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Abstract Wireless sensor network (WSN) consists of a large number of sensors and
sink nodes which are used to monitor events or environmental parameters, such as
movement, temperature, humidity, etc. Reinforcement learning (RL) has been applied
in a wide range of schemes inWSNs, such as cooperative communication, routing and
rate control, so that the sensors and sink nodes are able to observe and carry out optimal
actions on their respective operating environment for network and application perfor-
mance enhancements. This article provides an extensive review on the application of
RL to WSNs. This covers many components and features of RL, such as state, action
and reward. This article presents how most schemes in WSNs have been approached
using the traditional and enhanced RL models and algorithms. It also presents perfor-
mance enhancements brought about by the RL algorithms, and open issues associated
with the application of RL in WSNs. This article aims to establish a foundation in
order to spark new research interests in this area. Our discussion has been presented
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in a tutorial manner so that it is comprehensive and applicable to readers outside the
specialty of both RL and WSNs.

Keywords Wireless sensor networks · Reinforcement learning · Q-learning ·
Artificial intelligence · Context awareness

Mathematics Subject Classification 68T05

1 Introduction

Wireless sensor network (WSN) [1] is comprised of a large number of sensors and
sink nodes to monitor events or environmental parameters, such as temperature and
humidity, in a collaborative manner. The sensor nodes collect data and send it to the
destination sink nodes in single or multiple hops; while the sink nodes process the data
in order to provide meaningful information to end users. TheWSN has seen numerous
potential applications in medical field, disaster recovery and wildlife monitoring.

Generally speaking, each sensor node operates on battery power. Two main factors
affect energy consumption. Firstly, the state of the transceiver in which energy con-
sumption is high during transmission, reception, idle (or overhearing), and low during
sleeping. Secondly, events other than successful packet transmission, including col-
lision, retransmission and control packet transmission, incur energy consumption.
Enhancing energy efficiency to prolong network lifetime without jeopardizing net-
work performance has attracted a considerable research attention, and has been part
of the objective of most schemes in WSNs because sensor nodes may be deployed at
hard-to-reach areas.

In recent years, there has been an increasing interest in the application of an artifi-
cial intelligence approach called Reinforcement learning (RL) [2] to various schemes
in WSNs in order to improve network performance. The RL approach adopts an
unsupervised and online learning technique. Through unsupervised learning, external
teacher or critic is not required to oversee the learning process; and so, a decision
maker (or an agent) must make its own efforts to learn knowledge about the operating
environment. Through online learning, an agent acquires knowledge on the fly while
carrying out its normal operation; and so, empirical data or experimental results from
the laboratory are not required. A wide range of schemes can be represented using RL
models, and subsequently various network performances can be improved using RL
algorithms.

Although extensive research has been carried out on a wide range of schemes in
WSNs, no single study exists which adequately covers distinctive RL models and
algorithms that have been applied, and so this is the focus of this article. The rest of
this article is organized as follows. Sections 1.1 and 1.4 present an overview of RL and
application schemes of WSNs, respectively. In the context of WSNs, Sect. 2 presents
various components, features and enhancements of RL, while Sect. 3 presents various
RL models and algorithms. Section 4 presents performance enhancements brought
about by RL in various schemes. Section 5 presents open issues, and finally Sect. 6
presents conclusions.
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Fig. 1 A simplified RL model

1.1 Overview of reinforcement learning

This section presents an overview of the RL model and Q-learning.

1.2 RL model

Figure 1 presents a simplified version of a RLmodel. The purpose of RL is to estimate
the long-term reward of each state-action pair through trial-and-error interactions with
the operating environment. There are three main representations. Firstly, state repre-
sents the decision-making factors (or the operating environment) under consideration
being observed by an agent. Examples are residual energy and the number of packets
in the buffer queue. Secondly, action represents an optimal action being selected by
the agent, which may change or affect the state and reward. Examples are selecting
transmission power and selecting a next-hop node for packet transmission. Thirdly,
reward represents the gains or losses in network performance for taking an action on
a particular state in the previous time instant. Examples are throughput and energy
consumption level.

At any time instant, an agent observes state and reward from its operating environ-
ment, learns the long-term reward of each state-action pair, decides and carries out
an appropriate action on the environment so that the state and reward, which are the
consequences of the action, improve in the next time instant. The agent interacts with
the operating environment in a trial-and-error manner, and so given a particular state,
an agent learns to carry out the optimal action as time progresses in order to improve
the next state and reward.

The RL model in Fig. 1 can be embedded in each sensor node [3], or in the sur-
rounding area of a sensor node [4]. For instance, each sensor node keeps track of the
reward in regards to each neighboring sensor node in [5], and for each grid point in
its surrounding operating environment in [4]. As an example on the application of
RL in WSNs, it is used to learn the optimal route in routing (see Sect. 1.4). The state
represents a destination (or sink) node, action represents the selection of a next-hop
node to forward packets, and reward represents the progress in terms of the physical
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distance towards the sink node. Maximizing reward reduces distance to the sink node,
which enhances network performance.

There are twomain advantages ofRL. Firstly, itmodels network performancewhich
covers most factors affecting the performance rather than each of the factors itself, and
so this simplifies the design. Secondly, it learns on the fly during normal operation,
and so it does not require prior knowledge of the operating environment. For instance,
a sleep-wake scheduler aims to reduce energy consumption through sleeping for the
right duration at the right time, and so traffic loads at neighboring nodes are pertinent to
determine this duration although this information may not be known to the scheduler.

1.3 Q-learning

Q-learning [6] is a popular technique in RL. Denote decision epochs by t ∈ T =
{1, 2, . . .}, each agent i updates the Q-function Qi

t+1(s
i
t , a

i
t ) of a particular state-action

pair at time t as follows:

Qi
t+1(s

i
t , a

i
t ) ← (1 − α)Qi

t (s
i
t , a

i
t ) + α

[
r it+1(s

i
t+1) + γ maxa∈A Qi

t (s
i
t+1, a)

]
(1)

where sit ∈ S is state, ait ∈ A is action, r it+1(s
i
t+1) ∈ R is delayed reward, 0 ≤ γ ≤ 1

is discount factor, and 0 ≤ α ≤ 1 is learning rate. Note that, the delayed reward
r it+1(s

i
t+1) for action selection at time t is dependent on the state at time t + 1 and so

it is received at time t + 1. Also note that, higher γ value causes greater dependency
on the discounted future reward γ maxa∈A Qi

t (s
i
t+1, a) rather than the delayed reward

r it+1(s
i
t+1); while higher α value causes greater dependency on the delayed reward

r it+1(s
i
t+1) and the discounted future reward γ maxa∈A Qi

t (s
i
t+1, a) rather than the

Q-value Qi
t (s

i
t , a

i
t ) at time t .

An agent i observes state sit from the operating environment and chooses an actionait
at decision epoch t . The state sit changes to s

i
t+1 at decision epoch t +1. Subsequently,

the agent receives delayed reward r it+1(s
i
t+1) and updates Q-value Qi

t+1(s
i
t , a

i
t ) using

Eq. (1). The Q-value Qi
t+1(s

i
t , a

i
t ) is updated using the maximum discounted future

reward γ maxa∈A Qi
t (s

i
t+1, a) as the agent takes the optimal action in any future states

at time t, t+1, . . .. As time progresses, the agent receives a sequence of rewards which
contribute to the convergence of the Q-values to long-term rewards. The agent chooses
an optimal action through maximizing value function V π (sit ) as shown below:

V π (sit ) = maxa∈A(Qi
t (s

i
t , a)) (2)

Hence, agent i’s policy is as follows:

πi (s
i
t ) = argmaxa∈A(Qi

t (s
i
t , a)) (3)

In some cases, negative reward represents cost, which must be minimized, and so
V π (sit ) = mina∈A(Qi

t (s
i
t , a)) and πi (sit ) = argmina∈A(Qi

t (s
i
t , a)). Note that, choos-

ing the optimal action using Eq. (3) at all times does not update the Q-values of other
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actions, which may cause the agent to converge to local optimal solutions. Hence,
there are two methods for action selection. Exploitation chooses the best-known opti-
mal action for performance enhancement; while exploration chooses the other actions
once in a while to update the Q-values of other actions so that better actions may be
discovered.

