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Abstract In this paper, we developed a dynamic energy-efficient virtual machine
(VM) migration and consolidation algorithm based on a multi-resource energy-
efficient model. It can minimize energy consumption with Quality of Service
guarantee. In our algorithm, we designed a method of double threshold with multi-
resource utilization to trigger the migration of VMs. The Modified Particle Swarm
Optimization method is introduced into the consolidation of VMs to avoid falling into
local optima which is a common defect in traditional heuristic algorithms. Comparing
with the popular traditional heuristic algorithm Modified Best Fit Decrease, our algo-
rithm reduced the number of active physical nodes and the amount of VMsmigrations.
It shows better energy efficiency in data center for cloud computing.
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1 Introduction

To satisfy the requirements of Quality of Service (QoS), load balancing, auto-scaling,
and energy conservation, the migration and consolidation of virtual machines (VMs)
mechanism for dynamic allocation of virtual resources is a popular topic in cloud
computing [1–4]. In particular, the following VMs migration problems are mainly
investigated: when to migrate, which VMs to migrate, and where to migrate the VMs
selected for migration [5,6]. The energy efficiency of the system will be improved
by dynamically assigning virtual resources to various cloud tasks and adjusting the
mapping between VMs and physical nodes in real time. Migration of VMs can reduce
the energy consumption of the data center. At the same time, the number of VMs
migration and Service Level Agreements (SLAs) violation can be reduced.

NowadaysVMsmigration and consolidation algorithms aremostly based on energy
consumption model with single system resource constraint, i.e. CPU. These algo-
rithms may not consider the impact of other resources [7–15]. Some researchers
[16,17] believe that the energy consumption of whole server varies approximately
linearly with the CPU utilization. However, it still consumes more than 70% of its
peak energy, even if a server is completely idle [18]. Beloglazov et al. [7,8,10] pro-
posed an energy-efficient resource allocation algorithm based on energy consumption
model of CPU. Double threshold method based on CPU utilization was designed
to trigger VMs migration and the reallocation of VMs selected for migration was
also based on CPU utilization. This algorithm effectively reduced energy consump-
tion while satisfying the Quality of Service (QoS). Nevertheless, it did not consider
resources other than CPU. In some applications, all kinds of IT resources, such as
CPU, memory, bandwidth, and disk, have influence on energy consumption and sys-
tem performance. Srikantaiah et al. [19,20] studied the impacts of system resources
utilization on energy consumption and performance. They proposed a multi-resource
energy-efficient model depending on both the CPU and disk utilization. Comparing
with previous energy-efficient models depending only on CPU utilization, this model
is closer to real situation. In addition, the energy-efficient model unified the Quality of
Service (QoS) and energy conservation, which simplifiedmulti-objective optimization
problem into a single objective optimization problem. However, they did not focus on
the VMs migrations in data center for cloud computing. Pallavi [21] and Rajyashree
[22] separately proposed live migration of VMs according to the current power con-
sumption by considering multiple resources. Traditional heuristic algorithms were
used in their studies. But double threshold method was only based on CPU utiliza-
tion in the study of Pallavi [21]. Rajyashree considered CPU, RAM and bandwidth
with equal weight for calculating the upper threshold [22], they did not investigate the
optimal operating points between energy consumption and resource utilization.
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ReallocationofVMsplays an important role in dynamicVMsscheduling.VMs real-
location algorithm decides where to allocate the VMs selected for migration. Heuristic
algorithm based on greedy algorithm [7,8,10,14,23,24] is widely applied in VMs
reallocation and consolidation. Beloglazov et al. [7,8,10] proposed modified best fit
decrease (MBFD) algorithm for VMs reallocation. In this algorithm, all VMs were
sorted in decreasing order of their current CPU utilization, and each VMwas allocated
to a host that provided the least increase of the power consumption caused by the allo-
cation. This heuristic algorithm which was based on the traditional greedy algorithm
could optimize the allocation of VMs, but it was easy to fall into the local optima
and hard to achieve global optimal with a single point of search strategy. Then some
researchers [25,26] proposed an adaptive VMs allocation genetic algorithm to avoid
falling into local optima. However, the process of genetic algorithm was too complex
and did not fit the reallocation in the real cloud environment. Recently, Particle Swarm
Optimization (PSO) algorithm [27] which is similar with genetic algorithm has got
widely attention as it has fewer parameters, faster convergence and other advantages.
Kenney et al. [28] proposed the discrete particle swarm algorithm based on PSO to
solve combinatorial optimization problem. Xu et al. [29] proposed an improved binary
PSO to improve the discrete particle swarm algorithm [28], and applied it into knap-
sack problem. PSO algorithm has been developed and applied widely. It is a feasible
choice to optimize the VMs reallocation in cloud computing.

