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Abstract Privacy is one of the most important issues in social social network data
sharing. Structure anonymization is a effective method to protect user from being
reidentfied throughgraphmodifications. Thedata utility of the distorted graph structure
after the anonymization is a really severe problem. Reducing the utility loss is a
new measurement while k-anonymity as a criterion to guarantee privacy protection.
The existing anonymization algorithms that use vertex’s degree modification usually
introduce a large amount of distortion to the original social network graph. In this paper,
we present a k-degree anonymity with vertex and edge modification algorithm which
includes two phase: first, finding the optimal target degree of each vertex; second,
deciding the candidates to increase the vertex degree and adding the edges between
vertices to satisfy the requirement. The community structure factors of the social
network and the path length between vertices are used to evaluated the anonymization
methods. Experimental results on real world datasets show that the average relative
performance between anonymized data and original data is the best with our approach.
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1 Introduction

Online social networking has become one of the most popular activities on the web.
With the rapid growth of social networks, such as Twitter and Facebook, a large
amount of social network data has been collected andmaintained by the social network
service providers. More and more researchers find that it is a great opportunity to
obtain useful information from these social network data, such as the user behavior,
community growth, disease spreading, etc. Social network service providers also want
to publish these data for analysis in order to adjust its strategy to providemore attracting
services. However, publication of the social network data should not reveal any private
information of individuals [1,2].

Privacy preservation in relational data publishing has been studied extensively.
A variety of privacy models as well as anonymization algorithms have been devel-
oped (e.g., k-anonymity [3], l-diversity [4], t-closeness [5]). It is more challenging
to anonymize the social network data than the relational data [6], techniques tack-
ling the relational data can not be applied to social networks data straightforwardly.
Researchers have adapted these techniques to address privacy issues in privacy preser-
vation of social network data publishing, which can be broadly categorized into
clustering-based approaches, and graph-modification-based approaches.

The clustering-base approaches partition a social network into groups of nodes and
replace them with super nodes, which associated with properties such as the number
of nodes and connections. Alternatively, in the graph-modification-based approaches,
the structure of the original network is slightly modified, usually by inserting/deleting
edges/vertices, to achieve a certain desired level of anonymity. Recent observations
show that both of these approaches severely suffer from the same problem: if data is
anonymized up to an acceptable degree the results become highly distorted compared
to the original networks, thus, severely affecting their utility for analysis purposes
[7]. Detailed information is lost in the social networks anonymized by the clustering-
based approaches, one should sample a group of graphs by generating substructures
in place of super nodes based on the reported properties. The second is modifying
connections in the graph-modification-based approaches to fulfill the anonymization
criteria (e.g., degree k-anonymity). The key problem related to these methods is that
they usually focus on achieving the anonymization objectives and disgard the crucial
need of preserve the original structural semantics of the network; hence, the outcome
is a significant decrease in the utility of the results.

In this paper, we consider such structural semantics in the anonymization process by
using concepts from the social network analysis theory [8]. In particular, we leverage
the notion of community structure and shortest path length between vertices to protect
the utility of the social network. As we demonstrate in this paper, the approach shows
significant improvements in maintaining the structural measurements of the social
networks such as transitivity, average clustering coefficient (ACC) and average path
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length (APL), etc., all of which have direct effect on the usefulness of the anonymity
results.

The rest of the paper is organized as follows. Section 2 briefly reviews related works
on social network anonymization. We described the problem addressed in this paper
in Sect. 3. Our novel algorithm is proposed in Sect. 4 and the experimental results are
given in Sect. 5. Finally, we conclude in Sect. 6.

2 Related work

To protect the privacy information in the social network, the simplest method is to
publish a naive anonymized version of the network, e.g., by replacing the identifying
information of the nodeswith random synthetic identifiers. Backstromet al. [9] pointed
out that as unique small randomsub-graphs are embedded in the network, the adversary
may perform a family of active or passive attacks on the naive anonymized social
network, thus, privacy will be disclosure with high probability. To address the privacy
issues, several graph anonymization approaches are proposed [10–16]. Most of the
existing approaches are based on the k-anonymity principle [3]. We category the state-
of-the-art social network anonymization approaches into two categories: clustering-
based approaches and graph-modification-based approaches.

