
Computing (2016) 98:93–118
DOI 10.1007/s00607-014-0399-4

On construction of a distributed data storage system
in cloud

Chao-Tung Yang · Wen-Chung Shih · Chih-Lin Huang ·
Fuu-Cheng Jiang · William Cheng-Chung Chu

Received: 8 November 2013 / Accepted: 20 March 2014 / Published online: 4 May 2014
© Springer-Verlag Wien 2014

Abstract In the past, people have focused on cluster computing and grid comput-
ing. Now, however, this focus has shifted to cloud computing. Irrespective of what
techniques are used, there are always storage requirements. The challenge people face
in this area is the huge amount of data to be stored, and its complexity. People are
now using many cloud applications. As a result, service providers must serve increas-
ingly more people, causing more and more connections involving substantially more
data. These problems could have been solved in the past, but in the age of cloud
computing, they have become more complex. This paper focuses on cloud computing
infrastructure, and especially data services. The goal of this paper is to implement
a high performance and load balancing, and able-to-be-replicated system that pro-
vides data storage for private cloud users through a virtualization system. This system
extends and enhances the functionality of the Hadoop distributed system. The pro-
posed approach also implements a resource monitor of machine status factors such as
CPU, memory, and network usage to help optimize the virtualization system and data
storage system. To prove and extend the usability of this design, a synchronize app
was also developed running on Android based on our distributed data storage.

C.-T. Yang (B) · C.-L. Huang · F.-C. Jiang · W. C.-C. Chu
Department of Computer Science, Tunghai University, Taichung, Taiwan ROC
e-mail: ctyang@thu.edu.tw

C.-L. Huang
e-mail: clh.joe@gmail.com

F.-C. Jiang
e-mail: admor@thu.edu.tw

W. C.-C. Chu
e-mail: cchu@thu.edu.tw

W.-C. Shih
Department of Applied Informatics and Multimedia, Asia University, Taichung, Taiwan ROC
e-mail: wjshih@asia.edu.tw

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-014-0399-4&domain=pdf


94 C.-T. Yang et al.

Keywords Cloud computing · Distributed data storage · Data as a service ·
Distributed file system

Mathematics Subject Classification 68M14 · 65Y05 · 68P20

1 Introduction

Cloud computing is a current trend and emerging computing platform and service
mode that organizes and schedules services on the Internet. Once Internet protocols
have been defined, resources can be connected and share information between layers
[1]. The first layer is the cloud client. In the concept of cloud computing, the cloud
client does not need powerful machines because the cloud takes care of most of the
computing work or data [52–56]. The cloud client may be a browser, lightweight
program, or even a mobile device. The user can submit jobs using cloud client through
a specified protocol. The second layer of the cloud is the cloud software, which may
have complete functionalities. People canuse the cloud software to send e-mail,modify
photos, listen to music, and so on. The third layer is the cloud platform. The difference
between the cloud software and the cloud platform is that the cloud platform provides
a space in which developers can build their software. Developers do not need to focus
on the systems’ health. The final layer is the cloud infrastructure. Most of the cloud
service aims to provide a mass of users, which requires high network traffic and much
computing. Tens of thousands of racks must be connected together to fit the needs.

Cloud storage is a service that provides storage resource service through remote
storage servers based on cloud computing. The vision of cloud storage is to provide
storage services at a low cost with high reliability and security. A cloud storage sys-
tem is a cooperative storage service system with multiple devices, many application
domains, andmany service forms. The development of a cloud storage system benefits
from broadband networks, Web 2.0, storage virtualization, storage networks, appli-
cation storage integrated with servers and storage devices, cluster technology, grid
computing, distributed file systems, content delivery networks, peer-to-peer networks,
data compression, and data encryption.

Virtualization [2–4] is a key factor in cloud computing. There are many different
types of virtualization technologies, including hardware virtualization, software virtu-
alization, memory virtualization, and storage virtualization. Using cloud computing,
people can have one machine and still access numerous work systems as necessary.
Companies and governments can use virtualization technology to save money. People
can use this technology to access operating resources without having to be concerned
with system maintenance.

This paper focuses on cloud computing infrastructure, and particularly data ser-
vices. The goal of this study is to implement a system that can provide data storage
services for a private cloud used for a virtualization system and a public cloud for
DaaS [5–8]. DaaS extends the functionality of a block distributed file system using
HDFS [9–11] and implements distributed data storage (DDS). The proposed approach
implements a distributed resource monitor [12–16] of machine runtime factors such
as CPU utilization, memory usage, and network flow. A block distributed file system

123



On construction of a distributed data storage system in cloud 95

enables web storage that can provide cloud software to store data. This system also
requires high-performance data storage for creating redundant, scalable object storage
using clusters of standardized servers to store petabytes of accessible data. It is not a
file system or real-time data storage system, but rather a long-term storage system for
more permanent, static data that can be retrieved, leveraged, and updated as necessary.
This paper presents the details of the proposed design. To prove and extend its usabil-
ity, a cloud program (app) running onAndroid used the proposed data storage services.
This app can synchronize files, contact lists, messages, and phone settings between
phones or PCs. Whenever the user uploads files, they are saved on the DaaS server. As
soon as the file is modified, the app notifies the user or automatically updates the data.

2 Background

2.1 Cloud computing

Cloud computing is an internet-based computing model. The shared software, hard-
ware, and information in this model can supply the needs of many computers and
devices. This model is simply like an electric net. Cloud computing is another huge
change in the industry after the mainframe and client-server model in the 1980s. Users
do not need to consider the details of the infrastructure in cloud, and require no pro-
fessional knowledge and direct control. Cloud computing is a new type of IT service
based on the Internet and combinedwith dynamic scalable functions and virtualization
resources. Cloud computing can be viewed at the following service levels:

• Infrastructure as a service
• Platform as a service
• Software as a service

Infrastructure as a service (IaaS) provides the capacity to provision processing, stor-
age, networks, and other fundamental computing resources where the consumer is able
to deploy and run arbitrary software, which can include operating systems and appli-
cations. The consumer does not manage or control the underlying cloud infrastructure
but has control over operating systems; storage, deployed applications, and possibly
limited control of selected networking components (e.g., host firewalls). As the level
of pooling of resources is limited, the potential economies of scale are less than those
for software as a service or platform as a service.

Platform as a service (PaaS) provides a running software stack, usually containing
proprietary programming interfaces or APIs which allow you to develop and then
run applications. The capability provided to the consumer is to deploy onto the cloud
infrastructure consumer-created or acquired applications created using programming
languages and tools supported by the provider. The consumer does not manage or con-
trol the underlying cloud infrastructure including network, servers, operating systems,
or storage, but has control over the deployed applications and possibly application
hosting environment configurations. Platform as a service may require the customer
to develop applications using service provider specific API’s.

