compilation time.

B Vasilios Kelefouras
kelefouras@ece.upatras.gr
http://www.kelefouras.gr

University of Patras, Patras, Greece

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-016-0535-4&domain=pdf

866 V. Kelefouras

Keywords Loop unroll - Loop tiling - Scalar replacement - Register allocation - Data
reuse - Cache - Loop transformations - Iterative compilation

Mathematics Subject Classification 68N20 Compilers and interpreters
1 Introduction

Choosing the correct order and parameters of optimizations has long been known to be
an open problem in compilation research for decades. Compiler writers typically use
a combination of experience and insight to construct the sequence of optimizations
found in compilers. The optimum sequence of optimization phases for a specific code,
normally is not efficient for another. This is because the back end compiler phases
(e.g., loop tiling, register allocation) and the scheduling sub-problems depend on each
other; these dependencies require that all phases should be optimized together as one
problem and not separately.

Towards the above problem, many iterative compilation techniques have been pro-
posed; iterative compilation outperforms the most aggressive compilation settings of
commercial compilers. In iterative compilation, a number of different versions of the
program is generated-executed by applying a set of compiler transformations, at all dif-
ferent combinations/sequences. Researchers and current compilers apply (1) iterative
compilation techniques [1-4], (2) both iterative compilation and machine learning
compilation techniques (to decrease search space and thus compilation time) [5—
10], (3) both iterative compilation and genetic algorithms (decrease the search space)
[4,5,11-15], (4) compiler transformations by using heuristics and empirical meth-
ods [16], (5) both iterative compilation and statistical techniques [17], (6) exhaustive
search [5]. These approaches require very large compilation times which limit their
practical use. This has led compiler researchers use exploration prediction models
focusing on beneficial areas of optimization search space [10,18-20].

The problem is that iterative compilation requires extremely long compilation
times, even by using machine learning compilation techniques or genetic algorithms
to decrease the search space; thus, iterative compilation cannot include all existing
transformations and their parameters, e.g., unroll factor values and tile sizes, because
in this case compilation will last for many many years. As a consequence, a very large
number of solutions is not tested.

In contrast to all the above, the proposed methodology uses a different iterative
compilation approach. Instead of applying exploration and prediction methods, it fully
exploits the hardware (HW) architecture details, e.g., cache size and associativity,
and the custom software (SW) characteristics, e.g., subscript equations (constraint
propagation to the HW and SW parameters); in this way, the search space is decreased
theoretically by many orders of magnitude and thus an efficient schedule is now capable
to be found, e.g., given the cache architecture details, the number of different tile sizes
tested is decreased. In Sect. 4, I show that if the transformations addressed in this paper
(including almost all different transformation parameters) are included to iterative
compilation, the compilation time lasts from 10° up to 10?! years (for the given input
sizes). On the other hand, the compilation time of the proposed methodology lasts
from some seconds up to some hours. Thus, an efficient schedule can be found fast.

@ Springer

A methodology pruning the search space of six compiler... 867

The major contributions of this paper are the following. First, loop unroll, register
allocation and scalar replacement are addressed together as one problem and not
separately, by taking into account data reuse and RF size (Sect. 3.1). Second, loop
tiling and data array layouts are addressed together as one problem, by taking into
account cache size and associativity and data reuse (Sect. 3.2). Third, according to the
two major contributions given above, the search space is reduced by many orders of
magnitude and thus an efficient solution is now capable to be found.

The experimental results have taken by using PowerPC-440 and Intel Xeon Quad
Core E3-1240 v3 embedded and general purpose processors, respectively. The pro-
posed methodology has been evaluated for seven well-known data intensive algorithms
over iterative compilation and gcc/Intel icc compilers (speedup values from 1.4 up to
3.3); the evaluation refers to both compilation time and performance.

The remainder of this paper is organized as follows. In Sect. 2, the related work is
given. The proposed methodology is given in Sect. 3 while experimental results are
given in Sect. 4. Finally, Sect. 5 is dedicated to conclusions.

2 Related work

Normally, iterative compilation methods include transformations with low compila-
tion time such as common subexpression elimination, unreachable code elimination,
branch chaining and not compile time expensive transformations such as loop tiling
and loop unroll. Tterative compilation techniques either do not use loop tiling and loop
unroll transformations at all, or they use them only for specific tile sizes, levels of
tiling and unroll factor values [21-23]. In [21], one level of tiling is used with tile
sizes from 1 up to 100 and unroll factor values from 1 up to 20 (innermost iterator
only). In [22], multiple levels of tiling are applied but with fixed tile sizes. In [24], all
tile sizes are considered but each loop is optimized in isolation; loop unroll is applied
in isolation also. In [23], loop tiling is applied with fixed tile sizes. In [25,26], only
loop unroll transformation is applied.

Regarding genetic algorithms, [4,5,11-15] show that selecting a better sequence
of optimizations significantly improves execution time. In [12] a genetic algorithm is
used to find optimization sequences reducing code size. In [11], a large experimental
study of the search space of the compilation sequences is made. They examine the
structure of the search space, in particular the distribution of local minima relative to
the global minima and devise new search based algorithms that outperform generic
search techniques. In [27] they use machine learning on a training phase to predict
good polyhedral optimizations.

Itis important to say that genetic algorithms are not able to solve the phase ordering
problem but only to predict an efficient sequence of optimizations. Moreover, they
require a very large compilation time and they are difficult to implement.

Kulkarni et al. [5] first reduces the search space by avoiding unnecessary executions
and then modifies the search space so fewer generations are required. In [28] they
suppose that some compiler phases may not interact with each other and thus, they
are removed from the phase order search space (they apply them implicitly after every
relevant phase).

@ Springer

868 V. Kelefouras

Kulkarni and Cavazos [29] uses an artificial neural network to predict the best
transformation (from a given set) that should be applied based on the characteristics
of the code. Once the best transformation has been found, the procedure is repeated to
find the second best transformation etc. In [6] prediction models are given to predict the
set of optimizations that should be turned on. [18] address the problem of predicting
good compiler optimizations by using performance counters to automatically generate
compiler heuristics.

An innovative approach to iterative compilation was proposed by [30] where they
used performance counters to propose new optimization sequences. The proposed
sequences were evaluated and the performance counters are measured to choose the
new optimizations to try. In [27], they formulate the selection of the best transformation
sequence as a learning problem, and they use off-line training to build predictors that
compute the best sequence of polyhedral optimizations to apply.

In contrast to all the above works, the proposed methodology methodology uses
a different approach. Instead of applying exploration and prediction methods, the
search space is decreased by fully utilizing the HW architecture details and the SW
characteristics.

As far as register the allocation problem is concerned, many methodologies exist
such as [31-37]. In [31-35], data reuse is not taken into account. In [36,37], data reuse
is taken into account either by greedily assigning the available registers to the data array
references or by applying loop unroll transformation to expose reuse and opportunities
for maximizing parallelism. In [38], a survey on combinatorial register allocation
and instruction scheduling is given. Finally, regarding data cache miss elimination
methods, much research has been done in [39-45].

3 Proposed methodology

The proposed methodology takes the target C-code and HW architecture details as
input and automatically generates only the efficient schedules, while the inefficient
ones are being discarded, decreasing the search space by many orders of magnitude,
e.g., all the schedules using a larger number of registers than the available are discarded.
Then, searching only among a specific set of efficient schedules is applied and an
efficient schedule can be found fast.

The initial search space is shown in Fig. 1; for a two level cache architecture it
includes one level of tiling (tiling for the L1 or L2 cache), two levels of tiling (tiling
for both L1 and L2 cache) and no tiling, schedules/binaries; loop tiling is applied to all
the iterators. Also it includes register allocation, scalar replacement, loop unroll to all
the iterators, loop interchange, and different data array layouts. In Fig. 1, there are seven
different problems/transformations and thus the search space consists up to 7! = 5040
transformation combinations. In Sect. 4, I show that if the transformations presented
in Fig. 1 (including almost all different transformation parameters) are included to
iterative compilation, the search space is from 10'7 up to 10> schedules(for the given
input sizes); given that 1s = 3.17 x 1073 years and supposing that compilation time
takes 1 sec, the compilation time is from 10 up to 10?! years. On the other hand, the

@ Springer

A methodology pruning the search space of six compiler... 869

Fig. 1 Search space being Search Space
addressed

1. Loop tiling to all the iterators (tiling for L1
cache)
v’ all different tile sizes are included
2. Loop tiling to all the iterators (tiling for L2
cache)
v’ all different tile sizes are included
3. Scalar replacement
4. Register allocation

5. Loop unroll to all the iterators The search space
v" all different unroll factor includes all these
. transformations
values are included)
. at all different
6. Different data array Layouts orderings

7. Loop interchange (The number of
combinations is
up to 7 1 =5040)

proposed methodology decreases the search space from 10! up to 103 schedules. In
this way, the search space is now capable to be searched in a short amount of time.

