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Abstract Current systems for enacting scientific experiments, and simulation work-
flows in particular, do not support multi-scale and multi-field problems if they are
not coupled on the level of the mathematical model. To address this deficiency, we
present an approach enabling the trial-and-error modeling and execution of multi-
scale and/or multi-field simulations in a top-down and bottom-up manner which is
based on the notion of choreographies. The approach defines techniques for compos-
ing data-intensive, scientific workflows in more complex simulations in a generic,
domain-independent way and thus provides means for collaborative and integrated
data management using the workflow/process-based paradigm. We contribute a life
cycle definition of such simulations and present in detail concepts and techniques that
support all life cycle phases. Furthermore, requirements on a respective software sys-
tem and choreography language supporting multi-scale and/or multi-field simulations
are identified, and an architecture and its realization are presented.
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1 Introduction

eScience is a very active field focusing on providing IT support for scientists from
different natural and social sciences fields for the purpose of faster scientific explo-
ration and discovery. In eScience, the objective is to provide generic approaches and
tools to support its whole life cycle: from data collection and curation, through data
processing and analysis to permanent archiving of discoveries [20]. One approach
for data processing and analysis is the workflow technology, also known as scientific
workflows, used for enabling scientific simulations. Note that scientific workflows
have different characteristics in comparison to the workflow technology applied in
business applications for business process management (BPM). Existing scientific
workflow management systems (sWfMS) can be grouped in two major categories:
domain-specific and generic systems. The domain-specific systems are typically devel-
oped in cooperation with scientists and meet the requirements of one (or just a few)
scientific domains. In most cases the sWfMSs support modeling of a workflow of
data management or computing tasks and focus on how data is processed and in what
sequence and which data sources are to be used. These systems hide the complexity of
distribution and parallelization of computational tasks from scientists but sometimes
require from scientists to use one specific technology. Usually, an optimized workflow
model is derived which can be executed multiple times. However, fault and exception
handling are not supported in an automated manner by means of modeling constructs
and techniques and in addition the trial-and-error nature of scientific discovery is not
always supported by these systems. Workflows are executed without interruptions and
in most cases do not allow human users to interact with the workflow. Examples of
domain-specific systems are Kepler [24], Taverna [25], and Triana [43].

The second category of workflow systems is a more recent development and makes
use of the conventional workflow technology known from business applications. The
advantages of business workflows like fault handling, forward and backward recovery
and since recently workflow flexibility approaches for trial-and-error experimenting
are drawn upon. The issues that are currently being dealt with in research are related
to improving the support for data processing in a generic manner considering the huge
amount of data available or produced, and the composition and integration of existing
software into interoperable systems.Moreover, the huge complexity of eScience due to
its interdisciplinary nature, software engineering aspects, and knowledgemanagement
supporting such systems have to be addressed in the same context.

Both types of systems support the modeling and execution of simulation workflows
that can realize simulations on a single scale, i.e., metric or time scale, and/or on a sin-
gle field model describing the scientific phenomenon, for example in plant molecular
biology [19]. The more complex multi-scale and/or multi-field (also called multi-*)
simulations can also be supported by these technologies and systems if the mathe-
matical models implemented through the simulation software are already coupling
the different scales/fields on the level of the mathematical formalization. Typically,
descriptions of one or more scales/fields to another scale/field are used. Multi-scale
simulations cover different scales within the same computer experiment, where the
scales can either refer to time scales, e.g., nanoseconds to days, or to length scales,
e.g., nanometers to meters. Multi-field simulations use different scientific fields (or
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sub-fields) in the same experiment, e.g., physics, biology, or chemistry. An example
for a multi-scale simulation is the remodeling of bones using the Theory of Porous
Media [22]. Here, the cell and tissue model in the human body can be coupled with a
bone model. Another example is the simulation of thermal aging of iron-copper alloys
and emerging effects of existing precipitates on the mechanical behavior in the mate-
rial science domain [28]. With this approach, multiple time scales of thermal aging as
well as length scales in terms of sample volumes become accessible by coupling two
simulation methods each describing the phenomena of precipitation from a different
point of view.

Based on our experience with scientists and experts from industry, where sim-
ulation is also a key enabler, simulations that are not based on models inherently
coupling the different scales and physics of the natural phenomena also need to be
supported. Especially important is the case where collaboration among distinct scien-
tific groups or industry organizations is desired, which implies coupling of existing
simulation software into complex simulations and the correlation of the interactions
among them. Towards this goal, we present an approach that utilizes the notion of
choreographies to enable the trial-and-error modeling and execution of multi-* sim-
ulations (Sect. 3). The approach considers top-down modeling starting from scratch
with a multi-* domain problem as well as bottom-up modeling combining existing
simulations. We contribute a life cycle definition of such simulations and present in
detail concepts and techniques that support all life cycle phases, however, the main
focus in this article lies on the modeling aspects. We also identify the requirements
on a software system that can support the life cycle of multi-* simulations as well as
the requirements on a choreography language (Sect. 4). One main objective has been
to reuse as much as possible of existing standards and techniques as possible, while
providing a user-friendly system to scientists, who are both the developers and users
of the simulations. Additional contribution of this work is the definition of an architec-
ture of the system for support of multi-* simulations and a corresponding realization
(Sect. 5). The realization builds on top of a sWfMS that is based on the workflow tech-
nology from the business process application field and novel flexibility approaches
introduced in previous work (Sect. 2). We compare our approach with related ones in
Sect. 6 and conclude the article with an outline of future research topics in Sect. 7.

2 Background and motivation

2.1 Background

In this section we present the requirements of eScience as introduced in our previous
research work and will derive additional requirements for the approach and life cycle
for multi-* simulations. The approach presentation is based on our existing research
publications. In our research in the scope of the Cluster of excellence simulation
technology (SimTech1) our goal is to enable IT support for scientists in their work
on developing scientific simulations. Major starting requirements in this work have

1 SimTech: http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/.
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been to support the complete scientific simulations life cycle characterized by its trial-
and-error nature and to maintain user-friendliness of the solution. After comparison
with existing work in the field of scientific experiments and simulations, and the
research in the BPM field mostly related to workflow management [13,15,16,20,
39], we have designed a service-oriented, workflow-based approach for modeling,
execution and monitoring of scientific simulations and a corresponding interactive,
flexible, SOA-based scientific workflow system enabling this approach by means of
concepts, architecture and implementation. The major components involved are: a
modeling tool, a workflow engine, a service bus, and a monitoring component. In
our work we make use of Web Services [45] to enable interoperability and the easier
integration of simulation software.

