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Abstract The PEPPHER (EU FP7 project) component model defines the notion of
component, interface and meta-data for homogeneous and heterogeneous parallel sys-
tems. In this paper, we describe and evaluate the PEPPHER composition tool, which
explores the application’s components and their implementation variants, generates
the necessary low-level code that interacts with the runtime system, and coordinates
the native compilation and linking of the various code units to compose the overall
application code to optimize performance. We discuss the concept of smart containers
and its benefits for reducing dispatch overhead, exploiting implicit parallelism across
component invocations and runtime optimization of data transfers. In an experimental
evaluation with several applications, we demonstrate that the composition tool pro-
vides a high-level programming front-end while effectively utilizing the task-based
PEPPHER runtime system (StarPU) underneath for different usage scenarios on GPU-
based systems.

Keywords PEPPHER project · Component model · GPU-based systems ·
Performance portability · Dynamic scheduling
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1 Introduction

The PEPPHER framework [1], developed by the European FP7 project PEPPHER
2010–2012, is a unified approach for programming and optimizing applications for

U. Dastgeer (B) · L. Li · C. Kessler
PELAB, Department of Computer and Information Science,
Linköping University, Linköping, Sweden
e-mail: usman.dastgeer@liu.se
URL: http://www.ida.liu.se/

123



1196 U. Dastgeer et al.

heterogeneous many-core systems to enable performance portability. It consists of
three main parts: (1) a flexible and extensible component model for encapsulating
and annotating performance critical parts of the application, (2) adaptive algorithm
libraries that implement the same basic functionality across different architectures,
and (3) an efficient run-time system that schedules compiled components across the
available resources, using performance information provided by the components layer
as well as other, execution-history-based performance information.

The PEPPHER component model defines an environment for annotation of native
C/C++ based components for homogeneous and heterogeneous multicore and many-
core systems, including GPU and multi-GPU based systems. For the same compu-
tational functionality, captured as a component, different sequential and explicitly
parallel implementation variants using various types of execution units might be pro-
vided, together with metadata such as explicitly exposed tunable parameters. The goal
is to compose an application from its components and variants such that, depend-
ing on the run-time context, the most suitable implementation variant will be chosen
automatically for each invocation.

In this article, we present the PEPPHER composition tool, which adapts applica-
tions written using the PEPPHER component model to effectively exploit the capa-
bilities offered by the runtime system. It gathers important information about the
application and its components from their XML-based metadata descriptors, uses that
information for static composition and generates glue code creating tasks for the PEP-
PHER runtime system (which is based on StarPU [2]) for dynamic composition. We
evaluate the composition capabilities of our composition tool with several applications
from the RODINIA benchmark suite [3] and other sources. Following are the major
contributions of our work:

– Composition tool for automatically composing performance-aware applications
for GPU-based systems, offering both static and dynamic composition capabilities
at a higher abstraction level.

– Smart containers, generic STL-like container data structures such as Vector and
Matrix that can be used for wrapping native operand data of components and that
provide several automatic optimizations: By keeping track of operand data copies
in the different memory units at runtime, a smart container allows to automatically
eliminate some unnecessary data transfers, e.g. between GPU device memory and
main memory. It also reduces task creation overhead and enables the automatic
exploitation of implicit parallelism across several component invocations by track-
ing container data flow.

– Evaluation of different composition capabilities of our composition tool with real
applications taken from RODINIA benchmarks and other sources.

The remainder of this article is organized as follows: Section 2 describes central con-
cepts of the PEPPHER component model. Sections 3 and 4 describe the composition
tool, its advanced features and its current prototype implementation. Section 5 presents
a comprehensive experimental evaluation of the developed prototype. Section 6 dis-
cusses related work and Sect. 7 concludes the article.
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2 Components, interfaces, implementations

A PEPPHER component is an annotated software module that implements a specific
functionality declared in a PEPPHER interface. A PEPPHER interface is defined by
an interface descriptor, an XML document that specifies the name, parameter types
and access types (read, write or both) of a function to be implemented, and which per-
formance metrics (e.g. execution time) the prediction functions of component imple-
mentations must provide. Interfaces can be generic in static entities such as element
types or code; genericity is resolved statically by expansion, as with C++ templates.

Applications for PEPPHER are currently assumed to be written in C/C++. Sev-
eral implementation variants may implement the same functionality (as defined by a
PEPPHER interface), e.g. by different algorithms or for different execution platforms.
These implementation variants can exist already as part of some standard library1 or
can be provided by the programmer (called expert programmer by Asanovic et al. [6]).
Also, more component implementation variants may be generated automatically from
a common source module, e.g. by special compiler transformations or by instantiating
or binding tunable parameters. These variants differ by their resource requirements
and performance behavior, and thereby become alternative choices for composition
whenever the (interface) function is called.