Regarding target applications, this methodology optimizes loop kernels; as it is
well known, 90% of the execution time of a computer program is spent executing
10% of the code (also known as the 90/10 law) [46]. The methodology is applied to
both perfectly and imperfectly nested loops, where all the array subscripts are linear
equations of the iterators (which in most cases do); an array subscript is another
way to describe an array index (multidimensional arrays use one subscript for each
dimension). This methodology can also be applied to C code containing SSE/AVX
instructions (SIMD). For the reminder of this paper, I refer to architectures having
separate L1 data and instruction cache (vast majority of architectures). In this case,
the program code always fits in L1 instruction cache since I refer to loop kernels only,
whose code size is small; thus, upper level unified/shared caches, if exist, contain only
data. On the other hand, if a unified L1 cache exists, memory management becomes
very complicated.

The proposed methodology is shown in Fig. 2. First, parsing is applied in order to
extract the custom software characteristics (loop kernel parameters), i.e., data depen-
dences, array references, subscript equations, loop iterators and bounds and iterator
nesting level values. These characteristics are used to apply the aforementioned trans-
formations in an efficient way. One mathematical equation is created for each array’s
subscript in order to find the corresponding memory access pattern, e.g., (A[2xi + j])
and (B[i, j]) give 2 %i + j = cl) and (i = c21 and j = ¢22), respectively, where
(c1, c21, c22) are constant numbers and their range is computed according to the iter-
ator bound values. Each equation defines the memory access pattern of the specific
array reference; data reuse is found by these equations (data reuse occurs when a
specific memory location is accessed more than once).

Regarding 2-d arrays, two equations are created and not one because the data array
layout is not fixed, e.g., regarding B[, j] reference, if (N %i + j = ¢) (where N is the

@ Springer

870 V. Kelefouras

Number of Caches
Cache sizes
RF size Cache associativities
Input SW characteristics ~ SW characteristics
(C-code) Data Reuse Data Reuse

L L

Extract SW Loop unroll, Loop Tiling & Loop Searching
characteristics Register Data Array Interchange is applied
allocation, Scalar Layouts

replacement

Initial Search Search Space Search Space Final Search
Space (Fig.12) (decreased by (decreased by Space
orders of orders of (decreased by
magnitude) magnitude) many orders of
magnitude)

Fig. 2 Flow graph of the proposed methodology

number of the array columns) is taken instead of (i = c1) and (j = ¢2), then row-wise
layout is taken which may not be efficient.

Definition 1 Subscript equations which have more than one solution for at least one
constant value, are named type2 equations. All others, are named typel equations,
e.g.,(2*i+ j = cl)is atype2 equation, while (i = ¢21 and j = ¢22) is a typel
equation.

Arrays with type2 subscript equations are accessed more than once from memory
(data reuse), e.g., (2i + j = 7) holds for several iteration vectors; on the other hand,
equations of typel fetch their elements only once; in [47], I give a new compiler
transformation that fully exploits data reuse of type2 equations. However, both typel
and type2 arrays may be accessed more than once in the case that the loop kernel
contains at least one iterator that does not exist in the subscript equation, e.g., consider
a loop kernel containing k, i, j iterators and B[i, j] reference; B[i, j] is accessed as
many times as k iterator indicates.

Definition 2 The subscript equations which are not given by a compile time known
expression (e.g., they depend on the input data), are further classified into type3 equa-
tions. Data reuse of type3 arrays cannot be exploited, as the arrays elements are not
accessed according to a mathematical formula.

After the SW characteristics have been extracted, I apply loop unroll, register allo-
cation and scalar replacement, in a novel way, by taking into account the subscript
equations, data reuse and RF size (Sect. 3.1). I generate extra mathematical inequal-
ities that give all the efficient RF tile sizes and shapes, according to the number of
the available registers. All the schedules using a different number of registers than

@ Springer

A methodology pruning the search space of six compiler... 871

those the proposed inequalities give are not considered, decreasing the search space.
Moreover, one level of tiling is applied for each cache memory (if needed), in a novel
way, by taking into account the cache size and associativity, the data array layouts and
the subscript equations (Sect. 3.2). One inequality is created for each cache memory;
these inequalities contain all the efficient tile sizes and shapes, according to the cache
architecture details. All tile sizes and shapes and array layouts different than those the
proposed inequalities give are not considered decreasing the search space.

It is important to say that partitioning the arrays into tiles according to the cache
size only is not enough because tiles may conflict with each other due to the cache
modulo effect. Given that all the tiles must remain in cache, (a) all the tile elements
have to be written in consecutive main memory locations and therefore in consecutive
cache locations (otherwise, the data array layout is changed), and (b) different array
tiles have to be loaded in different cache ways in order not to conflict with each other.
All the schedules with different tile sizes than those the proposed inequalities give are
not considered, decreasing the exploration space even more.

In contrast to iterative compilation methods, the number of levels of tiling is not
one, but it depends on the number of the memories. For a two level cache architecture,
loop tiling is applied for (a) L1, (b) L2, (¢c) L1 and L2, and (d) none. The number of
levels of tiling is found by testing as the data reuse advantage can be overlapped by
the extra inserted instructions; although the number of data accesses is decreased (by
applying loop tiling), the number of addressing instructions (and in several cases the
number of load/store instructions) is increased.

When the above procedure has ended, all the efficient transformation parameters
have been found (according to the Sects. 3.1 and 3.2) and all the inefficient parameters
have been discarded reducing the search space by many orders of magnitude. Then,
all the remaining schedules are automatically transformed into C-code; the C-codes
are generated by applying the aforementioned transformations with the parameters
found in Sects. 3.1 and 3.2. Afterwards, all the C-codes are compiled by the target
architecture compiler and all the binaries run to the target platform to find the fastest.

The remainder of the proposed methodology has been divided into two sections
describing in more detail the most complex steps of Fig. 2.

3.1 Loop unroll, scalar replacement, register allocation

Loop unroll, register allocation, scalar replacement, data reuse and register file (RF)
size, strongly depend on each other and thus they are addressed together, as one
problem and not separately. The reason follows. Loop unroll is applied in order to
expose common array references in the loop body which they are then replaced by
variables/registers in order to decrease the number of L/S and addressing instructions;
exposing common array references in the loop body exposes data reuse (In Fig. 3b,
loop unroll is applied to the first two iterators with unroll factor values equal to 2,
while in Fig. 3¢ the common array references are replaced by variables). However, the
number of common array references exposed depends on the iterators that loop unroll
is being applied to and on the loop unroll factor values. Unrolling the correct iterator
exposes data reuse; on the other hand, in Rule 2, I show that data reuse cannot be

@ Springer

872

V. Kelefouras

(a)
for (row = 2; row < N-2; row++) {
for (col = 2; col < M-2; col++) {
tmp=0;
for (mr=0; mr<5; mr++) {
for (mc=0; mc<5; mc++) {
tmp+=in[row+mr-2][col+mc-2]*mask[mr][mc] ;
1}
out[row][col]=tmp/159;
1

(c)
for (row = 2; row < N-2; row+=2) {
for (col = 2; col < M-2; col+=2) {
out0=0;0ut1=0;0ut2=0;0ut3=0;
for (mr=0; mr<5; mr++) {
addrl=row+mr-2;
for (mc=0; mc<5; mc++) {

addr2=col+mc-2;

reg=mask[mr][mc];
inl=in[addrl][addr2];
out0+=(in1*reg);
inl=in[addrl][addr2+1];
outl+=(inl1*reg);
inl=in[addrl+1][addr2];
out2+=(in1*reg);
inl=in[addrl+1][addr2+1];
out3+=(in1*reg);
1t
out[row][col]=out0/159;
out[row][col+1]=out1/159;
out[row+1][col]=out2/159;
out[row+1][col+1]=out3/159;
1

Fig. 3 An example, Gaussian Blur algorithm

(b)
for (row = 2; row < N-2; row+=2) {
for (col = 2; col < M-2; col+=2) {
tmp1=0; tmp2=0; tmp3=0; tmp4=0;
for (mr=0; mr<5; mr++) {
for (mc=0; mc<5; mc++) {
tmp1 += in[row+mr-2][col+mc-2] * mask[mr][mc];
tmp2+= in[row+mr-2][col+mc-1] * mask[mr][mc];
tmp3 += in[row+mr-1][col+mc-2] * mask[mr][mc];
tmp4 += in[row+mr-1][col+mc-1] * mask[mr][mc];
1}
out[row][col]=tmp1/159;
out[row][col+1]=tmp2/159;
out[row+1][col]=tmp3/159;
out[row+1][col+1]=tmp4/159;

B @
for (row = 2; row < N-2; row++) {
for (col = 2; col < M-2; col+=6) {
out0=0;0ut1=0;0ut2=0;0ut3=0;
out4=0;0ut5=0;
for (mr=0; mr<5; mr++) {
addrl=row+mr-2;
in0=in[addr1][col-2];
inl=in[addrl][col-1];
in2=in[addr1][col];
in3=in[addrl][col+1];
ind=in[addrl1][col+2];
for (mc=0; me<5; mc++) {
reg_mask=mask[mr][mc];
in5=in[addr1][col+3+mc];
out0 += (in0*reg_mask);
outl += (in1*reg_mask);
out2 += (in2*reg_mask);
out3 += (in3*reg_mask);
outd += (in4*reg_mask);
out5 += (in5*reg_mask);
in0=in1; in1=in2; in2=in3;
in3=in4; in4=in5;
1}
out[row][col]=out0/159;
out[row][col+1]=out1/159;
out[row][col+2]=out2/159;
out[row][col+3]=0ut3/159;
out[row][col+4]=out4/159;
out[row][col+5]=out5/159;

exposed by applying loop unroll to the innermost iterator. Regarding the loop unroll
factor values, they depend on the RF size; the larger the loop unroll factor value, the
larger the number of the registers needed. Moreover, the unroll factor values and the
number of the variables/registers used, depend on data reuse, as it is efficient to use
more variables/registers for the array references that achieve data reuse and less for
the references that do not. Thus, the above problems are strongly interdependent and
it is not efficient to be addressed separately.