For the modeling of scientific experiments we extended the existing workflow
technology known from business applications [23] with features needed by scientists.
Basically, using a workflow to model a simulation, or any other kind of experiment,
involves specifying a number of steps (called activities) that have to be carried out as
well as the involved control flow and data flow. The steps in such a workflow, which
we also call simulation workflow, are typically data processing steps such as copying
data from one location to another, solving a set of mathematical models (differential
equations solvers, sequencing algorithms etc.), visualization steps, preprocessing of
data, and many others. A workflow modeling tool is the infrastructure component
supporting the modeling step, typically with a graphical notation. In addition to con-
structs for modeling the control flow of interactions of simulation modules and the
data exchanged among them andwith the user, we explicitly support data management
activities and domain-specific activities, which are also part of the construct catalog
in our modeling tool [36]. The data management activities are abstract and can be
used to model storing, retrieving, and manipulating scientific data from different data
source types. Depending on the context in which such an activity is used, we define
mappings of such an activity to a predefined template realizing complex operations on
data, the necessary interactions with data sources and performing the required format
transformations [32]. The domain-specific activities stand for complex sequences of
domain-specific tasks orchestrating several simulation modules/services that we pro-
vide to the users hidden behind individual activities. Using a domain-specific activity
leads to a subsequent code generation that adds the actual workflow code into the
model. For the purpose of reusability we also defined and utilized the concept of
workflow fragments capturing predefined workflow logic. Fragments are stored in the
fragment library Fragmento [35]. They can also be used to capture both templates for
data management and workflow logic realizing a domain-specific activity. Scientists
can start simulations from our modeling tool just by a simple click of a button, without
performing any additional steps. This contributes to the user-friendliness of the tool.
The realization of the tool incorporates, on the level of both architecture and imple-
mentation, support for deployment of the workflow model on a workflow engine, the
provision of the workflow as a service, and the subsequent instantiation of a workflow
instance—all these steps are hidden from the user.

Theworkflow engine navigates through theworkflowmodel and delegates the invo-
cation of the individual activities to the service bus. Since the individual activities are
implemented by services hiding simulation software, the execution of the simulation
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software is done by the concrete execution environment. The resulting data or data
reference is brought back to the engine by the service bus. The monitoring component
is typically responsible for collecting execution data about process instances and pro-
viding them to amonitoring tool for visualization. For scientists this is in contradiction
to the trial-and-error nature of their work. For this purpose, we enabled the simulta-
neous modeling and execution of workflows. The scientists can define only a part of
the workflow they would like to carry out, start its execution (on the engine) and add
additional steps in the workflow while it is being executed. We denoted this concept
Model-as-you-go approach [36,38]. Workflow logic can be re-executed, i.e., already
executed steps can be compensated and executed again with a different set of para-
meters as well as re-iterated for convergence of results. The approach allows for the
interactive modeling and execution of scientific workflows and contributes also to the
field of flexible workflows and service compositions. The corresponding infrastruc-
ture uses the monitoring component to transfer monitoring/status information to the
modeling tool and back, so that both execution engine and modeling tool have all the
information about the state of the executed workflow instance and the newly modeled
activities. We enable the visualization of the workflow execution state directly in the
modeling tool and incorporated a stop/resume functionality to enable the interactive
completion of the workflow. These functionalities have the corresponding counterpart
components at the workflow engine.

With our original approach we can support user friendly modeling, execution and
monitoring of scientific workflows for cases in which existing simulation and data
processing software has to be orchestrated automatically in a specific order. Such sim-
ulation workflows can realize simulations on a single scale and/or scientific model
or multi-scale/field simulations if the mathematical models implemented through the
simulation software are already coupling the different scales/fields. The latter case
typically uses approximation of one or more scales/fields to another scale/field. Based
on requirements provided by scientists and industry experts we identify two basic sce-
narios that need to be supported: (1) there is existing software implementing different
mathematical models and/or scales that need to be orchestrated, very often across
organizations, i.e., a bottom-up approach, or (2) one or more organizations need to
support a particular multi-scale/field simulation and starts its modeling and realization
from scratch, i.e., a top-down approach. In both scenarios the major open issue with
respect to the modeling is how the interactions among the participating simulations
and the data exchange can be represented.

2.2 Choreographies for multi-* simulations

In this work, we use choreographies to couple scientific experiments from distinct sci-
entific fields into combinedmulti-* experiments. Choreographies are a concept known
from the business domain that enables independent organizations to collaborate and
reach a common business goal. They provide a global view on the interconnection
of independent organizations communicating without a central coordinator [9,49].
Therefore, choreographies are coordinated peer-to-peer-like interactions between ser-
vices or orchestrations of services (i.e., workflows). While choreographies show the
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public interfaces of the collaboration, these interfaces are implemented by orchestra-
tions, i.e., the so-called enacting workflows, realizing the private business logic of a
single organization. The individual organizations (and their workflows/orchestrations)
are called choreography participants. In the context of our approach, every scientific
model based on a separate scientific field or using a different scale is implemented as
an orchestration of scientific services and the overall experiment is represented by a
choreography without centralized control. The benefits of using choreographies for
modeling and executing multi-* experiments are the following: (1) different scientists
or groups of scientists can model the global view on a multi-* experiment, i.e., the
public interfaces of each participant, while the implementation of actual experiment
workflow logic can be conducted separately by the group having the proper exper-
tise. (2) Choreography participants and their enacting workflows are loosely coupled
in comparison to sub-workflows. Each enacting workflow has its own life cycle and
is not tightly coupled to a parent workflow. This allows specifying appropriate fault
handling and compensation logic for each potentially long-running workflow indi-
vidually. No parent workflow might fail and thereby affect subordinated workflows.
(3) The communication patterns between participants of a choreography can be more
complex than simply request/response patterns [4]. Instead, the enacting workflows
can engage in complex communication patterns, i.e., conversations that allow mod-
eling a scientific experiment where intermediate feedback between multiple scales
and/or fields can be incorporated into the computation.

2.3 Motivating scenario

In order to further illustrate the properties multi-* experiments, we present a motivat-
ing scenario from the domain of material science [47]. Molnar et al. have studied the
thermal aging of iron-copper alloys [28] and emerging effects of existing precipitates
on the mechanical behavior [26,27] of the single crystalline structures by coupling
kineticMonte Carlo (KMC), molecular dynamics (MD) and phase-field method simu-
lations (PFM) sequentially. Each of these methods is working on a different time scale
while, in addition, KMC and PFM are typically applied on different length scales. To
motivate our approach, we focus on the sequential coupling of KMC and MD sim-
ulations for the case of nano tensile tests of iron-copper alloys at different states of
thermal aging [26,27].

Figure 1 shows a simplifiedworkflowmodel of aKMCsimulation using the custom-
made simulation software Ostwald ripening of Precipitates on an Atomic Lattice
(OPAL) [5]. The modeling of OPAL as scientific workflow has been documented
in [37]. OPAL simulates the formation of copper precipitates, i.e., atom clusters, due
to thermal aging.Theworkflowreceives a set of parameters such as atomconcentration,
energy values, and the number of intermediate snapshots to be taken from the scientist,
configures the atomic lattice and calculates the energy configuration as input for the
KMC simulation. According to the desired number of snapshots, the OPAL software
saves the current state of the atom lattice at a particular point in time in a snapshot
file. The snapshots are then searched for atom clusters and their position and size. The
result is visualized using an external visualization software.
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Fig. 1 Simplified kinetic Monte Carlo (KMC) simulation workflow [47]

Fig. 2 Simplified molecular dynamics (MD) simulation workflow [47]

Figure 2 depicts a simplifiedworkflowof amolecular dynamics simulation. TheMD
simulation, which is implemented by a different research group in the ITAPMolecular
Dynamics (IMD) software package [41], is used to study the tensile deformation of
the snapshots generated in the kinetic Monte Carlo simulation. This simulation is
computationally very costly and cannot be done in the KMC simulation due to the
rigid lattice. In order to provide an adjusted simulation tool, the workflow compiles
the source code for a particular computation platform if this has not already been done
in a previous run. IMD runs on single cores as well as on computing clusters using the
MPI interface2 standard between computing instances. In parallel, the necessary inter-
atomic potential and parameter files containing the simulation’s boundary conditions
are retrieved for the simulation run. Subsequently, for each selected KMC snapshot,
an MD simulation instance is created and the computer-based tensile test is executed.
The result is also visualized using an external visualization software.