Software as a service (SaaS) allows the customer to use the provider’s applications
running on a cloud infrastructure. The applications are accessible from various client

123



96 C.-T. Yang et al.

devices through a thin client interface such as a web browser. The customer does
not need to manage the underlying cloud infrastructure including network, servers,
operating systems, storage or even individual application capabilities,with the possible
exception of limited user-specific application configuration settings. The ability to
configure and control user-specific application configuration settings depends on the
service provider. SaaS provider has selected services which are built from the start for
delivery as SaaS and provide full control to the client companies to configure the SaaS
application to their need.

The cloud can also be divided into public cloud, private cloud, and hybrid cloud.
The public cloud provides service to everyone who can access the internet. The private
cloud provides some services for a company, government, or school employee. The
hybrid cloud includes both the private cloud and the public cloud. In this case, the
enterprise builds the private cloud first and then offers services to the public after
everything is stable.

2.2 Cloud storage

Data grid [17–23] or distributed storage systems focus on how storage can be used
efficiently, and how users can share their resources in different regions. This type of
system requires middleware to integrate and manage the distributed resources shared
by users. Metadata are needed to record these distributed resources, and is used when
a user queries a file or a resource.

Traditionally, the biggest problem for someone who has just established a website
is to provide a fast and reliable storage. Companies who have enough money can buy
ready-made products or solutions. However, this option does not work for those who
do not have enough money and can only build their own system. Acquiring scalable
and reliable storage requires an experienced engineering team and causes another large
expense and difficulty that may distract a company from its primary business. Both of
these problems lead to earlier stage cost and maintenance fees. According to Moore’s
law [61], the value of storage equipment decreases daily if not put to adequate use. In
summary, the traditional web provider spends a substantial amount of money on the
following:

• Scalable storage device
• Bandwidth
• Data center
• Power
• Failed equipment
• Maintenance

This study proposes a next generation storage service to solve this problem. The cloud
storage model provides online data storage services. The data are stored in multiple
virtual or real machines called clusters. The service is usually managed by third-party
companieswho own a large data center. People pay according to their usage and are not
concerned with maintenance problems. Some examples include Amazon S3 [24,25],
EdgeCast [26], Ceph [29], Sector [30,31], and HDFS, which is part of the Hadoop
project in the Apache Software Foundation. HDFS is a distributed file system based on

123



On construction of a distributed data storage system in cloud 97

Google GFS’s [27,28] approach. However, the HDFS is not suited for virtualization
because of its authentication strategy. Ceph is a distributed network storage and file
system designed to provide excellent performance, reliability, and scalability. Sector
can be regarded as a distributed storage/file system. However, Sector is not a generic
file system like NFS. Sector is designed for read-intensive scenarios. Because Sector
makes replicas of files on different nodes within the system, reading is much more
efficient than writing. This paper only compares the proposed approach to HDFS
because it is more stable than Ceph and Sector.

2.3 SAN and NAS

Storage area network (SAN) [32] is an architecture that connects external storage and
servers. The characteristic feature of this architecture is that a device connected to the
server has direct access to the storage equipment. However, the cost of this approach
remains too high for general use. Network attached storage (NAS) [33] is another data
storage technology that can connect to the computer network directly and provide
centralized data access to a heterogeneous network.

In virtualization computing, there is often the need to move a virtual machine (VM)
from one computer to another. Therefore, both of the computers must obtain the same
image from shared storage like SAN or NAS. The most well-known packages are
iSCSI [34] and NFS [35]. Famous open source toolkits for cloud computing include
OpenNebula [36] and Ctrix XenServer [37], which use iSCSI or NFS to move the VM.
However, both of the iSCSI and NFS are centralized storage. This creates a bottleneck
in the network and often reduces system performance.

2.4 Green computing

Green computing [38–40] attempts to effectively use energy through energy-efficient
CPUs, servers, and peripherals, and reducing resource consumption. How to reduce
power consumption, reduce CO2 emissions, and avoid unnecessary heat waste are
key to protecting the earth. Thus, the concept of green computing was born. Green
computing uses virtualization technology and power management to achieve energy
saving and reduce carbon emissions. Virtualization is one of the most effective tools
in cost-effective, energy-efficient computing. This approach divides each server into
multiple virtual machines that run different applications. This approach is so energy
friendly that companies can increase their server utilization rates.

2.5 Web service: representational state transfer (REST)

Representational state transfer (REST) [41] is a type of software architecture for dis-
tributed hypermedia systems such as theWorldWideWeb. The term Representational
State Transfer was introduced and defined in 2000 in a doctoral dissertation by Roy
Fielding. Fielding is one of the principal authors of the hypertext transfer protocol
(HTTP) specification versions 1.0 and 1.1. The concept of REST is to combine the

123



98 C.-T. Yang et al.

Table 1 HTTP methods and descriptions

HTTP method Data operate Description

POST Create Create a resource without id

GET Read Get a resource

PUT Update Update a resource or create a resource with id if not existed

DELETE Delete Delete a resource

Fig. 1 HTTP method GET do DELETE operation

Fig. 2 HTTP method POST do GET operation

two protocols HTTP and URL and how to apply in network software architecture
design.

Representational state transfer treats software as a resource and addresses the posi-
tion of resources using URL. The users can operate the resources by the methods
defined by the HTTP protocol [42,43]. The software that the REST called is a pack-
age contains data and methods of data processing. The HTTP defines six operations,
and people often use four of them: POST,GET, PUT, andDELETE. The returnmethod
also consists of two parts: status code and content (Tables 1, 2).

A network service that uses URL to access resources and send or reply to messages
according to the HTTP content is called a RESTful web service. However, in real
implementation, there is a REST-like web service simply because the programmer
needs an easier and practical approach to build it. The difference between RESTfull
and RESTfull-like is based on the early history of browsers. In the past, browsers
only implemented two methods of the HTTP: GET and POST. Thus, most of the web
services only accepted these two methods for data transfer. Furthermore, some only
applied the operation methods into GET and POST’s data elements instead of HTTP’s
method (Figs. 1, 2).

