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Abstract Inrecent years, multimedia cloud computing is becoming a promising tech-
nology that can effectively process multimedia services and provide quality of service
(QoS) provisioning for multimedia applications from anywhere, at any time and on
any device at lower costs. However, there are two major challenges exist in this emerg-
ing computing paradigm: one is task management, which maps multimedia tasks to
virtual machines, and the other is resource management, which maps virtual machines
(VMs) to physical servers. In this study, we aim at providing an efficient solution that
jointly addresses these challenges. In particular, a queuing based approach for task
management and a heuristic algorithm for resource management are proposed. By
adopting allocation deadline in each VM request, both task manager and VM allo-
cator receive better chances to optimize the cost while satisfying the constraints on
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the quality of multimedia service. Various simulations were conducted to validate
the efficiency of the proposed task and resource management approaches. The results
showed that the proposed solutions provided better performance as compared to the
existing state-of-the-art approaches.

Keywords Multimedia - Cloud computing - Task management - Resource
management - Queuing system - Heuristic algorithm

Mathematics Subject Classification 60K25 Queueing theory - 60K30 Applications
(congestion, allocation, storage, traffic, etc.)

1 Introduction

With the rapid growth of Web 2.0, much of the multimedia services has been delivered
over Internet. The online multimedia systems consist of a rich number of operations
including generating, editing, processing, searching and saving media contents. Strong
and heterogeneous demands on computation, storage and communication resources
have been involved in supporting such systems [1]. During the past decade, cloud com-
puting has been recognized as a promising infrastructure to provide desired resources
and quality of service (QoS) provisioning for multimedia services [1-4]. Various cloud
based multimedia applications can be found in recent years, such as cloud based photo
and video sharing, online photo and video editing, multimedia social applications and
so on [5-8]. Cloud computing is designed to offer QoS guaranteed, on-demand and
cost effective hardware and software solutions with the advances of virtual machine
(VM) technology.

Two of the major research issues in cloud based multimedia context are the task
management problem [7,9-12] and the resource management problem [13-22]. On
the one hand, task management is achieved by allocating existing resources, requesting
new resources or releasing redundant resources based on the fluctuation of workload.
Two important concerns in the task management studies are QoS and cost. On the
other hand, resource management is solved by adopting VM allocation approach. i.e.,
whenever the VM requests are made, the VM allocator deals with the mapping of VM
requests to physical resources where the VM instances reside. The optimization objec-
tive of cloud VM allocation usually contains two parts: long-term cost and waiting time.

Although there exist several studies regarding cloud based multimedia systems, the
two research issues we mentioned above have not been jointly considered. For task
management, queuing system is widely used for task management since the parame-
ters of queue has direct connection with the QoS and the cost of multimedia services
[9,23]. For resource management, heuristic based VM allocation approaches are fre-
quently adopted because of the problem complexity [14,15]. It is very often that the
efficiency of those solutions are measured individually. However, the task management
approach should be compatible with the resource management approach, especially
when both multimedia service provider and cloud operator want to adopt their own
management policy. Seeing the problem from this perspective inspires us to a new
solution which jointly supports both task management and resource management in a
flexible and efficient way.
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Task and resource management in multimedia cloud environment 121

In this paper, we present an innovative framework that addresses the task and
resource management challenges in multimedia cloud computing. To manage multi-
media tasks, multiple queues are maintained by evaluating the performance indicators
such as queue length, task blocking probability and mean service waiting time. The
task manager of each queue creates VM requests or stops running VMs based on
the queuing dynamics. The requested VM have multi-dimensional resource specifica-
tion including CPU processing capability, memory space, storage space and network
bandwidth. Besides, we propose to add allocation deadline for each VM request since
immediate allocation stands in the way of cost reduction of both multimedia service
provider and cloud operator. For multimedia service provider, the unpredicted fluctu-
ation of task arrival rate may result in extra cost caused by fetching and stopping VMs
frequently and unnecessarily. After receiving the VM requests, the focus of cloud oper-
ator is to allocate the VMs to physical cloud servers. For cloud operator, the chance
of finding better allocation solutions is relatively low if all the VM requests has to be
allocated immediately. The main contributions of this paper are listed as follows:

— We jointly design a two-stage task and resource management approach for cloud
based multimedia services. Our solution allows both multimedia service provider
and cloud operator to apply their own management policy without much interfer-
ence. Meanwhile, the QoS of services are guaranteed through the proposed two-
stage process. Thus, it is suitable to be adopted in large-scale and heterogeneous
cloud based multimedia system.

— As it is not possible to provide exact modeling for heterogeneous multimedia ser-

vices, we use an queuing model to approximate the system states. Based on the
queuing model, an online and efficient task management algorithm using Markov
analysis and prediction is proposed in this paper. The concept of allocation deadline
differs our proposal from existing methods and benefits both multimedia service
provider and cloud operator. In task management stage, the VM requests having
allocation deadline can achieve cost reduction by preventing unnecessary fetching
of VMs from happening while satisfying the QoS constraint.
In order to guarantee the QoS of multimedia services, the following methods are
used. First of all, the resource requirement in the QoS can be found by profiling
multimedia applications. It will decide the configuration of required VMs in our
proposed queuing model. Secondly, the deadline of application finish time will be
fulfilled by controlling service time or average queue length in queuing model.
Meanwhile, the blocking probability in queuing model is also a part of the QoS
requirement which can also be satisfied by managing queuing dynamic.

— We propose an online and efficient heuristic based resource management approach
for supporting cloud based multimedia service. The main difference between the
algorithm in our work and conventional VM allocation algorithms is that our algo-
rithm leverages the benefit of allocation deadline without taking any risk on QoS
violation. Thus, it is possible to select and allocate task in an active and dynamic way
through dynamic controller, while conventional task allocation algorithms perform
in a passive or static way.