Figure 3 shows both the KMC and the MD simulation in a coupled manner. Both
simulations form a choreography without a centralized coordinator. Note that the
choreography is different from the previously presented individual simulation work-
flows. The visualization step after the KMC simulation has been removed in order to
visualize the results after the combined multi-scale simulation. Moreover, the activity
Select Snapshot uses some specific criteria to evaluate if a snapshot should be sent to

2 http://www.mcs.anl.gov/research/projects/mpi/.
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Fig. 3 KMC and MD simulation forming a coupled multi-scale simulation [47]

the MD simulation. The Send Snapshot activity sends every selected snapshot file or
a reference to it to the molecular dynamics simulation. Without the workflow-based
coupling, the data transfer, the selection of the appropriate snapshot, and the subse-
quent triggering of theMD simulation has to be conductedmanually. This is especially
cumbersome and error-prone if the number of generated snapshots is high or if the soft-
ware for the different simulations belong to geographically distant scientific groups.
An automation of the coupling of both workflows would decrease the overall sim-
ulation time and manual errors due to file copying. Furthermore, parameter sweeps
with different alloys can be automated. Note that although the motivating example
only needs a sequential coupling, our approach also provides support for interleaved
communication between scientific workflows.

3 Approach

As shown in Sect. 2, previous work has enabled scientists to model and execute sci-
entific workflows that orchestrate scientific services coping with either one single
scientific field and one single scale, or with services combining distinct scientific
fields and different scales into one merged scientific model. As a logical continuation,
it is our goal to enable scientist to model and execute multi-scale and multi-field sci-
entific experiments in an easy and user-friendly manner for the cases not supported by
existing work. It should be possible to couple scientific workflows without distracting
scientists from their core tasks, i.e., formulating scientific models, and performing a
corresponding experiment. Furthermore, it should be possible that different scientist
model different parts of a scientific choreography according to their scientific expertise
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in a collaborative manner. As in previous work, we focus on using proven, standard-
ized methods and technologies of the business domain [40]. Whenever necessary,
we extended these technologies without transgressing their standard specification. As
pointed out in Sect. 2.2, we use the concept of choreographies to flexibly model and
execute multi-* simulations. With reference to previous work [36,40], and [38] we
propose the notion ofModel-as-you-go for choreographies. For the scientist the tech-
nical complexities and the difference between workflow models and instances must
be hidden. Instead, the phases for modeling on choreography and workflow level, the
deployment, execution, and monitoring are merged to realize the appropriate experi-
mentation process for scientists.

Our approach for modeling and executing scientific experiments as choreographed
orchestrations of scientific services is one example of collaborative, dynamic and
complex systems (CDC) as described in [1]. CDC systems exhibit three different life
cycle phases, namely modeling, provision, and execution (Sect. 3.3). In this article we
emphasize the Modeling phase and do not discuss the other two phases exhaustively.
Details on the Provision and Execution phases have been reported in [1].

3.1 Modeling

The goal of theModeling phase is to enable scientists tomodelmulti-* experiments in a
user-friendly manner. Modeling can be started top-down or bottom-up. Both modeling
approaches must enable the typical trial-and-error style of scientists when modeling
scientific experiments [3,40]. The overall choreography may not be complete in the
sense that it models the whole problem the scientist wants to cover. Scientists want
to react to intermediate results during execution without modeling the experiment
completely beforehand.While in the classical, i.e., business-driven BPM context there
exist several distinct roles, such as a business analyst modeling the workflow and an
IT specialist responsible for deployment and monitoring, in the domain of scientific
experiments this is typically done by one role, the scientist. However, the role can be
taken by several individuals at the same time when scientists work together.

Top-down vs. bottom-up modeling In the top-down approach (cf. Fig. 4a), scientists
start from a scientific multi-scale and/or multi-field problem (1) and model the exper-
iments from the distinct scientific fields as participants of a choreography. The mod-
eled choreography (2) provides a global view on the communication between distinct
single-scale and single-field experiments. The modeling is done manually using a
choreography editor. The editor should provide a graphical notation and abstract away
from choreography languages. In each participant only the activities and control and
data flow constructs necessary for the communication with other choreography partic-
ipants are modeled. That means, each participant exposes only its public communica-
tion interface. The orchestration logic of each single-field and single-scale experiment
part is not explicitly modeled in this step. Since choreography modeling languages are
often not executable [9], the scientific choreography is transformed into an abstract
representation of an executable workflow language (3). For the transformation three
cases can be distinguished: (1) For each participant a separate workflow model is
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a b

Fig. 4 Top-down (a) vs. bottom-up (b) modeling approach
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newly generated, which only contains the communication constructs such as send and
receive activities. (2) A scientist or a group of scientists has already created a partial
(incomplete) choreography model before. The transformation step has to be aware of
this and already existing communication constructs must be updated in the workflow
models accordingly. (3) A long-running experiment has already been started before
and has been paused to conduct Model-as-you-go operations in the choreography edi-
tor. This includes the introduction of newmodeling elements (i.e., new scientific fields
and/or scales) in form of choreography participants, or the iteration/re-execution of
parts of the coupled multi-* experiment. In this case, the existing instance state of the
enacting workflows must be considered.

An orchestration editor is used to conduct a manual refinement of the gener-
ated/updated workflow definitions. In the refinement step, one or several scientists add
the internal orchestration logic for every distinct single-scale and single-field exper-
iment participating in the overall choreography (4). Different scientist may refine
different workflows according to their scientific expertise in a collaborative manner.
For example, a physicist may refine a workflow simulating forces on a bone model,
whereas a biologist covers a workflow operating on the biological cell level. They add
activities and activity implementations to the workflow to make it executable. It must
be possible for the scientists to model a particular workflow only partially with regard
to the scientific domain problem, i.e, the only partially modeled workflows must be
executable. However, this may lead to situations where the overall choreography can
not yet be executed as the activities producing the results of one workflow that are
necessary for another workflow are not yet completely modeled. Changes made on
the choreography must be checked for consistency and correctness, since they may
influence the communication activities among choreography participants. For integra-
tion purposes of legacy experiment services it is possible to slightly deviate from the
presented top-down approach. After modeling a participant, scientists can indicate that
the implementation will not be a workflow but an application with a specified inter-
face. In the transformation step this has to be considered. However, while this enables
interoperability, Model-as-you-go for choreographies operations cannot be conducted
on this particular participant as the composition of simulation steps is realized as a
black box. The same is true if one scientist/research group wants to hide the internal
logic of their scientific workflow from other groups.