The first example shows that the browser sends a GET method. However, the real
operation in the URL is DELETE. In the second example, the browser sends a POST
method, but the operation in the form is GET. These two examples show how to violate
the definition of the HTTP. Thus, mapping the URL as /class/method/id/parameter is a
common practice. Facebook explains the REST-like service as follows: The API uses
a REST-like interface. This means that the Facebook method calls are made over the
Internet by sending HTTP GET or POST requests to the Facebook API REST server.
Nearly any computer language can be used to communicate with the REST server

123



On construction of a distributed data storage system in cloud 99

over HTTP. Compared to the SOAP, the main advantages of REST web services are
as follows:

• Lightweight—not a considerable amount of extra xml markup
• Human Readable Results
• Easy to build—no toolkits required

However, SOAP also has some advantages:

• Easy to consume—sometimes
• Rigid—type checking, adheres to a contract
• Development tools

Companies that use REST API’s have not been around for very long, and most of their
APIs came out this year. Thus, REST is definitely the trendy approach to create a web
service, if creating web services could ever be trendy.

2.6 Nonblocking I/O

In the past, JAVA users could only use blocking I/O to build their applications. Every
read/write operation is an independent blocking thread. This approach is easy to use
and involves simple logic, but this comes at the expense of poor performance as
more threads are created. New I/O, usually called NIO [43,44], is a collection of Java
APIs that provide some features for intensive I/O operations. NIO was announced by
Sun Microsystems with the JDK 1.4 release to complement an existing standard I/O.
The NIO APIs were designed to provide access to the low-level I/O operations of
modern operating systems. To avoid busy loops, NIO usually use “select” to dispatch
operations. Each channel must register operation to the selector. The selector monitors
the availability of these operations. This programming model can use only one thread
to complete all functions, limiting the number of threads.

Java NIO APIs are provided in the java.nio package and its sub packages. The
documentation by Sun Microsystems identifies the following features.

• Buffers for data of primitive types.
• Character set encoders and decoders.
• A pattern-matching facility based on Perl-style regular expressions.
• Channels, a new primitive I/O abstraction.
• A multiplexed, non-blocking I/O facility for writing scalable servers

3 System design and implementation

The main goal of this paper is to develop an elastic computing cloud that allows a
user to rent virtual computers on which to run their computer applications and also
offers an online storage service provided through a web interface. The first sub-system
focuses on storage services to offer a put/get storage service, providing a mechanism
for storing and accessing virtual machine images and user data. The second system is
to offer simple web storage for general use.

123



100 C.-T. Yang et al.

Fig. 3 Cloud infrastructure system stack

3.1 System overview

Figure 3 shows the main components of the proposed system. This system uses web-
based virtual machine management system to control the virtual machine cluster.
Each node in the clusters has a daemon virtual machine controller. This system also
contains a block distributed file system, distributed data storage (DDS), and file system
management system. The file system management system controls the user account
authentication and the space quota. The block distributed file system provides a web-
based storage, and theDDSstores virtualization images. Tomonitor thewhole system’s
healthy and loading, the system also uses a resource monitor to gather information
from each node. This paper takes over the file system, data storage, and resource
monitor.

3.2 Block distributed file system

We usedHDFS to build the block distributed file system. Because of the authentication
limitations ofHDFS, it is unsuitable to connect to public cloud. Therefore, we designed
an interface between HDFS and outside of the cloud. Developers may input or obtain
their files through this interface. To be more efficient with HDFS, the system was
optimized to speed up the transfer rates.

Hadoop distributed system was not designed for the public cloud. Thus, we devel-
oped an interface to exchange the data between private cloud and public cloud. The
interface includes FTP protocol and JAVA library. However, most of the important
commands were implemented in RFC 959. The following table shows the commands
used in this system.

123



On construction of a distributed data storage system in cloud 101

Table 2 HTTP methods and descriptions

Command Description

USER Character string allowing the user to be identified

PASS Character string specifying the user’s password

ACCT Character string representing the user’s account

CWD Change working directory

QUIT Command enabling the current session to be terminated

PORT Character string allowing the port number used to be specified

TYPE This command enables the type of format in which the data will be sent to
be specified

RETR This command (RETRIEVE) asks the server DTP for a copy of the file
whose access path is given in the parameters

STOR This command (store) asks the server DTP to accept the data sent over the
data channel and store them in a file bearing the name given in the
parameters

RNFR This command (rename from) enables a file to be renamed

RNTO This command (rename to) enables a file to be renamed

ABOR This command (abort) tells the server DTP to abandon all transfers
associated with the previous command

DELE This command (delete) allows a file to be deleted, the name of which is
given in the parameters

RMD This command (remove directory) enables a directory to be deleted

MKD This command (make directory) causes a directory to be created

PWD Print working directory

LIST This command allows the list of files and directories present in the current
directory to be resent

NLST This command (name list) enables the list of files and directories present in
the current directory to be sent

SYST This command (system) allows information on the remote server to be sent

STAT This command (status) makes it possible to transmit the status of the
server, for example to know the progress of a current transfer

HELP This command gives all the commands understood by the server

Figure 4 shows how the proposed system supports HDFS over FTP. During an FTP
connection, two transmission channels are open:

• A channel for commands (control channel).
• A channel for data.

Both the client and server have two processes that allow these two types of information
to be managed:

• Data transfer process (DTP) is the process in charge of establishing the connection
and managing the data channel. The server side DTP is called SERVER-DTP, and
the client side DTP is called USER-DTP

• Protocol interpreter (PI) interprets the protocol allowing the DTP to be controlled
using commands received over the control channel. It is different on the client and
the server.

123



102 C.-T. Yang et al.

Fig. 4 FTP network flow

3.3 System architecture distributed data storage

The reason for using block DFS to develop DDS stems from the different purposes
of the users. The first scenario of the operation is virtual image placement. A user
requests a VM and the virtual machine management system then obtains an image
from the DDS. The second scenario is when a normal user uploads to or downloads
data from the DaaS. The difference between the two scenarios is the data size. Suppose
each of the images is at least 1 GB. In the second scenario, assume the data most of the
users want to store in the DaaS is a document file, music, photos, or even high-quality
pictures. With block DFS, the data are split into fixed chunks wherever DDS does not
split data. This is one of the reasons for using block and DDS in the proposed DaaS.
Equation (1) shows that if the data size Sd is larger than the chunk size Sc, the total
transfer time Ttc increases, where St is transmit rate, Tcl is connection latency time,
and finally, Sb is block size.

Ttc = Sd
St

+ Tcl × Sd
Sb

(1)

In the real world, the image size is much larger than 1 GB and may be 10 to 50 GB.
The block size might be 64 MB, using HDFS as an example. To obtain a 50 GB image
takes TcTt+Tcl×800 assuming that the transfer time is Tt andDDS only costs Tt+Tcl .
Thus, it is much cheaper than block DFS and reduces the overhead to the data nodes.