@ Springer

A methodology pruning the search space of six compiler... 873

The number of assigned variables/registers is given by the following inequality. I
generate mathematical inequalities that give all the efficient RF tile sizes and shapes,
according to the number of the available registers. All the schedules with different
number of registers than those the proposed inequalities give are not considered,
decreasing the search space. In contrast to all the related works, the search space is
decreased not by applying exploration and prediction methods but by fully utilizing
the RF size.

The register file inequality is given by:

0.7 x RF < Iterators + Scalar + Extra + Array) + Arrayy + - - -
+Array, < RF @))

where R F is the number of available registers, Scalar is the number of scalar variables,
Extra is the number of extra registers needed, i.e., registers for intermediate results
and Iterators is the number of the different iterator references exist in the innermost
loop body, e.g., in Fig. 3b, (Iterators = 4), these are (row, mr, col, mc). Array; is
the number of the variables/registers allocated for the i-th array.

Rule 1 The Array; values are found by in Eq. 2 and Rules 2-5. I give Rules 2-5 to
allocate registers according to the data reuse.

Array; = it{ X ity x -+ X it,,)

where the integer it] are the unroll factor values of the iterators exist in the array’s
subscript; e.g. for B(i, j) and C(i,i), Arraygp = i’ x j' (rectangular tile) and
Arrayc = i’ (diagonal line tile) respectively, where i’ and j' are the unroll factors of
i, j iterators.

Each subscript equation contributes to the creation of in Eq. (1), i.e., equation i
gives Array; and specifies its expression. To my knowledge, no other work uses a
similar approach.

The bound values of the RF inequality (Eq. (1)) are not tight because the output
code is C-code and during its compilation (translate the C-code into binary code),
the target compiler may not allocate the exact number of desirable variables into
registers. Moreover, the 0.7 value has been found experimentally. The number of
Scalar and Extra registers are found after the allocation of the array elements into
variables/registers, because they depend on the unroll factor values and on the number
of iterators being unrolled. The Extra value depends on the target compiler and thus
it is found approximately; the bounds of the RF inequality are not tight for this reason
too. The goal is to store all the inner loop reused array elements and scalar variables
into registers minimizing the number of register spills.

Rules 2-5 modify Eq. 2 according to the data reuse. The array references that do
not achieve data reuse do not use more than one register; on the other hand, the array
references that achieve data reuse, use as many registers as possible according to the
number of the available registers, e.g., in Fig. 3c only one register is used for (in) and
four for (out) array. To my knowledge, no other work takes into account data reuse in
this way.

@ Springer

874 V. Kelefouras

Rule 2 The innermost iterator is never unrolled because data reuse cannot be
exposed; if it; is the innermost iterator, then i ti/ =1

Proof By unrolling the innermost iterator, the array references-equations which con-
tain it, will change their values in each iteration; this means that (1) a different element
is accessed in each iteration and thus a huge number of different registers is needed
for these arrays, (2) all these registers are not reused (a different element is accessed
in each iteration). Thus, by unrolling the innermost iterator, more registers are needed
which do not achieve data reuse; this leads to low RF utilization. O

Rule 3 The typel array references which contain all the loop kernel iterators, do not
achieve data reuse (each element is accessed once); thus only one register is needed
for these arrays, i.e., Array; = 1.

Proof The subscript equations of these arrays change their values in each iteration
vector and thus a different element is fetched in each iteration. O

Let me give an example Gaussian Blur (Fig. 3). Suppose that loop unroll is applied
to row, col iterators with unroll factor value equal to 2 (Fig. 3b). Then, all array
references are replaced by variables/registers according to the register file size and data
reuse (Fig. 3¢). Array out needs row’ x col’ = 4 registers (Fig. 3) while array mask
needs mr’ x mc’ = 1 register, where row’, col’, mr’, m¢’ are the row, col, mr, mc
unroll factor values, respectively. Although in array needs 4 registers according to in
Eq. 2, it achieves no data reuse and thus only one register is used (Rule 3). The number
of registers needed for each array is given by its subscript equation; these equations give
the data access patterns and data reuse. Regarding mask array, it is reused four times.
Regarding out array, all its four references exist in the loop body remain unchanged
as the mr, mc change, achieving data reuse. in array does not achieve data reuse and
thus only one register is used for all the four references. However, if someone study
in array more carefully, it contains data reuse between consecutive iterations of mc;
in Fig. 3d this type of data reuse (Rule 5) is fully exploited by inserting inl — in5
registers. It is important to say that both Fig. 3c, d, achieve a much smaller number of
L/S and addressing instructions.

Rule 4 [f there is an array reference (1) containing more than one iterator and one
of them is the innermost one and (2) all in Eq. (1) iterators which do not exist in this
array reference have unroll factor values equal to 1, then only one register is needed
for this array, i.e. Array; = 1. This gives more than one register file inequalities (it
is further explained in the following example).

Proof When Rule 4 holds, a different array’s element is fetched in each iteration
vector, as the subscript equation changes its value in each iteration. Thus, no data
reuse is achieved and only one register is used. On the contrary, if at least one iterator
which do not exist in this array reference is unrolled, common array references occur
inside the loop body (e.g., regC1 is reused 3 times in Fig. 4); data reuse is achieved
in this case and thus an extra RF inequality is created. O

Let me give another example (Fig. 4a). The C array subscript contains i and j
iterators. j iterator is the innermost one and thus (i’ x 1 = 2) registers are needed for

@ Springer

A methodology pruning the search space of six compiler... 875

(a) (b)
for (ii=0; ii<60; ii+=10) 10=2; jo=2;
for (jj=0; ji<60; jj+=15) for (jj=0; jj<M; ji+=T1)
for (kk=0; kk<60; kk+=4) for (i=0; i<N; i+=iy) {
for (i=ii; i<ii+10; i+=2) for (j=ij; j<ij+T1; j+=jo) {
for (k=kk; k<kk+4; k+=4) { r1=0;r2=0;r3=0;r4=0;
regA1=Ali][k]; regA2=A[i][k+1]; for (k=0; k<P; k++) {
regA3=Alil[k+2]; regA4=Al[i][k+3]; r5=A[i][k]; r6=A[i+1][k];
regA5=A[i+1][k]; regA6=Ali+1][k+1]; r7=B[j][k]; r8=B[j+1][k];
regA7=Ali+1][k+2]; regA8=A[i+1][k+3]; rl+=r5*r7;
for (j=jj; j<ij+15; j++) { r2+=r5%r8;
regC1=0; regC2=0; regB1=B/[k][j]; r3+=r6*r7;
regB2=B[k+1][j]; r4+=r6*r8;
regB3=B[k+2][j]; regB4=B[k+3][j]; }
regCl+=regAl * regB1; Clil[j]=r1;
regCl+=regA2 * regB2; Cli][j+1]=r2;
regCl+=regA3 * regB3; Cli+1][j]=r3;
regCl+=regA4 * regB4; Cli+1][j+1]=r4;
regC2+=regA>5 * regB1; 1}

regC2+=regA6 * regB2;

regC2+=regA7 * regB3;

regC2+=regA8 * regB4;
Cli][j]+=regC1;
Cli+1][j]+=regC2; }

Fig.4 An example, Matrix—Matrix multiplication

this array; however, according to Rule 4, C array needs (i’ x 1 = 2) registers if k" # 1
and 1 register otherwise (if ¥’ = 1 then the C array fetches a different element in
each iteration vector and thus only one register is needed). Regarding array A, it needs
i’ x k' registers while B array needs k’ registers, if i’ # 1 and 1 register otherwise.
Note that if the i-loop is not unrolled (i” = 0), the B and C array elements are not
reused and thus there is 1 register for C and 1 for B (Rule 4). The innermost iterator
(j) is not unrolled according to Rule 2 (data reuse is decreased in this case).

Moreover, there are cases that data reuse utilization is more complicated as common
array elements may be accessed not in each iteration, but in each k iterations, where
k > 1, e.g., Fig. 3d. This holds only for type2 equations (e.g. ai + bj + ¢) where
k = b/a is an integer (data reuse is achieved in each k iterations). Data reuse is
exploited only when k = 1 here (Rule 5) as for larger k values, data reuse is low.
For example, in Fig. 3, each time the mask is shifted by one position to the right (mc
iterator), 20 elements of in array are reused (reuse between consecutive iterations, i.e.,
k=1).