The clustering-based approaches classify the vertices and edges into groups, in
which there is at least k vertices to guarantee k-anonymity. Then each group will be
generalized into a super-node, along with some structural properties of the group.
As the vertices in the same super-node are not distinguishable, the adversary can not
disclosure a vertexwith probability higher than 1/k. Hay et al. [13] proposed a heuristic
approach in which nodes are grouped into partitions through a maximum likelihood
approach to fit the original social network as much as possible. Campan and Truta [10]
brought up a greedy approach, which partition nodes into groups in order to disturb
structural information and generalization information as little as possible. However,
detailed information is lost in the published social network. To use the published
social network for analysis or data mining, one should sample a group of graphs by
generating substructures in place of super nodes based on the reported properties. Then
the analysing work can be finished by analysis each sampled graph and computing the
average results. Since a user should do the sampling, the utility of the published graph
does not have any guarantee and this user could never know how many samplings can
guarantee to get a well enough result.

In the modification-based approaches, new edges, nodes are added or removed to
ensure the network meeting desired privacy requirements. Hay et al. [17] proposed
the k-candidate anonymity model, which randomly adds some edges then followed
by deleting the same number of edges to resist identity disclosure. Liu and Terzi [14]
brought up the concept of k-degree anonymous. A graph satisfies k-degree anonymous
if each vertex in the graph has the same degree as at least k − 1 other vertices, and
proposed a two-step algorithm tomake a graph satisfying k-degree anonymous through
adding edges. Lu et al. [18] proposed a fast greedy algorithm that anonymizes the social
network by simultaneously adding edges and anonymizing the degree sequence, thus
avoided the realizability-test which is necessary in [14]. Instead of adding edges to
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make the graph k-degree anonymous,Chester et al. [12] proposed amethod to achieve it
by adding vertices, and proposed a schema to confine that the number of vertices added
were as less as possible. Zhou and Pei [6] considered k-neighborhood anonymous
model: for every node, there exist at least other k − 1 nodes sharing isomorphic
neighborhoods. k-automorphism [16], k-symmetry [15] and k-isomorphism [11] are
proposed to prevent adversary with sub-graph background knowledge.

Our approach belongs to the graph-modification category. In our approach, we
modify the graph by adding edges to the graph and similar vertices will also be added if
necessary. Particularly,whenmodifying thegraph,weemploy thenotionof community
structure, which is a central organizing principle for social network, to confine the
selection of the candidates. And the experimental results show that the utility of the
published social network is preserved very well.

3 Problem description

In this section, we present the background of the social network anonymization prob-
lem, and then formulate the problem we tackle in this paper.

In this paper, a social network ismodeled as an undirected unlabeled graphG(V, E),
where V is a set of vertices representing individuals in the social network. E is a set of
edges corresponding to the relationships between individuals. We use n to denote the
number of vertices in graph G. In this paper, we use words graph and social network,
node and vertex, edge and connections interchangeably. Figure 1 shows an example
of social network graph.

In a published social network graph, an adversary could re-identify a node by
performing structural queries. Structural queries refer to the activity that the adversary
searches in the published social network graph with some priority knowledge about
the victim such as the number of friends of the victim in the social network or the
connections among some friends and the victim. If the candidate size of a structural
query is one, then the victim will be identified identically. In this paper, we tackle
the situation that the adversary has degree information as background knowledge. For
example, if the adversary knows that the victim exists in the example social network
and has four friends, then the adversary can conclude that node 3 must be the vertex
that represents the victim.

In this paper, we utilize the k-degree anonymous model to resist the structure attack
from adversary with degree information as background knowledge.

Fig. 1 An example of social
network
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Definition 1 k-Degree anonymous [14]: a graph is said to be k-degree anonymous
when each vertex in the graph has the same degree as at least k − 1 other vertices.
In other words, any vertex cannot be identified with probability higher than 1/k if the
adversary has the degree information of the graph.

In order to keep the utility of the published graph, when generating the k-degree
anonymous graph, it is necessary to add as few noise edges and vertices as possible
and the added edges should connect vertices that are not far away from each other
with respect to the community structure and the path length.