The other reason for not simply using DDS and eliminating the block distributed
file system is because DDS does not support the append feature and it is difficult

123



On construction of a distributed data storage system in cloud 103

to integrate with map-reduce. In the second scenario, the user may want to modify
data or append new data at the end of the original data. It is a difficult task to add
a feature to the DDS. We have to care for the consistence between each replica and
lots of synchronization problems. In addition, when the system is big enough, there
are many logs to be analyzed. It is unreasonable for a cloud provider to use a single
machine for this. Thus, the proposed approach uses map-reduce [46] technology to
help reduce the time. As a result, the communication between the file systems to the
map-reduce system is critical. One of the reasons map-reduce can be faster than a
traditional computing framework like MPI [47] is because the scheduling is tight with
data instead of managing tasks or jobs by grid. Lots of work remains about how to
provide the data locality to map-reduce, and so on. The following sections introduce
some special DDS strategies.

3.4 Distributed resource monitor

A distributed resource monitor (DRM) can allow the administrator to understand the
whole cloud’s health and loading. Because lots of cluster monitor systems exist, why
should we make a new one? Consider the reasons listed below:

• Usability
• Transfer loading
• Performance
• Virtualization monitor

Most of the cluster monitor systems do not provide APIs that allow a third party to
call its functions. Thus, we cannot easily obtain useful information without native
API support. Some of the existing monitors provide APIs that can be embedded into
a customized system. However, the other question is transfer loading. Most systems
detect every type of value that we may need, but lots of data are not used. This is fine
if we have only a few machines, but if the scope expands to thousands or millions of
machines, this becomes a problem. Imagine if one possesses 1,000 nodes. Each server
sends 20 KB every 10 s, requiring 2 MB to transfer to the monitor daemon. What if
one has more than 1,000 machines or if one needs to reduce the time gap between two
transfers? The other problem is that existing cluster monitors cannot divide the nodes
according to their region or network topology.

There are three layers in the implementation: monitor head, zone head, and daemon
node. The Daemon Node detects static server information such as OS type, vendor,
memory size, swap size, disk size, etc. The daemon node sends dynamic information
(i.e., CPU utilization, memory utilization, disk utilization, and network utilization) to
the zone head at fixed intervals. As soon as the connection to the head is broken, it
automatically reconnects to the head.

The second role of the zone head is to collect all of the nodes in the region defined
by the administrator. If various racks are in the data center, the administrator set heads
one per rack. To do so, the administrator can simply specify the head’s location in
each node’s configuration file. This facilitates determining the number of racks, and
how many nodes each rack has. It is also important for use in the PaaS system. In fact,
it is necessary to determine which node is in which rack.

123



104 C.-T. Yang et al.

Fig. 5 Network topology of file system

Figure 5 shows the workflow of the monitor system. Often, a hardware switch is
used to split the nodes because of network latency and ensure the quality of transfer
while sharing data. This approach can effectively disperse transfer loading to the single
head.

The last role of the “master head” is to collect all the information from each zone
head in the cloud. The system also contains an embedded HTTP server to provide
REST-like APIs. DRM uses HTTP header authentication, and follows the RFC 2616
for responses in the header. HTTP header fields are components of the message header
of requests and responses in the HTTP. They define the operating parameters of an
HTTP transaction. The header fields are transmitted after the request or response line,
and are the first line of a message. Header fields are colon-separated name-value pairs
in clear-text string format, terminated by a carriage return (CR) and line feed (LF)
character sequence. An empty field indicates the end of the header fields, resulting in
the transmission of two consecutive CR-LF pairs.

Many serious Java programmers, especially enterprise Java programmers, consider
the new I/O API—called NIO for New Input/output—the most important feature in
the 1.4 version of the Java 2 Standard Edition. Currently, there are increasingly more
distributed web services in the world. These web services cannot operate without
socket operations. We can see into the operations and summaries to five structures.

• Read request
• Decode request
• Process service

123



On construction of a distributed data storage system in cloud 105

Fig. 6 Blocking I/O design

• Encode reply
• Send reply

Figure 6 illustrates the classic service design. Each thread starts its own handler.
This model produces more and more threads as clients increase, seriously degrading
performance.

Therefore, it is necessary to find a new solution to keep the data operation flowing
smoothly. Event-driven is the best approach. If an event occurs, it triggers its handler
and then starts data operation. The reactor responds to IO events by dispatching the
appropriate handler (Fig. 7). The handler performs non-blocking actions similar to
AWT ActionListeners. The handler also binds the handlers and events.

3.5 Implementation

This study presents an elastic, easily deployable system with high performance and
green energy consumption. The system can add new nodes whenever needed. To
achieve the green policy, we allow shutting down if there are enough servers and
provide service normally.Most of all, the proposed design save the administrator’s time
in solving system problems. One of the major differences between this approach and
other methods is that we use JAVA as our development language for implementation.
The proposed system assumes that the network is based on Ethernet and use normal
hardware instead of expensive server-level materials.

We set two roles in our system. The first is the administrator, and the second is the
end user. The administrator controls the whole system, including starting, adjusting,
and setting the system. The end user submits files to the service or downloads and
deletes data, and so on.

The system consists of a set of DDS Head, DDS Node, and Resource Monitor. The
Head restores metadata and dispatches files to nodes. The node is a standalone process

123



106 C.-T. Yang et al.

Fig. 7 Non-blocking I/O design

used only for data restore. The Resource Monitor collects performance information
from nodes and provides feedback to the Head.

The resource monitor plays a crucial role in the system because it affects the trade-
off between performance and power saving. The following description presents the
architecture stack of the monitor. The job allocator verifies whether the connection is
from subhead or node and then allocates it to the corresponding thread handler. If the
current connection is coming from the subhead, then it receives all node information in
the zone that the subhead belongs to. To improve and assess the usability of themonitor,
this study develops a web-based GUI to show how many items we provide and how
to obtain the information from the head through REST-like API. This implementation
also uses some HTML5 features (like application cache) and CSS features to reduce
the data transmission.

To demonstrate and extend the usability, this study also develops a synchronize app
on Android using the proposed DaaS service. This app can synchronize files, contact
lists, messages, and phone settings between phones or PCs. Whenever a user uploads
a file, the file is placed on the DaaS server. As soon as the file is modified, the app
notifies the user or automatically updates the data.