Rule 5 Arrays with type2 subscript equations which have equal coefficient absolute
values (e.g. ai +bj + ¢, where a == =+b) fetch identical elements in consecutive iter-
ations, data reuse is exploited by interchanging the registers values in each iteration.
An extra RF inequality is produced in this case.

Proof The arrays of Rule 5 access their elements in patterns. As the innermost iterator
changes its value, the elements are accessed in a pattern, i.e. A[p], A[p + b], A[p +
2 x b] etc. When the outermost iterator changes its value, this pattern is repeated,

@ Springer

876 V. Kelefouras

shifted by one position to the right (A[p + b], A[p + 2 x b], A[p + 3 x b], etc.),
reusing its elements. This holds for equations with more than two iterators too. O

To exploit data reuse of Rule 5, all the array’s registers interchange their values in
each iteration, e.g., in Fig. 3d, the (in0, inl, in2, in3, in4, in5) variables interchange
their values in each iteration.

To sum up, by applying the aforementioned transformations as above, the number
of (1) load/store instructions (or equivalent the number of L1 data cache accesses) and
(2) addressing instructions, are decreased. The number of load/store instructions is
decreased because the reused references are assigned into registers and they reused as
many times as the number of available registers indicate. The number of addressing
instructions is decreased because the address computations are simplified.

Last but not least, the search space is decreased by orders of magnitude without
pruning efficient schedules. Although it is impractical to run all the different schedules
(their number is huge) to prove that they are less performance efficient, they all give a
much larger number of load/store and addressing instructions. All the schedules that do
not belong to in Eq. 1, either use only a few number of registers or a larger number than
the available; in the first case, array elements are accessed more times (and also their
addresses are computed more times) while in the second case, the register file pressure
is high, leading to a large number of register spills and therefore to a large number of
L1 data accesses. Moreover, all the schedules that do not satisfy the proposed Rules,
do not take into account data reuse and thus several/many registers are wasted leading
to a larger number of data accesses.

3.2 Loop tiling and data array layouts

Loop tiling is one of the key loop transformations to speedup data dominant applica-
tions. When the accumulated size of the arrays is larger than the cache size, the arrays
do not remain in cache and in most cases they are loaded and reloaded many times from
the slow main memory, decreasing performance and increasing energy consumption.
In order to decrease the number of data accesses, loop tiling is applied, i.e., arrays are
partitioned into smaller ones (tiles) in order to remain in cache achieving data locality.

Loop tiling for cache, cache size and associativity, data reuse and data array layouts,
strongly depend on each other and thus they are addressed together, as one problem
and not separately. The reason follows. Let me give an example, Matrix-Matrix Multi-
plication algorithm. Many research works as well ATLAS [48] (one of the state of the
art high performance libraries) apply loop tiling by taking into account only the cache
size, i.e., the accumulated size of three rectangular tiles (one of each matrix) must be
smaller or equal to the cache size; however, the elements of these tiles are not written
in consecutive main memory locations (the elements of each tile sub-row are written
in different main memory locations) and thus they do not use consecutive data cache
locations; this means that having a set-associative cache, they cannot simultaneously
fit in data cache due to the cache modulo effect. Moreover, even if the tile elements
are written in consecutive main memory locations (different data array layout), the
three tiles cannot simultaneously fit in data cache if the cache is two-way associative
or direct mapped [49,50]. Thus, loop tiling is efficient only when cache size, cache

@ Springer

A methodology pruning the search space of six compiler... 877

associativity and data array layouts, are addressed together as one problem and not
separately.

For a 2 levels of cache architecture, 1 level of tiling (either for L1 or L2 cache), 2
levels of tiling and no tiling solutions, are applied to all the solutions-schedules that
have been produced so far. The optimum number of levels of tiling cannot easily be
found since the data locality advantage may be lost by the required insertion of extra
L/S and addressing instructions, which degrade performance. The separate memories
optimization gives a different schedule for each memory and these schedules can-
not coexist, as by refining one, degrading another, e.g., the schedule minimizing the
number of L2 data cache accesses and the schedule minimizing the number of main
memory accesses cannot coexist; thus, either a sub-optimum schedule for all memories
or a (near)-optimum schedule only for one memory can be produced.

As far as the tile sizes are concerned, a cache inequality is produced for each cache
memory (Eq. 3), giving all the efficient tile sizes; each inequality contains (1) the tile
size of each array and (2) the shape of each array tile. However, partitioning the arrays
into smaller ones (tiles) according to the cache size is not enough because tiles may
conflict with each other due to the cache modulo effect; to satisfy that tiles remain
in cache, first all the tile elements are written in consecutive main memory locations
(in order to be loaded in consecutive cache locations), second different array tiles are
loaded in different cache ways in order not to conflict with each other and third LRU
cache replacement policy is used. All tile sizes and shapes and array layouts different
than these the proposed inequalities give are not considered decreasing the search
space.

The L1 data cache inequality is given by:

Tile; Tile,
assoc —v — (lassoc/4])) < | —— |+ -+ | ——— | <assoc —v
Li/assoc Li/assoc
3)

where L is the L1 data cache size and assoc is the data cache associativity (for an
8-way associative data cache, assoc = 8). v value is zero when no type3 array exist
and one if at least one type3 array exists (it is explained next, Rule 6). (lassoc/4])
gives the number of cache ways that remain unused and defines the lower bound of
tile sizes. T'ile; is the tile size of the ith array and it is given by

Tile; = T{ x Ty x T, x ElementSize 4)

where integer 7} are the tile sizes of the iterators that exist in the array’s subscript.
ElementSize is the size of each array’s element in bytes, e.g., in Fig. 4a, Tiley =
ii" x kk' x4 =10 x 4 x 4, Tileg = kk' x jj' x4 =15 x4 x 4 and Tilec =
ii’x jj' x4 =10x 15 x 4, if A, B and C contain floating point values (4 bytes each).

In Eq. 3 satisfies that no cache way contains more than one array’s elements, min-
imizing the number of cache conflicts. al = (%1 value is an integer and gives
the number of L; data cache lines with identical L; addresses used for Tile;. An
empty cache line is always granted for each different modulo (with respect to the size

of the cache) of Tiles memory addresses. For the reminder of this paper I will more

@ Springer

878 V. Kelefouras

freely say that I use al cache ways for T'ilel, a2 cache ways for T'ile2 etc (in other

. . . Tile;
words Tiles are written in separate data cache ways). In the case that T Jassoc would
Tile;

be used instead of [o /asmc'|, the number of L misses will be much larger because
Tiles’ cache lines would conflict with each other.

Moreover, in order to the Tiles remain in cache, their elements have to be written
in consecutive cache locations and thus to consecutive main memory locations; thus,
the data array layouts are changed to tile-wise (if needed), i.e., all array elements are
written to main memory in order. To my knowledge, no other work addresses loop
tiling by taking into account cache size, cache associativity and the data array layouts
for a wide range of algorithms and computer architectures.

Inthe case thatthe tile size is very small (T'ile; < (L1/assoc)/10), neitherits layout
is changed nor it is inserted in in Eq. 3 (this value has been found experimentally).
Moreover, if the tile elements are not written in consecutive main memory locations
but the associativity value is large enough to prevent cache conflicts, the data array
layout remains unchanged, e.g., consider a 2-d array of size N x N and a tile of size
4 x T,where T < N;if (assoc > 4) and (T x ElementSize) < CacheWaySize),
no cache conflict occurs.

Regarding type3 arrays, loop tiling cannot be applied. These arrays contain subscript
equations which are not given by a compile time known expression (they depend on
the input data). These arrays cannot be partitioned into tiles as their elements are
accessed in a ‘random’ way; this leads to a large number of cache conflicts due to the
cache modulo effect (especially for large arrays). To eliminate these conflicts, Rule 6
is introduced.

Rule 6 For all the type3 arrays, data cache size which equals to the size of one cache
way is granted (v = 1). In other words, an empty cache line is granted for each different
modulo (with respect to the size of the cache) of these arrays memory addresses.

The search space is decreased even more by computing the best nesting level values
of the new tiling iterators.

Statement 1 The nesting level values of the tiling iterators (produced by applying
loop tiling) are found theoretically (no searching is applied). This means that loop
interchange is not applied to the new tiling iterators.

The nesting level values of the new (tiling) iterators are computed. For each different
schedule produced by in Eq. (3), I compute the total number of data accesses for all
the different nesting level values and the best are selected.

The number of each array’s accesses is found by:

DataAccesses =n x Tile_size_in_elements x Num_of _tiles, where n is the
number of times each tile is fetched and equals to (¢ x r), where ¢ is the number of
iterations exist above the upper iterator of the array’s equation and r is the number of
iterations exist between the upper and the lower iterators of the array’s equation.

