Computing (2015) 97:691-711 @ CrossMark
DOI 10.1007/s00607-015-0445-x

Specification, verification, and quantification of security
in model-based systems

Samir Ouchani - Mourad Debbabi

Received: 30 August 2013 / Accepted: 17 February 2015 / Published online: 28 February 2015
© Springer-Verlag Wien 2015

Abstract Modern systems are more and more complex and security has become a key
component in the success of software and systems development. The main challenge
encountered in industry as well as in academia is to develop secure products, prove their
security correctness, measure their resilience to attacks, and check if vulnerabilities
exist. In this paper, we review the state-of-the-art related to security specification,
verification, and quantification for software and systems that are modeled by using
UML or SysML language. The reviewed work fall into the field of secure software
and systems engineering that aims at fulfilling the security as an afterthought in the
development of secure systems.

Keywords Security - Modeling - Specification - Verification - Theorem proving -
Model-checking - Temporal logic - Vulnerability - Attack - Security metrics - Security
engineering - UML - SysML

Mathematics Subject Classification 68Nxx

1 Introduction

Integrating security concerns into software engineering practices [1], also known as
secure software engineering, is a relatively recent research trend that aims at taking

S. Ouchani ()

Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg, Luxembourg, Luxembourg

e-mail: samir_ouchani @yahoo.com; samir.ouchani @uni.lu

M. Debbabi

Concordia University, 1455 de Maisonneuve Blvd. W., Montreal H3G 1M8, Canada
e-mail: debbabi@ciise.concordia.ca

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-015-0445-x&domain=pdf

692 S. Ouchani, M. Debbabi

security into consideration as a separate layer to build with the system as an after-
thought. It discusses techniques and methodologies to provide support for the analysis
and the design of security requirements and properties as well as for the specification
of security aspects in the developed systems.

A major challenge in software and systems development process is to advance error
detection at early stages of their life-cycles. It has been shown that the cost of repairing
a software flaw during maintenance is approximately 500 times higher than fixing it at
early design phases [2]. Yet, another more ambitious challenge is to accurately specify,
express and measure the security level of a product based on its design artifacts. Various
techniques have been proposed for the verification of software and hardware such as
model checking [3], type checking, equivalence checking [4], theorem proving [5], as
well as static and dynamic analysis.

In modern software engineering [6], UML [7] has become the de-facto standard
for modeling object-oriented systems. It is common that many research initiatives aim
at fulfilling the gaps between UML-based modeling and secure software engineer-
ing. Specifically, secure software engineering requires dealing with many challenges
depending on the development phase, where the security of a given software or sys-
tem depends on a set of pre-defined security constraints and requirements. Thus,
the major challenges in secure software development: specifying security policies,
verifying whether a given software satisfies the pre-defined policies, choosing the
adequate verification method, and evaluating the resilience of a given software to an
attack.

In this survey, we study and compare the state-of-the-art related to the aforemen-
tioned challenges. We split our review into the following four directions:

1. Specification of security requirements: It covers techniques that express security
policies of a model,

2. Modeling of attacks: It provides different modelling formalisms that are used to
design the different type of attacks,

3. Verification of security requirements: It cites mainly the automatic approaches
that check the security requirement and prove their correctness of a model-based
system, and

4. Security quantification: It elaborates tools and frameworks that are dedicated to
assess security and analyze risks in a system.

This paper is organized as follows. Section 2 briefly presents the main techniques
used by the reviewed approaches in favor of highlighting their strengths and shortcom-
ings. Section 3 is dedicated to review relevant works to the UML-driven specification
of security requirements and attack scenarios modeling, UML-based development
of secure systems, as well as qualitative and quantitative verification of security on
UML designs. In addition, it discusses the various criteria that we developed in order
to compare the state-of-the-art initiatives in the aforementioned research directions.
Finally, Sect. 4 summarizes this review with some important remarks on the promising
research direction in secure software engineering.

@ Springer

Specification, verification, and quantification of security in model-based systems 693

2 Background

In this section, we briefly explain the background needed to understand the existing
research initiatives in security specification and verification fields. First, we introduce
the main modeling diagrams that are used in the surveyed works.

2.1 UML diagrams

The UML diagrams [7,8] are of two classes: structural and behavioural. The former
models the static parts of the system such as the class and the package diagrams. The
behavioural diagrams can be either Interaction, State Machine, or Activity diagrams.
The interaction diagram answers the question: “When does who call whom and how?”,
the state machine diagram answers the question: “ How does an object respond to events
in a specific state?”, and the activity diagram answers the question: “What happens
in which sequence?”. The interaction diagram describes the communication between
objects declared in the package diagrams. The main elements of an interaction diagram
are: lifelines and messages. A lifeline represents acommunication role and a message is
acommunication between two lifelines. A state machine contains a set of states related
by transitions. A state is to model a situation where some invariant condition holds. It
takes the evaluation of attributes of an object instantiated from a class. A transition is a
directed relationship specifying the system changes between states. Activity diagram
can be used to model system’s behaviour at various level of abstractions. It allows
low-level modeling compared with other behavioural diagrams. An activity diagram
notation can be decomposed into two basic categories: activity nodes and activity
edges. In addition to UML diagrams, other modeling dialects extend UML to support
more specific domains. More precisely, SysML [9] extends system features to UML
activity diagram by using four systems stereotypes (probability, rate, nobuffer, and
overwrite). In UML standard, the stereotype is an extensibility mechanism to define
or refine the meaning of a model element.

2.2 UML-driven secure systems development

UMLsec [10-12] is one of the first efforts toward extending UML into a security pro-
file for the development of security-critical systems. It supports the specification of
security-relevant information within UML diagrams using stereotypes, tagged values,
and constraints mechanisms. A number of stereotypes are defined to express general
security requirements including confidentiality, integrity, non-repudiation, role-based
access control, fair exchange, authenticity, and freshness. These stereotypes can be
used for various UML diagrams such as use case, class, statechart, activity, sequence,
and deployment diagrams. The UMLsec framework [13—-15] integrates an automated
theorem prover (e-Setheo and SPASS) and a model checker (SPIN) [16] that automat-
ically establish whether the security requirements hold or not. The framework input
is a .zargo or .xmi file containing UML diagrams created with the UML tool named
ArgoUML. SecureUML [17] is another paradigm that supports the development of
secure software, also known as Model Driven Security (MDS). It integrates a pro-

@ Springer

694 S. Ouchani, M. Debbabi

posed secure modeling language for access control as a generalization of the role
based access control (RBAC) within the UML class diagrams.

2.3 Security policies specification

A security policy is generally considered as a set of rules and guidelines that specify
how to achieve the needed security requirements for a system or an organization. It
might include rules for virus detection and prevention, granting and revoking access
to system resources, protecting critical information from unauthorized users. Secu-
rity policies can be classified into high-level policies and low-level requirements.
High-level security covers policies such as, confidentiality, integrity, authentication,
secrecy, freshness, authorization and availability. Low-level security requirements con-
cern safety vulnerabilities that can be introduced in the software source code during
the implementation phase including memory safety, input validation, user interface,
etc. In the literature, usually a mathematical logic or a graph-based representation is
used to formally specify/express security policies. As example of the formal logic, one
can find the first and the higher order logics, the linear (LTL) [18] and the branching
time logics (CTL, CTL*) [19]. Further, others extend them by probability and real
time such as pCTL and CSL. The most important challenge in the security property
specification is the user-friendliness of its expressiveness. Hence, other formalisms
have been developed including W-automaton, OCL, and UML diagrams.