To demonstrate and extends the usability, we also develop a synchronize app on
Android using our DaaS service. This app can synchronize with files, contact lists,
message and phone settings between phones or PCs.Whenever the user upload file, the
file will place into DaaS server and as soon as the file is modified, the app will notify
user or automatically update data. This app uses some features of new Android APIs
like C2DM [49] and IntentService [50] to reduce power consumption and network
transmission.

The C2DM connection flow show in Fig. 8, at the beginning, we have C2DM
server provided by Google and our app server. Whenever the user register from app in
Android, it will both receive coolies from C2DM server and from our C2DM server.

123



On construction of a distributed data storage system in cloud 107

Fig. 8 The C2DM workflow

Fig. 9 Screenshot: sync on phone

After that, once there are messages for this phone, we can just send the message to
the C2DM server and then will pass to the phone. The advantage is that, in traditional
we want to check if there exists new item like mail or to update information such as
news, we need to connect to this servers and compare the version to verify if need
to download or not. These operations will waste the network packet and also battery
power because of frequent connection. With C2DM, we can only update the item after
we get a new version notify and will be more real time. The beneficial result depends
on how often the user wants to check with server in traditional way. Figure 9 shows
the operation GUI on mobile device.

123



108 C.-T. Yang et al.

Ta
bl
e
3

H
ar
dw

ar
e
sp
ec
ifi
ca
tio

n

N
od
e

C
PU

R
A
M

(G
B
)

D
is
k
sp
ee
d
(M

B
/s
)

N
et
w
or
k
sp
ee
d
(M

bp
s)

O
S
ve
rs
io
n

Ja
va

ve
rs
io
n

H
ar
dw

ar
e/
so
ft
w
ar
e
sp
ec
ifi
ca
tio

n
N
od

e
1

D
ua
lX

eo
n
E
54

10
8

47
5

94
3

U
bu
nt
u
10

.0
4
x8

6_
64

,E
X
T
4

JR
E
1.
6.
0_

24

N
od

e
2

D
ua
lX

eo
n
E
54

10
8

45
5

93
9

U
bu
nt
u
10

.0
4
x8

6_
64

,E
X
T
4

JR
E
1.
6.
0_

24

N
od

e
3

D
ua
lX

eo
n
E
54

10
8

46
0

94
0

U
bu
nt
u
10

.0
4
x8

6_
64

,E
X
T
4

JR
E
1.
6.
0_

24

N
od

e
4

D
ua
lX

eo
n
E
54

10
8

46
5

94
1

U
bu
nt
u
10

.0
4
x8

6_
64

,E
X
T
4

JR
E
1.
6.
0_

24

N
od

e
5

D
ua
lX

eo
n
E
54

10
4

48
5

93
3

U
bu
nt
u
10

.0
4
x8

6_
64

,E
X
T
4

JR
E
1.
6.
0_

24

N
od

e
6

i7
95

0
6

43
2

92
3

U
bu
nt
u
10

.0
4
x8

6_
64

,E
X
T
4

JR
E
1.
6.
0_

24

H
ea
d/
cl
ie
nt

i7
95

0
6

43
9

–
U
bu
nt
u
10

.0
4
x8

6_
64

,E
X
T
4

JR
E
1.
6.
0_

24

123



On construction of a distributed data storage system in cloud 109

Fig. 10 Experiment network topology

Table 4 Software specification
and setting arguments Version Argument/option

DDS 0.1 #Replic=3

DDS-Green
mode

0.1 #Replic = 3

leastTotalSize = 2199023255552

leastNodeSize = 107374182400

DDS-Net
optimize

0.1 #Replic = 3

datanic = eth1

NFS 4 rw,sync,no_subtree_check

iSCSI Open-iSCSI
2.0-871

N/A

HDFS 0.20.203.0 Block size = 64MB

#Replic = 3

4 Experiments and results

4.1 Experimental environment

The previous sections demonstrate the design principle and implementation methods.
This section presents several experiments conducted on seven machines within two
switches. Each nodes contained 2-GENICs, but had different CPU andmemory levels,
as Tables 3, 4 shows. Figure 10 shows the network topology of the testbed.

4.2 Experimental design

This experiment compared six topologies: DDS, DDS-Green mode, DDS-Net opti-
mize, NFS, iSCSI, and HDFS. The DDS-Green mode means enable green strategy

123



110 C.-T. Yang et al.

Fig. 11 dd command for generate test files

and set the “leastTotalSize” to 2199023255552 bytes and set the “leastNodeSize” to
107374182400 bytes. This experiment reduced the data node to three. The DDS-Net
optimize step split the network into upload channel and replication channel. The NFS
was ver. 4 and the mount option was “rw,sync,no_subtree_check”. This experiment
used Open-iSCSI ver. 2.0-871 and Hadoop 0.20.203.0. We used Linux command “dd”
[51] to generate test data from 1 kB to 32 GB (Fig. 11). We also used dd to test the
disk write performance for each node.

The first experiment compared the performance of zero-copy I/O and traditional I/O
to illustrate the level of speed enhancement provided by the zero-copy I/O. The second
and the third experiments compared the performance of DDS, HDFS, iSCSI, and NFS
in terms of upload and download speed. Both of the DDS and the HDFS were set to
have 3 replicas. Experiment 4 measured the operation time for build folder, list folder,
and delete file operations. Experiment 5 compared the performance of continuously
uploading data for 50 times. This experiment attempts to show the overhead of the
replication operation.

4.3 Experimental results

Figure 12 shows the performance enhancement using zero-copy IO. The transferTo()
API decreases the time by approximately 65 % compared to the traditional approach.
This has the potential to increase performance significantly for applications involving
a great deal of copying of data from one I/O channel to another, such as storage
systems.

1MB 2MB 4MB 8MB
16M

B
32M

B
64M

B
128
MB

256
MB

512
MB

1GB 2GB 4GB 8GB 16GB

Traditional I/O 0.648 0.713 0.873 1.262 2.019 3.11 7.771 15.22 22.59 53.52 88.95 177.6 388.6 903.4 1428

Zero-Copy I/O 0.84 1.199 0.537 0.593 0.699 0.905 1.681 5.401 9.214 8.293 21.57 49.6 52.11 156.6 722.4

0

200

400

600

800

1000

1200

1400

1600

S
ec

o
n

d

Performance comparison between traditional I/O and Zero-Copy I/O

Fig. 12 Performance comparison between traditional I/O and Zero-copy I/O

123



On construction of a distributed data storage system in cloud 111

Fig. 13 Performance comparison between DDS, HDFS and NFS on upload data with small

0

20

40

60

80

100

120

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

M
B

/s

Small File Upload Rate

DDS DDS-Green mode DDS-Net Optimize HDFS NFS

Fig. 14 Small file upload rate

Figures 13 and 14 show the upload performance for a small data set, and Figs. 15
and 16 depict a large data set. The DDS has six data nodes, the DDS-Green mode
reduces number of data nodes to three, and the DDS-Net Optimize splits the upload
channel and replication channel and has six data nodes. The HDFS based on Hadoop
version 0.21.0 has six data nodes. Both the NFS and iSCSI have only two nodes during
the test. Both DDS and Hadoop used their own copy commands, whereas the NFS
and the ISCSI were mounted as a folder and used system copy command. The iSCSI
was the fastest in the small file upload test. DDS with three different modes achieved
similar results.