In Fig. 4b the bottom-up modeling approach is depicted. Following this approach,
multiple workflows representing distinct scientific fields on different scales are already
existing (1). However, a corresponding choreography model explicitly capturing the
interconnection is missing. A transformation step is necessary to derive a meaningful
multi-scale and/or multi-field choreography (2) from the interconnected workflows.
The derived choreography reflects the error handling, monitoring and adaptation capa-
bilities of the underlying executable workflows and services. It can be examined and
adapted in the choreography editor, i.e., participants can be added or deleted and com-
munication constructs and links can be altered. This should also be possible after the
underlying workflows have already been started. In this case, the underlying work-
flows have to be paused and the instance state must be considered in the derivation
and adaptation step. The derived choreography represents a specific scientific multi-
scale and/or multi-field problem (3). The adaptation on the choreography level can be
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used to update the existing executable workflows again in a round-trip fashion. The
update action must modify the underlying workflowmodels and their instances if they
have already been started. At the same time the correctness of the changes has to be
enforced. Participants in the bottom-up modeling approach can also be derived from
black-box applications without exposed control flow for interoperability. However,
this also reduces flexibility and restricts model-as-you-go operations.

3.2 Provision

The following subsection shortly discusses the provisioning aspects of our approach
for scientific choreographies. With regard to CDC systems the Provision phase is the
second phase after modeling a choreography as global view on a multi-* experiment,
transforming it into a set of abstract workflows, and refining them into executable
ones. In the provision phase the refined scientific workflows are deployed onto exe-
cution engines and exposed as services that typically requires the involvement of a
service middleware, too. Similarly, the services that realize the experiment steps are
also deployed on their corresponding execution environments. Therefore, appropriate
deployment descriptors have to be generated and configured. In order to automate
the deployment steps and the management during run time, the service and workflow
topology has to be captured and deployable packages containing services and work-
flows must be built [44]. The necessary monitoring infrastructure is configured using
the requirements defined in the modeled choreography. Context and correlation data
identifying workflow instances participating in a particular choreography may have
to be initialized. As the scientific choreographies may be used by several scientists in
parallel, the underlying infrastructure must be capable of mapping interactions with
the system to distinct tenants and users. The technical complexity of the provision
phase must be invisible to the scientist. Instead, pressing one Run/Resume button in
the modeling environment must trigger the provisioning and execution or resume it
after adaptation actions, respectively.

3.3 Execution

The third phase of our approach is the Execution phase of scientific choreographies.
This is achieved by executing the refined enacting workflows and scientific services
participating in the choreography. Both the enacting workflows and the services are
potentially distributed on several execution engines and service execution environ-
ments. The overall execution environment, i.e., the workflow execution engines and
the service execution environments, have to support context-awareness and adapta-
tion mechanisms to enable the flexibility needed for performing Model-as-you-go
for choreographies operations. Some of the adaptations may be predefined in the
choreography model, such as abstract activities/placeholders that have to be refined
at runtime [7], reactions to context changes, and binding strategies for the simulation
services [44]. Other adaptations are inherent to the execution phase and have to be
addressed in an ad hocmanner. Examples are themanual adaptations of the choreogra-
phy model during execution conducted by a scientist when performing model-as-you-
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go operations both on the workflow and choreography level, the forced termination
of the choreography, the substitution of scientific service endpoints, the substitution
of choreography participant, or insertion of additional ones, and others. The overall
execution environment must also be able to cope with an increasing number of sci-
entists, simulations participants, and interactions between the participants, i.e., the
system must scale with its load both in terms of computation power needed and data
used. Observations during the execution and monitoring phase can be incorporated
into new versions of the choreography model and trigger further executions of the
scientific experiment. Execution and Monitoring of the running choreography must
be indistinguishable for the scientist as in previous work [40]. This is motivated by the
fact that for the scientist the monitoring of a running workflow instance is the visual
representation of it. After the execution all provisioned systems and services have to
be de-provisioned [44].

4 Requirements on a system for choreographies of scientific simulations

In our previous work, we have identified requirements on scientific workflow man-
agement systems in general and in particular on monitoring and adaptability features
of such systems [40]. In this work these requirements still apply and in this section
we extend them to account for the requirements arising from our approach for multi-*
experiments we presented in the previous section. We group the identified require-
ments in two classes.

Requirements on the supporting software system The following list provides a number
of requirements that have to be met from a software system supporting our approach.

SR1. Similarly to the customizable monitoring component integrated into our exist-
ing workflow modeling tool, the choreography editor must be enhanced to
capture all running workflow instances belonging to a particular choreography
to enable monitoring of the choreography itself. This would provide for the
desired amalgamation of the choreography modeling and monitoring phases.

SR2. The system should provide a facility to inspect already executed choreographed
workflow instances for analysis.

SR3. Facilities for aggregated statistical data over choreographedworkflow instances
and resource consumption are necessary for analysis purposes.

SR4. Scientists must be allowed to steer the choreography, i.e., to run, suspend,
and resume individual workflow instances and the choreography as a whole.
This must be possible without exposing the underlying complexity such as
deployment steps to scientists. This facility enables the blending of modeling
and execution phases.

SR5. The system should provide means to prohibit the alteration of communica-
tion activities on the workflow level in order to ensure compliance with the
choreography model.

SR6. Straightforward manual adaptation facilities on the choreography level must
be available. This includes the joining and leaving of participants in the chore-
ography, i.e., the adaptation of the communication activities after starting the
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enacting workflows. For this, the model-as-you-go operations from previous
work [38], i.e., iteration and re-execution of workflow logic in single workflow
instances must be extended to allow this behavior for collaborating chore-
ographed workflow instances.

SR7. Adaptations on the choreography level must be checked for correctness to
ensure that a choreography is still enactable.

SR8. It must be possible to execute the choreography, i.e., the enacting workflows,
even if they are not completely refined/modeled to enable the trial-and-error
manner of working in scientific explorations.

SR9. Already defined experiment activities and possible execution state must be pre-
served when transforming the updated choreography to the enacting scientific
workflows for a second time. The same is true for the bottom-up derivation.

SR10. In order to react to infrastructure changes and exceptions, automatic adapta-
tion facilities at run time must available. The scientist should not be aware of
adaptations for failure handling purposes.

SR11. The adaptations onworkflow and choreography level must be tracked to ensure
the completeness of provenance information. The scientist must have facilities
to inspect provenance information [8].

SR12. The workflow and the choreography editor should use similar graphical con-
cepts to help scientists understand the twocomplementary editorsmore quickly.

SR13. Amechanism is needed for correlationof all choreographedworkflow instances
forming one virtual choreography instance. This is necessary as one choreog-
raphy model can be instantiated more than once.

SR14. The scientific choreography system needs facilities for managing experimen-
tal context. This can for example be shared input parameters, shared inter-
mediate experiment results that are produced by one enacting workflow and
used by another enacting workflow as input, or shared data objects, simula-
tion clocks, and others. The context either directly contains the needed objects
or stores references. Synchronization mechanisms must be made available to
coordinate concurrent access of different workflow instances belonging to one
choreographed experiment. The manipulation of context information of one
particular choreography must also be tracked in order to have complete prove-
nance information about the conducted experiments.

Requirements on the choreography language The following list provides a set of
choreography language requirements, which have to be met by any choreography
language that would be used for realizing our approach. Our approach is not tied to a
particular language though.

CR1. For both modeling approaches described in Sect. 3.1 an appropriate chore-
ography language has to be used. The language should preferably cover all
service interaction patterns as identified in [4]. This facilitates the modeling
of not only standard communication patterns such as send/receive or one-way
messages but also more advanced patterns such as one-to-many send/receive
or contingent requests. The latter ones are requests that are sent from a sender
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S to a participant Y if a previous request to participant X does not lead to a
response in a predefined time frame.