2.4 Security quantification

Security evaluation that involves only qualitative results may not necessarily coincide
with real objectives. “At a high-level, metrics are quantifiable measurements of some
aspect of a system. For a part of the system, which security is a meaningful concept,
there are some identifiable attributes that collectively characterize the security of that
entity” [20]. More precisely, a security metric is a quantitative measure indicating
to which extend the considered entity possesses the attribute of being secure. Many
criterions have been proposed to evaluate security risk including the Trusted Computer
System Evaluation Criteria (TCSEC), Information Technology Security Evaluation
Criteria (ITSEC), and Systems Security Engineering Capability Maturity Model (SSE-
CMM). Recently, several commonly recognized metrics are used such as attack surface
metrics [21]. In addition to the metric-based approaches, one can use the quantified
version of formal verification techniques, namely probabilistic model-checking and
probabilistic theorem proving to quantify the security of a system.

2.5 Attack scenario

Asdefined in [20], an attack is an attempt to gain unauthorized access to an Information
System’s (IS) services, resources, or information; or the attempt to compromise an IS’s
integrity, availability, or confidentiality. Different attack models have been deployed:
attack tree, attack graph, and network attack graph. An attack tree [22] is a tree where

@ Springer

Specification, verification, and quantification of security in model-based systems 695

nodes represent attacks. The root node of the tree is the global goal of the attack.
Children of a node are refinements of this goal, and leafs therefore represent attacks
that can no longer be refined. A refinement can be done by either an aggregation or a
choice. An attack graph [23] is a graph where each vertex represents the entire network
state and the arcs represent state transitions caused by an attacker’s actions. Moreover,
a vertex can not represent the entire state of a system but rather a system condition
in a predicate form and arcs represent the relation between the system conditions.
In this case, the attack graph is called a dependency attack graph. A network attack
[24] is an attack model [24] composed of the computer network, the attacker, and the
defender. A state transition in a network attack model corresponds to a single action
by the intruder, a defensive action by the system administrator, or a routine network
action.

2.6 Formal verification

The strengths of formal verification approaches reside in the mathematical principles
used to demonstrate the correctness of a formal software condition with respect to its
specifications [25]. The basic idea is to construct a formal model of the system that
captures all possible behaviours of the system and to write the related requirements
representing the desirable behaviour. Various formal models have been proposed to
capture the semantics of software such as automata [26], Petri nets [27], and process
algebra [28]. Formal verification can be performed either using model checking or
theorem proving.

Model Checking is a prominent automated formal verification technique for assessing
functional and non-functional properties of information and communication systems.
It requires a model of the system under consideration and a desired property to sys-
tematically check whether the given model satisfies the property or not. It checks the
absence of errors (i.e., property violations) and alternatively can be considered as an
intelligent and effective debugging technique. Among the most popular model check-
ers include: SPIN [16], NuSMV [29], UPPAAL [30], and PRISM [31]. For applying
model checking to a system, three phases required:

— Specify the system using a model description language, and formalize the property
to be checked using the property specification language.

— Check the validity of the property in the system model.

— Analyze the satisfiability or the violation of the property.

Theorem Proving is another technique used to formally verify a given system where
both the system and its desired properties are expressed as formulas in mathematical
logic. This logic is given by a formal system, which defines a set of axioms and a set of
inference rules [32]. Theorem proving is the process of finding the proof of a property
from the axioms of the system. The steps in the proof rely to axioms and rules, and pos-
sibly a derived definitions and intermediate lemmas. While proofs can be constructed
by hand, we focus here only on machine-assisted theorem proving. Theorem provers
are increasingly being used in the mechanical verification of systems and software

@ Springer

696 S. Ouchani, M. Debbabi

designs against safety-critical properties. Among existing automatic theorem provers,
one includes Coq,1 Isabelle,? and HOL.?

3 Related work

In this section, we review the existing works that have been conducted in the state-
of-the-art of the specification, the verification, and the quantification of security at
the design-level of software and systems. For security specification, we illustrate the
existing formalisms that are used to model and to express security requirements in
UML-based systems. For verification, three main approaches are adopted from the
literature: model checking, theorem proving, and simulation. For security quantifica-
tion, the existing approaches are based on the probabilistic verification, and stochastic
metrics analysis. First, we study different techniques and approaches that model and
specify security requirements in UML and SysML diagrams.

3.1 Specification of security requirements

Different mechanisms are proposed to specify security requirements such as temporal
logic, OCL, and security templates (security patterns). In addition, other mechanisms
integrates security services (confidentiality, availability, ...) within the design such as
UMLsec by using profiles and stereotypes. In this section, we survey the works related
to these both mechanisms. Mainly, we focus on formal languages and techniques that
are used to express security properties. Also, we check how security is modeled in
UML diagrams and which requirement is more suitable to specify and to check for a
given approach.

Cheng et al. [33,34] propose a collection of security policies modeled as UML
design patterns [35]. These patterns are shaped to include security aspects and con-
straints in order to facilitate the integration of security knowledge. The integrated
security requirements support the security principles developed by Viega and McGraw
[36] including authentication, confidentiality, integrity, availability that are designed
as a state machine or a sequence diagram. The structure of the pattern is specified by
using UML class diagram where the constraints are expressed in LTL. The application-
dependent security properties are instantiated from the security templates and they are
verified in Hydra framework [37]. The results of the analysis are processed and visual-
ized on the original UML diagrams using the MINERVA tool [38]. These requirements
are specified for the authentication of an automated teller machine (ATM) application
modeled by a state machine diagram.

Zisman [39—41] proposes an extension to UMLsec in order to model peer-to-peer
applications along with their security aspects and to statically verify security prop-
erties using a Static Verification Framework (SVF). It relies on the concept of abuse

1 http://coq.inria.fr/.
2 http://labsoc.comelec.enst.fr/turtle/.
3 http://hol.sourceforge.net/.

@ Springer

http://coq.inria.fr/
http://labsoc.comelec.enst.fr/turtle/
http://hol.sourceforge.net/

Specification, verification, and quantification of security in model-based systems 697

cases defined as UML use cases and state machine diagrams to represent attack sce-
narios. Abuse cases serve both identification and description of security properties.
The framework includes a property editor that allows the specification of security
properties by using a graphical template language based on patterns defined in [42].
The design models that are expressed as class and state machine diagrams are trans-
lated into Promela and their related properties are mapped into LTL, for the purpose
of using SPIN. Also, the verification of the underlying security protocols is performed
by using the AVISPA* tool. And, the supported security properties are expressible in
UMLsec and thus include but not limited to authentication, confidentiality, integrity,
and role based access control. The results of the verification process are presented to
the designer and in a case of property violation, the counterexample is highlighted in
the design. In addition, the framework allows the user to add a custom code that is
written in the action language. This is applied on a peer-to-peer protocol composed
from one sender and one receiver without specifying its reference.

Jiirjens and Shabalin [12,15] provide a support for an automated verification of
UMLsec diagrams by using the SPIN model-checker. Also, an additional specific
cryptography-related information are extracted from different types of diagrams. The
Dolev—Yao model of an attacker is included with UMLsec to model the interaction with
the outside environment [43]. In [44], Jirjens verifies UMLsec models for security
requirements: authentication, confidentiality, integrity, availability, and secrecy. More
precisely, the constraints associated with security stereotypes in UMLsec are verified
using an automated theorem prover. To accomplish, UMLsec diagrams are translated
into the first-order logic (FOL) formulas that can be automatically analyzed using the
FOL prover on a sender/receiver communication protocol by including a Dolev—Yao
attack model.