These figures show that the HDFS with one replica achieved the fastest perfor-
mance. However, if we set the number of replicas to three, the performance decreases

123



112 C.-T. Yang et al.

1GB 2GB 4GB 8GB 16GB 32GB

DDS 10.639 21.469 52.08333333 123.595 210.951 381.598

DDS-Green mode 11.821 22.005 54.794 122.664 222.08 385.298

HDFS 12.928 36.727 73.349 152.248 306.883 611.699

HDFS-1 replica 10.8415 20.78775 44.5 86.132 177.188 346.156

NFS 16.246 35.718 98.275 190.571 398.343 432.014

iSCSI 13.32 27.456 74.021 148.074 304.717

0

100

200

300

400

500

600

700

S
ec

o
n

d

Large File Upload Test

Fig. 15 Performance comparison between DDS, HDFS and NFS on upload data with large file

0

20

40

60

80

100

120

1GB 2GB 4GB 8GB 16GB 32GB

M
B

/s

Large File Upload Rate

DDS DDS-Green mode HDFS HDFS-1 replica NFS iSCSI

Fig. 16 Large file upload rate

significantly, and the HDFS has the worst performance in the experiment. The DDS
was the fastest one when the data size was up to 1 GB, and the green mode achieved
almost the same speed. The iSCSI achieved impressive performance under 512MB. In
this experiment, only the HDFS split the data, suggesting that it incurs some overhead
in splitting the data.

The third experiment tested the download speed (Fig. 17, 18, 19, 20). Before the
test, we assumed that the systems should have results similar to the upload test. With
its write-once, read-many strategy, HDFS should have a faster download speed than
upload speed. The experiment results are close to these assumptions. The HDFS

123



On construction of a distributed data storage system in cloud 113

2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

DDS 0.154 0.14 0.186 0.304 0.463 0.658 1.773 2.375 4.892

DDS-Green mode 0.133 0.145 0.19 0.32 0.47 0.7 1.89 2.445 5

HDFS 0.42 0.77 0.44 0.93 0.85 1.49 2.44 4.77 7.7

NFS 0.106 0.25 0.208 0.497 0.817 1.603 2.189 4.346 6.627

iSCSI 0.049 0.07 0.119 0.23 0.424 0.83 1.465 3.48 5.87

0

1

2

3

4

5

6

7

8

9

S
ec

o
n

d

Small File Download Test 

Fig. 17 Performance comparison between DDS, HDFS and NFS on download data with small file

0

20

40

60

80

100

120

2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

M
B

/s

Small File Download Rate 

DDS DDS-Green mode HDFS NFS iSCSI

Fig. 18 Small file download rate

reduces 20–30 % time in downloading when the data exceed 1 GB, but shows lit-
tle difference for data less than 512 MB.

When the data exceed 1 GB, the NFS’s performance deteriorates. The DDS and
DDS with green mode achieved almost the same speed. The HDFS is a little slower
and stable. Figure 21 shows the DDS and HDFS operation speed test. This experiment
tested the build folder, remove folder, delete file, and list folder operations. The list
operation was the fastest. Themkdir, rmdir, and delete operations cost almost the same
time. The HDFS performs very slowly on these operations.

The last experiment tested the sequential upload speed (Fig. 22). This experiment
attempted to prove the advantages of optimized network topology. We wrote a script
to continuously upload data fifty times to the system. The difference between this
experiment and the previous upload testwas the replication influence. The previous test
uploaded the data sequentially after all replication was complete. This test introduced

123



114 C.-T. Yang et al.

1GB 2GB 4GB 8GB 16GB 32GB

DDS 11.906 24.37 47.343 96.069 256 523.366

DDS-Green mode 13.988 24.812 48.25 99.77 255.1 530.8

HDFS 18.3 28.3 62.8 125 253 511

NFS 18 27.1 60.3 131.2 280.9 551.3

iSCSI 14 25.1 56.3 120 272

0

100

200

300

400

500

600

S
ec

o
n

d

Large File Download Test

Fig. 19 Performance comparison between DDS, HDFS and NFS on download data with large file

0

20

40

60

80

100

1GB 2GB 4GB 8GB 16GB 32GB

M
B

/s

Large File Download Rate 

DDS DDS-Green mode HDFS NFS iSCSI

Fig. 20 Large file download rate

somenetwork overlapwhen uploading data and copying data forDDS.The greenmode
reduces the number of data nodes, and should therefore affect performance. For this
reason,we usedDDS supported feature to split replication channel and upload channel.

Experiment results show that theDDS’s performance is better thanHDFS.However,
the DDS performance decreases when in green mode. To achieve better performance,
the DDS feature can optimize the network by splitting the network loading. Although
this mode increases performance, it is still worse than HDFS. This may be because
there are too many I/O operations (or just more than two) to the disk. However, this
topic requires further research.

5 Conclusions and future Work

This study developed a high-speed, load-balanced, power-saving and reliable dis-
tributed data storage method to meet the needs of a virtualization management sys-

123



On construction of a distributed data storage system in cloud 115

Fig. 21 Operation test

tem. Experimental results showed that the DDS approach used some special strat-
egy like zero-copy to reduce transfer time, whereas the green strategy saved power
consumption and the replication strategy increased reliability. For the public cloud,
the proposed approach extended the functionality of HDFS by providing FTP and
REST-like protocols for those who needed cloud storage. This study also presented
an Android app that helped people synchronize their data. The proposed system
can also help administrators or developers cut their work and double their out-
put.