Community structure is a central organizing principle of social network and it is
a core graph topological feature which has a strong correlation with other important
features (e.g., transitivity and betweenness). We consider the community structure of
the social network when adding edges to the graph. Recent studies [25,26] suggest
that the communities of social networks often exhibit hierarchical organization (i.e. the
large communities further contain small communities). So two vertices in the graph
can be in the same community at different levels, the higher the level is, the bigger the
community size is. We use the Louvain method [19], which is a heuristic algorithm
based on modularity optimization [20] to get the hierarchical community structure
of the graph. Initially every vertex belongs to a separate community, and vertices are
moved between communities iteratively in a way that maximized the vertices local
contribution to the overallmodularity score.When a consensus is reached, i.e. no single
move would increase the modularity score, every community in the original graph is
shrunk to a single vertex and the process continues on the next level. The algorithm
stops when it is not possible to increase the modularity any more after shrinking the
communities to vertices.

The distance between two nodes u, v is the shortest path length between u and v

in the original graph. The social distance between all connectable pairs of a graph is
measured by average path length (APL).

APL =
∑

(u,v)∈RP SPL(u, v)

|RP| (1)

where RP denotes all reachable pair vertices, and SPL(u, v) means the shortest path
length between vertex u and v. It is a measure of the efficiency of information or mass
transport on a network.

We design a two-phase approach to transform the social network to its k-degree
anonymous version. In the first step, we compute a target degree for each node so that
it makes the original graph k-degree anonymous. In the second step, we change each
vertexs degree to its target degree by adding edges/vertices.

Next, we first introduce two data structures we use in the rest of this paper, and then
give the formal description the two steps in our algorithm. We adapted the concept of
“degree sequence” used in [14] to record not only the degree information but also the
identity information of vertices in the social network.

Definition 2 Given a graph G, its degree sequence is a sequence of n 2-tuple:
[(V1, dV1), (V2, dV2), . . . (Vn, dVn )] where dVi is the degree of vertexVi .
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We use d[i] to represent node Vi ’s corresponding tuple in d. For example, the
degree sequence of the graph in Fig. 1 is d = [(3, 4), (2, 3), (5, 3), (7, 3), (8, 3),
(1, 2), (4, 2), (6, 2), (9, 2)]. In it, d[1] = (3, 4) represents node 3 and its degree in the
graph.

We call the degree sequence of the k-degree anonymous version graph the k-degree
anonymous sequence, denoted as d

′
.

Definition 3 k-Degree anonymous sequence: a degree sequence d
′
is a k-degree

anonymous sequence if d
′
satisfies the following constraints: d

′
can be divided into a

groupof subsequences [[(V1, dV1), . . . , (Vi , dVi )], [(Vi+1, dVi+1), . . . , (Vk, dVk )], . . . ,
[(Vw, dVw), . . . (Vn, dVn )]], such that there are at least k elements, and all elements
share the same degree for any subsequence [(Vi+1, dVi+1), . . . , (Vk, dVk )] in d. We
also call d

′
the target degree sequence of the original degree sequence d. For example,

d
′ = [(3, 4), (2, 4), (5, 3), (7, 3), (8, 3), (1, 2), (4, 2), (6, 2), (9, 2)] is a target degree

sequence, which is the k-anonymous version of the degree sequence of the graph in
Fig. 1.

Formally, our objective is to transform the graph G to a graph that is k-degree
anonymous, and at the same time, the utility of the graph is well preserved.

Problem definition: given a graph G(V, E), U (G) is the utility of the graph G, the
privacy requirement k, our objective is to publish anonymized graph G

′
, such that: (1)

G
′
is k-degree anonymous; (2) the difference betweenU (G

′
) andU (G) is minimized.

4 Proposed KDVEM approach

In order to transform a graph to its k-degree anonymous version, we proposed a
heuristic algorithm named k-degree anonymity with vertex and edge modification
algorithm (KDVEM), we utilize the community structure of the social network and
path length between verticeswhen finding candidates to increase the degree of a vertex.
The proposed algorithm performs modification to the original network G(V, E) in
order to turn it into a k-degree anonymous graph. Instead of only modifying edges of
the graph, we utilize both edge modification and node modification. However, node
modification is performed onlywhen edgemodification cant fulfill the anonymity task.
The KDVEM algorithm is a two-step approach: in the first step, we first get degree
sequence of the original graph, and then the target degree sequence is generated with
the greedy_partition algorithm. Vertexs degree will be modified to its target degree
by adding edges and vertices in the second step. In the process of adding edges and
vertices to the original graph, the community structure of the social network is used
to reduce the distortion on the utility of the published social network.

