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Abstract This paper proposes a parallel regression formulation to reduce the compu-
tational time of variable selection algorithms. The proposed strategy can be used for
several forward algorithms in order to select uncorrelated variables that contribute for
a better predictive capability of the model. Our demonstration of the proposed method
include the use of Successive Projections Algorithm (SPA), which is an iterative for-
ward technique that minimizes multicollinearity. SPA is traditionally used for variable
selection in the context of multivariate calibration. Nevertheless, due to the need of
calculating an inverse matrix for each insertion of a new variable in the model cali-
bration, the computational performance of the algorithm may become impractical as
the matrix size increases. Based on such limitation, this paper proposes a new strategy
called Parallel Regressions (PR). PR strategy was implemented in the SPA to avoid
the matrix inverse calculation of original SPA in order to increase the computational
performance of the algorithm. It uses a parallel computing platform called Compute
Unified Device Architecture (CUDA) in order to exploit a Graphics Processing Unit,
and was called SPA-PR-CUDA. For this purpose, we used a case study involving a
large data set of spectral variables. The results obtained with SPA-PR-CUDA pre-
sented 37× times better performance compared to a traditional SPA implementation.
Additionally, when compared to traditional algorithms we demonstrated that SPA-PR-
CUDA may be a more viable choice for obtaining a model with a reduced prediction
error value.
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1 Introduction

The connection of laboratory instruments with computers have produced a large
amount of complex data [1,2]. Increasingly huge databases containing a large amount
of information such as the spectral analysis, chromatographic, molecular structures,
and their properties are available nowadays [3]. Mathematical models can be used to
extract the relation between independent and response variables from a large volume
of data.

Regression is a technique that relates dependent variables (response variables)
with independent variables (explanatory variables). The most widely used estima-
tion method of the relationship between variables is the Least Squares method [4].
The Least Squares or Ordinary Least Squares (OLS) method can find the best fit
for a data set by minimizing the sum of squared differences between the estimated
response value and the observed data (such differences are called residue), estimating
the unknown parameters in a Multivariate Regression Model (MLR).

The major limitation in regression is the presence of collinear variables. This prob-
lem is known as multicollinearity [5], which results in a ill-conditioned regression.
MLR and other multivariate regression methods can load a large amount of data from
a database into large matrices in a computer memory. Such matrices usually contain
many more columns than rows [6,7]. It should be remarked that variables in such
matrices are often very correlated in which two or more variable or measurements on
the same group of elements vary together [8]. Furthermore, the inversion of the matrix
of variables is mathematically unstable when the variables are highly correlated [5].
In this scenario, there are at least two problems to be overcome: (i) the inversion of the
highly correlated matrix; and (ii) the computational time spent to inversion of large
matrices. Both limitations of matrix inversion can be solved using variable (or feature)
selection methods, which helps to reduce the correlation among the variables.

Variable selection algorithms have been used in order to avoid the ill-conditioning
regression [9]. Search algorithms such as Genetic Algorithms (GA) and the Successive
Projections Algorithm (SPA) have also been used for variable selection in the regres-
sion [10,11]. For instance, Paula et al. [12] proposed a modified metaheuristic (Firefly
Algorithm) for variable selection in a multivariate calibration problem. Furthermore,
Soares et al. [13] presented an optimized SPA implementation for variable selection
in Near-Infrared spectrometric analysis. However, in all cases the high computational
cost of the search grows considerably as the number of variables increases [11].

Although our proposition can be used for any “forward” algorithm in order to select
uncorrelated variables that contribute for a better predictive capability of the model,
we choose the SPA1 algorithm to demonstrate the advantages of our proposition.

Successive Projections Algorithm is an iterative “forward” technique used for
variable selection and multicollinearity reduction in different applications such as

1 SPA is a variable-selection technique that has attracted increasing interest in the community in the past
10 years [14].
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multivariate calibration [14,15] and multivariate classification [16–18]. Indeed, SPA
is a successful technique for variable selection in multiple applications [11,13,19].
Nevertheless, its major limitation consists on the calculation of the inverse matrix
every time a new variable is inserted into the subset of candidate variables [19].