In order to prepare and guide variant selection, component implementations need to
expose their relevant properties explicitly to a composition tool (described later). Each
PEPPHER component implementation variant provides its own component descrip-
tor, an XML document that contains information (meta-data) about the provided and
required interface(s), source files, compilation and resource requirements and refer-
ence to performance prediction functions. The main module of a PEPPHER applica-
tion is also annotated by its own XML descriptor, which states e.g. the target execution
platform and the overall optimization goal. XML descriptors are chosen over code-
annotations (e.g. pragmas) as the former are non-intrusive to the actual source code and
hence provide better separation of concerns. The potential headache associated with
writing descriptors in XML is eliminated to a great extent by providing tool support,
as shown later. Composition points of PEPPHER components are restricted to calls on
general-purpose execution units only. Consequently, all component implementations
using hardware accelerators such as GPUs must be wrapped in CPU code containing
a platform-specific call to the accelerator.

Component invocations result in tasks that are managed by the PEPPHER run-
time system and executed non-preemptively. PEPPHER components and tasks are
stateless. However, the parameter data that they operate on may have state. For this
reason, parameters passed in and out of PEPPHER components may be wrapped in
special portable, generic, STL-like container data structures such as Vector and
Matrix with platform-specific implementations that internally keep track of, e.g.,
in which memory modules of the target system which parts of the data are currently
located or mirrored (smart containers). When applicable, the container state becomes
part of the call context information as it is relevant for performance prediction.

1 For demonstration purpose, we have used CUBLAS [4] and CUSP [5] components for CUDA imple-
mentations as shown in Sect. 5.
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The PEPPHER framework automatically keeps track of the different implemen-
tation variants for the identified components, technically by storing their descriptors
in repositories that can be explored by the composition tool. The repositories enable
organization of source-code and XML annotation files in a structured manner and can
help keeping files manageable even for a large project.

3 Composition tool

Composition is the selection of a specific implementation variant (i.e., callee) for a call
to component-provided functionality and the allocation of resources for its execution.
Composition is made context-aware for performance optimization as performance
depends on the current call context, which consists of selected input parameter prop-
erties (such as size) and currently available resources (such as cores or accelerators).
The context parameters to be considered and optionally their ranges (e.g., minimum
and maximum value) are declared in the PEPPHER interface descriptor. We refer to
this considered subset of a call context instance’s parameter and resource values shortly
as a context instance, which is thus a tuple of concrete values for context properties
that might influence callee selection.

Composition can be done either statically or dynamically. Static composition con-
structs off-line a dispatch function that is evaluated at runtime for a context instance to
return a function pointer to the expected best implementation variant. Dynamic compo-
sition generates code that delegates the actual composition to a context-aware runtime
system that records performance history to be used and updated as the application pro-
ceeds. Composition can even be done in multiple stages: First, static composition can
narrow the set of candidates for the best implementation variant per context instance
to a few ones that are registered with the context-aware runtime system that takes the
final choice among these at runtime.

Dynamic composition is the default composition mechanism in PEPPHER. The
PEPPHER composition tool deploys the components and builds an executable appli-
cation. It recursively explores all interfaces and components that (may) occur in the
given PEPPHER application by browsing the interfaces and components repository.
It processes the set of interfaces (descriptors) bottom-up in reverse order of their com-
ponents’ required interfaces relation (lifted to the interface level). For each interface
(descriptor) and its component implementations, it performs the following tasks:

1. It reads the descriptors and internally represents the metadata of all component
implementations that match the target platform, expands generic interfaces and
components, and generates platform-specific header files from the interface.

2. It looks up prediction data from the performance data repository or runs
microbenchmarking code on the target platform, as specified in the components’
performance meta-data.

3. It generates composition code in the form of stubs (proxy or wrapper functions) that
will perform context-aware composition at runtime. If sufficient performance pre-
diction metadata is available, it constructs performance data and dispatch tables for
static composition by evaluating the performance prediction functions for selected
context scenarios which could be compacted by machine learning techniques [7].
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Otherwise, the generated composition code contains calls to delegate variant selec-
tion to runtime, where the runtime system can access its recorded performance
history to guide variant selection, in addition to other criteria such as operand data
locality.

4. It calls the native compilers, as specified for each component, to produce a binary
of every patched component source.

Finally, it links the application’s main program and its compiled components together
with the generated and compiled stubs, the PEPPHER library and the PEPPHER
runtime system to obtain an executable program. The linking step may be architecture
dependent (e.g., special handling of different executable formats may be required);
the necessary command can be found in the application’s main module descriptor.

4 Prototype implementation

A prototype of the composition tool has been implemented that supports both static
and dynamic composition. For dynamic composition, the composition tool generates
low-level code to interact with the runtime system in an effective manner. Further-
more it supports component expansion for generic components written using C++
templates as well as user-guided and offline learning based static narrowing of the set
of candidates. In this section we describe its design, main features and implementation
issues. Figure 1 shows a high-level schematic view of the prototype. Similar to typical
compiler frameworks, we decouple composition processing (e.g., static composition
decisions) from the XML schema by introducing an intermediate component-tree
representation (IR) of the metadata information for the processed component inter-
faces and implementations. The IR incorporates information not only from the XML
descriptors but also information given at composition time (i.e., composition recipe).
The IR can be processed for different purposes, including:

– Creating multiple concrete components from generic components by expanding
template types and tunable parameters,

– Training executions to prepare for composition decisions,
– Static composition (e.g. using offline learning), and
– Generating code that is executable with the PEPPHER runtime system.