— Last but not the least, we prove that both task manager and resource allocator
have the capability of stabilizing the QoS parameters for multimedia services by
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sacrificing the cost. This feature enables flexible management policy design when
dynamic pricing has been adopted by cloud operator.

Our approach also provides elasticity to resource provision of cloud multimedia
applications. On one hand, the queuing model can automatically evaluates and requests
resources to support dynamic scaling for distributed system. On the other hand, the
dynamic scaling of a certain VM can be achieved with current VM technologies. The
VM migration technology will be applied if the above scaling causes physical server
overload. Since cloud provider always maintains service level agreements (SLAs) with
application providers, migration decision has to be made based on SLAs. Although
the SLAs are out of the scope of this paper, our approach can treat the VMs to be
migrated as new VM requests and provide allocation for them.

Analytical results of task management are validated through discrete-event sim-
ulation. More experiments are conducted to validate the efficiency of our proposed
resource management algorithm as well. The experimental input is produced based
on cloud implementation of practical multimedia services. We compare our proposed
algorithm with other existing algorithms, and present results as well as insights from
the evaluation results in this paper.

The rest of the paper is organized as follows: Related work is reviewed in Sect. 2.
Section 3 describes the general framework of task and resource management in cloud
based multimedia system, and proposes task management solution. Section 4 presents
the proposed online VM allocation algorithm, and discusses the stability of QoS. The
experiment settings and performance comparisons can be found in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Related work

In recent years, the concept of cloud based multimedia system is emerging and grow-
ing rapidly. The cloud computing has been investigated to provide multimedia services
in various ways. Firstly, cloud can be used to store multimedia contents. In [6], the
authors proposed a framework for scalable cloud video recorder system in surveil-
lance environment. Hadoop distributed file system was applied to store video data.
Other distributed systems designed in [24-26] are also very suitable for supporting
multimedia cloud due to their significant contributions on handling the heterogeneity
and uncertainty of multimedia tasks. Secondly, cloud is capable of providing scalable
and distributed processing power to achieve efficient video analytic. In [5], a novel
system was invented to bringing together automatic license plate recognition engines
and cloud computing technology in order to realize massive data analysis and enable
the detection and tracking of a target vehicle in a city with a given license plate number.
Real-time face recognition approach was implemented using a mobile-cloudlet-cloud
acceleration architecture in [8]. In another study [27], multiclass object recognition
using smart phone and cloud computing for augmented reality was invented. The vari-
ety of multimedia tasks has brought two challenging issues to cloud provider, i.e.,
task management and resource management. To address these challenges, various of
modeling and algorithms have been proposed.
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2.1 Task management for cloud based multimedia system

Currently there are also some research efforts going on [7,9-12,28,29] for allocat-
ing VM resources in a multimedia cloud environment, which can be viewed as task
management. Wen et al. [12] presented an effective load-balancing algorithm for a
cloud-based multimedia system, which can allocate and schedule VM resources for
different user requests with minimum costs. In [30], the authors considered the camera
workload as a function of the number of targets, and use that to dynamically assign
video feeds to the hosts.

Queuing models has been adopted to provide rigorous analytical approach in cloud
task management domain. Nan et al. [9] proposed a cost effective resource allocation
optimization approach for multimedia cloud that was based on a queuing model. They
considered the data center infrastructure as a node-weighted tree-like graph, and then
used the queuing model to capture the relationship between the service response time
and the allocated resources. They also studied the resource allocation problem in a
single-class service case and a multiple-class service case, respectively. The same
authors also present similar approach in [10, 11].

In [31], the authors explicitly used a M /M /m/m + r queuing model to manage
tasks in a cloud center. Both interarrival and service times were assumed to be expo-
nentially distributed. Since interarrival time and/or service time may not always follow
exponential distribution, most theoretical analyses have relied on research in perfor-
mance evaluation of M/G/m queuing system [32] or M/G/m/m + r queuing system
[23,33]. Those works only provided approximate solutions for steady-state queue
length distribution, average queuing delay and blocking probability. As we introduce
the concept of allocation deadline, our modeling differs from exiting methods by iden-
tifying and predicting a specific moment when QoS violation will occur in queuing
system. Consequently, we need to accomplish corresponding analyses which cannot
be found in exiting works.

2.2 Resource management for cloud based multimedia system

On the other hand, many existing efforts [13—22] studied various VM allocation tech-
niques for cloud resource management. Aisopos et al. [13] proposed a VM resource
allocation model for SaaS cloud providers using fractional knapsack problem that max-
imizes the service provider’s revenue and the resource utilization under a heavy load.
The model focused on maintaining the maximum resource utilization at the cost of
risking potential SLA violations over the pending jobs that will yield the smaller profit
for the SaaS cloud provider. Van et al. [19] presented an autonomic virtual resource
management mechanism in cloud for service hosting platforms. Game-theory based
VM resource management for clouds was also studied in [17,22]. To reduce the cost
for cloud provider, researchers focused on energy saving while allocating VMs. Bel-
oglazov et al. [14] investigated energy-aware VM resource allocation heuristics that
provided data center resources to client applications in a way that improved the energy
efficiency of the data center without violating the negotiated SLAs. In [34], scheduling
heuristics were developed to present application experience for reducing power con-
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sumption of parallel tasks in a cluster with the Dynamic Voltage Frequency Scaling
(DVES) technique.

Although the works presented above have made remarkable contributions, they did
not jointly consider both task and resource management. As a result, it is difficult to
achieve an optimization for the entire system. In this paper, we address this issue by
developing a two stage-solution to solve both problems.

3 Cloud-based multimedia system and task management

Cloud-based multimedia system utilizes powerful Cloud resources and provides rich
media services to the users over the Internet. Figure 1 depicts the framework of cloud
based multimedia system.