CR2. The choreography language should avoid issues with locally unenforceable
behavior [49]. For example, it must not be possible to model the sending of
messages between the distinct simulations that depend on the sending of other
messages but it is left unspecified how the current sender can learn of the
previous messages between the choreography participants. The choreography
language must ensure that the control flow of every participant is explicitly
specified. However, deadlocks could still occur if messages between partic-
ipants never arrive, but can be avoided if the language provides appropriate
timeout constructs [11].

CR3. The choreography language should provide explicit modeling constructs for
handling faults occurring when executing the choreographed workflows.

CR4. As previous work in the simulation workflow domain has successfully used
conventional workflow technology, it is desirable also to have a choreography
language that is compatible with this approach.

CR5. The choreography modeling language must provide elements that facilitate an
easy adaptation such as abstract communication activities that can be refined
at run time [7].

5 Realization

In this section we discuss the conceptual architecture and the current state of the
realization of our system.

5.1 Architecture

Figure 5 shows the architecture we propose for our scientific choreography support
system. The software system requirements from Sect. 4 are mapped to the components
addressing them. The gray shaded figures have already been implemented, or are
reused from previous work or other research group members. As an instance of a
collaborative, dynamic and complex system, our architecture has three distinct levels.
the first level addresses all modeling aspects for scientific experiments.

TheChorDesigner is responsible formodeling, displaying, and adapting choreogra-
phies. It comprises several components each implementing a particular functionality.
The Choreography Modeling component contains the actual drawing area where sci-
entists can insert graphical shapes for participants, message links, and communication
behavior such as send and receive from a modeling palette (SR6). With the help of
this component scientists can model new scientific choreographies as well as adapt
existing ones. The graphical notation is similar to the one used in the workflow mod-
eling component to ease the understanding for scientists (SR12). Information about
the running choreographed workflow instances will be interwoven with the graphical
constructs (SR1). That means, different colors will display the current state of the
specified communication behavior. This approach has already been used in [36] for
workflow monitoring. The choreography modeling component is therefore the graph-
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Fig. 5 Architecture of the scientific choreography system

ical user interface presented to the scientist that incorporates all other aspects of the
system to be displayed. It is able to retrieve and reuse choreography fragments from
the extended Fragmento Library, a library for workflow and choreography fragments.
The Choreography Monitor is the component of the ChorDesigner that manages and
prepares the information about the running choreographed instances for display in
the Choreography Modeling component. The Choreography Adaptation component
is responsible for providing all necessary choreography steering and adaptation facil-
ities (SR4, SR6). The Choreography Validation component provides functions for
checking the correctness of the adapted choreography (SR7). The responsibility of
the Context Management component is the management of scientific choreography
context such as shared input parameters for an experiment (SR14) as well as provid-
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ing a grouping mechanism for the enacting workflow instances (SR13), which will
have access to the shared choreography context. In [16], the concept of Simulation
Workflow Containers holding context information for simulation workflows has been
proposed. We plan to refine this concept and provide an implementation through the
Context Management component for scientific choreographies.

The Transformer component is an integral part of our modeling level architec-
ture [46]. It is responsible for the transformation from choreography models to enact-
ing abstract workflow models and vice versa. The Transform/Update sub-component
provides functions for realizing the top-downmodeling approach. TheTransform func-
tion translates a scientific choreography into abstract workflows if the choreography
model is transformed for the first time. Otherwise, the enacting workflow models (or
instances if they are being executed) are updated without losing information (SR9).
The second sub-component of the Transformer is the Derive component. It is respon-
sible for providing functions for the bottom-up modeling approach and uses already
existing workflow models or instances as input. The existing process models can be
retrieved from the Process Model Repository. By analyzing the communication inter-
connection ameaningful choreographymodel is constructed. Itmirrors the capabilities
of the underlying workflows. With the help of the Transformer component a seam-
less blending between modeling and adaptation can be achieved without the scientist
noticing it.

Workflow models and workflow instances are handled inside theMayflower BPEL
Designer already introduced in [36,38]. TheWorkflow Modeling component incorpo-
rates the functions for specifying workflowmodels on a drawing area and for monitor-
ing and adapting a particular workflow instance during run time. However, the com-
ponent must be extended to prevent the alteration of the communication constructs on
the workflow level (SR5). Scientists can retrieve from and store workflow fragments
in the Fragmento Library in order to ease modeling and foster reuse. The Workflow
Monitor component is responsible for managing the information about each refined,
running workflow instance that is then displayed in the workflow modeling compo-
nent. The Workflow Adaptation component contains functions for workflow instance
adaptation during run time as well as for versioning and instance migration of adapted
workflow models. The SIMPL DM Activities component provides data management
activities encapsulating complex data management functionality that can be inserted
into the workflows. The SIMPL DM activities are the part of the data-centric SIMPL
framework [32] responsible for the graphical modeling of such activities. It supports
uniform access to scientific data sources and provides an abstraction for scientists
that hides low-level details of data management tasks. The framework provides work-
flow modeling constructs that can be used during modeling/adaptation time to easily
integrate and configure data access.

The Provision phase is supported by several components. TheDeployment Artifact
Generator is responsible for packaging and grouping/distributing the choreographed
workflowmodels. For this, it generates the necessary deployment descriptors. Further-
more, it also provides deployment information for the scientific services. Theworkflow
models are deployed on our multi-tenant aware service composition engine SCEMT

by the Deployment Manager component using the generated deployment informa-
tion. The Provisioning Engine, e.g., OpenTOSCA [6], is responsible for provisioning
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middleware components such as the ESBMT [42] and the SCEMT [17] as well as the
scientific services and data in an on-premise or off-premise environment and poten-
tially on Cloud infrastructures. This can be done in an on-demand fashion when the
scientist needs the execution environment [44]. The Bootware [44] is a component
responsible for bootstrapping the Provisioning Engine.

The execution phase is enabled by the components described next. Scientific Ser-
vices implement the functions necessary for scientific experiments. Scientific ser-
vices can be complex software systems that expose their functionality via specified
interfaces. We support interfaces specified with the web service description language
(WSDL),REST-based interfaces [18], and command-line access via the SIMPL frame-
work. The scientific services can be hosted on an application server, or on grid or cloud
infrastructures. In our architecture the composite component Scientific Data contains
all means to reach the data resources necessary for scientific experiments. The SIMPL
component is part of the already mentioned SIMPL framework that deals with the
actual access to data sources described by the data management activities on the mod-
eling level. Data can be passed by reference directly between scientific services using
the reference resolution system (RRS) [48] in order to avoid the transfer of huge
amounts of data through the SCEMT workflow engine. The communication back-
bone of our system is the ESBMT [42]. The ESBMT is a multi-tenant aware Enterprise
Service Bus routing messages between all components. The SCEMT [17] is our multi-
tenant aware ServiceCompositionEngine that is responsible for executing the enacting
workflows. Execution may be started, even if the workflow models do not model the
complete multi-* experiment (SR8). The Auditing component collects and stores all
information generated during run time when navigating through the choreographed
workflows as well as the information about the choreography model, workflowmodel,
and instance adaptations (SR2, SR3). The Provenance component explicitly captures
all information necessary to reproduce the results of a scientific experiment (SR11).
Run time adaptations such as replacement of faulted services are the responsibility of
the Run Time Adaptation component (SR10).