4.1 The greedy_partition algorithm

We use the greedy_partition algorithm (Algorithm 1) to generate k-degree anonymous
sequence of the original graph. All vertices will be divided into groups and vertices
in the same group shall be adjusted to have the same degree. Our greedy_partition
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Algorithm 1 The greedy_partition algorithm
Input: original degree sequence d; anonymization level k;

Output: k-anonymous degree sequence d
′
;

1: P = {}; // anonymization groups
2: while len(d) > k do
3: seed, dseed = vertex with the largest degree remained in d;
4: pmerge,Cmerge = f ind_nearest_group(seed, P);
5: pnew,Cnew = create_new_group(seed, d);
6: if Cmerge < Cnew then
7: pmerge = pmerge

⋃{(seed, dseed )};
8: P = P

⋃
pmerge;

9: d = d.remove((seed, dseed ));
10: else
11: P = P

⋃
pnew ;

12: for each u, du in pnew do
13: d = d.remove((u, du));
14: end for
15: end if
16: end while
17: for each v, dv in d do
18: pmerge,Cmerge = f ind_nearest_group(v, P);
19: pmerge = pmerge

⋃{(v, dv)};
20: P = P

⋃
pmerge;

21: end for
22: d

′ = d;
23: for each group pi in P do
24: dmax = max vertex degree in pi ;
25: for each element (v, dv) in pi do
26: change (v, dv) in d

′
to (v, dmax );

27: end for
28: end for
29: return d

′

algorithm tends to put the vertices with similar degree into the same group to reduce
the degree changes.

While there are more than k vertices remaining in the degree sequence d, the vertex
with the largest degree is selected as the seed, and two costs are calculated:Cnew, is
the cost of creating a new group with the seed and its nearest k − 1 other vertices,
we recorded these k vertices with variable pnew. Cmerge, is the cost of merging the
seed into the nearest existing group, recorded with pmerge. If Cmerge is smaller, the
seed vertex is merged into the nearest existing group, and will be removed up from the
degree sequence. Otherwise, a new group with the seed vertex and its nearest k − 1
other vertices is created, and all vertices in the new group will be removed from the
degree sequence. For the first seed, as there are no groups exist, so the Cmerge cost is
infinite.

Cmerge =
{
minp∈P (d p − dv), if P �= ∅

∞, if P = ∅
(2)

Cnew = min

(
∑

w∈U
(dv − dw)

)

. (3)
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When there is less than k vertices remained in the degree sequence, its not enough
to form a group, which needs to have at least k elements to guarantee k-anonymity, so
the vertices will be dispersed into their nearest groups.

The target degree of vertices in the same group is set to the largest degree of
vertex in the group, and the vertices will be adjusted to the target degree in the graph
modification step.

Complexity For degree sequences of size n, the running time of the greedy_partition
algorithmis O(nk); for every node i , the greedy_partition algorithm looks ahead at
O(k) other nodes in order to make the decision to merge the node with the previous
group or to start a new group. Since there are n nodes, the total running time is O(nk).

4.2 The graph_modification algorithm

Once the target degree sequence d
′
is ready, we use Algorithm 2 to transform G to

its k-anonymous graph G
′
. We recorded the communities of vertices with variable

id_communities, which is dictionary. The key is the identifier of a vertex, and the
value is a tuple, the elements of the tuple are themembers of the community at different
level. The community_multilevel method in igraph package [21] offers not only how
vertices are separated into communities, but also exact history of how vertices are
joined into larger communities with the parameter return_levels set True. We also
treat the whole graph as a community, the highest level community, all vertices in the
graph belong to it.

The anonymized degree sequence d indicates which node should modify its degree.
For a vertex with d ′

v − dv > 0, it means that the vertex should increase its degree by
d ′

v − dv > 0, we maintain a set V+ to record the vertices that should increase the
degree.