Because of such limitation, this paper proposes a new strategy called Parallel
Regressions (PR), which seems very useful since it canmeasure the effect of a variable
inclusion into a model without calculating an inverse matrix. The use of PR also can
produce some reduction of the computational time calculations. On the other hand,
the inclusion of variables has the effect of increasing the running time.

Therefore, a new parallel implementation of the SPA is also proposed. This new
version is implemented exploiting features of Compute Unified Device Architecture
(CUDA) on a Graphics Processing Unit (GPU), and it was called SPA-PR-CUDA. In
addition, SPA-PR-CUDA includes a code optimization in the mathematical formula-
tion. The results showed a significant reduction of the computational time compared to
original SPA. It was possible to note that SPA-PR-CUDA may be twelve times faster
than traditional SPA implementations. It is important to note that all outcomes were
obtained by averaging twenty executions.

The study case includes the variable selection obtained from NIR (Near-InfraRed)
spectrum for determination of protein concentration on wheat. In the original data set,
1090 correlated variables are available. The challenge is to select a minimal subset
uncorrelated that minimizes the error between predicted and real protein concentration
on wheat.

The paper is organized as follows. Section 2 describes the SPA. The proposed
algorithmandparallelization are detailed inSection 3. Section 4 describes thematerials
andmethods used in the experiment. The results are discussed in Sect. 5. Finally, Sect. 6
shows the conclusions.

2 SPA and MLR review

2.1 MLR

The multivariate calibration refers to obtaining a mathematical model that allows to
provide the value of a quantity y based on values measured from a set of explanatory
variables x1, x2, …, xk [9]. In other words, it is possible to obtain a suitable model

y = β0 + β1x1 + · · · + βk xk + ε, (1)

where β0, β1, …, βk , k = 1, 2, …, K , are the coefficients to be determined, and ε is a
portion of random error.

Given a matrix X and a vector y, data set may be divided into three sets: calibration
(Xcal and ycal ), validation (Xval and yval ) and prediction (Xpred e ypred ). Equation (2)
shows how the regression coefficients can be calculated. Once obtained the regression
coefficients, matrix Xpred and vector ypred can be used to analyze the accuracy of the
coefficients.

β = (XT
calXcal)

−1XT
calycal , (2)
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where Xcal is the matrix of variables and samples collected by instruments (used for
the construction of multivariate calibration models), ycal is the vector of dependent
variables or a property of interest obtained in laboratory (reference parameter for
model calibration), and β is the vector of regression coefficients.

The calculation for estimating the response variable involves the measures Xval

and β:

ŷ = Xvalβ. (3)

The predictive ability of the calibration model is calculated by the Root Mean
Squared Error of Prediction (RMSEP), which is a measure of absolute error:

RMSEP =
√∑N

i=0(yi − ŷi )2

N
, (4)

where ŷ is the estimated value, y is the actual value of the property of interest and N
= Ncal + Nval + Npred is the total number of samples.

Another criteria that may be used to determine the predictive ability ofMLRmodels
is the Mean Absolute Percentage Error (MAPE) [20]. MAPE is a relative measure to
express errors as a percentage of the actual data defined as:

MAPE =
∑ | yi−ŷi

yi
|

N
(100) =

∑ | ei
yi

|
N

(100), (5)

where yi is the actual data at variable i , ŷi is the forecast at variable i , ei is the forecast
error at variable i , and N is the number of samples.

2.2 SPA

For standardMLRmethod, the design matrix X must have full column rank in order to
calculates the Eq. 2, however, often we have a condition known as multicollinearity in
the predictor variables. SPA is an iterative procedure widely used for variable selection
in calibration models [21]. Given an initial variable, a new selected variable is inserted
into the data subset with greater orthogonal projection in relation to the previous
variable until a maximum number m is reached [14]. The three phases of SPA are
described as follows:

1. Phase 1: it consists of projection operations in matrix Xcal . The projections are
used to generate variable chains. Each element of a chain is included so as to obtain
the largest orthogonal projection according the procedure described by [14].