1.4 Application schemes of wireless sensor networks

Reinforcement learning is a versatile and universal solution tomost problems and open
issues associated with the dynamicity and uncertainty of the operating environment.
RL has been applied in various schemes in WSNs as follows:

A.1 Medium access control (MAC)MAC protocols coordinate channel access among
multiple nodes in a single-hop transmission to reduce collisions. Two main func-
tions are sleep-wake scheduler [7–9] and transceiver selector [10] as follows:

A.1.1 Sleep-wake scheduler arranges the transmission, reception, idle and sleeping
time durations. During the idle mode, sensor nodes listen for potential packet
transmissions and the energy consumption is almost identical to that of receive
mode. To reduce energy consumption, a sleep-wake scheduler schedules sleep-
ing and waking (i.e. transmission, reception and idle) time durations. There
are two main purposes in sleep-wake scheduling. Firstly, longer waking time
duration (or higher duty cycle) increases bandwidth availability leading to
higher throughput and lower packet latency; however, it increases energy con-
sumption. The waking time duration may increase with network traffic load
[8,9] or Quality of Service (QoS) requirements [11]. RL has been applied to
minimize collisions and energy consumption in slot assignment [7], as well as
to estimate traffic arrivals from neighboring nodes in order to adjust the sleep-
ing and waking time durations [8,9]. Secondly, a mobile data collector node
moveswithin an area to collect sensing outcomes from static sensor nodes [12].
RL has been applied in each sensor node to learn the waking time duration
based on the arrival pattern of the mobile data collector node [12] in order to
increase in-contact with the mobile data collector node while reducing energy
consumption.

A.1.2 Transceiver selector selects either a long-range or short-range radio for data
and control packet transmissions. Long-range (short-range) radio uses higher
(lower) transmissionpower.To reduce energy consumption, a transceiver selec-
tor switches in between the transceivers based on physical range (e.g. when-
ever a mobile node moves from one effective transmission range to another)
and channel conditions (e.g. fading, interference, shadowing, and multi-path
effects) [10].

A.2 Cooperative communications select cooperative forward packets towards sink
nodes in order to ameliorate the effects of deteriorating channel conditions and
changes in network topology. For instance, in forwarding nodes to Fig. 2, the
direct transmission i → j (or from node i to forwarding node j) is unsuccess-
ful. Any packet retransmission through direct transmission i → j may still be
unsuccessful if the channel experiences deep fading for a long period of time.
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Fig. 2 Cooperative
communications

Since node k overhears the packet, cooperative communication enables indirect
transmission i → k → j . Since there may be a number of potential cooperative
nodes k ∈ K , RL has been applied at node i to select a cooperative node [13],
thereby providing spatial and time diversity gains.

A.3 Routing enables a sensor node to search for the best route to a sink node in
clustered [14] and non-clustered networks [5]. Generally speaking, clustering
segregates the entire network into groups with each consists of a clusterhead
and member nodes. The clusterhead collects, processes and aggregates sensing
outcomes received from member nodes, and subsequently send them to the sink
node through single or multiple hops. RL has been applied in each sensor node
to learn the best route to the sink node.

A.4 Rate control adjusts the packet transmission rate of a source node, and hence the
congestion level of intermediate nodes, along a route [15,16].

A.5 Sensing coverage is aWSN application that maximizes the physical sensing cov-
erage of an area so that any event of interest is accurately detected by at least a
single sensor node. Sensing coverage can be applied in surveillance and moni-
toring tasks (e.g., intruder and fire detections). To reduce energy consumption,
RL has been applied in each sensor node to minimize the overlapping of sensing
coverages [17].

A.6 Task scheduling schedules and carries out the right task at different time instant.
For instance, in [18], RL has been applied in each sensor node to learn the
usefulness of each task (i.e. sensing, transmitting, receiving, aggregating data,
and sleeping) at different time instant in order to reduce energy consumption.

2 Reinforcement learning: components, features and enhancements

This section presents the traditional and enhanced components and features of RL
in the context of WSNs. For each component and feature, we show the traditional
approach and subsequently the alternative or enhanced approaches.

2.1 State

Traditionally, each state is comprised of a single type of information. For instance,
each state sit ∈ S = {1, 2, . . . , K } represents the number of packets in the buffer
queue [8]. The state representation can be enhanced in two ways. Firstly, the state
may not be represented because there is a single state only, and this is called stateless
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[7]. Secondly, each substate may be comprised of distinctive substates. For instance,
state sit = (six,t , s

i
y,t ) ∈ S, where six,t ∈ Sx and siy,t ∈ Sy represent a set of potential

neighboring nodes and data flows, respectively) [32].
The state representation can be further enhanced throughminimization ofHamming

distance for state space. In general, larger state space increases memory requirement,
and reduces the convergence rate to optimal actions since an agent must explore
more state-action pairs. The number of states can be reduced based on Hamming
distance [12]. An agent calculates theweightedHamming distance between two states,
specifically H(s1 − s2) = W1 · |V1(s1) − V1(s2)| + W2 · |V2(s1) − V2(s2)| + · · · +
WN · |VN (s1) − VN (s2)|, where the weight Wn represents the significance of the
corresponding variable |Vn(s1) − Vn(s2)| in differentiating the two states. Both states
s1 and s2 share a single entry in the Q-table if their Hamming distance is less than a
threshold or H(s1 − s2) < HT .

2.2 Action

Traditionally, each action represents a single action out of a set of possible actions.
For instance, in a routing scheme A(3) [5,14], each action ait ∈ A = {1, 2, . . . , K }
represents a next-hop node for packet transmission, while A represents a set of all
neighbor nodes. The action representation can be enhanced in two ways. Firstly,
each action may be represented by subactions. For instance, in [7,13], action
ait = (ai1,t , a

i
2,t , . . . , a

i
K ,t ) ∈ A1 × A2 × · · · × AK , where aik,t ∈ Ak = {0, 1}.

Secondly, each subaction may further be comprised of distinctive subactions. For
instance, in [32], action ait = (aix,t , a

i
y,t ) ∈ A, where aix,t ∈ Ax = {0, 1} and

aiy,t ∈ Ay = {aiy,1,t , aiy,2,t , . . . , aiy,K ,t }.

2.3 Delayed reward

Traditionally, each delayed reward represents the performance enhancement achieved
by a state-action pair. A single reward computation approach is applicable to all state-
action pairs. For example, in a sleep-wake scheduler A(1.1) [8], the delayed reward
r it+1(a

i
t+1) is a ratio of the effective transmission and reception time durations to the

waking time duration. Additionally, the delayed reward can be a constant value, such
as r it+1(a

i
t+1) = 1 or −1 to indicate successful and unsuccessful transmissions [7].

The delayed reward can be further enhanced in the context ofWSNs as described next.

2.3.1 Distinctive reward functions

Different reward functions can be used to compute rewards under distinctive network
conditions [5,10].