Hassine et al. [45] propose a high level pattern-based approach to describe a property
by using the concept of Use Case Maps (UCM). The properties are described in terms of
occurrence, ordering, and temporal scopes of actions with respect to their architectural
scope. Then, they provide a mapping of the UCM patterns to the CTL, TCTL, or
Architectural TCTL form (ArTCTL), which is an extension of TCTL. This technique
is proposed to express all the design requirements including security specification and
it is applied on an ATM UML diagrams. This properties pattern has been expressed
for a simple telephone system root map.

Irbis et al. [46] present a tool for Data Property Specification (DaProS) that assists
in the specification and the refinement of properties that can be used to check data
quality in terms of accuracy. It uses Disciplined Natural Language (DNL) to spec-
ify properties within the help of common type representations as patterns to validate
if the specifications capture the intended meaning of data or not. The data property
specification is a four-step process: property category selection, property scope selec-
tion, property pattern selection and specification (timed and un-timed), and property
visualization.

Heather et al. [47] generate linear temporal logic properties that specify the latent
behaviour of an existing UML diagram. The key component of their approach is an

4 http://www.avispa-project.org/.

@ Springer

http://www.avispa-project.org/

698 S. Ouchani, M. Debbabi

evolutionary-computation called MARPLE. It uses a novel search to discover a set
of properties that describe UML diagrams. As a result, the generated LTL proper-
ties describe the behaviour stated in the requirements and the unacceptable latent
behaviours. The LTL properties are generated for a door-locking system and a robot
navigation system.

The specification patterns created by France et al. in [48] are a meta-model-based
patterns to characterize UML diagrams. First, they specialize the abstract syntax by
sub-typing the UML meta-model classes and by making the well-formed rules more
restrictive. The result is an abstract syntax for models describing pattern solutions.
Then, they define a parameterized templates for OCL constraints [49] to represent
requirements that are characterized by the specialized meta-model which capture the
semantics of patterns. The resultis a pattern specification consists of a structural pattern
specification that specifies the class diagram view of the pattern solutions, and a set
of interaction pattern specifications that specifies interactions in the pattern solution.
The specification of the proxy design pattern is shown as an example of this proposal.

Another way is defined to specify temporal properties by using a modified version
of OCL called temporal OCL (TOCL) developed by Ziemann and Gogolla in [50].
The pre and post conditions defined in OCL specification [49] are used to define the
syntax and the semantics of invariants and operators of TOCL expressions. Flake
and Miiller express in [51] a property specification with OCL by mapping a specific
hierarchically ordered pattern to CTL. The ordered pattern is specified by two classes:
occurrence and order. The occurrence class contains the absence, the existence, and
the universality operators. The order class specifies the precedence, and the response
features. The specification by OCL is applied on an informal example composed of a
class diagram and a state machine.

Van Lamsweerde [52] elaborates security requirements by constructing intentional
anti-models. He addresses malicious obstacles (called anti-goals) set up by attackers to
threaten security goals. In this case, threat trees are built through anti-goal refinement
until leaf nodes are derived. The leaf nodes represent either software vulnerabilities
or anti-requirements. Security requirements are elaborated by: (a) instantiate specifi-
cation patterns associated with property classes, (b) derive anti-model specifications
threatening such specifications, (c) derive alternative countermeasures to such threats
and define new requirements by selection of alternatives that best meet other qual-
ity requirements from the model. The specification patterns can be formalized in a
first-order, real-time linear temporal logic augmented with epistemic constructs for
security-related predicates. Preda et al. [53] propose a formal technique that combines
the use of access control policies expressed in the Organization-Based Access Control
(OrBAC) [54] language together coupled with specifications based on the B-Method
[55]. As application, the security requirements are expressed for the IPsec tunnels
modeled by a sequence diagram.

Ouchani et al. [56] generate the PCTL temporal logic expressions from attacks tem-
plates designed as SysML activity diagrams. They model a selected set of CAPEC? as
an application-independent attacks. Then, they use the system model to instantiate the

5 http://capec.mitre.org, Common Attack Pattern Enumeration and Classification sponsored by the National
Cyber Security Division of the U.S. Department of Homeland Security.

@ Springer

http://capec.mitre.org

Specification, verification, and quantification of security in model-based systems 699

appropriate dependent-application attack scenario in order for an attack-system com-
position. For verification, the interaction model within the generated PCTL properties
from the application-dependent CAPEC attack are given to PRISM. This approach
generates the PCTL properties related to the real time streaming protocol in the pres-
ence of a spoofing attack.

After showing the existing approaches that are dedicated to security specification
and modeling, we study the modeling techniques that are used to design attacks of a
given UML/SysML diagram.

3.2 Modeling of attacks

Modeling attacks is a main peace to analyze the weakness/the strength of a system. In
this section, we survey the state-of-the-art that deals with attack modeling. In addition,
we explore which UML diagram is suitable for this use, and we highlight which kind
of attack modeling is preferred from those defined in Sect. 2.

In [57], attack graphs have been used to assess the probability that an attacker
reaches particular attack step. Pamula et al. [58] analyze the security of system config-
urations in terms of the weakest adversary that can compromise the network. Frigault
et al. [59] model probability metrics based on attack graphs as a special Bayesian
Network. Each node of the network represents vulnerabilities as well as the pre and
post conditions resulting from the exploitation of such vulnerabilities. Probabilities on
nodes are inferred from the Common Vulnerability Scoring System (CVSS)° standard
and denote the success likelihood of a specific attack goal.

Gegick and Williams [60] identify security vulnerabilities in code level by tailoring
attack patterns based on software components. These patterns take the form of regular
expressions that are generic representations of vulnerabilities. To encapsulate the steps
that can form an attack, a matching of a sequence of components in a system design
with symbols in a regular expression is applied to deduce the sequence of events in
the attack pattern that can occur. If a match exists, then the vulnerability may exist in
the application being analyzed. The attacks patterns given in [60] are mainly based
on code-level vulnerabilities especially the buffer-over flow and the SQL injection
attacks.

Grunske and Joyce [61] propose a risk-based approach that creates modular attack
trees for each component in the system. These trees are specified as parametric con-
straints, which allow quantifying the probability of security breaches that occur due
to internal and external vulnerabilities. The probability of a successful attack is deter-
mined with respect to a set of attack profiles that are chosen to represent potential
attackers and corresponding to environmental conditions.

Saqui-Sannes et al. [62] verify the security of the communication systems designed
in UML by using AVISPA” and TURTLE 8 tools. AVISPA uses the Dolev—Yao
intruder model to detect security flaws. And, TTool checks the generated dynamic

6 http://nvd.nist.gov/cvss.cfm.
7 http://www.avispa-project.org.

8 http://labsoc.comelec.enst.fr/turtle/.

@ Springer

http://nvd.nist.gov/cvss.cfm
http://www.avispa-project.org
http://labsoc.comelec.enst.fr/turtle/

700 S. Ouchani, M. Debbabi

timed automata from the model against temporal requirements. The implementation
in AVSIMA and TTool models and checks Dolev—Yao intruder for a secure group
communication protocol modelled in UML.

After surveying the main works related to the specification of security requirements
and modeling attacks, we have to explore different techniques that are proposed to
verify the specified requirements and to check the presence of possible attacks.