3.1 Cloud based multimedia system

Several multimedia services, such as gaming, stream mining, video playback, mul-
timedia surveillance and etc., are provided by the system. Each service transmits its
tasks to one or many functional modules. In each module, the arrived tasks are gather
in the corresponding job queue and processed by one or many virtual machines using
the principle of First Come First Serve (FCFS). Each module also takes the respon-
sibility of submitting, canceling or changing virtual machine requests, and shutting
down redundant virtual machines. Through formulating and analyzing the queuing
model in each module, the number of running virtual machine are adjusted dynami-
cally to guarantee the quality of service and to reduce the cost for holding or fetching
virtual machines. These modules can be designed in either centralized or distributed
way to support multimedia services or to improve their efficiency. For example, dis-
tributed file systems or large-scale video bases are deployed to store massive amount

: Task Management Stage : :Resource Management Stage

Multimedia | : | Computing | Machine Vlrt}:{al Physical
Service : Module Virtual | | : | Machine Server
: Request
l —
: S Dl -
Multimedia |A } (1| Virtual Physical
Service A Virtual . | Machine Server
Storage Machine Request \\Virtaal 1/
Module [ Vo] Machine
Multimedia [/ | M;chize [LAllocator I\| Physical
Service 5 Server
| Q Request
Multimedia Display Virru'al Physical
Service : Module Machine Server
: Request
o : o o o
o § o o o
o § o o o

Fig. 1 Framework of cloud based multimedia system
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of video clips for large scale surveillance tasks. The parameters used by each module
for making their task management decision includes current queue length, recent task
inter-arrival time in average and estimated service time in average.

To provision processing, storage, and networking resources, cloud provider offers
Infrastructure as a Service (IaaS) to each module by implementing operating system
level virtualization technology such as VMware and Xen hypervisors. To be more spe-
cific, each module can get CPU, memory, hard-disk and network bandwidth resources
from cloud servers by submitting explicit virtual machine requests along with allo-
cation deadline. The virtual machine allocator adopts a dynamic allocation approach
to find an appropriate physical server according to each virtual machine request. In
order to guarantee the QoS of multimedia services, the VM allocation has to at least
meet the resource and deadline requirements. Besides, the allocator may also apply its
own policy to achieve a global optimization on a desired tradeoff between long-term
cost and average waiting time. In this paper, we formulate a time-slotted problem with
time slots of equal length indexed by + = 0, 1, .... At the end of each time slot ¢,
task management decision is made by each module first. After that, the VM allocator
makes its resource management decision. Although different optimization methods
and policies are used in two management stages, the QoS of multimedia services can
be guaranteed through the whole process.

3.2 Analytical model for task management

In this study, each module is modeled as a M /G /m/m + r queuing system indicating
that the inter-arrival time of tasks follows exponential distribution, while m virtual
machines are deployed and the service times are independent and identically distrib-
uted random variables. We consider that the service times follow a general distribution.
Any new task arrival will be discarded if the queue length is m +r. All tasks are served
following the order of their arrival sequence (FCFS). This M/G/m/m + r queuing
system can be considered as a embedded-Markov process [35] since the arrivals of
tasks form a Markovian process [36]. Each arrival is a Markov point for us to observe
the state of the system, which is the number of the tasks in the system whose value
is a integer ranging from O to m + r. The assumption we are making in the queuing
system for task management, including the distribution of interarrival time, the distri-
bution of service time and the existence of steady-state, has been justified by existing
literatures [23]. However, our assumption of considering allocation deadline makes
significant difference in the results. Many real world multimedia applications require
SLA on the finish time rather than how VMs are allocated over time. For example, in
e-health media application scenario some tasks should follow their deadlines [37]. In
our model, such tasks will be executed in a queuing system. The task manager will cal-
culate the service time for such tasks based on current queuing dynamic. By analyzing
the queuing dynamic, the task manager can predict overload situation in future. Thus,
VM requests with allocation deadline will be generated to prevent overload situation
from happening. Eventually, the SLA of multimedia tasks can be fulfilled.

The task inter-arrival time U is exponentially distributed with a rate of A. The
Cumulative Distribution Function (CDF) can be denoted as U (x) = prob[U < x].
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We denote its probability density function (pdf) as u(x) = Ae™** and its Laplace

Stieltjes Transform (LST) as U*(s) = fooo e u(x)dx = %H All task service times
follow a general distribution V with a mean value of v = ;lL The CDF and pdf of
V are V(x) = prob[V < x] and v(x), respectively. The LST of V is V*(s) =
fooo e *v(x)dx. We use V4 to denote residual task service time and V_ to denote
elapsed task service time. According to [38], both V and V_ have the same LST,
which is VI (s) = V*(s) = =20,

We are able find one-step transition probabilities for above Markov model. Let g,
and ¢, 4+1 be the number of tasks found in the system before nth arrival and (n + 1)th
arrival, respectively. The transition probability p;; is defined as

pij = problgut1 = jlgn =1i] (1)

where g,+1 = j and g, = i indicate that i + 1 — j tasks are accomplished during the
time between the arrival of task » and the arrival of task n + 1.

In order to calculate one-step transition matrix P, we need to find each element p;;
by analyzing the probability of task departures in between two successive arrivals.
Let us choose any server running on a virtual machine and focus on that server. For a
running task to finish between two Markov points, the residual service time V. should
be less than the task inter-arrival time U with the probability of

e¢]

Py = prob[Vy < U] = / prob[Vy < U|Vy =x]dVi(x)
x=0
o0 o0
= / / re M dy |dVi(x) = Vi) )
x=0 \y=x

If the entire processing of a task is finished during the time between the arrival of task
n and the arrival of task n + 1, it holds the probability of

Py = prob[V < U] = / problV < U|V = x]dV (x)
x=0
= / / re Mdy |dV(x) = V¥(L) (3)
x=0 y=x

The one-step transition matrix P can be calculated using the following methods:

— Fori+1<j,pij=0.