As an example, in a transceiver selector A(1.2) [10], the action is to select a trans-
ceiver and its transmission power level for packet transmissions. The cost (or negative
reward) for each packet transmission depends on the amount of energy consumption,
and it is a function of the number of retransmissions,MAC delays (i.e. channel sensing
and backoff), transmission and reception power levels, as well as packet size. Higher
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cost indicates higher energy consumption. However, there is a condition in which the
reward computation is different. Specifically, if transmissions are unsuccessful even
though the highest transmission power has been used, a zero reward value is assigned
in order to avoid the agent from exploring other actions with lower transmission power
levels until the transmissions are successful at the highest transmission power level.

2.3.2 Average delayed reward function

Traditionally, delayed reward is an instant value. The application of an average delayed
reward has been shown to improve the overall system performance [19], and it has
been applied in [16,20].

As an example, in [16], the average delayed reward is as follows:

r ia,t+1(s
i
t+1) ← r ia,t (s

i
t+1) + αr

[
r it (s

i
t+1) − r ia,t (s

i
t+1)

+maxa∈A Qi
t (s

i
t+1, a) − maxa∈A Qi

t (s
i
t , a)

]
(4)

where r ia,t (s
i
t+1) represents the average delayed reward, and αr represents the learning

rate of the average delayed reward computation. The Q-function (1) is rewritten to
incorporate the average delayed reward as follows:

Qi
t+1(s

i
t , a

i
t ) ← (1 − α)Qi

t (s
i
t , a

i
t )

+α
[
r it+1(s

i
t+1) − r ia,t (s

i
t+1) + γ maxa∈A Qi

t (s
i
t+1, a)

]
(5)

In [16], the average delayed reward approach is applied in congestion avoidance
A(4) to adjust the packet transmission rate of a source node in order to adjust the
congestion level. The state represents the number of packets in the buffer queue; the
action selects a next-hop node and a packet transmission rate; and the delayed reward
is a function of energy efficiency and packet loss rate.

As another example, in [20], the average delayed reward is as follows:

r ia,t+1(s
i
t+1) ← (1 − αr ) · r ia,t (s

i
t+1) + αr · r it (sit+1) (6)

The Q-function (1) is rewritten to incorporate the average delayed reward as follows:

Qi
t+1(s

i
t , a

i
t ) ← (1 − α)Qi

t (s
i
t , a

i
t )

+α
[
r it+1(s

i
t+1) − γ (r ia,t (s

i
t+1) + maxa∈A Qi

t (s
i
t+1, a))

]
(7)

In [20], the average delayed reward approach is applied in a sleep wake scheduler
A(1.1) to adjust the waking time duration (or duty cycle), transmission power and
modulation levels in order to reduce energy consumption. The state represents channel
gain and the number of packets in the buffer queue; the action selects the waking time
duration, as well as transmission power and modulation levels; and the reward is a
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ratio of the number of received and transmitted packets to energy consumption and
the processing cost in the buffer queue.

2.4 Discounted reward

Traditionally, the discounted reward has been applied to indicate the dependency
of Q-function on future rewards. As an example, in a routing scheme A(3) [5], the
delayed reward represents the link cost from a node to a next-hop node; while the
discounted reward γ maxa∈A Qi

t (s
i
t+1, a) represents the route cost from the next-hop

node to a sink node, which may be multiple hops away. The discounted reward may
be omitted with γ = 0 to show the lack of dependency on future rewards, and this
approach is generally called the myopic approach which enables an agent to adapt to
instantaneous changes in the operating environment [21]; and further discussion on
this approach is presented in Sect. 3.1. The discounted reward can be further enhanced
using average discounted reward function. Generally speaking, the future reward may
be uncertain in some cases, and so an agent may be uncertain about its action selection.
In [22], the average discounted Q-value is computed for all possible actions; and hence
maxa∈A Qi

t (s
i
t+1, a) inEq. (1) is replaced by

∑
a∈A[P(a)×Qi

t (s
i
t+1, a)]/∑

a∈A P(a).
Note that, if all possible actions are taken into account, then

∑
a∈A P(a) = 1.

2.5 Q-function

The traditional Q-function (see Eq. (1)) can be further enhanced.

2.5.1 Q-value Initialization

Generally speaking, the Q-values are initialized to a certain value (e.g. a zero value)
so that all possible actions are given a fair chance during exploration. However, it
can be initialized with different values to speed up rate. For instance, in a cooperative
communication scheme A(2) [13], the Q-values are initialized based on the distance
between a node i and its next-hop node j in which higher Q-values indicate more
favorable nodes in making the progress in terms of the physical distance towards a
sink node in order to reduce end-to-end delay.

2.5.2 Reward equivalent Q-function

In [23,24], the learning rate and discount factor are set to α = 1 and γ = 0, so the
Q-function equals delayed reward Qi

t+1(a
i
t ) = r it+1(a

i
t ), and it is applied to speed up

the learning process in a routing scheme A(3). In [23], a node i selects its next-hop

node ait and updates its Q-value Qi
t+1(a

i
t ) = r it+1(a

i
t ) = cait + minaQ

ait
t (a), where

cait represents the link cost between node i and its next-hop node a
i
t , and minaQ

ait
t (a)

indicates that node ait chooses its next-hop node with the minimum Q-value. Note
that, nodes must exchange Q-values, which indicates the route cost to a destination
sink node, among themselves.
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2.6 Exploration and exploitation

Traditionally, there are twopopular approaches to achieve a balanced trade-off between
exploration and exploitation, namely softmax and ε-greedy [2] which have been
applied in [4,5,8,14,23,25], respectively. For instance, in [8], an agent chooses explo-
ration actions with a small probability ε and exploitation actions with a probability
1 − ε. In [21], during initial exploration, an agent explores all the available actions
in a round-robin manner in order to discover the Q-values of all actions [21]. The
exploration and exploitation mechanism can be further enhanced through adjusting
the exploration probability.

The exploration probability may be adjusted based on the uncertain and dynamic
levels of the operating environment due to nodal mobility and varying channel condi-
tions. As an example, in [26], using the ε-greedy approach, node i adjusts its explo-
ration probability εit = nia+d,T /niT , where nia+d,T represents the number of nodes
that appear and disappear in node i’s transmission range within a time window T ,
and niT represents the number of node i’s neighboring nodes. As another example, in
[12], node i adjusts its exploration probability εit = εmin + max[0, (εmax − εmin) ×
(emax − e)/emax ], where e represents the number of events of interest with lower e
value increases the exploration probability εit .

The exploration probability may also be adjusted based on action selection. In [24],
using the ε-greedy approach, node i adjusts its exploration probability as follows:

εit+1 =
{

εit + εstep, i f ait �= ait−1
εit − εstep, otherwise

(8)

Note that, εit+1 = εit + εstep helps to discover the optimal actions when the operating
environment becomes unstable (i.e. when the consecutive actions change, or ait �=
ait−1), while εit = εit − εstep helps to achieve the optimal actions when the operating
environment becomes stable.

3 Reinforcement learning: algorithms

The traditional RL approach (see Sect. 1.1) has been applies in various schemes to
provide performance enhancement in WSNs as shown in Table 1.

A major contribution of this section is the discussion on a number of new additions
and enhancements to the traditional RL algorithms, which have been applied to various
schemes in WSNs. A summary of the new RL models and algorithms is shown in
Table 2. The following subsections describe the model and algorithm, including the
purpose(s) of the scheme(s), followed by its associated RL model (i.e. state, action
and reward representations), and finally the algorithm.