P = I − xi (xi )T

(xi )T xi
, (6)

where I is the identity matrix with dimension Ncal × Ncal , xi is the i-th column
of the matrix Xcal , and P is the projection matrix;
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2. Phase 2: subsets of candidate variables are evaluated according to the error of the
model.

3. Phase 3: it reduces the number of variables selected in Phase 2 discarding those
that do not contribute to the predictive ability of the model.

In Phase 2 (Algorithm 1), SPA uses the validation set to assess subsets of variables
extracted from the chains generated in Phase 1. The best subset of variables is the
smallest one that provide the lowest error value between the tested subsets. The Phase
2 is considered the computational bottleneck of the SPA compared to other phases
[19]. In addition, the inverse matrix calculation of the regression (line 8 of Algorithm
1) may require a large computational effort and contribute to a low performance of
the SPA [14].

Algorithm 1: Phase 2 of SPA.
1. Let be K the number of variables available and M the maximum number of variable that can be

selected.
2. do k = 1
3. while k < K
4. do m = 1
5. while m < M
6. Let Xk×m be a subset of variables composed by the first m elements of the k-th chain

generated in step 1
7. Let S−1

k×m be the inverse matrix of regression (XT
calXcal )

−1XT
calycal

8. Using the variables contained in Xk×m , compute the inverse matrix S−1
k×m and the rest

of the regression (XT
calXcal )

−1XT
calycal

9. Compute the error of the k-th chain with m variables
10. do m = m + 1
11. end while m
12. do k = k + 1
13. end while k

3 Proposal

Let us consider {x1, x2, . . . , xM } as a chain of variables obtained in Phase 1 of SPA.
Phase 2 may use these variables to obtain m progressively larger MLR models, start-
ing from a single-variable (x1), followed by models with two (x1, x2), up to M
(x1, x2, . . . , xM ) variables. Each model can be obtained by a least-squares regres-
sion procedure. However, this procedure requires the calculation of the inverse of
progressively larger matrices. On the other hand, the proposed formulation of Parallel
Regressions (PR) can reduce the computational time of Phase 2 by avoiding the need
of matrix inversions [19,22].

The formulation of PR starts from a single-variable model as follows:

y = β
(1)
1 xt1 + ε y|x1, (7)

where β1 is the regression coefficient and ε is the residue. The superscripts (1), t and
y|x1 denote, respectively, one independent variable that is employed in the model,
each thread t access one element of the vector, and y is regressed on x1.
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The least-squares estimate of β
(1)
1 can be given by

β
(1)
1 =

∑N
i=1 yi x

t
i,1∑N

i=1(x
t
i,1)

2
, (8)

where yi and xi,1 represent the values of y and x1 for the i-th calibration object (line
i of matrix X), respectively.

By using a similar notation, the two-variable model may be written as

y = β
(2)
1 xt1 + β

(2)
2 xt2 + ε y|x1,x2 . (9)

In attempt to obtain β
(2)
1 and β

(2)
2 , x2 is initially regressed on x1 according to a

model of the form

x2 = δ̂
x2|x1
1 xt1 + εx2|x1 . (10)

where the estimate coefficient δ̂x2|x11 is calculated by univariate regression as

δ̂
x2|x1
1 =

∑N
i=1 x

t
i,2x

t
i,1∑N

i=1(x
t
i,1)

2
. (11)

Then, β(2)
1 and β

(2)
2 may be obtained as

β
(2)
2 =

∑N
i=1 e

y|x1
i x ti,2∑N

i=1 e
x2|x1
i x ti,2

, β
(2)
1 = β

(1)
1 − δ

x2|x1
1 β

(2)
2 , (12)

where

ey|x1i = yi − β
(1)
1 xti,1, (13)

and

ex2|x1i = xi,2 − δ̂
x2|x1
1 xti,1. (14)

Such proceduremay be generalized to obtain amodelwithm variables fromamodel
with m − 1 variables, where m ranges from 2 to M [19]. Thus, the new independent
variable xm is regressed on {x1, x2, …, xm−1} according to a model of the following
form

xm = δ̂
xm |x1,...,xm−1
1 xt1 + δ̂

xm |x1,...,xm−1
2 xt2 + · · · + δ̂

xm |x1,...,xm−1
m−1 xtm−1 + εxm |x1,...,xm−1 .