— Fori < m and j < m, the number of waiting tasks is 0. In one possible scenario,
the newly arrived task and i — j running tasks has been accomplished. In the other
possible scenario, i + 1 — j running tasks departs from the system. Thus, the
probability is
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i i—j ; i i+1—j i
pij = (l._j) P, ’(1—Px>ny+(l.+1_j) P 1 — Py - Py

fori <m,j<m 4)

— For i, j > m, the newly arrived task cannot be finished as all servers are busy.
However, it is possible that more than one task depart from one server. Since
possibility of finishing three or more tasks between successive arrivals is very low,
we assume that no more than two tasks will depart from any server, the one-step
transition probability can be denoted as

min(i+1—j,m) m %
pij = > [(k )le(l_Px)m_kl‘
ky=max([(i+1~)/21,0) 1

ki i+l—j—ki 4 2k —i—14j 5
(i—i—l—j—kl)Py (1=5)

fori, j >m
— Fori > mand j < m, all servers are busy at the time of first arrival. At the time of

second arrival, some servers are idle and the queue becomes empty. The one-step
transition probability for this case is

min(i+1—j,m) m k
pij = > [(k ) P (1 — Pyym R
Ky =max([Gi+1—/)/21,m—j) !
kq i+1—j—k 2ky—i—1+j (6)
(i+1—j—k1)Py =

fori >m, j <m

— As we assume that no more than two tasks can depart from any server between
two successive task arrivals, we will also have the following one-step transition
probabilities

pij=0 for (+j—-1)/2>m @)

3.3 Important parameters for task management

The following parameters should be calculated to support the decision making of task
management: queue length information in the steady-state, queue length information
after n-transition, blocking probability in the steady-state, blocking probability after
n-transition, service waiting time in the steady-state and service waiting time after
n-transition. Firstly, let 7 = nll)ngo problg, = k],0 < k < m + r, denote the
probability of having queue length i in the steady-state solution. To obtain these
values, the following equations are formed:
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m—+r

m= Y wipij, 0<i<m+r ®)
=0

m+r

Z?‘[l‘ =1 (9)
i=0

Since the number of equations is m + r + 2 and the number of variables is m +r + 1,
one equation will be discarded while solving the equations. Our suggestion is to drop
mo = X712 7jpij for rr:\_u > 1, and drop g, = 3720 7jpij for mk_u < LIt
has been proved in [23] that the above equations have a unique steady-state solution
due to the fact that the corresponding Markov chain is ergodic. Based on the steady-
state solution, we now have information about queue length and be able to get other
important parameters. When the queue is full, it will block new arrivals. Consequently,
the blocking probability in the steady-state equals to the probability of having m + r
tasks in the system, i.e., ;4. The LST of service waiting time in the steady-state
can be calculated as W*(s) = ZZ:OI T+ 2 (1 — s /o)™ [39]. Let W (x)
be the CDF of service waiting time, the mean service waiting time W is described by
W= [Z,(0—W(x))dx.

Secondly, we can use the one-step transition probability matrix to predict future
states of queuing system. The n-step transition probability matrix P" can be calcu-

lated as P" = [T;—, P. The marginal distribution prob(g, = j) is described by
prob(q, = j) = ka:()r p,(g)prob(qo = k). Given a certain starting state go = i, we
can get prob(q, = jlgo =1i) = pi(;l) as the queue length information. The blocking
probability after n-step transition is pl.(:;) where n = m+r. The LST of service waiting
time after n-step transition is W*(s)™ = 37! pi(Z) + > pl-(,':)(l — s/ )k,
Using the corresponding CDF W (x), the mean service waiting time after n-step
transition is described by W(n) =/ xoio W (x)"™xdx. The mean elapsed time of n-step

transition E(n) can be calculated as E(n) = ’)%

3.4 Algorithm design for task management

In this subsection, we describe a design of efficient online task management algorithm.
The core concept of the algorithm is as follows: the task manager of each job queue
observes the mean arrival rate during the past time slot and the current queue length.
Based on the requirement of the corresponding multimedia service, the current uti-
lization of servers and the queue dynamics, the task manager decides to request more
VMs for QoS guarantee, or to stop running VMs for cost reduction.

The task manager first converts the QoS requirements of multimedia services to the
constraints on one or many of the following parameters: queue length information,
blocking probability and service waiting time. For example, the constraint on service
waiting time must be very strict for real-time multimedia services. Next, the task
manager defines a specific queue length as an indicator for judging the situation of
server under-utilization.
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The proposed online task management algorithm is invoked at the beginning of
every time slot 7. Since it is hard to predict future workload, the task manager uses
the arrival rate of past time slot to predict queue dynamics in future time. The task
manager checks current status of queue and potential risk of QoS violation within a
certain period, which is a multiple of 7. If a risk has been addressed, new VM requests
are generated to increase the service rate. By adopting the allocation deadline in the
VM requests, the VM allocator can achieve a long-term cost reduction in the next stage,
while satisfying the QoS constraints for multimedia services. The under utilization of
server is responded immediately by reducing the number of rented VMs. The formal
description of task management algorithm is shown in Algorithm 1.