In this paper, a dynamic energy-efficient migration and consolidation algorithm is
developed. It is based on the multi-resource energy-efficient model and uses a multi-
resource double threshold method replaces the CPU double threshold method [7,8]
to trigger the migration of VMs. Modified PSO algorithm (MPSO) is introduced into
VMs reallocation to improve energy efficiency in data center. Two different migration
and consolidation algorithms MBFD and MPSO are investigated. Comparing with
MBFD, MPSO algorithm achieves better energy efficiency, reduces the number of
VMs migration and active physical nodes effectively, and makes the utilization of
system resources more balanced.

2 Energy-efficient model with multi-resource

Different kinds of system resources, such as CPU, memory, bandwidth, and disk, may
play a role in energy consumption in cloud data center. To study the impact of energy
efficiency with multiple resources, Srikantaiah [19,20] measured performance and
energy while varying both CPU and disk utilizations. In their study, an application
was combined with workloads of varying CPU and disk utilizations, ranging from
0.1 to 0.9 in each resource. Energy consumption and performance of applications
were measured at different utilization in each resource. The experiment results show
that the system has the minimum energy consumption and effectively ensure mission
performance when CPU utilization and disk utilization of the physical node are 0.7
and 0.5, respectively. The author regarded 0.7 and 0.5 as the optimal operating points
of CPU utilization and disk utilization.

In our energy-efficient model, Euclidean distance between CPU utilization and disk
utilization is used as an energy efficiency factor to evaluate merits of energy efficiency
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after allocating VMs in each physical node based on the study of Srikantaiah [19,20].
The energy consumption of system is evaluated by the total Euclidean distance of all
active physical nodes at the same time. The smaller Euclidean distance is, the better
energy efficiency is. The resource utilization of one physical node becomes zero if
this physical node is turned down. Energy efficiency factor of active physical node is
defined as Euclidean distance δh given by (1).

δh =
√
√
√
√

d
∑

j=1

(u j − ubest j )2 (1)

where j denotes resources such as CPU, disk, memory and bandwidth and so on, u j

and ubest j represent current utilization and best utilization of resource j for energy
efficiency in each physical node, respectively. Each resource has its optimal point of
utilization, such as 0.7 for CPU and 0.5 for disk usage, according to the experimental
result from the study of Srikantaiah [19,20].

The system energy efficiency factor δt at time t is defined as the total Euclidean
distance of all active physical nodes at this time and given by (2).

δt =
∑

δh (2)

In this paper, the energy-efficient VMs migration and consolidation algorithm with
multiple resources is based on this energy-efficient model. To evaluate the system
energy efficiency within a given period of time T, resource utilizations will be moni-
tored and the energy efficiency factor of the system at different time t will be calculated
periodically in the system. The energy efficiency of the systemwithin T is given by (3).

δ =
T

∑

t=0

δt (3)

3 Algorithm design

In this section, a VMs migration algorithm is designed to satisfy Service Level Agree-
ments (SLAs) and to further optimize the energy efficiency of system. There are three
steps to be determined in this algorithm: when to migrate, which VM to migrate and
where to migrate the VMs selected for migration. A multi-resource double threshold
method is used to trigger the VMs migration. Then the migration policy is applied to
select which VMs to migrate. Finally, modified Particle Swarm Optimization method
is designed and introduced into VMs reallocation algorithm to reduce energy con-
sumption of the whole system.