(15)
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The coefficients β
(m)
1 , β

(m)
2 , . . . , β

(m)
m of the m-variable model are calculated as

β(m)
m =

∑N
i=1 e

y|x1,...,xm−1
i x ti,m∑N

i=1 e
xm |x1,...,xm−1
i x ti,m

, (16)

β
(m)
m− j = β

(m−1)
m− j − δ̂

xm |x1,...,xm−1
m− j β(m)

m , j = 1, . . . ,m − 1, (17)

where

exm |x1,...,xm−1
i = xti,m − (δ̂

xm |x1,...,xm−1
1 xti,1 + δ̂

xm |x1,...,xm−1
2 xti,2

+ · · · + δ̂
xm |x1,...,xm−1
m−1 xti,m−1), (18)

and

ey|x1,...,xm−1
i = yi − (β

(m−1)
1 xti,1 + β

(m−1)
2 xti,2 + · · · + β

(m−1)
m−1 xti,m−1). (19)

It is worthy to note that the superscript t indicates that all basic mathematical
operations between vectors and matrices are performed in parallel by threads in order
to increase the computing performance of the algorithm. The Sect. 3.1 presents a
numerical example to facilitate the understanding of the formulation.

The estimation of regression coefficients using a least-squares regression sequential
procedure has computational complexity O(n3) due to the matrix inversion calcu-
lation [22]. On the other hand, using our proposed strategy the largest complexity
consists on the calculation of Eqs. (8), (11), (12) and (16), which have computational
complexity O(n2) and it can be reduced by parallelization. The Sect. 3.2 provides an
example about the exploitation of parallelism.

3.1 Numerical example for the parallel regressions strategy

Let X3×3 and y3×1 be the matrices randomly obtained bellow:

X =
⎡
⎢⎣
0.9528 0.5982 0.8368

0.7041 0.8407 0.5187

0.9539 0.4428 0.0222

⎤
⎥⎦ , y =

⎡
⎢⎣
0.3759

0.8986

0.4290

⎤
⎥⎦ . (20)

Initially, we assume a scenario in which it is used only the first column of X: x1 =
[0.9528 0.7041 0.9539]T . The regression coefficientβx1 , that is, the regressionwith
just the variable x1 is equal toβ

(1)
1 , which is then obtained by substituting the respective

values in Eq. (8), which leads to

β
(1)
1 = (0.3759 × 0.9528) + (0.8986 × 0.7041) + (0.4290 × 0.9539)

(0.9528)2 + (0.7041)2 + (0.9539)2

= 0.6052. (21)
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Now we add the second column of X: x2 = [0.5982 0.8407 0.4428]T . In order
to obtain the regression coefficients β

(2)
1 and β

(2)
2 , that is, the coefficients with two

variables, wemust calculate β
(2)
2 according to Eq. 12. However, first we need to regress

x2 on x1 in order to obtain δ̂x2|x1 (Eq. 11), ey|x1 (Eq. 13) and ex2|x1 (Eq. 14).