Algorithm 1: Efficient Task Management Algorithm

if is_new _timeslot() then
if is_not_overloaded _now() then
compute () for 0 <k <m +r;
compute W();
if is_not_overloaded_steady-state(m;, W) then
if is_under_utilizalion_now() then
while is_under_utilization_steady-state(m i, W) do
m— —;
compute _mp() for 0 <k <m +r;
compute _W();
end
cancel previousreque sts();
reduce _number o[ _server to(m);
end
return

n =0;

compute _pf;]' ')
compute i )( )i
('mnpul(‘_E("]();

. ) (n) 7An)
while is_not_overloaded _after_n _step(p; j W) AND
£ < given _threshold do

n+ +;

compule _pi'; )( )3
compute W"();
compute By,

end

if B > given threshold then
cancel _previous_requests();
return

end

end
end

hile is_overloaded steady-state(w,, W) do
m+ +;
compute () for 0 <k <m +r;
compute_W();

£

end
cancel _previousrequest s();
increase number o [ _server fto(m);

end
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3.5 Time complexity analysis for task management

In Algorithm 1, we have two functions which are computational intensive, i.e.,
compute_mi() and compute_pl.(f) (). To compute my, the one-step transition prob-
ability matrix P has to be generated first. According to Eqgs. (4)—(7), the complex-
ity of calculating P is O((m + r)3). After that, each m; can be found by using a
Gaussian Elimination to solve the linear equations. The time complexity for such
step is also O((m + r)3). Thus, the overall time complexity of compute_my() is
O((m + r)3). On the other hand, compute_p,.(;?)() requires only O((m + r)?) time
to compute P™ from P”~D_ Thus, the time complexity of compute_s; () dominates
that of compute_pg?)(). As compute_my () has been put in the loop, the overall time

complexity of entire task management approach is O (mmax (m + r)*) where mmay is
the maximum number of VMs that can be possibly requested.

4 Proposed resource management
4.1 Physical servers and VM requests

The cloud resources consists of nh physical servers defined as H = {hy, ha, ..., hun}.
In order to describe a physical server 4; (1 < i < nh) in general, we use c;, m;, s; and
b; to represent its CPU processing capability (expressed in millions of instructions
per second—MIPS), memory space (expressed in MB), storage space (expressed in
MB) and network bandwidth (expressed in KB/s), respectively. The similar modeling
method can be found in a widely used Cloud simulator: CloudSim [40]. At time
t,let fci(¢), fm;(t), fsi(t), and fb;(¢t) be the percentage of free CPU processing
capability, memory space, storage space and network bandwidth, respectively.

Attime ¢, denote the set of arrived VM requests by L(t) = {l1, 2, . . ., Lu ()} where
nl(t) is the total number of arrived requests from time O to time f. For a request
[;(1 < j < nl(t)), let wtj, ad; and st; be the waiting time, allocation deadline and
service time of that request, respectively. The waiting time is counted from the request
arrives until it is finally allocated on a physical machine. In some cases, s7; may not
be known or predictable before the processing of /; is accomplished. Let v; be the
virtual machine for request /;.

As we mentioned before, we use a nh-by-nt (t) matrix A(t) to represent the alloca-
tion results at time ¢ where the elements are binary. For any a;;(?), a;;(t) = 1 means
that the virtual machine v; has been allocated on the physical machine h;, and vice
versa. Letrc;j, rm;j, rs;j and rb;j be v;’s resource requirements on h; regarding CPU
capability, memory space, storage space and network bandwidth, respectively and all
in percentage form. We assume that the overhead of VM creation and maintenance is
also included in the resource requirements, which means rc;;, rm;;, rs;; and rb;; are
the overall resource requirements for running v; on p;. In practical design, the values
of rcij, rm;j, rs;j and rb;; are acquired from user-supplied information, experimental
data, benchmarking, application profiling, queuing calculation or other techniques.
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4.2 Optimization goal for resource management

The optimization goal we proposed in this study is to minimize the trade-off between
average waiting time and long-term service cost for cloud operator. The explana-
tion and definition of the selected optimization goal can be found in the following
contents.

We consider that the allocation deadline is clearly specified in the QoS requirement
of any task. However, an early allocation can improve the QoS of multimedia services
since the queue length can be potentially stabilized. To this end, we define the average
service waiting time WT as

nl(t)

I . 1
T = lim IO} JZ: wi; (10

On the other hand, the cost reduction is also a major concern while operating a cloud
system. The electricity energy consumption in computing facilities incurs the major
cost of cloud during run time [41]. Recent studies identified that energy consumption
scales linearly with resource utilization [42] and number of running servers [14]. By
putting idle servers into sleep/power-saving mode, cloud provider can reduce idle
power draw. Consequently, we assume that multimedia cloud provider will follow the
same way to save cost. To that end, we use the number of running servers to represent
the cost of cloud provider. The similar definition can be found in [41] which also aims
at minimizing the amount of active components for achieving cost reduction. The other
cost that incurs is VM fetching cost. To transfer, load and start VM instances, energy
and resources will be consumed on server. However, this cost is usually undertaken
by application providers rather than cloud provider. Thus, we do not put it into the
definition of cloud provider’s cost. To be more specific, the long-term cost can be
defined as the cumulative running time of all active physical servers if we assume
the servers’ energy consumption is homogeneous. Let y;(#) be the binary variable
indicating whether a physical server h; is active at time 7 (y; (#) = 1) ornot (y; () = 0).
The long term cost C is then expressed as

nh t—1

C = lim —ZZy,(t) (a1

i=1t=0

Unfortunately, it is not always possible to optimize the average service waiting time
WT and the long-term service cost C at the same time. Due to the dynamic and
unpredictable features of multimedia service, cloud operator may receive many CPU
intensive VM request during a short period. To minimize WT, the cloud operator
may perform immediate allocation after it receives any task. As a result, the CPU
capability of the active physical servers can be fully utilized during the upcoming time
slots while other resources are wasted more or less. Similar resource wasting situations
can be found when the tasks arriving in a short period are extremely memory intensive,
storage intensive or bandwidth intensive on average. Thus, we set up the optimization
goal as to find an on-line allocation method that solves the following problem:
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min WT +KC
A(t),1=0,1,2,...
1 nl(t) 1 nh t—1
= lim 0 - wtj—G—K;ZZyi(r) (12)
j=1 i=11=0
s, fei(@), fmi(0), fsi@), fbi(t) =0 Vt,i (13)
fei(t) = reij
o fmi() = rmy; .
i : fsi@) = rsij Vi 19
fbi(t) > rbj;
nh
t §adj|j,Za,~j(t)=0 vt (15)

i=1

The parameter K in (12) is a non-negative weight that is chosen as desired to affect
a tradeoff between average waiting time and long-term cost. Constraints (13) and
(14) guarantee the resource sufficiency of single server and entire cloud, respectively.
Equation (15) shows that all VMs must be allocated before their allocation deadline.