5.2 Implementation

Since some of the components of the system have been described in other publications
of ours (cf. also Sect. 2), here we present details about the ones implemented most
recently: the ChorDesigner and the Transformer component, which responsible for
translating a BPEL4Chor choreography model to abstract BPEL workflow models in
a top-down manner.

ChorDesigner Although our approach to scientific choreographies does not rely on a
particular choreography language, we have chosen to use BPEL4Chor because it fits
most to our needs. BPEL4Chor [10] is a non-executable choreography language form-
ing an additional layer on top of the BPEL standard [29]. Due to space constraints it is
not possible to discuss the language artifacts in depth. The interested reader is referred
to [10,11] for detailed information. In the Participant Topology the structural aspects
of the choreography are specified. The Participant Topology contains the Participant
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Declaration which enumerates the involved choreography participants or participant
sets. Participant Sets in BPEL4Chor are a grouping mechanism for choreography
participants having the same type and whose number may be unknown during model-
ing time.Message Links, also part of the participant topology, indicate the connection
between participants/participant sets on the level of the involved communication activ-
ities. The Participant Behavior Descriptions (PBD) contain the communication logic
of each participant/participant set. The PBDs are realized by abstract BPEL processes
following the abstract Process Profile for Participant Behavior Descriptions [10], i.e.,
BPEL Partner Links, Port Types and Operations are omitted. Technical information is
decoupled from the logical definition of the choreography by the so-called Participant
Grounding. This artifact specifies the concrete port type and operation of a logical
message link.

The reason for choosing BPEL4Chor is that it fulfills the choreography lan-
guage requirements CR1–CR4 (Sect. 4). Regarding CR1, Decker et al. [11] evaluate
BPEl4Chor and show that it covers most of the service interaction pattern in compari-
son with other choreography languages such asWS-CDL. Language requirement CR2
is fulfilled because BPEL4Chor follows the so-called interconnected interface behav-
ior model approach. This approach avoids issues of locally unenforceable behavior
that languages following the interactionmodel approach have. This is accomplished by
explicitly specifying the control flow of every choreography participant. Deadlocks
can be prevented by using the timeout mechanism of BPEL4Chor. Choreography
language requirements CR3 and CR4 are fulfilled through the inherent concepts of
BPEL4Chor. Fault handling (CR3) can be accomplished by specifying fault handlers in
the participant behavior descriptions, i.e., in the abstract BPEL processes. However,
to cope with choreography-wide fault handling, additional mechanisms have to be
introduced to BPEL4Chor in future. Requirement CR4—the compatibility to conven-
tional workflow technologies from the business domain—is ensured by transforming
the BPEL4Chor description to standardized, abstract BPEL. Adaptation mechanisms
that allow a refinement of communication activities during run time of an multi-*
experiment (CR5) are not yet part of BPEL4Chor. Our future work will concentrate
on this.

The ChorDesigner is an Eclipse-based choreography editor with its own meta-
model, but allowing the import and export of BPEL4Chor artifacts. Figure 6 uses the
coupled multi-scale simulation example from Sect. 2.3 and shows the modeling with
our ChorDesigner. On the left hand side on the canvas, the kineticMonte Carlo simula-
tion participant has been modeled. The participant also includes the actual simulation
steps modeled as opaque (unspecified) activities to show the complete simulation,
i.e, it is indicated that these steps have to be conducted in a particular order but it is
not specified how. Scientists can either omit these activities in the ChorDesigner and
add them after transforming the choreography model into the enacting workflows or
turn them into concrete activities after the transformation. The right hand side figure
represents the Molecular Dynamics simulation participant. It forms a Participant Set
because it gets instantiated more than once during execution depending on the number
of snapshots that is selected in the KMC simulation. The connection between both
simulations is modeled with the SendSnapshotLink. A snapshot file is either trans-
fered directly or a reference to the file is sent. The modeling palette is visible on the
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Fig. 6 Motivating scenario modeled with the ChorDesigner

right side containing shapes for the choreography participants and the activities to
be modeled. They can be placed on the canvas via drag and drop. The ChorDesigner
validates the elements placement directly and prohibits for example the placement of
communication activities outside of a participant figure. On the bottom of Fig. 6, the
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property section for the message link is displayed. Here the sender and the receiver of
the link are configured. Each modeling element has such a property section allowing
to configure mandatory and optional properties.

Transformer The Transformer component has originally been conceptually specified
in [31]. Our implementation picks up the general idea from this concept, which is col-
lecting all necessary information from the choreography artifacts and then using the
collected information in the transformation. However, we specified and implemented
our own algorithm to overcome the deficiencies of previous implementations [46]. A
grounded BPEL4Chor choreography model contains the main input artifacts: a par-
ticipant topology, a set of participant behavior descriptions, and a participant ground-
ing. Optionally, existing WSDL definitions can also be used as additional input for
the transformation. These WSDL files describe already existing port types, opera-
tions, and messages of particular participants. If none exist, the WSDL files will be
generated using the information specified in the participant grounding. During the
transformation, for each participant/participant set and the corresponding Participant
Behavior Description, an abstract BPEL process is generated. The process model con-
tains exactly the communication constructs and their conditional ordering specified
on the drawing area inside a participant. The message links stored in the participant
topology are transformed into bpel partner link types and partner links associated to
the corresponding bpel process models. the technical information of the participant
grounding is incorporated into newly generated or existing WSDL files. The output
of the transformation is a set of self-contained Process Bundles. Each Process Bundle
consists of an abstract BPEL Process and a corresponding WDSL definition denoted
byProcessWSDL specifying the interface of the process. Furthermore, the bundle con-
tains a set of Partner WSDL definitions representing the choreography participants the
abstract BPEL process communicates with.

A high-level view on the transformation can be seen in Algorithms 1 and 2.
Due to space limitations only the most noteworthy steps are explicitly explained
in the following. Both algorithms omit some details such as the handling of BPEL
scopes, BPEL4Chor participant sets and the checking if elements already exist in
a set before adding it and show only the most important steps for brevity. Fur-
thermore, it does not show the update of existing models or instances. The central
concept of the transformation is the creation of a data structure denoted by Com-
municatingParticipantsData that contains all information about one Message Link
between two participants. Algorithm 1 shows a Preparation algorithm for building
a set of CommunicatingParticipantsData taking a grounded BPEL4Chor choreogra-
phy as input. The input topology T = (PL,ML) contains a set of participants PL
and a set of Message Links ML. A CommunicatingParticipantsData cp is a tuple
cp = (ps, as, pr, ar,ml,mlgrounded, syncResponse) where ps is the sending and pr
the receiving abstract BPEL process of the communication relationship represented
by cp. as and ar are the sending and receiving communication activities connected by
the Message Link ml. mlgrounded provides the technical information for each Message
Linkml. syncResponse is a boolean value indicating if a particular Communicating-
ParticipantsData realizes a synchronous response to a previous request.
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Algorithm 1: Preparation algorithm
1 input : Topology T = (PL , ML), a set of PBD, Grounding G
2 output: A set of CommunicatingParticipantsData CP where

cp ∈ CP = (ps, as, pr, ar,ml,mlgrounded, syncResponse)
3 begin
4 Set of abstract BPEL Processes P ←− ∅
5 Set of CommunicatingParticipantsData CP ←− ∅
6 Set of maps of Participants to abstract BPEL processes M ←− ∅
7 foreach Participant Behavior Description pbd ∈ PBD do
8 Process p ←− changeToAbstractProcess(pbd) // Turn PBD to process
9 P ←− P ∪ p