δ̂x2|x1 = (0.5982 × 0.9528) + (0.8407 × 0.7041) + (0.4428 × 0.9539)

(0.9528)2 + (0.7041)2 + (0.9539)2

= 0.6848, (22)

ey|x1 =
⎡
⎢⎣
0.3759

0.8986

0.4290

⎤
⎥⎦ − 0.6052

⎡
⎢⎣
0.9528

0.7041

0.9539

⎤
⎥⎦ =

⎡
⎢⎣

−0.2007

0.4725

−0.1483

⎤
⎥⎦ (23)

and

ex2|x1 =
⎡
⎢⎣
0.5982

0.8407

0.4428

⎤
⎥⎦ − 0.6848

⎡
⎢⎣
0.9528

0.7041

0.9539

⎤
⎥⎦ =

⎡
⎢⎣

−0.0543

0.3586

−0.2104

⎤
⎥⎦ . (24)

Substituting the values found in Eq. (12) we have

β
(2)
2 = (−0.2007 × 0.5982) + (0.4725 × 0.8407) + (−0.1483 × 0.4428)

(−0.0534 × 0.5982) + (0.3586 × 0.8407) + (−0.2104 × 0.4428)
= 1.2033, (25)

ey|x2,x1 =
⎡
⎢⎣

−0.2007

0.4725

−0.1483

⎤
⎥⎦ − 1, 2033

⎡
⎢⎣

−0.0543

0.3585

−0.2104

⎤
⎥⎦ =

⎡
⎢⎣

−0.1354

0.0411

0.1049

⎤
⎥⎦ . (26)

Updating β
(1)
1 to β

(2)
1 , we have

β
(2)
1 = 0.6052 − (0.6848 × 1.2032)

= −0.2188. (27)

Thus, the regression coefficients with variables x1 and x2 is

[β(2)
1 β

(2)
2 ]T = [−0.2188 1.2033]T . (28)

For comparison purposes, using the classical method with matrix inversion, it is
easy to see that the result showed in (29) is equal to the result in (28). For this, where
X1,2 is a matrix containing the first and second column of X, we have
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(XT
1,2X1,2)

−1 =
⎛
⎝

[
0.9528 0.7041 0.9539

0.5982 0.8407 0.4428

]
×

⎡
⎣0.9528 0.5982

0.7041 0.8407
0.9539 0.4428

⎤
⎦

⎞
⎠

−1

=
[

3.0998 −3.8952

−3.8952 5.6879

]
.

β1,2 = (XT
1,2X1,2)

−1XT
1,2y,

β1,2 =
[

3.0998 −3.8952

−3.8952 5.6879

]
×

[
0.9528 0.7041 0.9539

0.5982 0.8407 0.4428

]

×
⎡
⎢⎣
0.3759

0.8986

0.4290

⎤
⎥⎦ ,

β1,2 =
[

−0.2188

1.2033

]
=

[
β

(2)
1

β
(2)
2

]
. (29)

Finally, we add the third column of X: x3 = [0.8368 0.5187 0.0222]T . In a
similar manner to the univariate model, we first regress x3 on x2 and x1.

δ̂x3|x1 = (0.8368 × 0.9528) + (0.5187 × 0.7041) + (0.0222 × 0.9539)

(0.9528)2 + (0.7041)2 + (0.9539)2

= 0.5116, (30)

and

ex3|x1 =
⎡
⎢⎣
0.8368

0.5187

0.0222

⎤
⎥⎦ − 0.5116

⎡
⎢⎣
0.9528

0.7041

0.9539

⎤
⎥⎦ =

⎡
⎢⎣

0.3493

0.1585

−0.4659

⎤
⎥⎦ . (31)

δ̂x3|x1,x2 = (0.3493 × 0.5982) + (0.1585 × 0.8407) + (−0.4659 × 0.4428)

(0.5982 × −0.0543) + (0.8407 × 0.3585) + (0.4428 × −0.2104)
= 0.7731, (32)

and

ex3|x1,x2 =
⎡
⎢⎣

0.3493

0.1585

−0.4659

⎤
⎥⎦ − 0.7731 ×

⎡
⎢⎣

−0.0543

0.3585

−0.2104

⎤
⎥⎦ =

⎡
⎢⎣

0.3913

−0.1187

−0.3032

⎤
⎥⎦ . (33)

Updating δ̂x3|x1 ,

δ̂x3|x1 = δ̂x3|x1 − (δ̂x2|x1 × δ̂x3|x1,x2),
= 0.5116 − (0.6848 × 0.731), (34)