The above problem can be mapped to the multi-dimensional bin-packing problem
at each time slot. The goal of this problem is to map several items, where each item rep-
resents a tuple containing its dimensions, into the smallest number of bins as possible.
We consider each virtual machine request as an item and the dimensions as its CPU,
memory, storage and bandwidth requirements, and the goal is to minimize the number
of physical servers that must be used to place all virtual machines, respecting physical
servers corresponding capacities. As the multi-dimensional bin-packing problem is
a well-known NP-complete problem, it is proved that the allocation problem in our
scenario is also a NP-complete problem at any time #. Thus, it is only feasible to use
fast algorithm, such as heuristic, to solve the allocation problem.

4.3 Key parameters for resource management

We define the following parameters to represent the overall resource utilization con-
dition of any single physical server. Given a physical server k;, The first parameter is
the mean of resource usage w;(¢) at time ¢.

fei)+ fmi(t) + fsi(t) + fbi(t)
4

i (1) = (16)

wui(t) provides a direct view showing how efficiently the resources of 4; are utilized
at time ¢. However, there is another parameter which indicates the overall resource
utilization condition implicitly. We use o; (¢) to denote the situation of resource balance.
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tempy = (ui(t) — fei(0)?
tempy = (i (1) — fm;(1)?
tempy = (i (1) — fsi(1))2 (17)

temps = (i (1) — fbi (1)
0i(t) = Jtemp1+temp22+temp3+temp4

It can be seen intuitively that a better overall resource utilization will occur when p; ()
increases and o; () decreases. Thus, we combine these two parameters into a single
parameter cv; (). The definition of cv; (¢) is

o (1)

cvi(t) = m

(18)

For any unallocated request/; at time ¢, the waiting time w?; and the allocation deadline
ad; are combined into one parameter pr;(t) to provide the optimization concern of
average service waiting time.

wtj
pri(t) =g (m) (19)
gx1) < g(x2)lx1 > x2 (20)
;iir})g(x) = 1’)}Lml g(x)=0 2n

where g(x) is specified by cloud operator to indicate the relative importance of waiting
time over resource utilization. Constraint (20) guarantees that pr; () decreases when
the time approaches to the allocation deadline of /;. The range of pr;(¢) is limited in
(21) as [0, 1].

4.4 Online allocation for resource management

We modify four existing heuristic algorithms by changing the metric and adding a
threshold value to achieve dynamic control. The modified heuristics are user-directed
assignment (UDA) [43], Min—Min [43], Max—Min [43] and sufferage heuristic [44].
A UDA heuristic assigns each VM, in arbitrary order, to the physical machine with
the best trade-off metric value. A Min—Min heuristic selects the VM/server pair that
produces the overall minimum metric value. In Max—Min, the minimum value of
the metric is selected for each VM first. Among all VMs, the one that produces the
overall maximum metric value is finally chosen for allocation. A Sufferage heuristic
attempts to allocate a task that would “suffer” most in terms of expected metric value
if that particular server is not assigned to it. The metric in all heuristics are defined as
a combination of cv;(t) and pr;(t) by taking a multiplication, i.e., cv;(t) x pr;(t).
According to (20) and (21), cv; (t) x pr;(t) equals to cv; (t) when task /; just arrives. In
this case, the value of metric is fully based on the overall resource utilization of p; after
allocating v; to that physical server. The value of cv; (¢) x pr;(t) goes down to 0 when
the time reaches the allocation deadline of /;. We also introduce a dynamic threshold
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value &(7). If a candidate allocation a;;(t) = 1 satisfies cv;(t) x pr;(t) < &(), it
is considered as an approved allocation. At time ¢, a request /; can not be allocated
when there does not exist any physical server h; satisfies cv; (t) x pr;(t) < &(t). We
provide the detailed steps of allocation process as follows.

Step 1: The allocation process starts at time ¢+ = 0. The initial threshold value is
defined as £(0) = 400, which means the threshold is not adopted. For any physical
machine 4;, we have fc;(0) = fm;(0) = fs5;(0) = fb;(0) = 100 %. The task set
is an empty set, i.e., L(0) = @. The initial selected heuristic is Min—Min. In fact, the
initial selection of threshold value and heuristic is not an important issue. Both of them
will be changed at the end of first long-period T = 1.

Step 2: During a short time slot ¢, the urgent allocation requests may arrive. To
handle them, we use the selected heuristic and remove the constraint of threshold
from it. As each urgent request is executed individually and immediately, the actual
metric is cv; () only, regardless of the heuristics.

Step 3: At the end of a short time slot ¢, the regular allocation requests need to
be handled. One of the heuristics presented before is used. The method of heuristic
selection can be found in Step 1 and Step 5.

Step 4: Repeat Step 2 and Step 3 until the end of a long-period 7. The length of T
should be long enough to show the overall trend of workload fluctuation. If the time
is also the end of a short time slot, finish Step 3 before starting this step. According
to the pre-defined conditions, choose the VMs that need to be migrated first. Try to
allocate the VMs use one of the heuristics presented before, and check whether the
condition is eliminated or not. If so, then execute the allocation.