3.1 Algorithm 1: myopic RL model with γ = 0

The myopic RL model sets the discount factor to zero value or γ = 0, so that there is
lack of dependency on future rewards, and it has been applied in MAC protocols A(1)
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Table 2 Summary of RL models and algorithms for various schemes in WSNs

Model Purpose References

Myopic RL model
with γ = 0

This model sets the discount factor to zero
value or γ=0, so that there is lack of
dependency on future rewards

Chu et al. [7,29]
Mihaylov et al. [30]
Forster and Murphy [14]

RL model with
continuous space
representation

This model represents an action set with a
continuous action space in order to address
the curse of dimensionality

Niu and Deng [31]

RL model with
directed exploration

This model enables an agent to explore
actions in a guided manner using
domain-specific knowledge (e.g. rewards)
in order to improve the convergence rate to
the optimal action

Alberola and Pesch [21]

Cooperative RL
model

This model enables agents to observe the
local operating environment, and
subsequently make their respective local
action selections as part of the optimal
joint action for network-wide performance
enhancement

Liang et al. [13,26,32,33]
Maalej et al. [34]
Tham and Renaud [17]
Seah et al. [4]
Renaud and Tham [35]

Model-based RL
model

This model estimates the state transition
probability matrix T, which forms the
model and represents the operating
environment, and subsequently updates the
Q-values using T in order to increase the
convergence speed

Hu and Fei [36]

Hierarchical RL
model

This model segregates the entire system into
upper and lower levels, and applies two
separate RL approaches in each level to
achieve global and local optimal actions,
respectively

Hu and Fei [25]

Table 3 Myopic RL algorithm with discount factor γ = 0

Repeat

(a) Choose action ait ∈ A based on state sit
(b) Observe state sit+1 and reward r it+1(s

i
t+1)

(c) Update Q-value:

Qi
t+1(s

i
t , a

i
t ) ← (1 − α)Qi

t (s
i
t , a

i
t ) + α · r it+1(s

i
t+1) (9)

[7,29,30] and clustering A(3) [14]. Table 3 presents the RL algorithm for the myopic
RL model.

3.1.1 Chu’s slot assignment scheme for MAC protocol

Chu et al. [7] propose a slot assignment scheme for MAC protocol A(1) using the
myopic RL model (see Table 3), and it has been shown to increase throughput P(1),
as well as to reduce end-to-end delay P(2) and energy consumption P(3). The purpose
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Table 4 RL model for Chu’s
slot assignment scheme [7] Action ait = (ai1,t , a

i
2,t , . . . , a

i
K ,t ) ∈ A1 × A2 × · · · × AK ,

each subaction aik,t ∈ Ak = {0, 1} represents the
selection of time slot k. Specifically, aik,t = 1 if
time slot k is selected, and vice-versa. K
represents the number of time slots in a time
window

Reward r it+1(a
i
k,t ) =

{
1, if successful transmission
−1, if unsuccessful transmission

Table 5 RL model for Forster’s
intra-cluster routing scheme [14] Action ait ∈ A = {1, 2, . . . , J }, each action ait represents a

next-hop neighbor node j . J represents the
number of node i’s neighbor nodes

Reward r it+1(a
i
t ) = 1, where r it+1(a

i
t ) represents the link

cost to the next-hop neighbor node

is to select a time slot within a time frame for data transmission in order to minimize
collisions in a time-slotted MAC protocol.

Table 4 shows the RL model for the scheme, and it is embedded in each sensor
node to keep track of the possibility of successful data transmission in each time slot
using Q-value Qi

t+1(a
i
k,t ). The state is not represented. The action a

i
t is to select time

slot(s) for data transmission. The reward r it+1(a
i
k,t ) indicates successful and unsuc-

cessful transmissions in time slot k, respectively. The Q-function (1) is rewritten as
Qi

t+1(a
i
k,t ) ← (1− α)Qi

t (a
i
k,t ) + α · r it+1(a

i
k,t ) since the state is not represented; and

time slots with higher Q-value indicate higher possibility of successful transmission,
so these slots are selected for transmission. Similar RL model has also been applied
in (Mihaylov et al. 2012) [30].

3.1.2 Forster’s intra-cluster routing scheme

Forster and Murphy [14] propose an intra-cluster routing scheme for clustered net-
worksA(3) using themyopic RLmodel (see Table 3), and it has been shown to increase
throughput P(1), aswell as to reduce energy consumptionP(3). The purpose is to enable
a member node to select a next-hop neighbor node, which provides a route with lower
number of hops and higher residual energy towards the clusterhead in a multi-hop
cluster. The proposed scheme helps to achieve a balanced energy consumption among
member nodes in a cluster in order to prolong network lifetime.

Table 5 shows the RL model for the scheme, and it is embedded in each sensor
node to keep track of the cost of a route leading to the clusterhead node using Q-value
Qi

t+1(a
i
t ). The state is not represented. The action ait represents the selection of a

next-hop node j to forward packets to clusterhead. The reward r it+1(a
i
t ) represents the

link cost to the next-hop node.
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Fig. 3 An interval of (0,1) is partitioned into discrete actions

Table 6 RL algorithm with
continuous action space
representation

Repeat

(a) Choose action ait :

ait = aik,t Q
i
t

(
sit ,a

i
k,t

)
+aik+1,t Q

i
t

(
sit ,a

i
k+1,t

)

Qi
t

(
sit ,a

i
k,t

)
+Qi

t

(
sit ,a

i
k+1,t

)

Determine Q-value Qi
t

(
sit , a

i
t

)
for ait :

Qi
t

(
sit , a

i
t

)
= Qi

t

(
sit , a

i
k,t

)
+ Qi

t

(
sit ,a

i
k+1,t

)
−Qi

t

(
sit ,a

i
k,t

)

aik+1,t−aik,t(
ait − aik,t

)

(b) Observe state sit+1 and reward r it+1

(
sit+1

)

(c) Update Q-value Qi
t

(
sit , a

i
t

)
for action ait using Eq. (1)

(d) Update Q-values Qi
t

(
sit , a

i
k,t

)
and Qi

t

(
sit , a

i
k+1,t

)
for actions aik,t

and aik+1,t :

Qi
t+1

(
sit , a

i
k,t

)
= aik+1,t−ait

aik+1,t−aik,t
Qi
t

(
sit , a

i
t

)

Qi
t+1

(
sit , a

i
k+1,t

)
= ait −aik,t

aik+1,t−aik,t
Qi
t

(
sit , a

i
t

)

3.2 Algorithm 2: RL model with continuous space representation

RL suffers from the curse of dimensionality in which the accuracy of state and action
space representations increases with smaller sizes of space partitions, respectively.
However, memory capacity is limited at each sensor node, so RL model with continu-
ous action space is applied to address this. An example of the Q-values of actions for a
particular state is shown in Fig. 3, in which an interval of (0,1) is partitioned into a set
of discrete actions and their corresponding Q-values. In this RL model, a continuous
action is computed based on the average of two adjacent discrete actions weighted by
their respective Q-values [31].

Table 6 presents the RL algorithm with continuous action space representation. In
step (a), with reference to Fig. 3, the continuous action ait is chosen based on state
sit by averaging the discrete actions aik,t and aik+1,t weighted by their respective Q-

values Qi
t (s

i
t , a

i
k,t ) and Qi

t (s
i
t , a

i
k+1,t ). Also, in step (d), the updates of the Q-values

Qi
t (s

i
t , a

i
k,t ) and Qi

t (s
i
t , a

i
k+1,t ) are weighted by the linear distance between a

i
k,t , a

i
k+1,t

and ait .
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Table 7 RL model for Niu’s
sleep-wake scheduling scheme
[31]

State sit ∈ S = {0, 1, 2} represents the changing trend of the
state. State sit = 0 represents an empty buffer queue;
sit = 1 and sit = 2 represent a decreasing and an
increasing buffer queue length, respectively

Action ait represents the selection of the probability of
transmission

Reward r it+1(a
i
t ) = w1 · eit + w2 · qit + w3 where w1, w2 and

w3 represents weights; et represents energy
consumption; and qt represents the number of packets
in the buffer queue. w3 > 0 is a positive constant

3.2.1 Niu’s sleep-wake scheduling scheme for MAC protocol

Niu and Deng [31] propose a sleep-wake scheduling scheme A(1.1) for MAC protocol
using the RL model with continuous action space representation (see Table 6), and it
has been shown to increase throughput P(1), as well as to reduce end-to-end delay P(2)
and energy consumption P(3). The purpose is to select the probability of transmission
during the data transmission stage in a time-slotted MAC protocol.