3.1 Multi-resource double threshold method

The resource utilization of physical nodes is monitorred in each monitoring period.
According to the study of Srikantaiah [19,20], two IT resources, CPU and disk, are
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considered in our method. Three statuses of physical nodes are defined: overloaded,
normal and underloaded. VMs migration will be triggered, once the status of one
physical node converts to overloaded or underloaded. The status of physical nodes is
described as (4) and (5):

⎛

⎝

∑

j

rC PU
j ∗ x j

h > high_threshold ∗ cCPU
h

⎞

⎠

∧
⎛

⎝

∑

j

r DI SK
j ∗ x j

h > high_threshold ∗ cDI SK
h

⎞

⎠ (4)

⎛

⎝

∑

j

rC PU
j ∗ x j

h �= 0

⎞

⎠ ∧
⎛

⎝

∑

j

r DI SK
j ∗ x j

h �= 0

⎞

⎠ ∧ (δh < low_threshold)

(5)

High_threshold and low_threshold denote overloaded and underloaded threshold,
respectively, which triggersVMsmigration. rCPU

j and r DI SK
j are resources required of

CPUand disk ofVM j . cCPU
h and cDI SK

h are capacities of CPUand disk of the physical

node h. x j
h indicates whether the VM j is assigned to physical node h. If VM j is

assigned to the physical nodeh, x j
h = 1, otherwise x j

h = 0. If the resources requirement
for VMs cannot be satisfied, the physical node is considered to be overloaded, as seen
in formula (4). If the energy efficiency factor of the active physical node is below the
underloaded threshold, the node is considered to be underloaded, as seen in formula
(5).

3.2 Selecting migration VMs

Once the physical node is overloaded, find which resource requirement cannot be
satisfied. Then VMs are sorted in descending order according to this resource. A
VM is selected from the descending VMs queue and added into migration queue in
sequence until the resource requirement of the rest VMs on this physical node can be
met. In contrast, once a physical node is underloaded, all VMs on this physical node
are added into the migration queue. The algorithm periodically monitors workload
and decides which nodes should be turned on or off to minimize power consumption
by the system. The algorithm always consolidates VMs to the minimum number of
active physical nodes without causing a SLAs violation.

3.3 Consolidation algorithm based on PSO

Particle Swarm Optimization algorithm [27] (PSO) is proposed by Kenney and Eber-
hart in 1995 to solve optimization problems in continuous space. Compared with other
group evolutionary algorithms such asGenetic Algorithm (GA), PSO hasmany advan-
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tages: fewer parameters, faster convergence and easier implementation. Recently, PSO
has gained more and more attentions and been wildly applied in many fields. In this
section, Modified Particle Swarm Optimizer (MPSO) is introduced into VMs reallo-
cation algorithm. Assume that there are m VMs and n physical nodes in cloud data
center, and w VMs are in the migration VMs queue. When w = 1, MBFD algorithm
is applied to VMs consolidation. When w > 1, MPSO migration algorithm is used to
optimize energy efficiency of the system. The main steps of MPSO are as follows.

3.3.1 Population initialization

N VMs requests sequences are randomly generated. For each request sequence, the
VM is assigned on the first physical node meeting the resources requirement by First
Fit algorithm. Then N distribution plans are obtained in this step. Each distribution
plan is sorted in descending order, and N particles are generated to constitute the initial
population. The position vector of particles is defined as Xr

l = (xrl1, . . . , x
r
l j , . . . , x

r
lw),

where l is the lth possible solution, l ≤ N , the serial number of VM j ≤ w, and r is
the iteration number. For example, Xr

l = (xrl2, xrl4, xrl5) = (1, 2, 1)means that VM
2, 4, 5 are respectively allocated to node 1, 2, 1. While the particles are updating, the
position vector of particles Xr

l transfers to a (0,1)-matrix S as seen in formula (6).