Last but not least, the search space is decreased by orders of magnitude without
pruning efficient schedules. Although it is impractical to run all different schedules
(their number is huge) to prove that they are less efficient, they all give a much larger
number of memory accesses in the whole memory hierarchy. All schedules that do
not belong to in Eq. 3, either use only a small portion of cache or a larger than the

@ Springer

A methodology pruning the search space of six compiler... 879

available or tile sizes do not use consecutive main memory/cache locations and thus
they cannot remain in cache; in the first case, tile sizes are small giving a large number
of data accesses and addressing instructions while in the second case, tile sizes are
large and tiles cannot remain in cache leading to a much larger number of memory
accesses.

4 Experimental results

The experimental results for the proposed methodology, presented in this section,
were carried out with Intel Xeon Quad Core E3-1240 v3 general purpose processor
and PowerPC 440 embedded processor (Virtex-5 FPGA ML507 Evaluation Platform).
Regarding Intel processor, a performance comparison is made over gcc 4.8.4 and Intel
icc 2015 compilers; optimization level -O3 was used at all cases. The operating system
used is Ubuntu 14.04.

The comparison is done for 7 well-known data dominant linear algebra, image
processing and signal processing kernels (PolyBench/C benchmark suite version 3.2
[51]). These are: Matrix-Matrix Multiplication (MMM), Matrix-Vector Multiplication
(MVM), Gaussian Blur (5 x 5 filter), Finite Impulse Response filter (FIR), Sobel
operator (Manhattan distance is used instead of Euclidean distance), Jacobi 9-point
Stencil and Gaussian Elimination. All the C-codes are single threaded and thus they
run on one core only.

First, an evaluation of compilation time/search space is made over iterative com-
pilation (iterative compilation here includes all the transformations shown in Fig. 1.).
To the best of my knowledge there is no iterative compilation method including the
optimizations presented in this paper with all their parameters; iterative compilation
techniques either do not use the transformations presented in this paper at all, or they
use some them to some extent [21-23], e.g., loop tiling is applied only for spe-
cific tile sizes and levels of tiling and loop unroll is applied only for specific unroll
factor values. Normally, iterative compilation methods include transformations with
low compilation time such as common subexpression elimination, unreachable code
elimination, branch chaining and not compile time expensive transformations such as
loop tiling; I show that if the transformations presented in Fig. 1 (including almost all
different transformation parameters) are included in iterative compilation, the search
space is from 10'7 up to 102° schedules(for the given input sizes) (Table 1); given that
Isec = 3.17 x 1078 years and supposing that compilation time takes 1 sec, the compi-
lation time is from 10° up to 10%! years. On the other hand, the proposed methodology
decreases the search space from 10! up to 10° schedules.

The first column of Table 1 gives the overall size of the search space (Fig. 1); the
values have been computed by the following equation:

Schedules = 7! x (Unroll Factor'®P* x loops!
+ Unroll Factor'®Ps x Tilel'P x (2 x loops)! x (2 x matrices)
+ Unroll Factor'®P® x Tile2!°P x (2 x loops)! x (2 x matrices)
+ Unroll Factor'®P x Tilel'°P% x Tile2°PS x (3 x loops)!

X (2 X matrices)) (5

@ Springer

V. Kelefouras

880

(s9z1s Indur paxy) SALTLUI/SINPAYDS JO SIAQUUNU I8 UMOYS SIN[BA A,

0L X1 0L X €7¢ 0101 00l X 09 o0 X 61 1101 (00T1 = N) uoneuruIyg ueissnen
;01 X 6T 01 X 6C ¢101 (01 X 1°8 901 X T°¢ 1201 (00T = N) [1oualg 1utod-6 1qodef
O X 1°¢ 01 X 6T ¢101 O X T°1 901 X T°¢ 1201 (0021 = N) 19908
01 X9°¢ 101 X '€ 0101 01 X 91 01 X ¥'C 1101 (000% = N “000Z€ = N) ¥dId
01 X 9°¢ 01 X 6T ¢101 01 X1 01 X 71 1201 (0021 = N) Inig ueissnen
Ol X9v 01 XS ¢101 01 < 1 01 X ¥'C 01 (002 = N) WAIN
Ol X ¢'¢ 01 X 08 001 101 X Ty o0l X v'v 6201 (000T = N) WAIN
poyrow doig £q 7€ 1998
pojeIouadd sonpayds AQ pajerdudd son g'¢ 1998 Jo ooeds 1°¢€ 109§ Aq pajerouad [°¢ 199§ Jo aoeds Qoeds yoreas
JO IoquIinu [BI0], -PAYds JO JoqunN [OIRdS pajewunsg SO[NPaYDs JO JqUNN YOIeds pajewnsg [©10) pajewnsg

(owm uoneqidwos) aoeds yoIeas 2y Jo uonen[eAqg | IqEL

pringer

As

A methodology pruning the search space of six compiler... 881

where T'ilel and Tile2 are the numbers of different tile sizes for each iterator for the
L1 and L2, respectively and loops is the number of the loops. Unroll Factor value
is the number of different unroll factor values for each iterator. Finally, matrices is
the number of multidimensional arrays and indicates that each multidimensional array
uses two different data layouts (the default and the tile-wise). The first, second, third
and fourth row of Eq. 5, give the number of the schedules when tiling for (no memory),
(L1), (L2) and (L1 and L2) is applied, respectively.

The second and the fourth columns of Tablel give the search space size of the
transformations used in Sects. 3.1 and 3.2, respectively. The second column values of
Table 1 are given by (4! x Unroll Factor'®°PS x loops!). The fourth column values
are obtained by (4! x Tile1/°PS x Tile2!°PS x (2 x loops)! x (2 x matrices)). The
other column values have been obtained experimentally. The search space of MMM
is the biggest as it contains 3 large loops to which loop tiling has applied. On the other
hand, the smallest search space is that of MVM as it contains only two loops and a
small input size.

For a fair comparison to be made, (Unroll Factor = 32), since the number of the
registers is limited. Moreover, the different tile sizes used here are the following: for
MMM Tilel = 500 and Tile2 = 250, for Gaussian Blur, Sobel and Jacobi stencil
Tilel = 600 and Tile2 = 300, for MVM Tilel = 2100 and T'ile2 = 1000, for
FIR Tilel = 16000 (1st iterator), Tilel = 1000 (filter iterator) and T'ile2 = 0, for
Gaussian Elimination, Tilel = 600 and Tile2 = 0. Regarding FIR and Gaussian
Elimination, T'ile2 = 0 as their arrays fit in L2 cache and therefore tiling for L2 is
useless.

MMM achieves the largest number of schedules and thus the largest compilation
time, because it contains three large loops which are eligible to loop tiling. On the other
hand, Gaussian Elimination and FIR achieve the smallest number of schedules since
their arrays are of small size and they fit in L2 cache (for the given input sizes); this
means that no tiling for L2 is applied, decreasing the number of the schedules. As it was
expected, the search space is decreased by many orders of magnitude at all the steps of
the proposed methodology. As far as Sect. 3.1 is concerned, the second column shows
the estimated number of the schedules and the third shows the number of the schedules
generated by the proposed methodology; the search is space is decreased from 3 up
to 6 orders of magnitude. As far as Sect. 3.2 is concerned, the fourth column shows
the estimated number of schedules and the fifth shows the number of the schedules
generated by the proposed methodology; the search is space is decreased from 9 up
to 17 orders of magnitude. Regarding the overall estimated search space, it is shown
at the first column of Table 1; given that 1s = 3.17 x 1078 years, the compilation
time is from 10° up to 10%! years. At last, instead of testing all these schedules (which
is impractical), the proposed methodology tests only the schedules shown at the last
column of Table 1.

Second, an evaluation of performance is made over iterative compilation. Given that
(a) there is no iterative compilation method including all the transformations presented
in this paper, including all different transformation parameters, (b) the number of dif-
ferent schedules is huge (1st column of Table 1), I evaluated the proposed methodology
only with the most performance efficient transformations, i.e., loop tiling, loop unroll
and loop interchange. The proposed methodology is compared with (a) one level of

@ Springer

882 V. Kelefouras

tiling to one loop (best loop and best tile size), (b) one level of tiling to all the loops
(best number of levels of tiling and best tile sizes), (c) loop interchange and one level
of tiling to all the loops (best iterator nesting level values, best number of levels of
tiling and best tile sizes) and (d) loop unroll to one loop and scalar replacement (best
loop and best unroll factor value) (Table 2). Given that even the search space of the
(a)—(d) above is huge, only one different set of input sizes is used (the input sizes
are those shown in Table 1). Moreover, the number of different tile sizes tested here
are limited (from 1 up to 2 orders of magnitude smaller than those used to estimate
Table 1). Even for a limited input and tile sizes the number of different binaries is
large and thus the experimental results of Table 2 took several days.

It is important to say that the (d) set of transformations above, evaluates Sect. 3.1;
in (d), one loop is unrolled (best loop and best unroll factor value) and then all the
array references that exist in the loop body are replaced by scalar variables. The (d)
set of transformations achieves a much higher speedup than the (a)—(c) ones as it
decreases the number of both load/store (L/S) and addressing instructions. However,
it does not take into account data reuse and the number of registers and this is why the
methodology given in Sect. 3.1 performs about 1.25 times faster. As it was expected,
by unrolling the innermost loops, performance is not highly increased since the data
reuse being achieved is low.