= −0.0177. (35)
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Thus, we can obtain β
(3)
3

β
(3)
3 = (−0.1354 × 0.8368) + (0.0410 × 0.5187) + (−0.1049 × 0.0222)

(0.3913 × 0.8368) + (−0.1187 × 0.5187) + (−0.3033 × 0.0222)
= −0.3461. (36)

Updating β
(2)
2 to β

(3)
2 ,

β
(3)
2 = 1.2033 − 0.7728 × (−0.3469),

= 1.4708, (37)

and β
(2)
1 to β

(3)
1 ,

β
(3)
1 = −0.2188 − (−0.0176) × (−0.3459),

= −0.2250. (38)

For comparison purposes, the classical least-squares regression is calculated for the
example in question as shown below:

(XT X)−1 =
⎛
⎜⎝

⎡
⎢⎣
0.9528 0.7041 0.9539

0.5982 0.8407 0.4428

0.8368 0.5187 0.0222

⎤
⎥⎦ ×

⎡
⎢⎣
0.9528 0.5982 0.8368

0.7041 0.8407 0.5187

0.9539 0.4428 0.0222

⎤
⎥⎦

⎞
⎟⎠

−1

=
⎡
⎢⎣

3.1010 −3.9476 0.0678

−3.9476 7.9925 −2.9821

0.0678 −2.9821 3.8587

⎤
⎥⎦ .

β =
⎡
⎢⎣

3.1010 −3.9476 0.0678

−3.9476 7.9925 −2.9821

0.0678 −2.9821 3.8587

⎤
⎥⎦ ×

⎡
⎢⎣
0.9528 0.7041 0.9539

0.5982 0.8407 0.4428

0.8368 0.5187 0.0222

⎤
⎥⎦

×
⎡
⎢⎣
0.3759

0.8986

0.4290

⎤
⎥⎦

=
⎡
⎢⎣

−0.2250

1.4708

−0.3461

⎤
⎥⎦ =

⎡
⎢⎢⎣

β
(3)
1

β
(3)
2

β
(3)
3

⎤
⎥⎥⎦ . (39)

As can be seen, the result showed in (39) is the same which had been reached in
Eqs. (36), (37) and (38). Therefore, PR strategy is able to provide the same results
without performing matrix inverse calculations.
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3.2 Parallel regression encoding in SPA using GPU

Programming models such as Compute Unified Device Architecture (CUDA) [23]
allows that applications can be run more easily on the GPU. CUDAwas the first archi-
tecture and Application Programming Interface (API), created by NV I DI A©in 2006
to allow the GPU to be used for a wide variety of applications [23]. However, as any
technology the GPU has its limitations. Depending on the data volume, GPU’s compu-
tational performance may shown itself inferior when compared to Central Processing
Unit (CPU) performance [11]. In this case, the data amount to be transferred to the
GPUmemorymust be taken into account, because there is an overhead associated with
the parallelization of tasks on the GPU [11,12]. Factors regarding the access time to
memory may also influence the computational performance. In other words, access to
GPU global memory usually has a high latency and it is subject to a coalesced access
to data in memory [23].

Before starting Phase 2, the data is transferred to the GPU (device) memory,
coprocessor of the CPU (host) where the division process is done in several tasks
(threads) to run concurrently. The Phase 2 of SPA is parallelized by the kernel2 showed
in Algorithm 2. The function has four input parameters and one output variable. Each
thread calculates the coefficients of the k-th chain generated in Phase 1. In classical
implementation, all K chains are evaluates N2 using least squares with matrix inver-
sion sequentially. Our approach calculate the coefficients for each chain in parallel
avoiding the matrix inversion.

Using the regression formulation proposed in Sect. 3, the kernel function uses the
device function called PartReg (Algorithm 3) to calculate Eqs. (8), (11), (12) and (16).
The only difference is that one must change the entries for each equation. PartReg
uses other two functions showed in Algorithms 4 and 5 to calculates the summation
of dot product and element-wise division, respectively.