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

sr11 · · · sr1h · · · sr1n
...

...
...

srj1 · · · srjh · · · srjn
...

...
...

srw1 · · · srwh · · · srwn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

If VM j is allocated to node h at iteration r, srjh = 1; otherwise, srjh = 0. A VM
can be allocated to only one physical node, so a constrain exists for srjh , as seen in
formula (7).

n
∑

h=1

srjh = 1, ∀ j ∈ {1, 2, . . . ,m} (7)

3.3.2 The definition of the fitness function

In order to achieve minimal energy consumption after VMs being reallocated, the
fitness function is designed as seen in formula (8).

f (δt ) =
∑

δh (8)

where f(δt ) is the sum of the energy efficiency factor of all active physical nodes at
the time tafter reallocation of VMs in migration queue. As described in formula (2),
δh is the energy efficiency factor of physical node h. The objective of dynamic VMs
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consolidation is to minimize the energy consumption caused by all physical nodes, so
we need to minimize the fitness function f(δt ).

3.3.3 Updating the positions of particles

The fitness of the particle population is calculated by the fitness function. Then the
personal best of each particle and the global best of all particles are obtained.

In our MPSO algorithm, Pbestrl = (pbestrli , . . . , pbest
r
l j , . . . , pbest

r
lo)is the per-

sonal best of particle l at iteration r . Each particle keeps track of its coordinates in the
solution space which are associated with the best solution that has achieved so far by
that particle. Gbestr = (gbestri , . . . , gbest

r
j , . . . , gbest

r
o ) is the best value obtained

so far by all particles.
Suppose the probability that VM j is allocated to node h is 0.5 at iteration r +

1, P(sr+1
jh = 1) = P(sr+1

jh = 0) = 0.5. pp and pg denote, respectively, the trust
degree of personal and global best which means the probability of finding the optimal
solution. According to the Bayesian formula, the probabilities of personal and global
best should be higher than average probability, 0.5 < pp < 1, 0.5 < pg < 1. To
avoid falling into local optimization, let pg < pp, then 0.5 < pg < pp < 1. In this
study, the parameters are set as pp = 0.8, pg = 0.7, according to the study of Xu
[29].

3.3.4 Checking the new positions of particles

As seen in formula (9)–(11), new positions of particles should meet these constraints,

x j
h ∈ {0, 1} (9)

∑

h

x j
h = 1, ∀ j (10)

x j
h indicates whether the VM j is assigned to physical node h. If VM j is assigned to

the physical node h, x j
h = 1, otherwise x j

h = 0. Formula (9) indicates that each VM
can be assigned on only one physical node.

⎛

⎝

∑

j

rC PU
j ∗ x j

h ≤ cCPU
h

⎞

⎠ ∧
⎛

⎝

∑

j

r DI SK
j ∗ x j

h ≤ cDI SK
h

⎞

⎠ (11)

In formula (11), when a couple of VMs are assigned to physical node h, resources of
the VMs cannot exceed resources capacities of physical nodeh.

If all the constraints are satisfied, the particles are updated to the new positions;
otherwise the value of the original particle remains.

a. If
∑n

h=1 s
r
jh > 1, VM j is allocated to multiple physical nodes. Then set

∀h, s jhr= 0 and sort physical nodes in ascending order. The VM j is allocated to
the first physical node which satisfies formula (11). If all recorded physical nodes
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do not satisfy formula (11), the result is unreasonable and the particles will not be
updated.

b. If
∑n

h=1 s
r
jh = 1, VM j is allocated to a physical node, then check whether con-

straint (11) is satisfied. If it is satisfied, the particles are updated to new positions;
otherwise the particles are not updated.

c. If
∑n

h=1 s
t
jh = 0, VM j is not assigned to any physical node. The new positions

do not satisfy the conditions, and the particles are not updated.