As it was expected, one level of loop tiling is not performance efficient for Gaussian
Blur, Sobel and Jacobi Stencil since the locality advantage is lost by the additional
addressing (tiling adds more loops) and load/store instructions (there are overlapping
array elements which are loaded twice [52]). Regarding Gaussian Elimination, loop
tiling is not performance efficient because the loops allowed to be tiled (data depen-
dencies) (a) do not have fixed bound values (data reuse is decreased in each iteration),
(b) the upper row of the matrix (which is reused many times) always fits in L1. This
is why the methodology given in Sect. 3.1 achieves the best observed speedup for the
Gaussian Blur, Sobel, Jacobi Stencil and Gaussian Elimination.

Regarding MMM, MVM and FIR, loop tiling is performance efficient, especially,
when it is applied according to Sect. 3.2; Section 3.2 applies loop tiling in a more effi-
cient way (it takes into account data reuse, memory architecture details and data array
layouts) giving higher speedup values. Regarding MMM, loop tiling is performance
efficient for matrix sizes larger than 90 x 90 for both processors (both processors con-
tain 32kbyte L1 data cache). At the MVM case, loop tiling is performance efficient
for matrix sizes larger than 4096 x 4096. As far as FIR is concerned, loop tiling is
effective for filter sizes larger than 4000.

Loop tiling is more efficient on PowerPC processor because PowerPC contains only
one level of cache, making the memory management problem more critical. In contrast
to MMM, the MVM and the FIR do not increase their performance by applying loop
tiling to more than one loop iterator; this is because MMM contains three very large
arrays and one extra iterator, making loop tiling transformation more critical. As far as
loop interchange transformation is concerned, it does not increase performance except
from MMM in PowerPC (I believe that gcc already applies loop interchange, at least
on Intel processor).

Moreover, an evaluation over gcc/icc compilers is made. Icc performs better than
gcc, for all algorithms. A large number of different input sizes is tested for each

@ Springer

883

A methodology pruning the search space of six compiler...

(pasn st 19[1dw0d 993) SWT) UONNIIXS PO PAULIOJSULI) A 0) SWIT) UONNIIX PO JIBWYOUA] Y} JO o1kl ay) 0) 1951 sanjea dnpaads oy,

P81 P81 (4! 00°1 00°1 00°1 Dd1om0Od uoneurwlfy ueissnes
[2A! [2A! €e’l 00°1 00°1 00°1 [9U] UOHEBUIWI[UBIssnes)
€r'e €r'e oLl 00°1 00°1 00°1 Dd1emod [rua1s
jutod-¢ 1qodR[
[4:0! (40! 9l 00°1 00°1 00°1 [ow] U Jutod-6 1qooef
§Te §ee (40! 00T 00°1 00°1 Dd1PMOod [290§
10¢ 10¢ 89'1 00°L 00°1 00°1 23] [2q0S
(44 861 19°1 SI'1 SI'l SI'l Od1emod JId
Ice S0C 0oLl 60°1 601 601 [¥Id
€8¢ €8'C e 00°1 00°1 00°1 Dd1emod Injg ueissnesy
0r'c 0r'¢c (4! 00°1 00°1 00°1 [In[{ ueissnesy
60°C L8'1 €91 (U (! or't Dd1eomod WAIN
9 9 L0C 80°1 80°1 80°1 [P INAIN
[43 ¢ 651 9¢'1 IS1 0¢'l JdPmod WININ
€8¢ we €6'1 ST STl 4! [WININ

(az18

Juowadedar sdoo [1e 03 Surmn (soz1s o[9 1s9q pue doof

[[BI9A0 pOyjow
pasodoig

Auo 1°¢ 399§
‘poyiowr pasodoig

Ieedos pue doop
Juo 0} fjoun door|

JO [9A9] QuO pue
a8ueyoroyur doo

159q) sdooy e 01
Surm Jo [9A9[JUQ

159q) doo| auo 0)
Surn Jo [9A9[JUQ

(1 21qeL, Jo asoyy) sazis Jndur pax1y 10J UOT)EN[EAS QOUBULIONR] T dqBL

pringer

as

884 V. Kelefouras

Table 3 Performance comparison over gcc 4.8.4, icc 2015 and PowerPC compilers

Average MMM MVM Gaussian FIR Sobel Jacobi 9-point Gaussian
speedup Blur Stencil Elimination

IntelXeon E3-1240v3

gce 33 2.5 2.3 2.0 1.9 1.8 1.6
icc 2.5 1.9 2.1 1.6 1.5 1.4 1.3
Power PC440

PowerPC compiler 2.6 1.9 2.7 2.0 2.2 1.9 1.8

algorithm and the average speedup value is computed. As the input size increases,
the speedup slightly increases; this is because loop tiling becomes more critical in
this case. It is important to say that by slightly changing the input size, the output
schedule changes. The input sizes are the following. For MMM square matrices of
sizes (64 x 64 — 4000 x 4000) are used while for MVM a square matrix of size
(256 x 256 — 160,000 x 16,000) is used. For Gaussian Blur, Sobel, Jacobi Stencil
and Gaussian Elimination square matrices of sizes (256 x 256 — 3000 x 3000) are
used. Regarding FIR, (array size, filter size) = ((1000, 80) — (128,000, 12,000)). It is
important to say that PowerPC is connected to a DDR2 of 256 Mbytes and therefore
the input sizes that exceed this value are not tested.

The proposed methodology achieves significant speedup values on both proces-
sors (Table 3), as the number of load/store instructions and cache accesses is highly
decreased. icc applies more efficient transformations than gcc to the benchmark codes,
resulting in faster binary code. It is important to say that although icc generates much
faster binaries than gcc regarding the benchmark codes, both compilers give close exe-
cution time binaries regarding the proposed methodology output codes; this is because
both compilers are not able to apply high level transformations at the latter case.

Regarding Intel processor, gcc and icc compilers generate binary code contain-
ing SSE/AVX instructions (auto-vectorization) and thus they use 256-bit/128-bit
YMM/XMM registers. However, the proposed methodology does not support auto-
vectorization (it is out of the scope of this paper); thus, all the benchmark C-codes that
used on Intel, use SSE instrinsics. In this way, both input and output codes contain the
SSE instrinsics. As far as the PowerPC processor is concerned, benchmark C-codes
do not contain vector instructions.

The best observed speedup for Intel processor is achieved for MMM while the
best speedup for PowerPC is achieved for Gaussian Blur and MMM (Table 3). MMM
achieves the largest speedup values because it contains three very large 2-d arrays
providing data reuse (loop tiling has a larger effect in such cases). The MMM schedules
that achieve best performance on Intel include loop tiling for L1 and L3 and tile-wise
data array layouts for A and B, when C = C + A x B (when the input size is large
enough). The MMM schedules that achieve best performance on PowerPC include
tiling for L1 data cache and tile-wise layouts for the arrays A and B. Moreover,
the methodology given in Sect. 3.1, has a very large effect on performance for both
processors (Table 1). Regarding MVM (Table 3), speedup of 2.5 and 1.9 is achieved

@ Springer

A methodology pruning the search space of six compiler... 885

for Intel and PowerPC, respectively. Loop tiling for cache is not performance efficient
for Intel processor (speedup lower than 1%) since the total size of the arrays that
achieve data reuse is small (Y and X arrays, when ¥ = Y + A x X) and they fit in
fast L2 cache in most cases. However, PowerPC has one level of data cache only and
thus loop tiling is performance efficient for large array sizes only. Moreover, the data
array layout of A (when Y =Y + A x X) is not performance efficient to be changed
for two reasons (at both processors). First, array A size is very large compared to the
X and Y ones and second, A is not reused (each element of A is accessed only once).

Regarding Gaussian Blur, a large speedup value is achieved in both cases. Gaussian
Blur contains two 2-d arrays (images) and a 5 x 5 mask array which is always shifted
by one position to the right to the input image. The input image and the mask array
achieve data reuse and thus both array elements are assigned into registers. Regarding
Intel processor, the speedup values are 2.3 and 2.1 for gcc and icc, respectively, while
for PowerPC the highest speedup value is achieved, i.e., 2.7. Loop tiling is performance
efficient only for very large input sizes. As far as PowerPC is concerned, it achieves
a larger speedup value than Intel because by creating a large loop body, compilers
apply scalar replacement to the Gaussian mask elements, decreasing the number of
load/store and arithmetical instructions; the decreased number of instructions has a
larger effect on the smaller PowerPC processor which contains only one ALU unit.

FIR achieves a significant but not large performance gain (Table 3) because FIR
arrays are of small size. In the case that L1 data cache size is smaller than twice the
size of the filter array, loop tiling is necessary. This is because the filter array and a
part of the input array (they are of the same size) are loaded in each iteration; if L1 is
smaller than this value, the filter array cannot remain in L1 and thus it is fetched many
times from the upper memory. In this case loop tiling for L1 is performance efficient;
loop tiling is not applied for Intel L2/L.3 cache memories since the total size of the
arrays is smaller here.