4 Experimental

All data used in this paper consist of wholewheat samples obtained fromplantmaterial
of Canadian producers. The data were determined in the Grain Research Laboratory
by 1090 reflectance spectra in the near infrared (NIR) of whole wheat samples, which
were used as reference data in the 2008 International Conference ofDiffuse reflectance
(http://www.idrc-chambersburg.org/shootout.html).

Theprotein contentwas chosen as theproperty of interest. The spectrawere acquired
by a spectrophotometer in the range 400–2500 nanometers (nm) with a resolution of
2 nm. In this work, the NIR was used in the range of 1100–2500 nm. The reference
values of protein concentration in wheat samples were determined in the laboratory
by the Kjeldahl method [24]. This method uses the destruction of organic substances
in the presence of concentrated sulfuric acid and a catalyst through the action of heat,
with subsequent distillation of nitrogen from the sample. However, the use of indirect

2 Kernel is a function that is performed on the device by each thread. Threads are organized into blocks [23].
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Algorithm 2: Kernel: PR-CUDA.
1. Input Parameters:
2. Xcal: Matrix of samples and independents variables;
3. Ycal: Response variables;
4. N2: Maximum number of variables in each chain;
5. Lambdas: Matrix (K × N2), i.e., K chains with N2 selected variables in Phase 1.
6. Output Parameters:
7. Data structure β with K elements. Each element has N2 regression coefficients;
8. k ← thread identification
9. chain ← lambdas(k, :)

error(:, 1),betas(1, 1) ← PartReg(y,Xcalchain(1),Xcalchain(1))
10. coefficients(1) ← betas(1, 1)
11. for p = 2 to N2

error(:, p), betas(p + 1, 1) = PartReg(Xcalchain(p),Xcalchain(1),Xcalchain(1))
12. end for
13. for m = 2 to N2
14. error(:,m + 1), betas(m+1,1) = PartReg(e2, error(:,m), Xcalchain(m))
15. for d = m+1 to N2
16. error(:, d), betas(d + 1,m) = PartReg(error(:, d), error(:,m), Xcalchain(m))
17. for j = 1 to m − 1
18. betas(d + 1, j) = betas(d + 1, j) - ( betas(m + 1, j) × betas(d + 1,m))
19. end for
20. end for
21. coefficients(m) ← betas(1, 1 : m)

22. end for β(k) ← coefficients

Algorithm 3: Device Function PartReg: Calculates partial regressions.
1. Input Parameters: y, xx, xc, N .
2. Output Parameters: betas, r.
3. betas1 ← DotK (y, xc)
4. betas2 ← DotK (xc, xx)
5. betas ← ElementWiseDiv(betas1, betas2)
6. r = y - VecProduct(betas, xx)

Algorithm 4: Device Function ElementWiseSumMult: function to calculates
summation of dot product.

1. Input Parameters: v1, v2, N .
2. Output Parameters: v.
3. v ← 0
4. While j < N
5. v ← v + v1(j) * v2(j)

Algorithm 5: Device Function ElementWiseDiv: function to calculates vector
division.

1. Input Parameters: v1, v2, N .
2. Output Parameters: v.
3. While j < N
4. v(j) ← v1(j) / v2(j)
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instrumental methods such as NIR and mathematical models as MLR enables the
protein level to be determined without destroying the sample [12,25].

All calculations were carried out by using a desktop computer with an Intel Core i7
2600 (3.40 GHz), 8 GB of RAM memory and a NV I DI A©GeForce GTX 780Ti
graphics card with 2880 CUDA cores and 3 GB of memory config. The Matlab
8.1.0.604 (R2013a) software platform was employed throughout. Furthermore, all
outcomes were obtained by averaging twenty executions.

5 Results and discussion

The variables selected using the proposed implementations can be visualized by Fig. 1.
The maximum number of variables selected N2 is defined by user. Such outcome
showed in the chart indicates that these regions are the most promising in the spec-
trophotometer. In practice, this result implies a small number of wavelengths in a
spectrophotometer to quantify the property of protein concentration in real samples
of wheat [12].