3.3 Verification of security requirements

The previous two sections are the main essence of the verification part, without security
specification, the verification can not be completed. In this section, we focus more on
the semantic model extracted for the used diagram. Also, we look forward for which
technique is more appropriate to verify a given diagram.

Ray [63] presents a framework of security verification in software architecture
based on a discrete time labeled transition system (DTLTS) as its formal representa-
tion. They propose an abstraction technique to extract only small units of the system,
and put them in a “security harness” that exercises relevant executions within a unit,
later, model-checking is applied to get more tractable units of three classes of security
properties: safety, quasi-liveness, or bounded response. A given property is traversed
while the irrelevant parts of the system are abstracted away by applying minimiza-
tion or action hiding techniques that should satisfy a subset of temporal CCS and
covers the abstracted part of the system. The CWB-NC” model-checker is used for
property checking and attack tracing that is marked as suspicious behaviours is used
subsequently for intrusion detection.

Thapa et al. [64] present an approach to verify security and time-related require-
ments. Both, UMLsec and MARTE profiles [65] are used to address security and tim-
ing requirements. This combined meta-model is converted to a form of UML-based
Specification Environment (USE) specification so that it can be used for verifying
models. Security properties such as authenticity, authorization, secrecy, integrity and
fair exchange with freshness properties are supported. These properties are verified
on an authentication protocol modeled by an interaction diagram.

Dong et al. [66] present a model-checking based approach to verify a composition
of security patterns. Initially, they define the behavioural aspect of security patterns
using sequence diagrams. A set of general rules are proposed to define the synchronous
and asynchronous messages, and alternative flows within UML sequence diagrams.
Then, these rules are used to transform sequence diagrams into a CCS-based [67]
representation in order to be input to the CWB-NC model-checker. This requires
from the user to specify the systems in CCS and the security properties in the GCT
temporal logic. As a case study, the author chose the exchange fair protocol for there
experiments.

Moebius et al. [68] present a verification method that allows to ensure the secu-
rity for security-critical systems based on cryptographic protocols. An application is
modeled with UML extended by a UML profile and the Model Extension Language

9 http://www.scss.tcd.ie/Matthew.Hennessy/rsexternal/tools.php.

@ Springer

http://www.scss.tcd.ie/Matthew.Hennessy/rsexternal/tools.php

Specification, verification, and quantification of security in model-based systems 701

(MEL) is used to describe protocols on an implementation-independent level. A for-
mal specification is automatically generated from the UML models and then imported
by KIV! theorem prover. The formal specification of the system contains: a static and
a dynamic part. In the first part, UML class and deployment diagrams are specified
using algebraic specifications. In the dynamic part, sequence and activity diagrams are
translated into an abstract state machine. However, the verification approach requires
the interaction of the user for developing lemmas in in order to use the theorem prover.
A copycard application is selected to verify security properties.

Bauer et al. [69] propose an approach for model-based security assurance that
supports security verification at both levels: design and implementation. At the spec-
ification level, the design models are verified formally against high-level security
requirements such as secrecy and authentication. At the implementation level, it relies
on run-time verification technique to ensure if the implementation conforms to the
properties expressing run-time behaviour. The uncovered security weakness during
run-time verification is removed using aspect-oriented security hardening transfor-
mations. Thus, the approach supports the evolution of software since it updates the
traceability mapping between the design specification and the implementation when
refactoring operations. The design expressed in UMLsec are formally analyzed with
the UMLsec environment. The online run-time verification technique is used for the
verification of the code. The first phase follows seven steps: (1) specify and verify
security protocols using UMLsec tool suite, (2) an implementation is linked to this
UML model, (3) temporal logic formulae are derived from the UML model, (4) a secu-
rity monitor is generated from the temporal logic formulae, (5) the relation between
the UML model and the code is maintained as the implementation evolves over time,
(6) errors in the implementation can be corrected using AOP, and (7) the security
monitor is updated with respect to the changes arising from the previous step (step 6).
The traceability phase has four steps: (1) verifying traceability from security require-
ments to design, (2) verifying traceability of security requirements from design to
execution time, (3) verifying traceability of security requirements from one version of
the implementation to another through system evolution, (4) hardening the traceable
security hardening for code-level security vulnerabilities. In the experimental phase,
the handshake protocol of SSL3 using RSA and a server authentication is selected to
express and verify security requirements.

Rajkumar et al. [70] present an approach to verify the correctness of the usage
control implementation using a semi-formal property verification. First, irrelevant
code details of the usage control are abstracted and the usage control state space of
the application is isolated. Next, The action LTL logic is used to verify the security
properties on the abstracted model of the application generated by an action-based
abstraction that takes the form of a UML-state machine.

A practical verification framework of a composition of UML behavioural diagrams
(state machine, activity diagram, and sequence diagram) is proposed by Ouchani et
al. [71]. Systematically, the semantic model, which is a kind of transition system is
constructed based on a compositional operator. They verify the security properties by

10 http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/.

@ Springer

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/

702 S. Ouchani, M. Debbabi

instantiating them from an application-independent templates. The counterexample
obtained from NuSMYV is showed on the composition of diagrams that model ATM
behaviour.

Lima et al. [72] verify UML 2.0 sequence diagrams by mapping each fragment
into a process in PROMELA code where the send/receive event are specified by a
communication between process. The security properties are specified using LTL
temporal logic to be verified in SPIN. The counterexample is mapped to a trace in the
model to be analyzed later by the user. Alalfi et al. [73] verify a reversed PHP code to
a SecureUML model in the form of .XMI file. First, the resulting model is converted
to a formal state model using UML2Alloy tool. Next, Alloy is employed to analyze
the security properties.

The previous verification approaches check only the satisfiability or not of security
requirements, and the presence or not of a given work. But our intention is to look
forward techniques that quantify security by providing more precise answers as those
presented in the next section.

3.4 Security quantification

We consider the initiatives cited in the previous section as a qualitative evaluation of
security. In this section, we study how security is measured by using either probabilistic
model checking, or statistical and qualitative analysis.

Umair et al. [74] use vulnerability occurrence to calculate the vulnerability index in
software development life cycle) artifacts that provide an indication about the existing
vulnerabilities. It is calculated by using the combined potential damage that can be
caused by vulnerabilities. The approach is composed of the following steps: (1) iden-
tify a list of vulnerabilities and errors, (2) identify their occurrence relationships, (3)
identify security requirements, (4) calculate the vulnerability index as the total number
of vulnerability occurrences, (5) identify damage to assets and implementation cost
of security requirements, (6) the total damage is the total potential damage caused
by an occurrence of a given vulnerability, (7) prioritize the vulnerabilities based on
their damages, and (8) the security index is measured based on the previous met-
rics to measure the extent of the damage that may be caused due to the remaining
vulnerabilities.

Georg et al. [75] advocate the use of the aspect-oriented risk-driven development
methodology for developing secure systems. It consists of a formal security evalua-
tion and a trade-off analysis that help system designers to position alternative security
solutions against each other. The first uses Alloy analyzer to provide assurance that an
incorporated security mechanism performs as expected and makes the system resilient
to previously identified attacks. The trade-off analysis based on Bayesian Belief Net-
work (BBN) topology allows equally effective security mechanisms to be compared
against system security requirements and other factors such as time-to-market and
budget constraints.