This VMs migration and consolidation algorithm is based on multi-resource energy-
efficient model and Modified Particle Swarm Optimization algorithm (MPSO). The
energy efficiency can be improved, while QoS requirements are constrained. SLAs
violation and energy efficiency are both considered in this study. The VMswhichmost
likely cause SLAs violation in physical node will be selected for migration. MPSO
algorithm is proposed in this part. First Fit algorithm is used to generate particles for
reducing active physical nodes, and aModifiedParticle SwarmOptimization algorithm
[29] is introduced and designed to update the positions of particles. Additionally,
Euclidean distance is defined to evaluate energy efficiency after migration.

In our MPSO algorithm, we assume that there are m VMs and n physical nodes
in cloud data center, and w VMs are in the migration VMs queue. N is the scale of
the particle swarm and Q is the maximum number of iterations. N and Q are both
constants. There are several parts of calculations in VMs allocation as follows: (1)
Particles initialization: generate N particles at random. All VMs are allocated to the
nodes by the First Fit algorithm, which requires N*m operations. N operations are
required to initialize the particle’s pbest and gbest position, separately; (2) Updating
velocities and positions of particles:mn2 operations; (3) Checking if all the constraints
are satisfied: mn2 operations; (4) Other iterations require (Q − 1) ∗ (N + 4mn2). So
the latency of algorithms execution as a function of number of nodes is g(n,m) =
(m + Q + 1)N + 4(Q − 1)mn2. The computational complexity of MPSO allocation
is o(mn2). The analysis of operations of VMs migration is similar to VMs allocation.
There are w VMs in the migration VMs queue and the computational complexity of
MPSO migration is o(wn2).

4 Simulation and results analysis

4.1 Experiment setup

Since it is very complicated to conduct repeatable large-scale experiments on a real
cloud environment, we perform simulations in CloudSim to ensure the repeatability
and reproducibility of experiments.

Cloudsim [30] is a framework for modeling and simulation of cloud computing
infrastructures and services. It has been widely used to evaluate algorithms, applica-
tions, and policies before actual development of cloud products. We have simulated
a data center that comprises 250 heterogeneous physical nodes, half of which are HP
ProLiantML110G4 servers, and the others consist of HP ProLiantML110G5 servers.
The frequency of the servers’ CPUs is mapped onto MIPS ratings. The storages of
two servers are 640 and 1000 GB. There are four VM types in the data center. The
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configuration (MIPS, storage) of each VM type is High-CPUMedium Instance (2500
MIPS, 350 GB), Extra Large Instance (2000 MIPS, 1690 GB), Small Instance (1000
MIPS, 850 GB) and Micro Instance (500 MIPS, 160 GB).

Discrete-event simulation has been chosen to evaluate the performance of the pro-
posed algorithms and the number of VMs ranges from 50 to 500 by 50. Runs were
performed using a MBFD [7,8] algorithms and our MPSO method to compare. The
total running time is 100s and the monitoring period is 5 s. The size of the particle
swarm is 20 and the maximum iteration number is 30. Take the average values of 10
replicates as the final results.

4.2 Thresholds analysis

The influence of high and low thresholds is evaluated on energy efficiency in data center
which consists of 50 VMs. In migration algorithm, the upper threshold is set to avoid
the SLAs violations. Each physical node periodically executes an overload detection
strategy to trigger migration. A physical node is overload, when the resource utiliza-
tion reaches the upper threshold. The upper threshold should be adjusted, depending
on the specific system requirements, to avoid performance degradation and SLAs vio-
lations. Pallavi set 30–70% for ensuring percentage of SLA violation of 1% [21] and
Rajyashree set dynamic upper thresholds to avoid overloaded situation [22]. The value
of upper threshold can be set to any value in range from 0 to 1. In this algorithm, the
upper threshold is set to 1 which is the same with the study of MBFD [7,8].