For each vertex v inV+, we should increase its degree tomake its degree be identical
with its target degree. We first try to increase its degree by connecting the vertex with
candidates that exists in the original graph. And the candidates are selected according
to the following criteria: (1) the candidate should increase its degree, and the edge
(v, candidate) doesnt exist in the original graph; (2) the candidate vertex will be
shrunk to the same community as low level as possible with the vertex; (3) if more
than one vertex satisfies the above two criteria, then the vertex that has the shortest
path length is selected. This process is undertaken by the Algorithm 3, find_candidates
algorithm. We get the candidates within the communities at each level, and also sort
the candidates by the social distance between the candidate and the vertex in ascending
order.

After modifying the graph through adding edges, if there exists vertices still need
to increase its degree, we try to modify the graph through adding vertices to the graph
follow the step of [22] to guarantee that the degree of vertices in the original graph is
equal to its target degree.

Complexity From line 2 to line 8 takes O(n) to get the vertices that need to increase
its degree to the traget degree; for line 9 to line 27 the worst case is O(n2), the size
of V+ is limited in (n − n/k), where n/k denotes the number of anonymous groups,
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Algorithm 2 The graph_modification algorithm
Input: original graph G(V, E), anonymization level k; original degree sequence d; anonymized degree

sequence d
′
; id_communities, a dictionary record vertex and communities it belongs to; n, the number

of vertices in G.
Output: anonymized graph G

′
(V

′
, E

′
);

1: V+ = list (); G
′ = G;

2: for i in (1, n) do
3: v, dv = d[i]; v, d

′
v = d

′ [i];
4: de f = d

′
v - dv ; // degree deficiency

5: if de f > 0 then
6: V+ = V+.append((v, de f ));
7: end if
8: end for
9: for i in len(V+) do
10: v, de f = V+[i]; temp = de f ;
11: candidates =
12: f ind_candidates(G, v, id_communities, V+);
13: while temp > 0 do
14: candidate = candidates.pop(0);
15: if candidate! = null then
16: add edge (v, candidate) in G

′
;

17: temp -= 1;
18: else
19: break;
20: end if
21: end while
22: if temp == 0 then
23: V+ = V+.remove(V+[i]);
24: else
25: V+[i] = (v, temp);
26: end if
27: end for
28: addVertex step following Chester[22];

29: return G
′

and the first node in each group will not adjust its degree. Practically, the size of V+
is very small compared with n, so our graph_modification runs very fast.

4.3 k-Degree anonymity with vertex and edge modification

KDVEM algorithm combines the greedy_partition, graph_modification algorithms.
The main idea of the proposed algorithm is to distort the community structure of the
social network as less as possible, so the utility of the published social network is
preserved well. The graph is transformed so that there are at least k vertices in each
group, and all vertices in the same group have the same degree.

KDVEM first computes the degree sequence d of G in the descending order of
degree. Thenvertices are partitioned into anonymizationgroups in the greedy_partition
step. There are at least k vertices in each group, so the k-anonymity principle is
satisfied, and all vertices in the same group will be assigned the largest degree in
the group as the target degree. The greedy_partition algorithm pass the target degree
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Algorithm 3 The find_candidates algorithm
Input: original graph G(V, E); the vertex v, which needs to increase its degree; id_communities, a

dictionary describe the communities of a vertex at different level; V+, the set of vertices which need
to increase their degrees.

Output: candidates at different level;
1: candidates = list ();
2: communities = id_communities.get (v);
3: for community in communities do
4: temp = list ();
5: for vertex u in V+ do
6: if vertex u in community and edge(u, v) does
7: not exist in G then
8: distance = social distance between v and u;
9: temp.append((u, distance));
10: end if
11: end for
12: sort temp according to the distance in
13: ascending order;
14: candidates.append(temp)
15: end for
16: return candidates

Algorithm 4 KDVEM algorithm
Input: original graph G(V, E), anonymization level k;

Output: anonymized graph G
′
(V

′
, E

′
);

1: d = the degree sequence of G in descending order
2: id_communities = {};
3: allLevelCommunities = G.community_multilevel(return_levels = True);
4: allLevelCommunities = allLevelCommunites

⋃
V ;

5: for vertex in V do
6: for communities in allLevelCommunities do
7: community = the community that contains vertex;
8: id_communities.append(community);
9: end for
10: end for
11: D

′ = greedy_parti tion(d, k);

12: G
′ = graph_modi f ication(G, d, d

′
, id_communities);

13: return G
′

sequence d to the graph_modification step, in which vertices get its target degree
through modifying the graph. The complete algorithm is described in Algorithm 4.