Chen et al. [76] present threats modeling method based on attacking path analysis
(T-MAP) which quantifies security threats by calculating the total severity weights
of relevant attacking paths for commercial off the shelf (COTS) based systems. First,

@ Springer

Specification, verification, and quantification of security in model-based systems 703

key stakeholders and values propositions are identified. After that, a set of security
evaluation criteria are established. Then, based on a database of vulnerabilities, the
attack paths are analyzed. Finally, the attackers are modeled to assess the level of
difficulty of the exploiting paths and the T-MAP weighting system is measured using
the Tiramisu tool. They demonstrate the T-MAP process through a case study on a
production server that communicates to several sensitive databases.

Liu and Traore [77,78] propose a framework to measure the protection of soft-
ware and systems at the design level. Basically, they analyze the user interactions
in a sequence diagram based on the User System Interaction Effect (USIE) model.
In [77], they take into consideration only the confidentiality requirement by mea-
suring the number of significant information leakage channels between two roles
communication via messages. And in [78], they provide the measure of privilege
system based on the mechanism strength in a pattern. Their framework is applied
on a doctor read record protocol under a concurrent control modeled by a sequence
diagram.

Buchholtz et al. [79] verify the security requirements by a qualitative analysis and
then compute the performance measure by a performance analysis of UML sequence
diagrams. The used technique for security analysis is a static analysis procedure. For
quantitative evaluation, a Continuous-Time Markov Chain (CTMC) is generated from
the model and then solved for its equilibrium probability distribution using proce-
dures of numerical linear algebra such as the pre-conditioned the bi-conjugate gra-
dient method, or successive over-relaxation. This framework has been applied on a
shopping-online-system.

Ouchani etal. [80] quantify the security level of a system modeled as SysML activity
diagrams. They model a selected set of CAPEC as an application-independent attacks.
Then, they use the system model to instantiate the appropriate dependent-application
attack scenario in order for an attack-system composition. And, they express in PCTL
the security properties related to the system/attack composition. For verification, they
use PRISM for the PCTL expressions and the model composition. The security proper-
ties are evaluated on a real-time steaming protocol model in SysML activity diagram.

After reviewing the main existing initiatives that specify, verify, and quantify secu-
rity in model-based system. We summarize this survey by comparing them in order to
conclude it with important new research directions.

3.5 Summary
We divide this section into two parts. The first one develops the challenging criteria

come across within the state-of-the-art, and the second part compares the studied
contributions with respect to the developed criteria.

3.5.1 Comparison criteria
In order to understand and to compare approaches targeting the security policies speci-

fication, or the security verification and quantification; we propose a set of comparison
criteria. Further, we focus on whether if they are included or not for each approach.

@ Springer

704 S. Ouchani, M. Debbabi

— Criteria for security specification: This class is based on five basic features, which
are:

— Scope: It specifies whether the proposed approach is used for the specification
of security requirements and properties or for the specification of security
aspects in the software development.

— Technique: It highlights the leveraged technique in security specification such
as: profile, template, intermediate language, meta-model, temporal logic, OCL,
formal model, etc.

— Security properties: It pinpoints different security properties supported by
the reviewed work including authentication, confidentiality, integrity, non-
repudiation, role-based access control, fair exchange, authenticity, freshness,
secure communication, guarded access, etc.

— Tool support: It distinguishes the research initiatives that involved in the devel-
opment and implementation of a tool supporting their proposed approach.

— Verification technique: It relates the studied work on security specification to
the initiatives aiming at supporting this effort with a verification technique that
is also discussed within this survey.

— Criteria for security verification: This class contains six main features that are
described as follows:

— Verification technique: It specifies the technique used to perform the verifica-
tion of security on UML design. Among the verification techniques, we can
find model-checking, theorem proving, simulation, equivalence checking, type
checking, hybrid (the use of more than one technique), empirical, etc.

— Model representation: It represents the semantic model of the studied UML
models (automata, formal language, Petri nets, logic, etc).

— Tool support: It informs about the existence of a tool to perform the verification
process.

— Diagrams: It highlights the supported UML diagrams.

— Type of verification: It distinguishes between approaches providing qualitative
results and those providing quantitative results.

— Counterexample: Tracing the counter example (C-E) in the system’s model
when the security property is violated.

3.5.2 Classification

We classify in this section the different works cited in this section. We compare them
in Table 1 from the security specification point of view, and, in Table 2 we compare
them in term of verification.

From Table 1, we observe that the most of the studied researchers express the
security requirements and integrate them on the design (column 2, R/D). The most
used technique for specification is security templates (column 3). Generally, they focus
more on the existing security templates already mentioned in the background section.
Some of them use profiles by using the stereotyped attributes to express security
properties introduced by the user. Also, few of them use OCL that helps to write a
security property as a constraint. The most used tool to check the security requirement
is the model checkers rather then theorem provers (column 5), and, more especially

@ Springer

Specification, verification, and quantification of security in model-based systems 705
Table 1 Security specification in the state of the art
Contribution Scope Technique Security Verification Tool support
properties technique
Cheng et al. R/D Templates All Model-checker SPIN
[33,34]
Zisman [39-41] R/D Templates All Model-checker SPIN + Avispa
Jiirjens and R/D Profile All Model-checker SPIN
Shabalin [12,15]
Jiirjens [44] R/D Profile All Theorem-prover UMLsec suite
Hassine et al. [45] R/D Templates General Unspecified Unspecified
Irbis et al. [46] R/D Templates General Unspecified DaProS
Heather et al. [47] R/D UML model General Model-checker LTL-support
France et al. [48] R/D Meta-model + All Unspecified Unspecified
OCL
Ziemann and R/D OCL All Unspecified USE
Gogolla [50]
Flake and R/D OCL pattern All Unspecified Unspecified
Miiller[51]
Lamsweerde [52] R/D Templates General Prover + Checker ~ Unspecified
Preda et al. [53] R/D Profile General Prover Unspecified
Ray [63] R/D Behavior General Checker CWB-NC
Thapa et al. [64] R/D Behavior All Unspecified USE
Dong et al. [66] R/D Templates All Checker CWB-NC
Moebius et al. [68] R/D Profile General Prover KIV
Bauer et al. [69] R/D Profile General Checker + Prover ~ UMLsec suite
Rajkumar et al. R/D Language Unspecified Checker Support LTL
[70]
Ouchani et al. R/D Template General Checker NuSMV/PRISM
[56,71,80]
Lima et al. [72] R/D Behaviour General Checker Spin
Alalfi et al. [73] R/D Profile General Analyzer Alloy
Georg et al. [75] R/D Aspect General Analyzer Alloy
Chen et al. [76] R/D Attack General Quantification Tiramisu

SPIN and PRISM (column 6). The motivation behind this is that the end user needs
an automatic way to verify a design which is one of the favour of using the model

checkers.