A physical node is considered to be underloaded, when the resource utilization
is under the lower threshold. The lower threshold significantly affects the energy
efficiency and the amount of migrations. In order to find an optimal lower threshold for
this simulation, MBFD and MPSO algorithms are respectively tested while the value
of lower threshold is varied from 0.0 to 0.9 by 0.1. The system energy consumption
and the number of migrations are measured within 100s as seen in Figs. 1 and 2.

As shown in Figs. 1 and 2, the system energy consumption and the number of
migrations vary with the value of lower threshold. The tendencies of the system energy
consumption obtained from the two algorithms are similar, as well as the tendencies
of the number of migrations. As seen in Fig. 1, when the value of lower threshold
increases from 0 to 0.5, there is no obvious change of the system energy consumption.
However, it increases fast from 0.5 to 0.9. As seen in Fig. 2, when the value of lower
threshold increases from 0 to 0.2, the value of the number of migrations keeps at a
high level and remains stable. It drops gradually from 0.2 to 0.9. Considering both
energy consumption and the number of migrations, the lower threshold is set to 0.5 in
the following simulations.

According to formula (1), 0 ≤ δh ≤ 0.86. When low threshold is small, δh should
be small and u j is close to ubest j . In contrast, when low threshold is large, δh could be
large but smaller than 0.86. In Fig. 2, when low threshold is larger than the maximum
value of δh0.86, the CPU and disk utilization could be in range from 0 to 1, and the
number of migrations could decrease to 0. However, when low threshold is small,
such as 0, δh is small, and the CPU and disk utilization should be close to 0.7 and 0.5
respectively. Then the number of migrations will increase.
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Fig. 1 Comparison of system energy consumption with different low threshold

Fig. 2 Comparison of the number of migrations with different low threshold

4.3 Evaluation of energy consumption

The system energy consumption of a cloud computing is evaluated by the total Euclid-
ean distance of all physical nodes within running time. To achieve the optimal system
energy efficiency, the total Euclideandistance should beminimized. The comparisonof
the system energy consumption usingMBFD andMPSO algorithms is shown in Fig. 3.

As shown in Fig. 3, the total energy consumption increases with the number of VMs
using both MBFD and MPSO algorithm. However, the total energy consumption is
always lower forMPSOespecially from50 to 400.MBFDalgorithm just considers one
reallocation sequence of VMs selected for migration, and only considers current status
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Fig. 3 Comparison of the system energy consumption

of the system when reallocate a VM. However, MPSO algorithm achieves the best
result of reallocation by comparing the results of different allocations and evolution,
so the result of MPSO algorithm is closer to the optimization of energy efficiency.

4.4 Comparison of the number of active physical nodes

The system maintains a set of active physical nodes selected to serve requests for
each VM. Cloud providers optimize resource usage and reduce energy consumption
by switching idle nodes to sleep mode. Therefore, the fewer the number of active
physical nodes is, the better the energy efficiency is. Fig. 4 shows the comparison of
the number of active physical nodes using MBFD and MPSO algorithms.

As shown in Fig. 4, the number of active physical nodes increases with the number
of VMs using both MBFD and MPSO algorithm. However, the number of active
physical nodes is fewer forMPSOwith sameVMs. In theModifiedBest Fit Decreasing
(MBFD) algorithms [19,20], it sorts all VMs in decreasing order of their current CPU
utilizations, and allocates eachVM to a physical node that provides the least increase of
power consumption due to this allocation. MBFD does not consider directly reducing
the number of active physical nodes in entire running time (The total running time
is 100s and the monitoring period is 5 s). However, In MPSO algorithm, First Fit
algorithm is applied during the initialization of particles, and the VMs are assigned
to the first active physical node satisfying the QoS constraints. Thus, this MPSO
algorithm effectively reduces the number of active physical nodes.

4.5 VMs migration and load balance

VMs migrate at the beginning of each monitor period. It has negative impacts on
performance of the running tasks. We assume that each VM migration costs the same
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Fig. 4 Comparison of the number of active physical nodes

Fig. 5 Comparison of the number of VM migrations

amount of resources, so it is crucial tominimize the number ofVMmigrations ensuring
the quality of service and energy conservation. Figure 5 shows the comparison of
number of VM migrations using by MBFD and MPSO.