10 Map m ←− mapParticipantToProcess(PL,p)
11 M ←− M ∪ m
12 end
13 foreach MessageLink ml ∈ ML do
14 ml �→ grounded Message Link mlgrounded
15 Process ps ←− p ∈ M such that participantml ∈ ml = participantm ∈ M

∧participantml is sending participant // Assign send. process

16 Process pr ←− p ∈ M such that participantml ∈ ml = participantm ∈ M
∧participantml is receiving participant // Assign rec. process

17 String activi t y I ds ←− sender attribute s ∈ ml // Set send. activity id
18 String activi t y I dr ←− receiver attribute r ∈ ml // Set rec. activity id

19 CommunicationActivity as ←− findActivity(ps,activityIds)
20 CommunicationActivity ar ←− findActivity(pr,activityIdr)

21 boolean syncResponse ←− isSychronousResponse(ML,ml)

22 CommunicatingParticipantsData
cp ←− createCP(ps,as,pr,ar,ml,mlgrounded,syncResponse)

23 CP ←− CP ∪ cp
24 end
25 return CP
26 end

In the lines 7–11 of Algorithm 1, the Participant Behavior Descriptions are prepared
for the transformation. First, every PBD is turned into an abstract BPEL process by
simply removing the attribute abstractProcessProfile referencing the profile Abstract
Process Profile for Participant Behavior Descriptions of BPEL4Chor in the function
changeToAbstractProcess. This allows to add elements such as Partner Links which
were previously forbidden according to the profile. The corresponding participant
from the set of Participants PL ∈ T is mapped to the current process p using the
function mapParticipantToProcess. The resulting map m is added to the set of maps
M . Themapping simplifies the identification of processes by using their corresponding
participants in the following. Subsequently, we iterate over each Message Link ml ∈
ML . In line 14 theMessage Linkml ismapped to a groundedMessage Linkmlgrounded.
Line 15 contains the assignment of the sending process to the variable ps by retrieving
the process in the set of maps M which has the same participant as the Message Link
ml in its sender attribute. Line 16 conducts the assignment for the receiving process.
Using the function isSychronousResponse, it is determined if a Message Link ml is a
synchronous response to a request (line 21).
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Algorithm 2: High level transformation algorithm
1 input : Topology T = (PL , ML), a set of Part. Behav. Descr. PBD, Grounding G
2 output: A set of process bundles B where b ∈ B = (p, wsdlprocess,WSDLpartners)
3 begin
4 Set of Process Bundles B ←− ∅
5 Set of CommunicatingParticipantsData CP ←− prepare(T,PBD,G)
6 foreach CommunicatingParticipantsData cp ∈ CP do
7 WSDL wsdlsprocess, wsdlrprocess // Init. sending/receiving WSDLs
8 Set of WSDL WSDLspartners,WSDLrpartners ←− ∅ // Init. partner sets
9 Process ps ←− ps ∈ cp // Assign to sending process variable

10 Process pr ←− pr ∈ cp // Assign to receiving process variable
11 if B 	 Process Bundle b for ps then
12 Process Bundle bs ←− b ∈ B // Assign existing bundle
13 else
14 Process Bundle bs ←− new Process Bundle // Create new bundle
15 ps �→ bs // Map sending process to sending bundle
16 wsdlsprocess �→ bs // Map sending process WSDL to sending bundle
17 WSDLspartners �→ bs // Map partner WSDLs to sending bundle
18 B ←− B ∪ bs // Add sending bundle to set of bundles
19 end
20 if B 	 Process Bundle b for pr then
21 ... // Handling of the receiving process bundle is similar
22 end
23 Partner Link Pair PLP ←− buildPartnerLinks(cp)
24 Partner Link pls ∈ PLP �→ ps // Map partner link to send. process
25 Partner Link plr ∈ PLP �→ pr // Map partner link to rec. process
26 WSDL Pair WP ←− buildWSDLs(cp,PLP)
27 WSDL wsdls ∈ WP �→ wsdlsprocess // Map to sending process WSDL
28 WSDL wsdlr ∈ WP �→ wsdlrprocess // Map to receiving process WSDL
29 if cp is synchronous response then
30 importWSDL(ps,wsdlsprocess) // import send. WSDL in send. process
31 importWSDL(pr,wsdlrprocess) // import recei. WSDL in rec. process
32 WSDLrpartners ←− WSDLrpartners ∪ wsdlsprocess
33 else
34 importWSDL(ps,wsdlsprocess) // import send. WSDL in send. process
35 importWSDL(ps,wsdlrprocess) // import send. WSDL in rec. process
36 importWSDL(pr,wsdlrprocess) // import recei. WSDL in rec. process
37 WSDLspartners ←− WSDLspartners ∪ wsdlrprocess
38 WSDLrpartners ←− WSDLrpartners ∪ wsdlsprocess
39 end
40 Variable Pair V P ←− buildVariables(cp) // Build variable pair
41 modifyCommunicationActivity(pls,vs ∈ V P,as ∈cp)
42 modifyCommunicationActivity(plr,vr ∈ V P,ar ∈cp)
43 end
44 return B
45 end

Algorithm 2 depicts the high-level Transformation algorithm. The input consists
of the artifacts of a grounded BPEL4Chor choreography. Output is a set of Process
Bundles B = (p, wsdlprocess,WSDLpartners) where p is an abstract BPEL process,
wsdlprocess is the process WSDL definition of the abstract process and Wpartners are
the set of WSDL definitions of the partner processes, which communicate with the
abstract process p. The main idea is the pairwise generation of BPEL process ele-
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ments, e.g., Partner Link and WSDL pairs. The handling of the WSDL definitions in
Algorithm 2 only considers newly generated ones and not existing ones. The genera-
tion (buildWSDLs function) internally uses the current Partner Link Pair PLP for the
building of BPEL Partner Link Types and results in a WSDL Pair output (lines 26–
28). The generation of the WSDL imports in the processes is conducted differently
depending on whether the current CommunicatingParticipantsData data structure rep-
resents a synchronous response or not. If it is a synchronous response (lines 29–32), the
importWSDL function is executed only once for the sending process ps and once for
the receiving process pr with the corresponding processWSDL definitions. Moreover,
the sending process WSDL definition wsdlrpartners is only added to the set of partner
WSDL definitionsWSDL r

partners of the receiving side. If the current Communicating-
ParticipantsData does not represent a synchronous response (lines 34–38), the WSDL
definition of the receiving Participant wsdlrpartners is also added to the sending process
ps. In case of the synchronous response this is not necessary because the correspond-
ingWSDL file will be imported in any case when the CommunicatingParticipantsData
is processed, which represents the synchronous request.

6 Related work

In this section we compare our approach to existing ones documented in literature.
Scherp and Hasselbring [34] propose an model-driven approach with two levels of
abstractions for scientific workflows. On the domain-specific level scientists model
data and control flow with BPMN in order to hide the technical complexity of exe-
cutable workflow languages. The resulting model is transformed into an executable
control floworientedworkflow language.While ourwork also uses conventionalwork-
flow technology from the business domain, we aim at enabling scientists to create and
conduct coupled multi-* experiments using choreographed workflows. Moreover, we
also consider the blending of modeling and adaptation phases of choreographies and
workflows.