In Table 2, the most studied diagrams are behavioural and less the structural ones
(column 2). The intuition behinds this is that they look on the execution part of the
system. This intuition enforces the reason of proposing in the most case a state-based
transition systems as semantic models (column 3). Since the most mentioned works do
not cover quantitative features such as time, probability, and cost, the normal temporal
logic such as LTL (column 4) is the most used to express security properties that could
be checked within a model checker tool (column 5) such as SPIN (column 6). The

@ Springer

S. Ouchani, M. Debbabi

706

ON qISN uoneoynueng) pagroadsun paygroadsun douanbag [8.°LL] @108€1], PUE NI']
ON nsTuer, uoneoynuen() pagroadsun paygroadsun [opow JeaIy], [9] Te 30 uoyD
SO Kory I19zAeuy j10ddns Koy 110ddns Koqpy TINNRIN0AS [€L] ‘T2 12 yBLY
SOA NIdS JOAYD-[POIN 11 e[OWOIJ souanbag [zL] T 19 eI
ON Kol IozA[euy payroadsun A3ojodoy ueisakeg [opowt J0adsy [sL] I8 12 S100D)
SOA ANSOIN 19333Y2-[opOIA 1LD SIT SweIeIp "yaq-TAN [1L] ‘T8 19 weyonQ
ON payroadsun IOYI9YO-[OPOIA LTV pagoadsun quIyorwW RIS [0L] Te 10 rewunyfey
SOX 9)Ins 99STINN I0A0IJ + IOYayD) TOd B[NUWLIOJ J130] 29STINN [69] Te 10 1oneg
ON AT IaA0ld 104 NSV + 931y "THIN Pue "TIN1 [89] 'Te 19 snigeoy
ON ON-dMD 19399Yd-[opON 109 SOO wresderp oouanbog [99] '[e 12 Suoq
ON asn paymadsupn payroadsun) pay1oadsun SSe[D [$9] 'Te 12 edey,
ON ON-dMD 22UD 109D SI'1Ld 2INJNIYIIE ATeMPOS [€9] ey
ON N[, pue VJSIAV IOYOoUD-[OPOIA pagroadsun BlRWOoINE POWL], WJSAS UOHBIIUNWIWO)) [29] ‘Te 30 souueg-Inbeg
ON sisA[eue onels payioadsupn payroadsun JINLD weigerp souanbog [6L] 'Te 32 Z3[oyyong
SOX NIdS b ekl L1 S9)BOIpal] + B[oWOI] quIyorw ABIS [6€] Te 10 TuOIdAIS
ON 9)Ins 99STINN IoA0Id-u0109Y], T04 edIpaId sse[D [$4] sualmf
SOA NIdS 1333Yd-[opOIA LT e[owold InolAeyeg + SS[eD [$1°T1] utfeqeys pue sualmp
SOX edsIAy + NIdS IOYOoUO-TOPOIA LT e[owolg QUIYOBW 9J8)§ + SSB[D) [19—6¢] uewsrz
SOA NIdS I=32yD LT e[owold InorAeyag + sse[n [el Te 10 Sudyd
-0 0oL, anbruyoqy, o130 [opou dnuBWIRS weISerp Inoraeyag uonnqrIuo))

116 3 Jo 9ye)s) ur sayorordde uoneoyLoa A)1ndes jo asn AL, 7 JqeL

pringer

As

Specification, verification, and quantification of security in model-based systems 707

main objective of this part of verification is to prove the correctness and the security
of a design. In the case of a security property violation, we found that only 40 % (8
from 19 contributions) who provide the counter example (column 7) and show the
vulnerabilities on the design.

After this summary and comparison, we present in the next section the deduced
conclusions and the future directions that are inferred from our survey and comparison
study.

4 Conclusions and future directions

From the studied contributions, we found that the most of them target explicitly a
single diagram, and look toward a precise domain. Further, they deal especially with a
specific technique instead of combining more than one in order to gain the advantage
and to reduce the limitation of each one, such as the case of model checking and
theorem proving. For verification, we observed that the most used technique is model
checking compared to theorem proving or other approaches such as static analysis. Of
course, the former is automatic but from a practical point of view, a theorem prover
built up a model checker will reduce the verification time and size complexity. For
security specification, the most used specification formalism is the temporal logic
especially the linear one such as LTL. In this case, one cannot express a probabilis-
tic or timed security property for example. Especially for a designer, it is suitable to
specify a security property with the same design language. In addition, a new stan-
dardized OMG models such as SysML behavioural or UML timing diagrams are not
studied yet for security verification and quantification. From this study, we believe that
facilitating the expressiveness and the verification of security for the new standard dia-
grams is challenging. Another aspect is that the majority of the cited works inherit the
existing limitations of the used tools. Especially, rarely whose trace the anomalies in
the diagrams. Based on these conclusions, we propose four main promising research
directions that are described as follows.

1. Developing techniques to automatically instantiate and express security require-
ments is a promising research direction. The objective is to help developers and
security experts to avoid writing complex security properties in a mathematic for-
malism such as temporal logic. Especially, generating security properties from a
rich design (time, probability, conditions, etc) to a specific temporal logic is not a
straightforward task. It needs to develop the appropriate semantics of the design
under test, and to develop techniques that convert this semantic (for example a
PTA) to an equivalent temporal logic formula (such as extended PCTL) which is a
challenging task. The correctness of any approach in this sense should be proved
by finding an equivalent relation between both semantics of the design and the
target temporal logic.

2. Improving the existing approaches and tools especially the model checkers that
suffer from the state of explosion. In this direction, we propose to avoid the model
checkers limitations (especially state explosion) by developing techniques such as
abstraction and compositional verification for UML diagrams. The main issue in
this direction is shaping the verification problem into sub-problems. In addition,

@ Springer

708 S. Ouchani, M. Debbabi

proving the soundness of both abstraction or compositional verification to prove
that the satisfiability of the security properties is always preserved on both the
concrete, and, the abstract or composed diagrams. In the case of abstraction and
compositional verification, using theorem provers to prove the correctness of the
the proposed algorithms, is also challenging, because it needs to provide a deep
mathematical formalism for UML. Also, since the counter example is a main part
of verification. Showing the counter example in the case of the probabilistic and
timed systems is challenging.

3. Studying the security aspect for the recent standardized diagrams such as block,
time, requirements, types, and parametric SysML diagrams. These diagrams are
prominent in both software and hardware modeling. In addition, exploring security
specification and verification in those diagrams is a new direction to be explored. To
achieve this goal, first, the formal semantics of each diagram should be provided.
Further, it should cover all artifacts and features of the studied diagram. Then,
providing or adapting security specification and verification techniques for them.

4. Generating the secure code of a diagram. Providing the correct and the secured
diagram is the goal of any modeling strategy. In this research path, the main
intention is to generate automatically the secure code representing the low level
description of the design level. The challenge of this problem is the complexity
of the design and the specific domain of the target platform. Another challenge is
proving formally the correctness of the generated secure code, by showing that the
generated code is fully secure. In addition, the equivalence between both semantics
of the design and the code which needs to provide the adequate semantics for both
levels.

5. Hardening and securing a diagram. This direction is very prominent especially it
advances many state-of-the-arts such as: security, software and hardware modeling,
and formal verification. The main idea is to produce a fault tree instead of a simple
counter example. To achieve that, the verification procedures should produce all
the possible prone errors at one phase. Then, the correction of the design can be
achieved by the aspect-modeling-language strategy and the help of the fault tree.
The soundness of any hardening strategy can be proved by showing that the design
after the correction is always more secure than before.

Those research directions are considered as hot research topics in security and formal
verification in both software and hardware modeling for the next years.

References

1. Endler D, Collier M (2007) Hacking exposed VoIP: voice over IP security secrets & solutions. McGraw-
Hill, New York

2. Baier C, Katoen JP (2008) Principles of model checking. The MIT Press, New York

3. Clarke Jr. EM, Grumberg O, Peled DA (1999) Model checking. The MIT Press, New York

4. Huang HSY, Cheng KTG (1998) Formal equivalence checking and design debugging. In: Frontiers in
electronic testing, FRET 12. Kluwer Academic, New York

5. Newborn M (2001) Automated theorem proving—theory and practice. Springer, New York

6. Lange CFJ, Chaudron MRV (2005) Managing model quality in UML-based software development.
In: Software technology and engineering practice, pp 7-16

@ Springer

Specification, verification, and quantification of security in model-based systems 709

10.
11.