Step 5: At this step, the threshold value and heuristic for next long-period are
determined. The method is to adopt different threshold values in each heuristic to
find the offline allocation results for the past period. We use (12) to judge which is
the optimal threshold value and which is the optimal heuristic. The optimal heuristic
is directly applied in the next long-period. The optimal threshold value passes PID
controller which generates the threshold value that can be used in next long-period.

Before the first long-period T' starts, an initial threshold value £(0) = +o0 is
applied. By the end of period T, the optimal threshold value decided by offline alloca-
tion is denoted as &,(T). If T = 1, adopt &,(T') in the next long-period. Otherwise, let
&.(T) = &,(T) — &(T) be the error of threshold value during period 7. Our target is
to eliminate the error for following period. Thus, we adopt the general method of PID
controller and describe the formula for calculating the dynamic threshold as follows:

T+ 1) =8&T)+u() (22)

T
w(T) =kp x E(T) + ki x D_&(j) +ka x E(T) —&(T —1)  (23)
j=1

where kp, k; and kg are the weighting parameters (tunable).

The formula (23) involves three separate parts: the proportional, the integral and
derivative values, denoted as &,(T), Z?:] &.(j), and (&.(T) — &.(T — 1)), respec-
tively. These values can be interpreted in terms of time: &,(7') depends on the present
error, Zle &.(j) on the accumulation of past errors, and (§,(T) — &.(T — 1)) is a
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prediction of future errors, based on current rate of change. The weighted sum of
these three parameters u(z) is used to adjust the current threshold value (7). kp, k;
and k, are tunable parameters. By tuning the three parameters, the PID controller can
provide control action designed for specific process requirements. The readers who
are interested in the tuning algorithms may refer to [45] for more details.

4.5 System stability
In the proposed system, the stability can be measured by evaluating the states of queue
length which are related to many QoS factors, such as waiting time and response time.

Define Q; () as the length of the ith queue at time slot z. Following quadratic Lyapunov
function is used to represent the state of whole system at time slot ¢

1 N
L) =5 0i0)? (24)
i=l

For a single queue, the Lyapunov drift A; (¢) is denoted as

Ai(r) = %Qia +1)7 — %Qi(rf (25)

And the Lyapunov drift of whole system A(t) is defined as
A)=La+1)— L) (26)
Since the QoS of multimedia services are guaranteed by the task manager, it is unlikely

to observe blocking event where the corresponding queue length is m + r. Thus, the
change of a single queue follows

Qi(t +1) =max[Q; (t) + A; () —m;(t)u;, 0] 27

where A, (¢), m; (t) and u; are arrival rate during 7, number of VMs during 7 and service
rate of single VM. The quadratic form of above equation is bounded as

Qi(t 4+ 1)? < (Qi(0) + 1i (1) — m;i (1) i)? (28)
The Lyapunov drift is bounded as
1
Ai(1) = S 04(1) = mi () i)* + Qi () (A () — m; (i) (29)

Now we define the conditional expected Lyapunov drift of a single queue i as

1
E[A;i(01Qi (0] = 5 (i) — mi () i)?
+0: (OE[(hi (£) — mi (1)) Qi ()] (30)
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And the conditional expected Lyapunov drift of whole system is

1 N
ELAMDIQM] = 5 37 0 () = i)’

i=1

N
+ D 0iOEI () — mi()p) | Q)] €1y

i=1

In the task management stage, the stability of any queue can be controlled by
adjusting the allocation deadline. By setting an earlier VM allocation deadline,
the bounding of queue length in (30) becomes tighter due to the reduction of
E[(Ai(t) —mi(®)u;i)|Qi(t)]. As a result, the QoS of the corresponding multimedia
service can be improved and stabilized.

In the resource management stage, the stability of entire system can be also con-
trolled by adjusting the allocation time, which is achieved by changing the function of
g()in (19). Earlier VM allocations lead to the reduction of E[(A; () —m; (t)ii)| Q(1)]
in (31) for every queue. Consequently, the QoS of the entire system can be improved
and stabilized.

It is notable that earlier VM allocations bring cost increase in both stages. Since the
arrival rate A; (r) may fluctuate over time, earlier VM allocations will cause unnecessary
fetching of VMs due to the earlier grow of m; () when the arrival rate only increases
for a short period. Also, the possibility of finding an allocation with better cv; (¢) is
reduced by giving more weight on the allocation waiting time. This will result in low
server resource utilization and high operation cost for cloud operator. The detailed
impact of deadline setting can be viewed in the simulation section.

5 Simulations
5.1 Setup

Understanding cloud-based multimedia workload is a challenging task. To simplify
the task of workload selection and setup, we start from identifying some key classes
of video operations and then carefully selecting their implementations. Specifically,
we focus on four typical paradigms: video streaming and monitoring, face detection,
video encoding/transcoding and video storage. To understand the characteristics of our
multimedia workloads, we analyze their run-time statistics collected while running the
applications on Amazon Elastic Computing Cloud (EC2). We rent a M1 Small VM
having one Intel(R) Xeon(R) E5430 @2.66 GHz CPU unit, one CPU core, 1.7 GiB
memory, 1 Gbps bandwidth and 30G hard drive with Microsoft Server 2008 Base
64-bit. We use the performance monitor of Windows to record the resource utilization
of CPU, memory, storage and network bandwidth. Figure 2 illustrates the resource
utilization rates of the aforementioned workloads over the course of their execution.
We only plot partial utilization traces that represent the key execution phases. The
y-axis represents total resource utilization. The CPU utilization, memory utilization,
disk space utilization and network bandwidth in percentage form can be found in the
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Fig. 2 Workload of four typical multimedia services. a Face detection, b video streaming, ¢ video storage
and d video encoding

figure. As we can see, a significant variation exists in the resource utilization across
several workloads.