In Sobel Operator two 3 x 3 mask arrays are applied to the input image, shifted by
one position to the right. I use the Manhattan instead of Euclidean distance because
in the latter case performance highly depends on the Euclidean distance computation
(especially on PowerPC); I use if-condition statements instead of aran() functions
for the same reason. PowerPC achieves a larger speedup value than Intel because by
increasing the loop body size, compiler apply scalar replacement to the Sobel mask
elements (Sobel mask elements contain only ones and zeros), decreasing the number
of load/store and arithmetical instructions; the decreased number of instructions has
a larger effect on the smaller PowerPC processor which contains only one ALU unit.

Regarding Jacobi 9-point Stencil, speedup values are 1.7 and 1.4 over gcc and icc,
respectively (Intel processor). As far as PowerPC is concerned, a larger speedup value
is achieved (1.9). Data reuse is achieved in each iteration for the six of the nine array
elements which are assigned into registers. Three loads occur in each iteration and
not nine, since six registers interchange their values as in (Fig. 3d). Regarding Intel
processor, data reuse is achieved by computing more than one result (from vertical
dimension) in each iteration.

Finally, Gaussian Elimination achieves the lowest speedup gain on both processors
because of the data dependencies (the proposed methodology can be applied partially).

@ Springer

886 V. Kelefouras

Loop tiling is not performance efficient on both processors since the upper row of the
matrix which achieves data reuse, fits in the L1 data cache at all cases.

5 Conclusions

In this paper, six compiler optimizations are addressed together as one problem and not
separately, for a wide range of algorithms and computer architectures. New methods
for loop unroll and loop tiling are given which take into account the custom SW char-
acteristics and the HW architecture details. In this way, the search space is decreased
by many orders of magnitude and thus it is capable to be searched.

References

1. Triantafyllis S, Vachharajani M, Vachharajani N, August DI (2003) Compiler optimization-space
exploration. In: Proceedings of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, CGO *03. IEEE Computer Society, Washington, DC, pp
204-215. http://dl.acm.org/citation.cfm?id=776261.776284

2. Cooper KD, Subramanian D, Torczon L (2001) Adaptive optimizing compilers for the 21st Century. J
Supercomput 23:2002

3. Kisuki T, Knijnenburg PMW, O’Boyle MFP, Bodin F, Wijshoff HAG (1999) A feasibility study
in iterative compilation. In: Proceedings of the Second International Symposium on High Perfor-
mance Computing, ISHPC ’99. Springer, London, UK, pp 121-132. http://dl.acm.org/citation.cfm?
1d=646347.690219

4. Kulkarni PA, Whalley DB, Tyson GS, Davidson JW (2009) Practical exhaustive optimization phase
order exploration and evaluation. ACM Trans Archit Code Optim 6(1):1-36. doi:10.1145/1509864.
1509865

5. Kulkarni P, Hines S, Hiser J, Whalley D, Davidson J, Jones D (2004) Fast searches for effective
optimization phase sequences. SIGPLAN Not 39(6):171-182. doi:10.1145/996893.996863

6. Park E, Kulkarni S, Cavazos J (2011) An evaluation of different modeling techniques for iterative
compilation. In: Proceedings of the 14th international conference on Compilers, architectures and
synthesis for embedded systems, CASES *11. ACM, New York, NY, pp 65-74. doi:10.1145/2038698.
2038711

7. Monsifrot A, Bodin F, Quiniou R (2002) A machine learning approach to automatic production of
compiler heuristics. In: Proceedings of the 10th International Conference on Artificial Intelligence:
Methodology, Systems, and Applications, AIMSA ’02. Springer, London, pp 41-50. http://dl.acm.org/
citation.cfm?id=646053.677574

8. Stephenson M, Amarasinghe S, Martin M, O’Reilly UM (2003) Meta optimization: improving compiler
heuristics with machine learning. SIGPLAN Not 38(5):77-90. doi: 10.1145/780822.781141

9. Tartara M, Crespi Reghizzi S (2013) Continuous learning of compiler heuristics. ACM Trans Archit
Code Optim 9(4):46:1-46:25. doi:10.1145/2400682.2400705

10. Agakov F, Bonilla E, Cavazos J, Franke B, Fursin G, O’Boyle MFP, Thomson J, Toussaint M, Williams
CKI (2006) Using machine learning to focus iterative optimization. In: Proceedings of the International
Symposium on Code Generation and Optimization, CGO "06. IEEE Computer Society, Washington,
DC, pp 295-305. doi:10.1109/CG0O.2006.37

11. Almagor L, Cooper KD, Grosul A, Harvey TJ, Reeves SW, Subramanian D, Torczon L, Waterman T
(2004) Finding effective compilation sequences. SIGPLAN Not 39(7):231-239. doi:10.1145/998300.
997196

12. Cooper KD, Schielke PJ, Subramanian D (1999) Optimizing for reduced code space using genetic
algorithms. SIGPLAN Not 34(7):1-9. doi:10.1145/315253.314414

13. Cooper KD, Grosul A, Harvey TJ, Reeves S, Subramanian D, Torczon L, Waterman T (2005) ACME:
adaptive compilation made efficient. SIGPLAN Not 40(7):69-77. doi:10.1145/1070891.1065921

@ Springer

http://dl.acm.org/citation.cfm?id=776261.776284
http://dl.acm.org/citation.cfm?id=646347.690219
http://dl.acm.org/citation.cfm?id=646347.690219
http://dx.doi.org/10.1145/1509864.1509865
http://dx.doi.org/10.1145/1509864.1509865
http://dx.doi.org/10.1145/996893.996863
http://dx.doi.org/10.1145/2038698.2038711
http://dx.doi.org/10.1145/2038698.2038711
http://dl.acm.org/citation.cfm?id=646053.677574
http://dl.acm.org/citation.cfm?id=646053.677574
http://dx.doi.org/10.1145/780822.781141
http://dx.doi.org/10.1145/2400682.2400705
http://dx.doi.org/10.1109/CGO.2006.37
http://dx.doi.org/10.1145/998300.997196
http://dx.doi.org/10.1145/998300.997196
http://dx.doi.org/10.1145/315253.314414
http://dx.doi.org/10.1145/1070891.1065921

A methodology pruning the search space of six compiler... 887

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Cooper KD, Grosul A, Harvey TJ, Reeves S, Subramanian D, Torczon L, Waterman T (2006) Exploring
the structure of the space of compilation sequences using randomized search algorithms. J Supercomput
36(2):135-151. doi:10.1007/s11227-006-7954-5

Kulkarni PA, Whalley DB, Tyson GS (2007) Evaluating heuristic optimization phase order search
algorithms. In: Proceedings of the International Symposium on Code Generation and Optimization,
CGO ’07. IEEE Computer Society, Washington, DC, pp 157-169. doi:10.1109/CG0O.2007.9

Chen C, Chame J, Hall M (2005) Combining models and guided empirical search to optimize for mul-
tiple levels of the memory hierarchy. In: Proceedings of the 2013 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pp 111-122. doi:10.1109/CG0.2005.10

Haneda M, Khnijnenburg PMW, Wijshoff HAG (2005) Automatic selection of compiler options using
non-parametric inferential statistics. In: Proceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniques, PACT *05. IEEE Computer Society, Washington, DC, pp
123-132. doi:10.1109/PACT.2005.9

Cavazos J, Fursin G, Agakov F, Bonilla E, O’Boyle MFP, Temam O (2007) Rapidly selecting good
compiler optimizations using performance counters. In: Proceedings of the International Symposium
on Code Generation and Optimization, CGO ’07. IEEE Computer Society, Washington, DC, pp 185—
197. doi:10.1109/CG0.2007.32

de Mesmay F, Voronenko Y, Piischel M (2010) Offline library adaptation using automatically generated
heuristics. In: International Parallel and Distributed Processing Symposium (IPDPS), pp 1-10
Dubach C, Jones TM, Bonilla EV, Fursin G, O’Boyle MFP (2009) Portable compiler optimisation
across embedded programs and microarchitectures using machine learning. In: Proceedings of the
42Nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42. ACM, New
York, NY, pp 78-88. doi:10.1145/1669112.1669124

Knijnenburg PMW, Kisuki T, Gallivan K, O’Boyle MFP (2004) The effect of cache models on iterative
compilation for combined tiling and unrolling.] CCPE 16(2-3):247-270

Kim D, Renganarayanan L, Rostron D, Rajopadhye S, Strout MM (2007) Multi-level Tiling: M for the
Price of One. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC *07. ACM,
New York, NY, pp 51:1-51:12. doi:10.1145/1362622.1362691

Renganarayanan L, Kim D, Rajopadhye S, Strout MM (2007) Parameterized tiled loops for free.
SIGPLAN Not 42(6):405-414. doi:10.1145/1273442.1250780

Fursin G, O’Boyle MFP, Knijnenburg PMW (2002) Evaluating iterative compilation. In: Languages
and Compilers for Parallel Computing, 15th Workshop, (LCPC), Revised Papers. College Park, MD,
, pp 362-376