Figure 2 presents the real values versus predictions using SPA-PR-CUDA and the
implementation proposed by Soares et al. [19]. Differences between predictions and
current concentrations result in points on the straight line. Predicted concentrations
are close to the actual concentrations for both methods. However, the model using
the variables selected by SPA-PR-CUDA is nearest the line than Soares et al. [19]
predictions. It indicates that the variables selected by our proposed implementation is
able to provide a model with a more appropriate prediction capacity.

Figure 3 shows the computational time of Phase 2 using four different SPA imple-
mentations. Multi-core implementation of SPA-PR in CPU uses the par-for command
of Matlab parallel toolbox. The best result was obtained using eight threads defined
experimentally. For instance, when the maximum number of variables is equal to 250,
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Fig. 3 Comparison of computational performance between classical implementation of SPA, SPA-PR
(single and multi-core) and SPA-PR-CUDA

regressions with 1 up to 250 variables are performed. One can observe that the time
spent increases according to the number of variables selected for all implementations.
In SPA-PR-CUDA the number of threads per block equal to 512 was capable of pro-
viding themost reduced computational time. Nevertheless, the increase is significantly
less pronounced for SPA-PR-CUDA.

Table 1 presents a comparison of computational time between the proposed imple-
mentations. It is possible to note that SPA-PR-CUDA is approximately 9× faster than
SPA-PR implementation performing on a multi-core CPU. Regarding the classical
SPA and SPA-PR, SPA-PR-CUDA is 37× and 12× faster, respectively.

Finally, a comparison betweenSPA-PR-CUDAand two traditional algorithms (GA-
MLR [10] andPLS [4]) used for variable selection is showed inTable 2. It demonstrates
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Table 1 Computational time
(seconds) for SPA (classical
implementation), SPA-PR
(single and multi-core) and
SPA-PR-CUDA

Algorithm Maximum number of variables

100 200 250

SPA 267.05 677.00 935.05

SPA-PR 73.13 269.33 468.42

SPA-PR (multi-core) 107.13 196.74 223.63

SPA-PR-CUDA 10.88 19.80 24.87

Table 2 Results for
SPA-PR-CUDA, GA-MLR and
PLS

Number of
variables

RMSEP MAPE (%)

GA-MLR 146 0.21 1.50

PLS 15 0.21 1.50

SPA-PR-CUDA 13 0.20 1.43

that SPA-PR-CUDA was able to yield the best results in terms of number of variables
selected as well as in terms of prediction error.

6 Conclusion and future works

SPA is an iterative method that can be used for variable selection in multivariate
calibration problems. Its major limitation consists in the calculation of an inverse
matrix every time a new variable is inserted into the calibration model. In order to deal
with this restriction, this paper proposes a new strategy called Parallel Regressions
(PR). PR strategy uses in Phase 2 of SPA a mathematical formulation that eliminates
the need of matrix inverse calculation. Furthermore, PR strategy can exploit a GPU
through CUDA to increase the computational performance of the algorithm.

In comparison with computational time obtained by SPA-PR implementations, one
can observe that SPA-PR-CUDA is more efficient. For instance, for 250 variables
selected SPA-PR and SPA-PR-CUDA perform around 468 and 24 s, respectively.
Therefore, it is possible to conclude that SPA-PR-CUDA is about twelve times faster
than the sequential implementation , specially when the number of variables available
is relatively large for the selection of variables in multivariate calibration problems.
Moreover, when comparedwith traditional algorithms SPA-PR-CUDAmay be a better
alternative for obtaining a model with a lower value of the prediction error as well as
a significant reduction of the number of variables.

Future works may present new comparisons between SPA-PR-CUDA and other
variable selection techniques such as bio-inspired metaheuristics (e.g. Firefly Algo-
rithm. Additionally, improvements in the parallel strategies may be implemented in
order to make an even better usage of the GPU architecture and its memory hierarchy.
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