Table 7 shows the RLmodel for the scheme, and it is embedded in each sensor node
to keep track of the probability of transmission during the data transmission stage
using Q-value Qi

t+1(s
i
t , a

i
t ). The state represents the changing trend of the number

of packets in the buffer queue. The continuous action ait is to select the probability
of transmission during the data transmission stage. The reward r it+1(a

i
t ) depends on

energy consumption levels and the number of packets in the buffer queue (and hence
packet latency), and so the scheme aims to achieve a balanced performance in energy
consumption and packet latency.

3.3 Algorithm 3: RL model with directed exploration

Traditionally, an agent adopts an undirected exploration approach (e.g. ε-greedy), in
which the agent explores actions in a randommanner during exploration. An enhanced
approach called directed exploration enables an agent to explore actions in a guided
manner using domain-specific knowledge (e.g. rewards) or rules in order to improve
the convergence rate to the optimal action [21]. For instance, in [21], the exploration
probability is adjusted according to two conditions in regards to the variations of
rewards caused by uncertainties in the operating environment. Firstly, the learning
speed increases with the variations of rewards. Secondly, an agent exploits at all times
until there are variations in the rewards, which initiate the exploration procedure.

3.3.1 Alberola’s sleep-wake scheduling scheme for MAC protocol

Alberola and Pesch [21] propose a sleep-wake scheduling scheme A(1.1) for MAC
protocol using the RL model with directed exploration, and it has been shown to
increase throughput P(1), as well as to reduce end-to-end delay P(2) and energy con-
sumption P(3). The purpose is to achieve a balanced tradeoff between the sleeping
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Table 8 RL model for
Alberola’s sleep-wake
scheduling scheme [21]

Action ait ∈ A represents the selection of the number of time
slots for sleeping within a time frame

Cost r it+1(a
i
t ) =

⎧
⎨
⎩
0, if qit < qTh , t iI L = 0
−1, if qit > qTh
−t iI L , otherwise

time and the waking or active time (or duty cycle) in a time-slotted MAC protocol in
order to reduce energy consumption.

Table 8 shows theRLmodel for the scheme, and it is embedded in a centralized node
that collects data from sensor nodes in a single hop to determine the optimal active time
duration using Q-value Qi

t+1(s
i
t , a

i
t ). The centralized node collects network statistics

during active time duration to estimate the incoming traffic level from neighboring
nodes, and subsequently learn the optimal duty cycle. The state is not represented.
The action ait is to select the number of time slots for sleeping within a time frame.
Higher ait value indicates lower duty cycles and so there is lower energy consumption.
Denote the idle time duration by t iI L , as well as the number of packets in the buffer
queue and its threshold by qit and qTh , respectively. The cost is r it+1(a

i
t ) = 0 if the

active duration is fully utilized with idle time t iI L = 0, and there is no buffer overflow
(or qit < qTh). The cost is r it+1(a

i
t ) = −1 if there is buffer overflow, which indicates

that the active duration is too short or insufficient. The cost is r it+1(a
i
t ) = −t iI L if the

active time duration is too long resulting in energy wastage. The myopic RL algorithm
in Table 3 (see Sect. 3.1) is applied to update the Q-values.

In [21], the RL model with directed exploration specifies a set of strategies, namely
random, round-robin and greedy strategies. The random strategy is applied during
exploration, and it is as follows:

π1,i (a) =
{
randa<ait−1

(a), if r it (a
i
t ) > r it−1(a

i
t−1)

randa≥ait−1
(a), otherwise

In this strategy, randa<ait−1
(a) chooses a lower number of time slots for sleeping

ait in a random manner in order to reduce the inactive time duration if the reward has
increased at time t , or r it (a

i
t ) > r it−1(a

i
t−1), which indicates that the incoming traffic

level has increased.
The round-robin strategy is applied during exploitation whenever there are extreme

cases in which the centralized node either has buffer overflow or is always in idle
listening t iI L = 1, and the rule is as follows:

π2,i (a) =
{
ait−1 − 1, if qit > qTh
ait−1 + 1, if t iI L = 1

In this strategy, ait−1 − 1 reduces its sleeping time slots by 1 if qit > qTh ; while
ait−1 + 1 increases its sleeping time slots by 1 if t iI L = 1. The exploration probability
is increased by εit = εmax/10 to increase exploration.

123



Application of reinforcement learning 1063

The greedy strategy is applied during exploitation in cases other than the two afore-
mentioned extreme cases.

π3,i (a) =
{
argmaxa<ait−1

Qi
t (a), if r it (a

i
t ) > r it−1(a

i
t−1)

argmaxa≥ait−1
Qi

t (a), otherwise

In this strategy, argmaxa<ait−1
Qi

t (a) chooses a lower number of time slots for sleeping

ait with the maximum Q-value Qi
t (a

i
t ) in order to reduce sleeping time duration if the

reward has increased at time t , or r it (a
i
t ) > r it−1(a

i
t−1). The learning rate is increased

by αi
t = αmax/10 to speed up learning; however, the learning rate and exploration

probability are decreased whenever the current and previous actions are similar, or
ait = ait−1, to avoid oscillations in action selection.

3.4 Algorithm 4: cooperative RL model

Traditionally, an agent makes decisions on action selection, which may be locally
optimal, in an independent manner without communicating with neighboring agents.
In order to make decisions on globally optimal action selection, the cooperative RL
approach enables agents to observe the local operating environment, exchange infor-
mation (e.g. states and Q-values) among themselves, and subsequently select local
actions as part of the optimal joint action for network-wide performance enhance-
ment. Hence, each local action can affect and can be affected by other agents. This
cooperative approach is suitable for schemes that require collaborative efforts in a
shared wireless medium. For instance, in routing, nodes along a route, as well as their
respective neighboring nodes, must collaborate to reduce interference for end-to-end
QoS enhancement. Section 3.4.1 presents cooperative RL algorithms. Section 3.4.2
presents application schemes that apply the cooperative RL algorithms.

3.4.1 Cooperative RL algorithms

This section presents two cooperative RL algorithms applied to WSNs.

Liang’s cooperative function [13] has been applied in cooperative communication
scheme A(2); and the discussion of this algorithm is based on this application. Denote
the current-hop cooperative nodes and next-hop nodes as Hn and Hn+1 respectively,
which can be viewed as the current and neighboring groups of agents. Node i ∈ Hn

forwards a packet to node j ∈ Hn+1, and keeps track of its Q-value Qi
t+1(s

i
t , a

i
t ) as

follows:

Qi
t+1(s

i
t , a

i
t ) ← (1 − α)Qi

t (s
i
t , a

i
t )

+α
[
r it+1(s

i
t+1) + γw(i, j)maxa j∈Hn+1(Q

j
t (s

j
t , a j ))

+ γ
∑

i ′ ∈Hn ,i
′ �=i

w(i, i
′
)maxa

i
′ ∈Hn\i (Q

i
′
t (si

′
t , ai ′ ))

]
(10)
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where w(i, j) represents the weight of node i on node j’s Q-value, in which higher
w(i, j) indicates greater effects; whilew(i, i

′
) represents the weight of node i on node

i’s cooperative nodes in Hn . Note that, with respect to Eq. (10), the third term depends
on the maximum Q-value of node j ∈ Hn+1; and the fourth term depends on the
maximum Q-values of all nodes in Hn except node i itself. Hence, nodes exchange
and apply information (i.e. Q-values) with neighboring nodes, and maximize their
own and their respective neighboring nodes’ Q-values in order to maximize the global
Q-value. At the next time instant, node i ∈ Hn with the highest Q-value is selected as
the forwarding node; while the rest of the nodes i

′ ∈ Hn\i become cooperative nodes.