Complexity As pointed out in [19], the complexity of the multivelve method is linear
on typical and sparse data, and the social network is exactly with spare property.
The complexity of calulating all Pair PathLength is O(n3) by employing Floyed
method, however, we can calculate it before running the KDVEMmethod, so the total
complexity is O(k ∗ n).
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Table 1 Structural properties of datasets

Dataset Vertices Edges Transitivity ACC APL

ca-HepTh 9877 25,998 0.284 0.471 5.945

ca-CondMat 23,133 93,497 0.264 0.633 5.352

email-Enron 36,692 183,881 0.085 0.497 4.025

ca-AstroPh 18,772 198,110 0.318 0.677 4.194

ca-GrQc 5242 14,496 0.630 0.687 6.049

5 Experiments and results

5.1 Experimental setup

In this section, we report the empirical result to evaluate the performance of our
proposed approach. We compare our approach to the priority approach [14] proposed
by Liu and Terzi, the FKDA [18] approach proposed by Lu et al., and the approach
proposed by Chester et. al. which we call it VertexAdd [22]. All of the experiments
have been implemented using Python. We vary the value of k in the range {2–10, 15,
20, 25, 50}. Due to the random choice of a node for operation of priority approach,
we run the algorithm 10 times on each dataset and compute the average value of the
measures. The experiments were conducted on Intel Xeon 2.53 GHz machine with
16 GB RAM running with Windows Server 2008 R2 Enterprise.

5.2 Datasets

In this experiment, we exam the algorithms on five real datasets: ca-HepTh [23],
ca-CondMat [23], email-Enron [24], ca-AstroPh [23] and ca-GrQc [23].

The ca-HepTh, ca-CondMat, ca-AstroPh and ca-GrQc datasets are co-author cita-
tion networks of High Energy Physics Theory, Condensed Matter, Astro Physics and
General Relativity respectively. The email-Enron is a network of Enron employees
who have communicated by the Enron email. These five datasets are available at
http://snap.stanford.edu/data/index.html.

Table 1 presents the original statistics properties of these datasets, including tran-
sitivity, ACC, and APL. All the graphs are simple, undirected, and unlabeled.

5.3 Evaluation measures

In order to evaluate the effectiveness of the proposed approach, we consider three
important social network analysis measures: the transitivity, ACC, and APL, which
has been described in Sect. 3. These measures are calculated on the outputs of both
the anonymized and the original graphs.
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We calculate the transitivity of the graph, which is the count of triangles and triples
in the whole graph.

Transi tivi t y = 3 ∗ �

�
(4)

where � is the number of triangles, and � is the number of connected triples.
We also calculate the average clustering coefficient. The clustering coefficient of a

vertex is the fraction of possible triangles through the vertex that exist:

cu = 2T (u)

deg(u)(deg(u) − 1)
(5)

where T (u) is the number of triangles through node u and deg(u) is the degree of u.
Then the average clustering coefficient of a graph is defined as the average clustering
coefficient of all the vertices.

5.4 Results

Figures 2a, 3a, 4a, 5a and6a show the transitivity of the anonymized andoriginal graphs
as a function of k. The horizontal constant lines represent the transitivity values of the
original graphs.

The transitivity value of the anonymized graph tends to become smaller on ca-
HepTh, ca-CondMat, ca-AstroPh and ca-GrQc, but larger on email-Enron. This is
because the original transitivity measures of these four datasets are relatively higher.
When adding edges to transform the graph to the k-degree anonymous version, trian-
gles form slower than connected triples, just the reverse on email-Enron dataset.

Figures 2b, 3b, 4b, 5b and 6b list the average clustering coefficient of the
anonymized graphs as a function of k on the five graphs. The horizontal constant
lines represent the ACC values of the original graphs.

From the figures, we can observe that the change of ACC on five datasets of all
algorithms is quite low except the priority method, and the priority change very much
on all the five datasets.