In Fig. 5, the number of VMs migration increases more slowly for MPSO than
MBFD. The number of VMs migration of MPSO is always fewer than that of MBFD
with the same number of VMs. Thus, our method has the less cost of VMs migration
than MBFD which is important for energy efficiency in cloud computing. The reason
is from the resources utilizations become more reasonable by the fitness function for
MPSO. Then while preventing to cause a SLAs violation, MPSO is less likely to
trigger the migration of VMs in a monitoring period.
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Fig. 6 Comparison of load balance degree

As seen in Fig. 6, the dot line indicates the average load balance degree. When the
number of virtual machines changes from 50 to 500, the load balance degree ofMPSO
algorithm keeps at a stable level. It also shows that MPSO is better at maintaining a
high degree of load balance, and has better adaptability thanMBFD in the simulations.

Euclidean distance between CPU utilization and disk utilization is used to evaluate
merits of energy efficiency in our energy-efficient model. According to the study of
Srikantaiah, the optimal balance between resource utilization and energy consumption
resides around 0.7 on the CPU and 0.5 storage usage [19,20]. As seen in formula
(1), we set important parameters global best as 0.7 and 0.5 for CPU and storage,
respectively. Srikantaiah plots the energy consumption with varying combined CPU
and disk utilizations. It is a “U”-shaped curve [19,20]. It means that two points in the
figure with the same distance from 0.7 and 0.5 have the same energy consumptions.
For instance, the point (0.8, 0.4) has the same distance from optimum point (0.7,
0.5) with the point (0.8, 0.6) approximately. Energy consumption is a little more
sensitive to variations in CPU utilization than variations in disk utilization [19,20].
Thus, increasing the same distance in CPU utilization may have a bigger effect than
that in disk utilization. For example, the decline from 0.7 to 0.3 in CPU utilization
may have a bigger effect than that from 0.5 to 0.3 in disk utilization.

Additionally, in this study we compare our method with the recent study from
Beloglazov [7,8]. From the observed simulation results, several conclusions can be
made: (1)MPSO algorithm has some advantages in VMs allocations.MPSO has fewer
parameters and faster convergence than GA algorithm. As described in Sect. 3.3, the
computational complexity of MPSO algorithm is o(mn2). Besides, this algorithm will
not fall into a local optimum which is a common defect in traditional heuristic algo-
rithms. (2) In this simulation, we analyze four important factors: the total Euclidean
distance, the number of active physical nodes, the number of migrations and load bal-
ance degree. These factors are interrelated each other in some degree. It is obviously
shown that the performance of our MPSO algorithm is better than MBFD [7,8]. (3) A
multi-resource double threshold method is used to replace the CPU double threshold
method to trigger the migration of VMs. Inspired by the influence of high and low
thresholds on energy efficiency in different applications, the values for high and low
thresholds of different IT resources are evaluated and analyzed in the simulation. If the
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thresholds change, the number of migrations will change, and the Quality of Service
(QoS) will also be impacted in some degree in cloud data center for cloud computing.

5 Conclusions

The main contributions of this study include: (1) a multi-resource energy-efficient
migration and consolidation algorithm of VMs under dynamic load is designed and
implemented; (2) a method of multi-resource utilization double threshold is applied
to trigger migration of VMs, and Particle Swarm Optimization is introduced into the
VMs reallocation algorithm; (3) analysis is provided between the traditional heuristic
algorithms MBFD and MPSO algorithm.

We use CloudSim to simulation our virtual machines migrations and consolidation
algorithmwith multi-resource under dynamic loads. The results indicate that our algo-
rithm improved energy efficiency, reduced the amount of physical nodes in use and
virtual machines migrations, and balanced the system resources. This paper proposed
a solution considering not only the impact of multi-resource on energy efficiency but
also more accurate scheduling of virtual machines which has practical reference value
for virtual machines scheduling in real environment.
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