Distributed value function (DVF) approach has been applied in task scheduling A(6)
[18]. Node i calculates and exchanges local value function V i (sit ) (see Eq. (2)) with
its neighbor nodes j ∈ J , and keeps track of its Q-value Qi

t+1(s
i
t , a

i
t ) as follows:

Qi
t+1(s

i
t , a

i
t ) ← (1 − α)Qi

t (s
i
t , a

i
t ) + α

⎡
⎣r it+1(s

i
t+1) + γ

∑
j∈J

w(i, j)V j (sit+1)

⎤
⎦

(11)

where w(i, j) represents the weight of node i on neighbor node j ∈ J ’s Q-value. For
instance, in [17], the weights for all neighbor node j’s Q-values are equal, specifically
w(i, j) = 1/|J |.

3.4.2 Application schemes with cooperative RL algorithms

This section presents three schemes that apply the cooperative RL model.

Liang’s cooperative communication scheme
Liang et al. [13] propose a cooperative communication scheme A(2) using Liang’s
cooperative function (see Sect. 3.4.1.1), and it has been shown to increase throughput
P(1), as well as to reduce end-to-end delay P(2). The purpose is to select a forwarding
node j ∈ Hn+1 for data transmission from node i in order to minimize packet loss
as shown in Fig. 4, where K = |Hn| is the number of a set of cooperative nodes at
the current hop Hn . Generally speaking, cooperative nodes that form the set K can
hear two-way routing messages (i.e. Route Request, RREQ and Route Reply, RREP)
between nodes i and j [32]. A packet may pass through many sets of forwarding and
cooperative nodes as it traverses across the network from a sensor node to a sink node.

Table 9 shows the RLmodel for the scheme, and it is embedded in each sensor node
to keep track of the progress of a packet in terms of the physical distance towards the
sink node over time using Q-value Qi

t+1(a
i
k,t ). Specifically, it is the progress being

made from the current hop Hn to the next hop Hn+1. The state represents the hop
of a packet with respect to the current hop Hn in which node i resides. The action
ait is to select a forwarding node to forward the data packet. All nodes in the current
hop Hn receive positive rewards and update their Q-values accordingly when the
nodes hear further transmission from Hn+1 to Hn+2, which indicates a successful
transmission from Hn to Hn+1, otherwise the nodes receive negative rewards. Higher
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Fig. 4 Node i selects node
j ∈ Hn+1 as forwarding node
for data transmission. Nodes in
Hn , where K = |Hn |, become
cooperative nodes in the current
hop Hn

Table 9 RL model for Liang’s cooperative communication scheme [13]

State sit ∈ S = {Hn−1, Hn , Hn+1} represents the hop of a packet with respect to the current
hop Hn in which node i resides. State sit = Hn−1 represents the previous hop of Hn ,
sit = Hn represents the current hop; and sit = Hn+1 represents the next hop of Hn

Action ait = (ai1,t , a
i
2,t , . . . , a

i
K ,t ) ∈ A1 × A2 × · · · × AK , each subaction aik,t ∈ Ak = {0, 1}

represents the selection of node k as the forwarding node. Specifically, aik,t = 1 if node
k is selected, and vice-versa

Reward r it+1(s
i
t , a

i
t) =

{
Amount of progress to sink, if successful transmission
−Amount of timeout duration, if unsuccessful transmission

positive rewards indicate higher transmission quality in which the packet has made
greater progress in terms of the physical distance towards the sink node over time;
while higher negative rewards indicate the amount of timeout duration being wasted
as a result of unsuccessful packet transmission. Both positive and negative rewards are
normalized values. All nodes in the current hop Hn update with the similar positive (or
negative) rewards because all of them have made the correct (or incorrect) action in
the selection of a forwarding node. Node i ∈ Hn forwards a packet to node j ∈ Hn+1,
and keeps track of its Q-value Qi

t+1(s
i
t , a

i
t ) using Eq. (10).

Similar RL model and algorithm have been applied to achieve other performance
enhancements in cooperative communications [32–34] and routing [26]. TheRLmodel
is redefined in [32,33]. As an example, with respect to node i in a cooperative com-
munication scheme A(2) [33], the state represents QoS satisfaction/violation levels;
the action represents the selection of a cooperative node; and the reward represents
the improvement on packet delivery rate and packet latency brought about by indirect
transmission. As another example, with respect to node i in a routing scheme A(3)
[26], the state represents a set of neighboring node and QoS requirements of packets;
the action represents the selection of a next-hop node; and the reward represents the
inverse of packet latency, and so higher rewards indicates shorter single-hop delay.

Next, Sect. 3.4.2.2 presents the extension of the RL model [32] presented in this
section [13,33] to reduce energy consumption and enhance QoS.
Liang’s cooperative communication scheme with QoS enhancement
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Table 10 RL model for Liang’s cooperative communication scheme with QoS enhancement [32]

State sit =
(
Ki , Fi

)
∈ S, where ki ∈ Ki is a set of potential forwarding and cooperative

nodes at current hop Hn , and f i ∈ Fi is a set of data flow at node i

Action ait = (ai
f i ,t

, Pi
f i ,t

) ∈ A, each subaction ai
f i ,t

∈ A f i = {0, 1} represents whether to
forward data flow f i ; specifically, ai

f i ,t
= 1 if node i chooses to forward packets

from data flow f i , and vice-versa; and each subaction Pi
f i ,t

∈ APi = {P0, P1, . . . ,
Pmax} represents the selection of a transmission power level

Reward r it+1(s
i
t, a

i
t) = w1 · cit + w2 · dit + w3 · eit , where cit , dit and eit represent improvement

on packet delivery rate, packet latency and energy efficiency in indirect transmission
compared to those in direct transmission, respectively; and w1, w2, and w3 are
weight factors

Liang et al. [32] propose a cooperative communication scheme A(2) using Liang’s
cooperative function (see Sect. 3.4.1.1) to provide QoS enhancement, and it has been
shown to increase throughput P(1), as well as to reduce end-to-end delay P(2) and
energy consumption P(3). The purpose is to select a forwarding node j ∈ Hn+1 for
data transmission from node i , and to adjust its transmission power level, in order to
reduce energy consumption and enhance QoS.

Generally speaking, to provide QoS enhancement, Liang et al. [32] use the same
RL algorithm in Sect. 3.4.2.1, and the difference is that, the RL model is redefined.
Table 10 shows the RL model for the scheme, and it is embedded in each sensor
node to keep track of the contribution, which is based on the successful packet trans-
mission, packet latency, and energy efficiency, of indirect transmission compared to
direct transmission, using Q-value Qi

t+1(a
i
k,t ). The state s

i
t represents a set of poten-

tial forwarding and cooperative nodes in the current hop Hn , and a set of data flow at
node i . The action ait is to select whether to forward packets of a data flow and the
transmission power level; hence, a node may transmit packets using an appropriate
transmission power level adaptively according to the channel condition. The reward
represents the improvement on packet delivery rate, packet latency, and energy effi-
ciency brought about by indirect transmission; and this information is indicated in the
acknowledgement (ACK) packets sent by the forwarding node j ∈ Hn+1 to node i .