12.

13.

14.

15.

16.
17.

18.

20.
21.
22.

23.

24.
25.
26.
27.
28.
29.
30.
. PRISM Team (2011) PRISM—probabilistic symbolic model checker. http://www.prismmodelchecker.

32.
33.
34.
35.

36.
37.

. OMG (2007) OMG unified modeling language (OMG UML) superstructure, V2.1.2. Object Manage-

ment Group. OMG available specification, Needham

. Holt J, Perry S (2007) SysML for systems engineering. Institution of Engineering and Technology

Press, London

. OMG (2014) OMG systems modeling language (OMG SysML) specification. Object Management

Group, OMG available specification, Needham

Jiirjens J (2005) Secure systems development with UML. Springer, New York

Jiirjens J, Shabalin P (2004) Tools for critical systems development with UML (tool demo). In: Nunes
NJ, Selic B, Rodrigues da Silva A, Toval Alvarez JA (eds) UML modeling languages and applications,
UML 2004 satellite activities, Lisbon, 11-15 October 2004. Revised selected papers, vol 3297 of
Lecture notes in computer science, pp 250-253. Springer, New York

Jiirjens J, Shabalin P (2007) Tools for secure systems development with UML. Int J Softw Tools
Technol Transf 9:527-544

Jiirjens J, Shabalin P, Alter E, Gilg A, Hohn S, Kopjev D, Lehrhuber M, Schwarzmiiller S, Shen S
(2004) UMLsec tool. http://inky.cs.tu-dortmund.de/main2/jj/umlsectool/index.html. Accessed June
2011

Jiirjens J, Schreck J, Yu'Y (2008) Automated analysis of permission-based security using UMLsec. In:
Proceedings of the theory and practice of software, the 11th international conference on fundamental
approaches to software engineering, FASE’08/ETAPS’08, Heidelberg, pp 292-295. Springer-Verlag,
Berlin

Jiirjens J, Shabalin P (2004) Automated verification of UMLsec models for security requirements. In:
UML 2004—the unified modeling language, vol 2460 of LNCS. Springer, New York, pp 412-425
SPIN Team (2011) SPIN. http://spinroot.com. Accessed June 2011

Basin D, Doser J, Lodderstedt T (2006) Model driven security: from UML models to access control
infrastructures. ACM Trans Softw Eng Methodol 15:39-91

Vardi MY (1996) An automata-theoretic approach to linear temporal logic. In: Logics for concurrency:
structure versus automata, vol 1043 of Lecture notes in computer science, pp 238-266. Springer-Verlag,
New York

. Pnueli A (1977) The temporal logic of programs. In: Proceedings of the 18th IEEE symposium on

foundations of computer science, pp 46-57

Jansen W, Jansen W, Gallagher PD, Deputy Director (2009) Directions in security metrics research
Manadhata PK, Wing JM (2011) An attack surface metric. IEEE Trans Softw Eng 37(3):371-386
Mauw S, Oostdijk M (2005) Foundations of attack trees. In: International conference on information
security and cryptology, ICISC 2005. LNCS, vol 3935, pp 186—198. Springer, New York

Sawilla R, Defence R&D Canada Ottawa (2007) Googling attack graphs. Defence R&D Canada,
Ottawa (technical memorandum)

Sheyner OM (2004) Scenario graphs and attack graphs. PhD thesis, Pittsburgh (AAI3126929)
Drechsler R (2004) Advanced formal verification. Kluwer Academic Publishers, Norwell

Gabbar HA (2006) Modern formal methods and applications. Springer-Verlag, Secaucus

Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541-580

Bergstra JA (2001) Handbook of process algebra. Elsevier, New York

NuSMV Team (2011) NuSMV. http:/nusmv.fbk.eu/. Accessed June 2011

UPPAAL Team (2011) UPPAAL. http://www.uppaal.org. Accessed June 2011

org. Accessed June 2011

Jeannette EC, Clarke EM, Wing JM et al (1996) Formal methods: state of the art and future directions.
ACM Comput Surv 28:626—643

Cheng BHC, Konrad S, Campbell LA, Wassermann R (2003) Using security patterns to model and
analyze security. In: IEEE workshop on requirements for high assurance systems, pp 13-22
Wassermann R, Cheng BHC (2003) Security patterns. In: Technical report, Michigan State University,
Computer Science and Engineering, East Lansing

GammaE, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-oriented
software

Viega J, Mcgraw G (2002) Building secure software: how to avoid security problems the right way
McUmber WE, Cheng BHC (2001) A general framework for formalizing UML with formal languages.
In: Proceedings of the 23rd international conference on software engineering, ICSE ’01, pp 433—442.
IEEE Computer Society, Washington, DC

@ Springer

http://inky.cs.tu-dortmund.de/main2/jj/umlsectool/index.html
http://spinroot.com
http://nusmv.fbk.eu/
http://www.uppaal.org
http://www.prismmodelchecker.org
http://www.prismmodelchecker.org

710 S. Ouchani, M. Debbabi

38. Campbell LA, Cheng BHC, Mcumber WE, Stirewalt K (2002) Automatically detecting and visualising
errors in UML diagrams. Requir Eng 7:264-287

39. Siveroni I, Zisman A, Spanoudakis G (2008) Property specification and static verification of UML
models. In: Proceedings of the 2008 third international conference on availability, pp 96-103. IEEE
Computer Society, Reliability and Security, Washington, DC

40. Siveroni I, Zisman A, Spanoudakis G (2010) A UML-based static verification framework for security.
Requir Eng 15:95-118

41. Zisman A (2007) A Static verification framework for secure peer-to-peer applications. In: Proceedings
of the 2nd international conference on internet and web applications and services, ICIW 07, p 8. IEEE
Computer Society, Washington, DC

42. Dwyer MB, Avrunin GS, Corbett JC (1999) Patterns in property specifications for finite-state veri-
fication. In: Proceedings of the 21st international conference on software engineering, ICSE 99, pp
411-420. ACM, New York

43. Houmb SH, Islam S, Knauss E, Jiirjens J, Schneider K (2010) Eliciting security requirements and
tracing them to design: an integration of common criteria, heuristics, and UMLsec. Requir Eng 15:63—
93

44. Jirjens J (2005) Sound methods and effective tools for model-based security engineering with UML.
In: Proceedings of the 27th international conference on software engineering, ICSE ’05, pp 322-331.
ACM, New York

45. Hassine J, Rilling J, Dssouli R (2009) Use case maps as a property specification language. Softw Syst
Model 8:205-220. doi:10.1007/s10270-007-0076-6

46. Gallegos I, Gates A, Tweedie C (2010) DaProS: a data property specification tool to capture scientific
sensor data properties. In: Trujillo J, Dobbie G, Kangassalo H, Hartmann S, Kirchberg M, Rossi M,
Reinhartz-Berger I, Zimanyi E, Frasincar F (eds) Advances in conceptual modeling—applications and
challenges, vol 6413 of Lecture notes in computer science, Springer, Berlin, pp 232-241. doi:10.1007/
978-3-642-16385-2-29

47. Goldsby HJ, Cheng BHC (2010) Automatically discovering properties that specify the latent behavior
of UML models. In: Proceedings of the 13th international conference on model driven engineering
languages and systems: part I, MODELS’ 10, Heidelberg, pp 316-330. Springer-Verlag, Berlin