Although DDS achieved good performance in the experiments, it still formed a
bottleneck. The first one is IOPS. We found a phenomenon that the performance
decreased significantly whenever there were more than two IO operations to disk.
This problem can be resolved using a RAID system or SSD. However, we have
insufficient evidence to prove this. The second feature we are still implementing
is the mount feature. We are planning to use fuse so that the user can mount
the DDS as a system folder. The third planning feature is to support authentica-
tion on DDS and integrate to the main system. The last one is to support Ama-

123



116 C.-T. Yang et al.

1GB 2GB 4GB 8GB

DDS 583.209 1431.395 3211.034 7796

DDS-Green mode 812.676 1836.935 4015.943 9505.435

DDS--Green mode-Net Optimize 733.315 1577.687 3451.457 8718.255

NFS 1128.149 2148.942 4744.725 10986.383

HDFS 1022.923 1957.863 4073.671 9739.731

HDFS -3 node 1898 3762 6563.879 11424.96

iSCSI 1850.413 3868.644

0

2000

4000

6000

8000

10000

12000

S
ec

o
n

d

Continously Upload Test

Fig. 22 Performance comparison between DDS, HDFS, iSCSI and NFS on continuously upload 50 files

zon EC2 protocols. Amazon EC2 has become the most popular IaaS provider,
and most virtualization platforms already support the EC2 protocol. Therefore,
for the system to become popular, it must support this commonly used proto-
col.

Acknowledgments This work is sponsored by Tunghai University the U-Care ICT Integration Platform
for the Elderly, No.102GREEnS004-2, Aug. 2013. This work was supported in part by the National Science
Council, Taiwan ROC, under grant numbers NSC 101-2218-E-029-004 and NSC 102-2218-E-029-002.

References

1. Cloud computing, http://en.wikipedia.org/wiki/Cloud_computing#Infrastructure. Accessed 2 Apr
2014

2. Milojičić D, Llorente IM, Montero RS (2011) OpenNebula: a cloud management tool. IEEE Internet
Comput 15(2):11–14

3. Sempolinski P, Thain D (2010) A Comparison and Critique of Eucalyptus, OpenNebula and Nimbus.
Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference,
pp 417–426

123

http://en.wikipedia.org/wiki/Cloud_computing#Infrastructure


On construction of a distributed data storage system in cloud 117

4. Cordeiro T, Damalio D, Pereira N, Endo P, Palhares A, Gonçalves G, Sadok D, Kelner J, Melander B,
Souza V,Mångs J-E (2010) Open source cloud computing platforms. Grid and Cooperative Computing
(GCC) 2010 9th International Conference, pp 366–371

5. Truong HL, Dustdar S (2009) On analyzing and specifying concerns for data as a service. Services
Computing Conference, 2009. APSCC 2009. IEEE Asia-Pacific, pp 87–94

6. TruongHL,Dustdar S (2010)On evaluating and publishing data concerns for data as a service. Services
Computing Conference (APSCC), 2010 IEEE Asia-Pacific, pp 363–370

7. Dapeng J, Liu C, Wang D, Liu H, Tang Z (2009) Performance comparison of IP-networked storage.
Tsinghua Sci Technol 14(1):29–40

8. Wang D, Meeting Green Computing Challenges (2007) High density packaging and microsystem
integration. HDP ’07. International Symposium, pp 1–4

9. Mackey G, Sehrish S, JunW (2009) Improving metadata management for small files in HDFS. Cluster
Computing and Workshops, 2009. CLUSTER ’09. IEEE International Conference, pp 1–4

10. Shafer J, Rixner S, Cox AL (2010) The hadoop distributed filesystem: balancing portability and per-
formance. IEEE, Houstan, pp 122–133

11. Jiang L, Li B, Song M (2010) The optimization of HDFS based on small files. Broadband Network
and Multimedia Technology (IC-BNMT), 2010 3rd IEEE International Conference, pp 122–133

12. Barlet-Ros P, Iannaccone G, Sanjuas-Cuxart J, Sole-Pareta J (2011) Predictive resource management
of multiple monitoring applications. Netw IEEE/ACM Trans 19(3):788–801

13. Cheng Guang, Gong Jian (2007) A resource-efficient flow monitoring system. Commun Lett IEEE
11(6):558–560

14. School of Computer Science Northwestern Polytechnical University Xi’an, China (2009) An adap-
tive resource monitoring method for distributed heterogeneous computing environment. Parallel and
Distributed Processing with Applications, 2009 IEEE International Symposium, pp 40–44

15. Miettinen T, Pakkala D, HongistoM (2008) Amethod for the resource monitoring of OSGi-based soft-
ware components. SoftwareEngineering andAdvancedApplications, 2008. SEAA’08. 34thEuromicro
Conference, pp 100–107

16. Wang CC, Chen YM, Weng CH, Chung TY (2006) An overlay resource monitor system. Advanced
Communication Technology, 2006. ICACT 2006. The 8th International Conference, vol 3, pp 5

17. Düllmann D, Hoschek W, Jaen-Martinez J, Segal B (2001) Model for replica synchronization and
consistency in a data grid. The IEEE International Symposium on High Performance Distributed
Computing, San Francisco, pp 67–75

18. Xu P, Huang X, Wu Y, Liu L, Zheng W (2009) Campus cloud for data storage and sharing. Grid and
Cooperative Computing, 2009. GCC ’09. Eighth International Conference, pp 244–249

19. Zeng W, Zhao Y, Song W (2009) Research on cloud storage architecture and key technologies. ICIS
2009, ACM, Nov 24–26

20. Ying Z, Yong S (2009) Cloud storage management technology. In: Proceedings of the 2009 Second
International Conference on Information and Computing Science, pp 309–311, May 21–22

21. Hirofuchi T, Nakada H, Ogawa H, Itoh S, Sekiguchi S (2009) A live storage migration mechanism over
wan and its performance evaluation. In: Proceedings of the 3rd internationalworkshop onVirtualization
technologies in distributed computing, June 15–15, 2009, Barcelona, Spain

22. Bertino E, Maurino A, Scannapieco M (2010) Guest editors’ introduction: data quality in the internet
aera. IEEE Internet Comput 14:11–13

23. Carns P, Lang S, Ross R,VilayannurM,Kunkel J, Ludwig T (2009) Small-file access in parallel file sys-
tems. In: Proceedings of the 23rd IEEE International Parallel and Distributed Processing Symposium,
pp 1–11

24. Amazon S3, http://en.wikipedia.org/wiki/Amazon_S3. Accessed 2 Apr 2014
25. Amazon Simple Storage Service, http://aws.amazon.com/s3/. Accessed 2 Apr 2014
26. EgeCast, http://www.edgecast.com/. Accessed 2 Apr 2014
27. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE

(2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26(2):4
28. Ghemawat S, Gobioff H, Leung ST (2003) The google file system. SOSP’03: Proceedings of the

nineteenth ACM symposium on Operating systems principles. ACM Press, New York, pp 29–43
29. Ceph, http://ceph.newdream.net/. Accessed 2 Apr 2014
30. Gu Y, Lu L, Robert G, Andy Y (2010) Processing massived sized graphs using sector/sphere. 3rd