Tham’s sensing coverage scheme Seah et al. [4], Tham and Renaud [17], and Renaud
and Tham [35] propose a sensing coverage schemeA(5) usingDVF (see Sect. 3.4.1.2),
and it has been shown to increase sensing coverage P(4), as well as to reduce energy
consumption P(3). The purpose is to select a sensing coverage level for each sensor
node i in monitoring tasks in order to minimize overlapping of sensing coverage with
neighbor node j ∈ J .

Table 11 shows the RL model for the scheme, and it is embedded in each sensor
node to keep track of the coverage of each grid point in the surrounding area of
the sensor node using Q-value Qi

t+1(s
i
t , a

i
t ) [4]. The state s

i
t represents the coverage

of a grid point. The action ait is to select an action whether to hibernate (inactive)
or sense (active). The reward r it+1(s

i
t , a

i
t ) represents a ratio of the gain received for

each grid point being covered to the state of the respective grid point. Higher positive
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Table 11 RL model for Tham’s sensing coverage scheme [4]

State sit ∈ S = {s0, s1, s2} represents the coverage of a grid point. State sit = s0, s1, s2
represents a grid point is not covered, covered by a single sensor, and covered by more
than a sensor node, respectively

Action ait ∈ A = {a0, a1} represents whether to hibernate (inactive) or sense (active),
respectively

Reward r it+1(s
i
t , a

i
t ) is a ratio of the gain received for each grid point being covered to the state

of the respective grid point (i.e. 1 for s1, and 2 for s2) if s
i
t = s1 or sit = s2; otherwise

r it+1(s
i
t , a

i
t ) = 0 if sit = s0

Table 12 RL model for Tham’s sensing coverage scheme [35]

State sit ∈ S = {s0, s1} represents the coverage of a grid point. State sit = s0, s1 represents a
grid point is not covered, and covered by at least a single sensor node, respectively

Action ait ∈ A = {a0, a1, a2}. Action ait = a0, a1, a2 represent whether to hibernate
(inactive), sense (active) with a short-range coverage, or sense with a long-range
coverage, respectively

Reward r it+1(s
i
t ) = Gi

t+1(s
i
t ) − Ci

t (a
i
t ), where G

i
t+1(s

i
t ) represents the gain achieved by the

current sensing coverage, and Ci
t (a

i
t ) represents energy consumption associated

with action ait

rewards indicate higher gain and the grid point is covered by a single sensor node only;
and hence, lower energy consumption. Each sensor node keeps track of the Q-value
Qi

t+1(s
i
t , a

i
t ) using Eq. (11).

Similar RL model and algorithm have been applied to achieve the same purpose
in [35], in which there are two levels of sensing range. Generally speaking, the RL
model is redefined in [35], as shown in Table 12. The state sit represents the coverage
of a grid point. The action ait is to select whether to hibernate (inactive), or sense
(active) with a short-range, or a long-range coverage. The reward r it+1(s

i
t ) represents

the gain received for each grid point being covered minus the cost associated with
energy consumption. Long-range sensing incurs higher cost. Higher positive rewards
indicate higher gain and the grid point is covered by lesser number of sensor nodes;
and hence, lower energy consumption.

3.5 Algorithm 5: model-based RL model

Convergence to an optimal policy can be achieved after some learning time; how-
ever, due to the dynamicity of the operating environment, the convergence rate is
unpredictable. While higher learning rate α may increase the convergence speed; the
Q-value may fluctuate, particularly when the dynamicity of the operating environment
is high because the Q-value is more dependent on its recent estimates now, rather than
its previous experience [37]. Model-based RL model has been applied to increase the
convergence speed. This approach estimates the state transition probability matrix T,
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Table 13 RL model for Hu’s routing scheme [36]

State sit ∈ S = {1, 2, . . . , N }, each state sit represents a node i in which a packet resides. N
represents the number of nodes in a network

Action ait ∈ A = {1, 2, . . . , J }, each action ait represents a next-hop neighbor node j . J
represents the number of node i’s neighbor nodes

Reward r (sit , ait ) = −g − w1

[
cr (sit ) + cr (s

j
t+1)

]
+ w2

[
ra(sit ) + ra(s jt+1)

]
represents the

cost incurred by forwarding a packet from node i to node j . g represents resource
consumption (i.e. transmission and reception energies) incurred by a packet

forwarding. Lower cr (sit ) and cr (s
j
t+1) indicates higher amount of residual energy

at nodes i and j . Higher ra(sit ) and ra(s jt+1) indicates higher residual energy at
nodes i and j compared to the average amount of residual energy among
neighboring nodes. w1 and w2 are weight factors

which forms the model and represents the operating environment, and subsequently
updates the Q-values using T. The state transition probability matrix T is a matrix
comprised of the probability of transitioning from one state to another in a single time
instant.

3.5.1 Hu’s routing scheme

Hu and Fei [36] propose a routing scheme A(3) using a model-based RL model, and it
has been shown to increase throughput P(1), as well as to reduce energy consumption
P(3). The purpose is to select a next-hop neighbor node with higher residual energy,
which subsequently sends packets towards the sink node.

Table 13 shows theRLmodel for the scheme.Note that, themodel is a representation
for a particular packet. In other words, the RL model is embedded in each packet. The
state sit represents the node in which a particular packet resides (or node i). The
action ait represents the selection of a next-hop neighbor node j . The reward r(sit , ait )
represents various types of energies, including transmission and residual energies,
incurred for forwarding a packet to node ait = j . Taking into account the residual
energy avoids highly utilized routes (or hot spots) in order to achieve a balanced
energy distribution among routes.

Node i’s Q-function, which indicates the appropriateness of transmitting a packet
from node i to node ait = j , is updated at time t + 1 as follows:

Qi
t+1(s

i
t , j) = r (sit , ait ) + γ

(
P
ait
sit s

i
t
max
k∈ait

Qi
t (s

i
t , k) + P

ait
sit s

j
t
max
k∈a j

t

Q j
t (s

j
t , k)

)
(12)

where P
ait
sit s

i
t
is the transition probability of an unsuccessful transmission from sit (or

node i) after taking action ait , while P
ait
sit s

j
t
is the transition probability of a successful

transmission from sit to s
j
t (or node j) after taking action ait . The transition probabil-
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ities, which form the system model, estimate P
ait
sit s

i
t
and P

ait
sit s

j
t
using the historical data

of each link’s successful and unsuccessful transmission rates based on the outgoing
traffic of next-hop neighbor nodes.

3.6 Algorithm 6: hierarchical RL model

The hierarchical RL model segregates the entire system into the upper and lower
levels, and applies two separate RL approaches simultaneously in each level to achieve
global and local optimal actions, respectively. Hence, a large and complex problem,
such as routing [25], can be segregated into smaller problems, which can be solved
simultaneously. Hence, the hierarchical RL model helps to reduce the state space, and
so it improves scalability and convergence rate.

3.6.1 Hu’s hierarchical routing scheme

Hu and Fei [25] propose a hierarchical routing scheme A(3) for clustered networks
using a hierarchical RL model, and it has been shown to increase throughput P(1), as
well as to reduce end-to-end delay P(2) and energy consumption P(3). The purpose is
to select a next-hop node, which subsequently sends packets towards the sink node,
with higher successful transmission rate.

Traditionally, in flat (or non-clustered) networks, Q-values keep track of a route cost
comprised of multiple hops; however, any updates on a link cost must be propagated
along a route, which may be slow in large networks. Hence, in [25], a clustered
network using hierarchical routing A(3) is proposed. There are two types of routing
schemes, namely intra- and inter-cluster routing schemes. The clusterhead performs
inter-cluster routing to search for the best route to the sink node. The member nodes
perform intra-cluster routing to search for the best route to a gatewaynode in the cluster.
Gateway nodes are the member nodes located at the fringe of a cluster, and since they
can hear from neighboring clusters, they provide inter-cluster communications. With
respect to the hierarchical RL model, the upper and lower levels represent the inter-
cluster and intra-cluster routing schemes, respectively. Hence, the upper and lower
layers are comprised of clusterheads and member nodes, respectively. The upper layer
supervises the lower layer so that member nodes search for the best route to the
gateway node selected by the upper layer; while the lower layer provides evaluation
feedback to the upper layer on the selection of the gateway node. This approach
improves the sensitivity of a route towards changes in the network topology because
an update now traverse a smaller number of hops and is confined to a particular
cluster.