48. France RB, Kim D-K, Ghosh Sudipto, Song E (2004) A UML-based pattern specification technique.
IEEE Trans Softw Eng 30(3):193-206

49. OMG (2006) Object constraint language, V2.0. OMG available specification. Object Management
Group

50. Ziemann P, Gogolla M (2002) An extension of OCL with temporal logic. In: Critical systems devel-
opment with UML, pp 53-62

51. Flake S, Miiller W (2003) Expressing property specification patterns with OCL. In: Software engi-
neering research and practice, pp 595-603

52. van Lamsweerde A (2004) Elaborating security requirements by construction of intentional anti-
models. In: Proceedings of the 26th international conference on software engineering, ICSE 2004,
pp 148-157

53. Preda S, Cuppens-Boulahia N, Cuppens F, Garcia-Alfaro J, Toutain L (2010) Model-driven security
policy deployment: property oriented approach. In: Massacci F, Wallach D, Zannone N (eds) Engi-
neering secure software and systems, vol 5965 of Lecture notes in computer science, pp 123-139.
Springer, Berlin. doi:10.1007/978-3-642-11747-3-10

54. Kalam AAE, Baida RE, Balbiani P, Benferhat S, Cuppens F, Deswarte Y, Miege A, Saurel C, Trouessin
G (2003) Organization based access control. In: Proceedings IEEE 4th international workshop on
policies for distributed systems and networks, POLICY 2003, pp 120-131

55. Abrial J-R (1996) The B-book: assigning programs to meanings. Cambridge University Press, New
York

56. Ouchani S, Mohamed OA, Debbabi M (2013) A security risk assessment framework for SysML activity
diagrams. In: 2013 IEEE 7th international conference on software security and reliability (SERE), pp
227-236

57. Jha S, Sheyner O, Wing J (2002) Two formal analyses of attack graphs. In: Proceedings of the 15th
computer security foundation workshop, pp 49-63. IEEE, London

58. Pamula J, Jajodia S, Ammann P, Swarup V (2006) A Weakest—Adversary security metric for network
configuration security analysis. In: Proceedings of the 2nd ACM workshop on quality of protection,
QoP’06, pp 31-38, New York

@ Springer

http://dx.doi.org/10.1007/s10270-007-0076-6
http://dx.doi.org/10.1007/978-3-642-16385-2-29
http://dx.doi.org/10.1007/978-3-642-16385-2-29
http://dx.doi.org/10.1007/978-3-642-11747-3-10

Specification, verification, and quantification of security in model-based systems 711

59.

60.

61.

62.

63.

64.

65.

66.

67.
68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

Frigault M, Wang L (2008) Measuring network security using Bayesian network-based attack graphs.
In: 32nd annual IEEE international conference on computer software and applications, COMPSAC
’08, pp 698-703

Gegick M, Williams L (2007) On the design of more secure software-intensive systems by use of attack
patterns. Inf Softw Technol 49:381-397

Grunske L, Joyce D (2008) Quantitative risk-based security prediction for component-based systems
with explicitly modeled attack profiles. J Syst Softw 81:1327-1345

Saqui-Sannes P, Villemur T, Fontan B, Mota S, Bouassida MS, Chridi N, Chrisment I, Vigneron L
(2010) Formal verification of secure group communication protocols modelled in UML. Innov Syst
Softw Eng 6:125-133

Ray A (2003) Security check: a formal yet practical framework for secure software architecture. In:
Proceedings of the 2003 workshop on new security paradigms, NSPW ’03, pp 59-65. ACM, New York
Thapa V, Song E, Kim H (2010) An approach to verifying security and timing properties in UML mod-
els. In: 15th IEEE international conference on engineering of complex computer systems (ICECCS),
pp 193-202

OMG (2008) A UML profile for MARTE: modeling and analysis of real-time embedded systems, beta 2
(convenience document without change bars). Object Management Group, OMG adopted specification,
Needham

Dong J, Peng T, Zhao Y (2010) Automated verification of security pattern compositions. Inf Softw
Technol 52:274-295

Milner R (1982) A calculus of communicating systems. Springer-Verlag, Secaucus

Moebius N, Stenzel K, Reif W (2010) Formal verification of application-specific security properties
in a model-driven approach. In Massacci F, Wallach D, Zannone N (eds) Engineering secure soft-
ware and systems, vol 5965 of Lecture notes in computer science, pp 166—181. Springer, Berlin.
doi:10.1007/978-3-642-11747-3-13

Bauer A, Jiirjens J, Yu Y (2011) Run-time security traceability for evolving systems. Comput J 54:58—
87

Ghosh SK, Rajkumar PV, Dasgupta P (2009) Application specific usage control implementation veri-
fication. Int J Netw Secur Appl (IINSA) 01(03)

Ouchani S, Mohamed OA, Debbabi M, Pourzandi M (2010) Verification of the correctness in composed
UML behavioural diagrams. In: SERA (selected papers), pp 163—177

Lima V, Talhi C, Mouheb D, Debbabi M, Wang L, Pourzandi M (2009) Formal verification and
validation of UML 2.0 sequence diagrams using source and destination of messages. Electron Notes
Theor Comput Sci 254:143-160

Alalfi MH, Cordy JR, Dean TR (2009) A verification framework for access control in dynamic web
applications. In: Canadian conference on computer science and software engineering, pp 109-113
Ahmed Khan MU, Zulkernine M (2008) Quantifying security in secure software development phases.
In: Proceedings of the 2008 32nd annual IEEE international computer software and applications con-
ference, pp 955-960. IEEE Computer Society, Washington, DC

Georg G, Anastasakis K, Bordbar B, Houmb SH, Ray I, Toahchoodee M (2010) Verification and
trade-off analysis of security properties in UML system models. IEEE Trans Softw Eng 36:338-356
Chen Y, Boehm B, Sheppard L (2003) Measuring security investment benefit for off the shelf software
systems—a stakeholder value driven approach

Liu MY, Traore I (2004) UML-based security measures of software products. In: International work-
shop on methodologies for pervasive and embedded software (MOMPES’04), 4th international con-
ference on application of concurrency to system design (ACSD-04), Hamilton

Liu MY, Traore I (2005) Measurement framework for software privilege protection based on user
interaction analysis. In: Proceedings of the 11th IEEE international software metrics symposium, p 10.
IEEE Computer Society, Washington, DC

Buchholtz M, Gilmore S, Haenel V, Montangero C (2005) Endto-end integrated security and perfor-
mance analysis on the DEGAS choreographer platform. In: Proceedings of the international symposium
of formal methods Europe (FM 2005), vol 3582 in LNCS. Springer-Verlag, New York, pp 286-301
Ouchani S, Jarraya Y, Ait-Mohamed O (2011) Model-based systems security quantification. In: PST,
pp 142-149

@ Springer

http://dx.doi.org/10.1007/978-3-642-11747-3-13

	Specification, verification, and quantification of security in model-based systems
	Abstract
	1 Introduction
	2 Background
	2.1 UML diagrams
	2.2 UML-driven secure systems development
	2.3 Security policies specification
	2.4 Security quantification
	2.5 Attack scenario
	2.6 Formal verification

	3 Related work
	3.1 Specification of security requirements
	3.2 Modeling of attacks
	3.3 Verification of security requirements
	3.4 Security quantification
	3.5 Summary
	3.5.1 Comparison criteria
	3.5.2 Classification

	4 Conclusions and future directions
	References