To test the efficiency of our task management approach, we focused on the construc-
tion of workload simulator. We have considered a specific queue with three different
settings including mean service time (1 = 5,15 and 30), minimum waiting length (30,
50 and 100), and maximum waiting length (» = 100, 250, 500), respectively. When the
waiting length of a queue is less than the minimum waiting length, the task manager
starts to reduce the number of running VM. Meanwhile, the waiting length must be
kept less than the maximum waiting length such that prob(qg; = m +r) < 0.1 % for
every i. In all cases, the arrival rate is fixed as A = 30. The cloud operator is assumed
to allocate all VM requests submitted from this queue at the time slots near to their
allocation deadlines.

To test the efficiency of proposed resource management approach, we first generate
100 heterogeneous queues with different initial settings including service rate, mini-
mum waiting length and maximum waiting length. The arrival rate of each queue is
varied over time, which are changed every 100 time-slots. Those queues are assumed
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Fig. 3 Analytical results vs. simulated results

to process the workload of video streaming/monitoring, face detection, video encod-
ing/transcoding and video storage by submitting VM requests with heterogeneous
resource requirements and allocation deadline. For cloud operator, the total dura-
tion of VM allocation request arrival is between time-slot 0 and 1,000. The VM
resource requirement of each queue follows a normal distribution with mean ratios of
CPU/memory, CPU/disk and CPU/net as shown in Fig. 2. The allocation waiting time
of any VM allocation request is less than 1,000 time-slots.

5.2 Simulation results

5.2.1 Analytical vs. simulated

We first validate the effectiveness of proposed queuing and Markov prediction model.
Figure 3 presents the comparison between analytical results and simulated results. The

mean values of queue length are counted every 100 time = slots. From the figure we
can see that the errors of our analytical model are very small in all cases. Besides,
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we do not observe underestimation of queue length when the workload is at peak.
According to these results, we can conclude that the proposed analytical model can
provide near-to-accurate prediction and will not cause unexpected QoS violation.

5.2.2 Cost optimization

In task management, we implemented two approaches: proposed approach and imme-
diate response approach. The immediate response approach can be found in [11] which
generates VM requests and stops running VMs based on the current task arrival rate
and service rate. We count the number of allocated VMs in every 100 time-slots and
present the results in Fig. 4. The results show that the proposed task management
approach significantly reduces the number of VM fetchings since the use of allocation
deadline effectively avoids unnecessary VM allocation. From Fig. 5 we can see that
the average number of rented VMs by proposed approach is actually similar to number
of running VMs that can be found in the immediate response approach. These results
proves that our approach effectively avoids the following situation from happening:
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Fig. 5 Number of running VMs

the sudden increase of arrival rate during a few time slots cause many VM requests
generated; cloud provider has to fetch the corresponding number of VMs; these VMs
instances are stopped again very soon since the arrival rate decreases back to the orig-
inal level immediately; to transfer, load and start VM instances, energy and resources
has been consumed on server. Overall the cumulative number of running instances
are only slightly differed from our approach which has allocation deadline settings;
but the number of fetching raises up significantly. This type of workload pulse can
be found in many event driven multimedia tasks, such as suspicious event detection
and analytic for video surveillance. It can be seen that the advantage of our proposed
approach becomes larger as the mean service time increases.

In resource management, we implemented four approaches: FCFS, load balancing
[12], server consolidation [46], and proposed method. We first present the results of
total cost in terms of cumulative machine hours. As we can see from Fig. 6, FCFS
and load balancing have the worst performance among five approaches. The server
consolidation approach, since it considers overall resource utilization, provides better
results comparing with FCFS and load balancing. By using the proposed metric of
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Fig. 7 Total cost in different tradeoff settings

our proposed method, the efficiency of VM allocation is increased. However, the
improvement is not magnificent when waiting time is chosen as the optimization goal.
Since all VMs are allocated immediately to minimize the waiting time, the proposed
dynamic threshold does not affects the results of allocation. Thus, the best approach
regarding cost optimization appears when we use both proposed metric and dynamic
threshold where more than 20 % of the cost can be saved.

5.2.3 Tradeoff between cost and waiting time

In Figs. 7 and 8, we present the tradeoff between long term cost and average waiting
time that has been achieved by using proposed VM allocation approach. The function
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g(x) was adjusted to achieve different tradeoff during the allocation process. On the
one hand, Fig. 7 indicates that the total cost increases as we put smaller weight on cost
optimization. On the other hand, the average waiting time in Fig. 8 decreases while
increasing the cost. The differences among several optimization settings are obvious.
When the optimization on cost is 90 %, the average waiting time is more than 50 time
slots in our simulation. However, this value is reduced to less than 5 time slots if we
set the optimization on cost as 40 %.

6 Conclusion

This paper presents a two-stage approach: media task management and cloud resource
management for multimedia services in a cloud computing environment. The concept
of allocation deadline is introduced in both of these approaches which makes the
proposed solution unique from existing methods and benefits both multimedia ser-
vice provider and cloud operator. For the media task management, a queuing based
approach is proposed. In this approach, an online and efficient task management algo-
rithm using Markov analysis and prediction was developed. For the resource man-
agement, an efficient heuristic algorithm was presented that can select and allocate
task in an active and dynamic way through a dynamic controller. Various simula-
tions were carried out to evaluate the performance of the proposed approaches as
compared to the existing methods. The results showed that the proposed solution pro-
vided cost-effective and flexible task and resource management than the state-of-the
art approaches. However, in this work we did not include quality of experience (QoE),
media play-back quality, media service profiling and benchmarking. As for the future
works, we would incorporate some of above as a part of the future work. We believe
that our proposed allocation approach can adapt such settings. Although our method
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solves the problem in a polynomial time, we still plan to further reduce the time com-
plexity of our method to make it more scalable for the scenario where the number of
servers increases greatly.
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