Table 14 shows the RL model for the scheme. Note that, the model is a represen-
tation for a particular packet. The state sit represents the node in which a particular
packet resides (or node i). The action ait represents the selection of a next-hop neighbor
node j ; and so a series of actions will lead the packet to the gateway nodes rather than
the sink node in traditional networks. Note that, there are two levels of Q-learning
for intra- and inter-cluster routing schemes respectively; and Table 14 shows intra-
cluster routing being implemented within each cluster. The reward representation is
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Table 14 RL model for Hu’s hierarchical routing scheme [25]

State sit ∈ S = {1, 2, . . . , N }, each state sit represents a node i in which a packet resides. N
represents the number of nodes in a network

Action ait ∈ A = {1, 2, . . . , J }, each action ait represents a next-hop neighbor node j . J
represents the number of node i’s neighbor nodes

Reward r it+1(a
i
t ) =

{ −1, if successful transmission
−c, if unsuccessful transmission

r it+1(a
i
t ) = −1 and r it+1(a

i
t ) = −c if successful and unsuccessful packet transmis-

sions, respectively. The negative reward indicates resource consumption and network
performancedeterioration (i.e. energy consumption andpacket latency) for eachpacket
transmission.

4 Performance enhancements

RL has been shown to achieve the following performance enhancements as shown in
Table 15:

P.1 Higher throughput. Higher throughput indicates higher packet delivery rate,
higher successful packet transmission rate, lower packet loss rate and lower num-
ber of packet retransmissions.

P.2 Lower end-to-end delay/packet latency. Lower end-to-end delay and packet
latency in single-hop and multi-hop transmissions, respectively, indicate lower
number of packets in the buffer queue.

P.3 Lower energy consumption. Lower energy consumption increases network life-
time. Since each sensor node operates on battery power, energy consumption is a
common performance metrics. Other performance enhancements, such as higher
throughput and lower end-to-end delay, may indicate lower energy consumption
due to lower packet loss rate and number of packet retransmissions.

P.4 Higher sensing coverage. Higher sensing coverage indicates that, larger parts
of an area is covered by at least a single sensor node, and so there is higher
rate of detection of the events of interest. A sensing coverage scheme A(5) must
minimize the overlapping of sensing coverage with neighboring nodes to reduce
energy consumption.

P.5 Higher route discovery rate. Higher route discovery rate indicates higher success
rate of finding a favorable route from a source node to a sink node. In [28], a
favorable route must be free from malicious nodes, which drop packets received
from previous hops.

P.6 Higher in-contact time. Higher in-contact time indicates greater possibility of a
sensor node to discover the presence of a mobile data collector node, as well as
longer duration for data transmission, in a sleep-wake scheduling scheme A(1.1)
[12].
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5 Open issues

This section discusses open issues that can be pursued in this research area.

5.1 Convergence rate and energy consumption

The convergence rate is affected by how much an agent learns, as well as the condi-
tion of the operating environment. Generally speaking, convergence rate increases
with longer waking or active time (or duty cycle), as well as lower dynamicity
and uncertainty levels of the operating environment. Shorter waking time reduces
energy consumption and convergence rate; and it is suitable for operating environ-
ment with lower dynamicity and uncertainty levels. On the other hand, longer waking
time increases convergence rate and energy consumption; and it is suitable for oper-
ating environment with higher dynamicity and uncertainty levels. Future research
could be pursued to adjust waking duration in order to achieve a balanced tradeoff
between convergence rate and energy consumption with respect to the condition of the
environment.

5.2 Enhancement on the scalability of RL

The Q-table is a two-dimensional lookup table comprised of |S| × |A| entries. There
are two important considerations with respect to scalability. Firstly, the number of
entries increases exponentially with the number of states and actions; however, there
may be limited memory capacity at each sensor node. Secondly, large number of state-
action pairs requires higher number of explorations to discover most Q-values, and so
it reduces the convergence rate to optimal action and increases energy consumption
associated with learning (see Sect. 5.3). In addition to the state-action pairs, each
sensor node must estimate and keep track of state transition probability matrix T in
model-based RL model (see Sect. 3.5). Future research could be pursued to reduce
the number of state-action pairs, as well as the state pairs in model-based RL model,
without jeopardizing the accuracy of state and action space representations in order
to improve scalability, as well as to reduce energy consumption.

5.3 Minimization of learning cost

The condition of the operating environment affects the usefulness and the recentness
of the knowledge (or Q-value). An agent must make the right decision whether to learn
or not. Generally speaking, learning should only take place if these two conditions are
fulfilled. Specifically, the new knowledge remains useful for a long enough period of
time. This means that the operating environment remains consistent for a long enough
period of time (or with a certain low levels of dynamicity and uncertainty), and the
rewards (e.g. throughput) received must be greater than the learning costs (e.g. energy
consumption and processing power). Future research could be pursued to investigate
mechanisms to make the right decisions whether to learn or not, as well as to reduce
the learning cost.
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5.4 Enhancement on the security aspect of RL

The requirements of the sensors and sink nodes to observe and learn from the operat-
ing environment have inevitably opened new security vulnerabilities. Malicious nodes
may manipulate the operating environment so that the nodes learn the incorrect infor-
mation. The malicious nodes may have learning capabilities and launch attacks in
a cooperative manner. Consequently, the sensor nodes may converge to suboptimal
actions, take longer to converge, or even fail to converge to optimal actions. This secu-
rity vulnerability may be particularly pronounced in the cooperative RL model (see
Sect. 3.4), in which nodes that receive manipulated information may become mali-
cious themselves since they exchange information (e.g. states and Q-values) among
themselves. Consequently, manipulated nodes may make sub-optimal local actions as
part of the joint action. Future research could be pursued to investigate mechanisms to
enhance the security vulnerabilities associated with the application of RL in WSNs.

5.5 Reduction of message exchange overhead

The requirement of the sensors and sink nodes to exchange information (e.g. states and
Q-values) among themselves in order to learn from each other and the operating envi-
ronment have inevitably increased the amount of controlmessage exchange and energy
consumption. However, message exchange is essential for learning in cooperative and
hierarchical RL models (see Sects. 3.4, 3.6, respectively). Nevertheless, by reducing
the message exchange frequency, the convergence rate to an optimal joint action may
decrease. Future research could be pursued to investigate mechanisms to reduce the
message exchange frequency without jeopardizing network-wide performance.

6 Conclusions

Reinforcement Learning (RL) has been applied in Wireless Sensor Networks (WSNs)
to provide network performance enhancement in a wide range of schemes. To apply
RL, several representations including state, action, as well as delayed and discounted
rewards, are defined. Additionally, several features, including the Q-function, as well
as exploration and exploitation mechanisms, must be defined. Based on the context
of WSNs, this article presents an extensive review on the enhancements of these
representations and features.Most importantly, this article presents an extensive review
on a wide range of RL models and enhanced RL algorithms in the context of WSNs.
The enhanced algorithms provide insights on how various schemes in WSNs can be
approached using RL. Performance enhancements achieved by the traditional and
enhanced RL algorithms in WSNs are presented. Certainly, there is a great deal of
future work in the use of RL, and we have raised open issues in this article.
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