Figures 2c, 3c, 4c, 5c and 6c detail the average path length between vertex pairs of
the anonymized graphs as a function of k. The horizontal constant lines represent the
APL values of the original graphs.

All figures show the trend that the average path length becomes shorter after the
anonymization, this is because new edges are added to the original graph, and vertices
having a bigger shortest path length are becoming smaller.

As the performance of our proposed approach with these of FKDA and VertexAdd
is very close, we quantified the relative performance of these four approaches, in terms
of the number of times they are first, second, third and fourth in each of the 15 case
shown in Figs. 2, 3, 4, 5 and 6. If two methods gave a tie, for example, for first position
for a given case, both methods were awarded one point for first position. It’s shown in
Tables 2 and 3.

As we can see from Table 2, our KDVEM approach performs best on the ACC
metric, FKDA outstands on the transitivity metric and VertexAdd approach preserves

123



KDVEM: a k-degree anonymity… 1177

F
ig
.2

R
es
ul
ts
on

ca
-H

ep
T
h

123



1178 T. Ma et al.

F
ig
.3

R
es
ul
ts
on

ca
-C

on
dM

at

123



KDVEM: a k-degree anonymity… 1179

F
ig
.4

R
es
ul
ts
on

em
ai
l-
E
nr
on

123



1180 T. Ma et al.

F
ig
.5

R
es
ul
ts
on

ca
-A

st
ro
Ph

123



KDVEM: a k-degree anonymity… 1181

F
ig
.6

R
es
ul
ts
on

ca
-G

rQ
c

123



1182 T. Ma et al.

Table 2 Relative performance
by metric

Bold indicates the best value of
the four algorithm

Metric Priority KDVEM FKDA VertexAdd

Transitivity 3.277 2.046 1.985 2.692

ACC 3.615 1.631 2.046 2.708

APL 3.631 2.554 2.277 1.538

Average 3.508 2.077 2.103 2.313

Table 3 Relative performance
by dataset

Bold indicates the best value of
the four algorithm

Dataset Priority KDVEM FKDA VertexAdd

ca-HepTh 4 2 1.538 2.462

ca-CondMat 2.538 2.385 2.385 2.692

email-Enron 3.128 2.564 2.538 1.769

ca-AstroPh 3.949 1.308 2.282 2.462

ca-GrQc 3.923 2.128 1.769 2.179

Average 3.508 2.077 2.103 2.313

best on the APL metric. It’s hard to say which metric is more important than other
metrics, so we took the three metrics equally and averaged the ranking score of the
three metrics. It’s our KDVEM approach get the first place, so we think our KDVEM
approach is better than the other three approaches on these metrics.

As we can see from Table 3, our KDVEM approach ranks first on the ca-CondMat
dataset and ca-AstroPh dataset. By looking back on the Table 1, we hypothesizes that
social networks with transitivity around 0.3 and ACC around 0.65 have some unique
characters and our approach performe better on social network with these characters.
We leave the verification task as a future work.

To sum up, on the five datasets, with varying k, our algorithm performs better
than the other three algorithms. The whole experimental results clearly verify that
our approach, which utilizes the notion of community structure in social network, can
preserve more utility of the social network.

6 Conclusion

Privacy and utility are two main sides of social network anonymization. The utility of
the anonymized social network will be inevitable decreased, as distortion are intro-
duced in the anonyming process to guarantee the privacy from being breached. In this
paper, we proposed a heuristic k-degree anonymization algorithm that anonymizes
a graph by modifying the graph through adding edges and vertices. The utility of
the published graph is well preserved with the help of community structure in the
graph when adding edges to the graph. We have demonstrated our approach using a
spectrum of experimental evaluation on real world datasets and we have shown that
the algorithm we proposed preserves the utility very well. Especially there are many
communities and the interaction between communities are relatively low.
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As a future work, we plan to compare the performance of graph anonymization
approaches that modify the graph through adding edges and adding vertices. We also
plan to further investigate the problem of improving the utility of stronger privacy
model, such as k-neighborhood, k-isomorphism, et al. Moreover, we plan to quantify
the utility of the social network, in order to provide more guiding on the modification
of graph to achieve k-anonymous. We are also intended to check the performance of
our approach on the large social networks, such as Facebook, Twitter, et al.
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