Workshop on Many-Task Computing on Grids and Supercomputers, co-located with SC10. LA, New
Orleans 15

123

http://en.wikipedia.org/wiki/Amazon_S3
http://aws.amazon.com/s3/
http://www.edgecast.com/
http://ceph.newdream.net/


118 C.-T. Yang et al.

31. Gu Y, Robert G (2009) Sector and sphere: the design and implementation of a high performance
data cloud. Theme Issue Philos Trans R Soc A Crossing Bound Comput Sci E-Sci Glob E-Infrastruct
367(1897):2429–2445

32. SAN, http://en.wikipedia.org/wiki/Storage_area_network. Accessed 2 Apr 2014
33. NAS, http://en.wikipedia.org/wiki/Network-attached_storage. Accessed 2 Apr 2014
34. iSCSI, http://en.wikipedia.org/wiki/ISCSI. Accessed 2 Apr 2014
35. NFS, http://en.wikipedia.org/wiki/Network_File_System_(protocol). Accessed 2 Apr 2014
36. OpenNeBula, http://opennebula.org/. Accessed 2 Apr 2014
37. Ctrix XenServer, http://www.citrix.com/. Accessed 2 Apr 2014
38. Lo CTD, Qian K (2010) Green computing methodology for next generation computing scientists.

Computer Software and Applications Conference (COMPSAC), 2010 IEEE 34th Annual, pp 250–251
39. Giroire F, Guinand F, Lefevre L, Torres J (2010) Energy-aware, power-aware, and green computing

for large distributed systems and applications. High Performance Computing and Simulation (HPCS)
2010 International Conference, pp 4–47

40. Zhong B, Feng M, Lung CH (2010) A green computing based architecture comparison and analysis.
Green Computing and Communications (GreenCom), 2010 IEEE/ACM Int’l Conference on and Int’l
Conference on Cyber, Physical and Social Computing (CPSCom), pp 386–391

41. Richardson L, Ruby S(2007) Restful web services, 1st edn. O’Reilly Media, May 15
42. RFC 2616, http://tools.ietf.org/html/rfc2616. Accessed 2 Apr 2014
43. Roy FT, Gettys J, Mogul JC, Frystyk NH, Masinter L, Leach P, Berners-Lee J (1999) RFC 2616:

Hypertext Transfer Protocol–HTTP/1.1
44. NIO, http://en.wikipedia.org/wiki/New_I/O. Accessed 2 Apr 2014
45. JSR 203: More New I/O APIs for the JavaTM Platform (“NIO.2”) (2009) The Java Community

Process(SM) Program-JSRs: Java Specification Requests. Retrieved May 23, 2009
46. MapReduce, http://en.wikipedia.org/wiki/MapReduce/. Accessed 2 Apr 2014
47. MPI, http://en.wikipedia.org/wiki/Message_Passing_Interface. Accessed 2 Apr 2014
48. Wake on LAN, http://en.wikipedia.org/wiki/Wake_on_lan. Accessed 2 Apr 2014
49. C2DM, https://code.google.com/p/chrometophone/. Accessed 2 Apr 2014
50. Intent service, http://developer.android.com/reference/android/app/IntentService.html. Accessed 2

Apr 2014
51. dd, http://en.wikipedia.org/wiki/Dd_(Unix). Accessed 2 Apr 2014
52. Wang L, Chen D, Hu Y, Ma Y, Wang J (2013) Towards enabling cyberinfrastructure as a service in

clouds. Comput Electr Eng 39(1):3–14
53. Wang L, Chen D, Zhao J, Tao J (2012) Resource management of distributed virtual machines. IJAHUC

10(2):96–111
54. Wang L, KunzeM, Tao J, von Laszewski G (2011) Towards building a cloud for scientific applications.

Adv Eng Softw 42(9):714–722
55. Wang L, Chen D, Huang F (2011) Virtual workflow system for distributed collaborative scientific

applications on grids. Comput Electr Eng 37(3):300–310
56. Wang L, von Laszewski G, Kunze M, Tao J, Dayal J (2010) Provide virtual distributed environments

for grid computing on demand. Adv Eng Softw 41(2):213–219
57. Wang L, von Laszewski G, Tao J, Kunze M (2010) Virtual data system on distributed virtual machines

in computational grids. IJAHUC 6(4):194–204
58. Wang L, Tao J, Ranjan R, Marten H, Streit A, Chen J, Chen D (2013) G-Hadoop: MapReduce across

distributed data centers for data-intensive computing. Future Gener Comput Syst 29(3):739–750
59. Zhang W, Wang L, Liu D, Song W, Ma Y, Liu P, Chen D (2013) Towards building a multi-

datacenter infrastructure for massive remote sensing image processing. Concurrency Comput Pract
Exp 25(12):1798–1812

60. Ma Y, Wang L, Liu D, Yuan T, Liu P, Zhang W (2013) Distributed data structure templates for data-
intensive remote sensing applications. Concurrency Comput Pract Exp 25(12):1784–1797

61. http://en.wikipedia.org/wiki/Moore’s_law. Accessed 2 Apr 2014

123

http://en.wikipedia.org/wiki/Storage_area_network
http://en.wikipedia.org/wiki/Network-attached_storage
http://en.wikipedia.org/wiki/ISCSI
http://en.wikipedia.org/wiki/Network_File_System_(protocol)
http://opennebula.org/
http://www.citrix.com/
http://tools.ietf.org/html/rfc2616
http://en.wikipedia.org/wiki/New_I/O
http://en.wikipedia.org/wiki/MapReduce/
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Wake_on_lan
https://code.google.com/p/chrometophone/
http://developer.android.com/reference/android/app/IntentService.html
http://en.wikipedia.org/wiki/Dd_(Unix)
http://en.wikipedia.org/wiki/Moore's_law

	On construction of a distributed data storage system  in cloud
	Abstract
	1 Introduction
	2 Background
	2.1 Cloud computing
	2.2 Cloud storage
	2.3 SAN and NAS
	2.4 Green computing
	2.5 Web service: representational state transfer (REST)
	2.6 Nonblocking I/O

	3 System design and implementation
	3.1 System overview
	3.2 Block distributed file system
	3.3 System architecture distributed data storage
	3.4 Distributed resource monitor
	3.5 Implementation

	4 Experiments and results
	4.1 Experimental environment
	4.2 Experimental design
	4.3 Experimental results

	5 Conclusions and future Work
	Acknowledgments
	References