In [19] a scientific workflow system for molecular biology MoBiFlow is presented.
The system’s functionality has beenderived froma set of biology-specific and technical
requirements and uses aWeb 2.0 based graphical user interface that abstracts from the
underlying BPEL workflow language. Although the collaborative aspect of scientific
workflow modeling is the main focus, the interconnection of software systems from
different scientificfields in one experiment are not considered. Furthermore, the system
does not incorporate flexibility aspects that allow adapting workflow instances during
runtime to facilitate a trial-and-error approach for the scientists.

Fleuren et al. [12] propose an approach and an implementation for integrating
control and data flow by combining orchestration and choreography. The main work-
flow is modeled as an orchestration using a control flow perspective also considering
fault handling and compensation. Data flow is integrated into the main workflow as
sub-workflows denoted by workflow skeletons. Inside the workflow skeletons chore-
ographed proxies represent workflow tasks such as service calls or job executions and
are responsible for parallel data handling. Data is exchanged directly between proxies
to avoid the central orchestration engine becoming a bottleneck. In contrast, we do
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not only model data flow as choreographies but control flow as well and also consider
bottom-up derivation.

In Taverna, scientific workflows model the data flow between a set of activities
which represent processing nodes [25]. The system uses a recursive model for activi-
ties, i.e., activities can also represent sub-workflows. Somecontrol flowconstructs such
as loops have become first class citizens in the mean time and must not be simulated
with the help of sub-workflows any more. The nesting capability of Taverna would
also allow modeling of multi-scale problems in the biology domain and even multi-
field problems if groups of scientists from different domains collaboratively model a
parent Taverna workflow and corresponding sub-workflows. Similarly to Taverna, in
the Kepler system [24] activities, denoted by Actors, represent either atomic tasks or
nested sub-workflows. In comparison our approach does not aim for the nesting of sub-
workflows to model multi-* problems where one parent workflow forms the central
orchestration. Instead, we propose the use of choreographies of scientific workflows
without a centralized coordinator. This has the advantage that the scientific workflows
for particular scales and fields are more decoupled and have no transactional depen-
dencies on a parent workflow. Fault handling and compensation logic is defined in
each enacting workflow separately. The communication patterns between the work-
flows are not restricted to request/response as in the case of sub-workflows and we
support the adaptation of the choreography and the enacting workflows during run
time.

Freire et al. present the features of the VisTrails sWfMS in [14]. The Python-
basedVisTrails system is inherently built around the concept of provenance.Workflow
executions and produced data are tracked even if file names change. Intermediate
results are cached in order to provide check-points for long-running computations and
for the reuse of results when exploratively designing a scientific experiment. Further
Python-compatible packages can be easily integrated into VisTrails, e.g, the ALPS
package for simulating strongly correlated quantum lattice models [2]. Furthermore,
VisTrails supports provenance tracking over implicitly coupled workflows [21]. These
workflows are tied together via their output and inputs but without being specified by
a global model. In contrast, we use the notion of choreographies to provide a global
model of amulti-* simulation as starting point for explorativemodeling and adaptation.
Furthermore, we support the derivation of a choreography model from existing and
implicitly coupled workflows.

Plankensteiner et al. propose the Interoperable Workflow Intermediate Representa-
tion (IWIR) to integrate different scientific Workflow Management systems [30]. The
systems ASKALON, MOTEUR, WS-PGRADE, and Triana and their corresponding
scientific workflow languages are used as case studies. The distinct languages are first
translated to the IWIR as intermediate language and then to the desired target lan-
guage. The authors discuss collaboration scenarios where modeling can be started in
one language and continued in another after translation. Our approach also aims for
the collaboration of scientists, however, we do not use an intermediate language for
coupling different workflow languages and enable the translation of workflowmodels.
Instead, we model a multi-* experiment as a choreography of scientific workflows and
explicitly consider adaptation of the coupled workflows during run time.
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In [33], the authors present an approach and implementation for a scalable, dis-
tributed execution of so-called meta-workflows consisting of multi-language sub-
workflows. A bundling format (SHIWA) for representing workflows and correspond-
ing input/output data is used for enabling the communication between scientific work-
flow engines during run time. Workflow engines, in this case Triana and Monteur,
subscribe to a centralized execution pool to retrieve self-contained SHIWA bundles
with workflow models in their respective language. After execution of the retrieved
bundle, the workflow engine inserts a new bundle with the results to the pool. Again,
the main difference to our work is that we do not treat the coupling of (multi-*)
workflows as the invocation of several sub-workflows from a meta-workflow but as
collaborating workflows forming a decentralized choreography. Moreover, we aim for
trial-and-error modeling support for coupled experiments.

In summary, the comparison with related work shows several differences to our
work: (1) we use a standard-based approach which aims for a generic applicability in
all scientific domains whereas existing work is often triggered by individual require-
ments by one or a few scientific fields. Furthermore, we extend control-flow oriented
technologies with capabilities to better handle data flowwhile related approaches start
from data flow orientation which they enrich with control flow constructs. (2) We use
choreographies, which provide loosely coupled collaboration between scientific fields
and scales plus complex interaction patterns between the enacting workflows instead
of more tightly coupled sub-workflows dependent on the life cycle of a parent work-
flow. (3) We consider not only the top-down modeling of a scientific experiment from
scratch but also bottom-up derivation of a global choreography model from existing
scientific workflows. (4) Our approach enables adaptation on both the workflow and
choreography level after an experiment has already been started to support modeling
in an trial-and-error manner, while existing approaches are often static and do not
support run time adaptation.

7 Conclusions and future work

In answer to the need for support of multi-* simulations in this paper we introduced an
approach that provides scientists with the means to model such simulations in a user-
friendly and trial-and-error manner and execute them automatically. The approach is
based on existing technologies known from business applications and extensions in
terms of concepts and implementation that we created in order to address issues typical
for scientific simulations, like long duration and data and computational intensive
nature. We improve the user friendliness of the system by providing scientists with
means to easily model, instead of program, their simulations. Moreover, unlike typical
business workflows, our approach allows modeling of the simulation even after its
executionhas started (i.e., in support of the trial-and-errorway simulations are typically
created). Existing systems do not provide comprehensive support for collaborative
development and execution of complex, multi-scale and/or multi-field simulations
involving software from different research or industry organizations. To address this
need, we borrow the notion of choreographies and extend and apply it for modeling
and execution of this kind of simulations.
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A comprehensive evaluation of the approach and the supporting system with other
scientists participating in SimTech and beyond as well as the application of the top-
down and bottom-up modeling to other scenarios will be done in future. Currently, our
results are being evaluated in the scope of the motivating material science application
scenario by the involved natural scientists whose requirements directly influenced our
approach.

In our future research we plan to enhance our work with techniques for modeling
complex correlation dependencies among the participant simulations in a choreogra-
phy, enable the definition of a common context, improve reusability of choreographies
by means of choreography fragments or templates, and by using generic configurable
connectors between choreography participants as well as configurable workflows.
With respect to the dynamic provisioning and de-provisioning of choreographed sim-
ulations wewill focus on the optimization of the distribution of the simulations or parts
of them as well as the placement of individual simulation (Web or REST) services
across a distributed infrastructure. Provenance of scientific workflows and simulations
is of major importance in eScience and this is also part of our future research plans.
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