Leather H, Bonilla E, O’Boyle M (2009) Automatic feature generation for machine learning based
optimizing compilation. In: Proceedings of the 7th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’09. IEEE Computer Society, Washington, DC, pp 81-91.
doi:10.1109/CG0.2009.21

Stephenson M, Amarasinghe S (2005) Predicting Unroll Factors Using Supervised Classification. In:
Proceedings of the International Symposium on Code Generation and Optimization, CGO ’05. IEEE
Computer Society, Washington, DC, pp 123-134. doi:10.1109/CG0.2005.29

Park E, Pouche LN, Cavazos J, Cohen A, Sadayappan P (2011) Predictive Modeling in a Polyhedral
Optimization Space. In: Proceedings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’11. IEEE Computer Society, Washington, DC, pp 119-129. http://
dl.acm.org/citation.cfm?id=2190025.2190059

Jantz MR, Kulkarni PA (2013) Exploiting phase inter-dependencies for faster iterative compiler opti-
mization phase order searches. In: Proceedings of the 2013 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, CASES ’13. IEEE Press, Piscataway, NJ, pp
7:1-7:10. http://dl.acm.org/citation.cfm?id=2555729.2555736

Kulkarni S, Cavazos J (2012) Mitigating the compiler optimization phase-ordering problem using
machine learning. SIGPLAN Not 47(10):147-162. doi:10.1145/2398857.2384628

Parello D, Temam O, Cohen A, Verdun JM (2004) Towards a Systematic, Pragmatic and Architecture-
Aware Program Optimization Process for Complex Processors. In: Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing, SC *04. IEEE Computer Society, Washington, DC, p 15. doi:10.1109/
SC.2004.61

Rong H, Douillet A, Gao GR (2005) Register allocation for software pipelined multi-dimensional
loops. SIGPLAN Not 40(6):154-167. doi:10.1145/1064978.1065030

@ Springer

http://dx.doi.org/10.1007/s11227-006-7954-5
http://dx.doi.org/10.1109/CGO.2007.9
http://dx.doi.org/10.1109/CGO.2005.10
http://dx.doi.org/10.1109/PACT.2005.9
http://dx.doi.org/10.1109/CGO.2007.32
http://dx.doi.org/10.1145/1669112.1669124
http://dx.doi.org/10.1145/1362622.1362691
http://dx.doi.org/10.1145/1273442.1250780
http://dx.doi.org/10.1109/CGO.2009.21
http://dx.doi.org/10.1109/CGO.2005.29
http://dl.acm.org/citation.cfm?id=2190025.2190059
http://dl.acm.org/citation.cfm?id=2190025.2190059
http://dl.acm.org/citation.cfm?id=2555729.2555736
http://dx.doi.org/10.1145/2398857.2384628
http://dx.doi.org/10.1109/SC.2004.61
http://dx.doi.org/10.1109/SC.2004.61
http://dx.doi.org/10.1145/1064978.1065030

888 V. Kelefouras

32. Hack S, Goos G (2006) Optimal register allocation for SSA-form Programs in polynomial time. Inf
Process Lett 98(4):150-155. doi:10.1016/j.ipl.2006.01.008

33. Nagarakatte SG, Govindarajan R (2007) Register Allocation and Optimal Spill Code Scheduling in
Software Pipelined Loops Using 0-1 Integer Linear Programming Formulation. In: Proceedings of
the 16th International Conference on Compiler Construction, CC’07. Springer, Berlin, Heidelberg, pp
126-140. http://dl.acm.org/citation.cfm?id=1759937.1759949

34. Sarkar V, Barik R (2007) Extended Linear Scan: An Alternate Foundation for Global Register Alloca-
tion. Compiler Construction, 16th International Conference. Proceedings. Braga, Portugal, pp 141-155

35. Smith MD, Ramsey N, Holloway G (2004) A generalized algorithm for graph-coloring register allo-
cation. SIGPLAN Not 39(6):277-288. doi:10.1145/996893.996875

36. Wang L, Yang X, Xue J, Deng Y, Yan X, Tang T, Nguyen QH (2008) Optimizing scientific application
loops on stream processors. SIGPLAN Not 43(7):161-170. doi:10.1145/1379023.1375679

37. Baradaran N, Diniz PC A register allocation algorithm in the presence of scalar replacement for fine-
grain configurable architectures. arXiv:0710.4702

38. Lozano RC, Schulte C Survey on Combinatorial Register Allocation and Instruction Scheduling.
arXiv:1409.7628

39. Sherwood T, Calder B, Emer J (1999) Reducing cache misses using hardware and software page
placement. In: Proceedings of the 13th international conference on Supercomputing, ICS "99. ACM,
New York, NY, pp 155-164. doi:10.1145/305138.305189

40. Cacaval C, Padua DA (2003) Estimating cache misses and locality using stack distances. In: Proceed-
ings of the 17th annual international conference on Supercomputing, ICS *03. ACM, New York, NY,
pp 150-159. doi:10.1145/782814.782836

41. Ghosh S, Martonosi M, Malik S (1997) Cache miss equations: an analytical representation of cache
misses. In: Proceedings of the 11th international conference on Supercomputing, ICS ’97. ACM, New
York, NY, pp 317-324. doi:10.1145/263580.263657

42. Song F, Moore S, Dongarra J (2007) L2 cache modeling for scientific applications on chip multi-
processors. In: Parallel Processing, International Conference on 51. doi:10.1109/ICPP.2007.52

43. Hankins RA, Patel JM (2003) Data morphing: an adaptive, cache-conscious storage technique. In:
Proceedings of the 29th international conference on Very large data bases—vol 29, VLDB ’2003,
VLDB Endowment, 2003, pp 417-428. http://dl.acm.org/citation.cfm?id=1315451.1315488

44. Franz M, Kistler T (1998) Splitting data objects to increase cache utilization. Department of Information
and Computer Science University of California, Tech. rep

45. Rubin S, Bodik R, Chilimbi T (2002) An efficient profile-analysis framework for data-layout optimiza-
tions. SIGPLAN Not 37:140-153. doi:10.1145/565816.503287

46. Chang SK (2003) Data structures and algorithms, vol 13 of series on software engineering and knowl-
edge engineering. World Scientific, Singapore

47. Kelefouras V, Kritikakou A, Goutis C (2015) A methodology for speeding up loop kernels by exploiting
the software information and the memory architecture. Comput Lang Syst Struct 41:21-41. http://dblp.
uni-trier.de/db/journals/cl/cl41.html

48. Whaley RC, Petitet A, Dongarra JJ (2001) Automated Empirical Optimization of Software and the
ATLAS Project. Parallel Comput 27(1-2):3-35

49. Kelefouras V, Kritikakou A, Mporas I, Vasileios K (2016) A high-performance matrix-matrix multi-
plication methodology for CPU and gpu architectures. J Supercomput 72(3):804—844. doi:10.1007/
s11227-015-1613-7

50. Kelefouras VI, Kritikakou A, Papadima E, Goutis CE (2015) A methodology for speeding up matrix
vector multiplication for single/multi-core architectures. J Supercomput 71(7):2644-2667. http://dblp.
uni-trier.de/db/journals/tjs/tjs71.html

51. O. S. University, Polybench/c benchmark suite (2012). http://web.cs.ucla.edu/~pouchet/software/
polybench/

52. Kelefouras VI, Kritikakou A, Goutis C (2014) A methodology for speeding up edge and line detection
algorithms focusing on memory architecture utilization. Supercomput Springer. doi:10.1007/s11227-
013-1049-x

@ Springer

http://dx.doi.org/10.1016/j.ipl.2006.01.008
http://dl.acm.org/citation.cfm?id=1759937.1759949
http://dx.doi.org/10.1145/996893.996875
http://dx.doi.org/10.1145/1379023.1375679
http://arxiv.org/abs/0710.4702
http://arxiv.org/abs/1409.7628
http://dx.doi.org/10.1145/305138.305189
http://dx.doi.org/10.1145/782814.782836
http://dx.doi.org/10.1145/263580.263657
http://dx.doi.org/10.1109/ICPP.2007.52
http://dl.acm.org/citation.cfm?id=1315451.1315488
http://dx.doi.org/10.1145/565816.503287
http://dblp.uni-trier.de/db/journals/cl/cl41.html
http://dblp.uni-trier.de/db/journals/cl/cl41.html
http://dx.doi.org/10.1007/s11227-015-1613-7
http://dx.doi.org/10.1007/s11227-015-1613-7
http://dblp.uni-trier.de/db/journals/tjs/tjs71.html
http://dblp.uni-trier.de/db/journals/tjs/tjs71.html
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://dx.doi.org/10.1007/s11227-013-1049-x
http://dx.doi.org/10.1007/s11227-013-1049-x

	A methodology pruning the search space of six compiler transformations by addressing them together as one problem and by exploiting the hardware architecture details
	Abstract
	1 Introduction
	2 Related work
	3 Proposed methodology
	3.1 Loop unroll, scalar replacement, register allocation
	3.2 Loop tiling and data array layouts

	4 Experimental results
	5 Conclusions
	References