Fig. 1 Structural overview of the composition tool prototype
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4.1 Static composition

Static composition refers to refining the composition choices at compile time, in the
extreme case to one possible candidate per call and context instance. Currently, we
support two kinds of static composition: The user-guided static composition provides
a means for the programmer to convey to the composition tool additional expert knowl-
edge about the context that may influence the composition process. For example, a
GPU implementation normally runs faster than its CPU counterpart for data paral-
lel problems with large problem size; thus if such information is statically known,
programmers may explicitly specify to compose the GPU implementation, and the
overhead of the dynamic composition and the risk of wrong dynamic selection can be
removed. The composition tool provides simple switches (e.g., disableImpls) to
enable/disable implementations at composition time without requiring any modifica-
tions in the user source-code.

Besides user guided static composition, we provide an adaptive off-line sampling
and learning method to build empirical performance models for components and
their implementation variants off-line in order to complement or replace the on-line
sampling and learning done in the run-time system. We provide an adaptive sampling
method that allows to optimize off-line sampling cost and runtime dispatch overhead
while keeping prediction accuracy at a reasonable level. The details of our adaptive
off-line sampling and learning method are presented elsewhere [8].

4.2 Component expansion

Component expansion supports genericity on the component parameter types using
C++ templates. This enables writing generic components such as sorting that can be
used to sort different types of data. The expansion takes place statically. Component
expansion for multiple values of tunable parameters to generate multiple implemen-
tation variants from a single source is not supported yet and is part of future work.

4.3 Code generation

For each component interface, the composition tool generates a wrapper that intercepts
each invocation of the component and implements logic to translate the call to one
or more tasks for the runtime system. It also performs packing and unpacking of
the call arguments to the PEPPHER runtime task handler. The directory structure
provides one directory for the main component of the application and one directory
for each component used. The different available implementations of a component are
organized by platform type (e.g., CPU/OpenMP, CUDA) in different subdirectories.
A global registry of interfaces, implementations and platforms helps the composition
tool to navigate this structure and locate the necessary files automatically.

The tool generates wrapper (stub) files providing wrapper functions for different
components. Currently, one wrapper file is generated per component, containing one
entry wrapper and multiple implementation wrappers. The entry wrapper for a com-
ponent intercepts the component invocation call and implements logic to translate
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that component call to one or more tasks in the runtime system. A task execution
can either be synchronous where the calling thread blocks until the task completes
or asynchronous where the control resumes on the calling thread without waiting
for the task completion. The entry wrapper also performs packing and unpacking of
arguments of a component call to the PEPPHER runtime task handler. One implemen-
tation wrapper for a component is generated for each component implementation.
Multiple component implementations (and consequently implementation wrappers)
can exist for each backend (currently, CPU/OpenMP, CUDA, OpenCL). A implemen-
tation wrapper implements the function signature
void <name >(void *buffers[],void *arg)

that the runtime system expects for a task function,2 and internally delegates the call
to the actual component implementation with a different function signature.

Moreover, a header file (peppher.h) is generated which internally includes all
wrapper files and also contains certain other helping code (e.g., extern declarations).
The idea of this header file is to provide a single linking point between the generated
code and the normal application code. The main program writer only needs to include
this header file to enable the composition. Compilation code (Makefile) is also
generated for compiling and linking the selected (composed) components to build an
executable application for a given platform.

4.4 Usage of smart containers

A smart container can wrap operand data passed in and out of PEPPHER components
while providing a high-level interface to access that data. Smart containers model
and encapsulate the state of their payload data. Four smart containers are currently
implemented: for scalar value (Scalar), 1D array (Vector), 2D array (Matrix)
and generic matrix (GMatrix). The GMatrix container can internally store data in
different formats (2D dense, CSR sparse format etc.). All four containers are made
generic in the element type, using C++ templates. The containers internally implement
interaction with the data management API of the PEPPHER runtime system while
ensuring data consistency for data that can be accessed both by the runtime system
and the application program in an arbitrary fashion. More precisely, these containers
allow multiple copies of the same data on different memory units (CPU, GPU memory)
at a certain time while ensuring consistency. For example, for a vector object that was
last changed by a component call executed on a GPU, the vector data is copied back
implicitly from GPU memory (i.e. enforce consistency) only when data is actually
accessed in the application program (e.g. detected using the [] operator for vector
objects). The containers are made portable and function as regular C++ containers
outside the PEPPHER context.

Note that the composition tool also supports parameters of any other C/C++
datatypes (including user-defined datatypes) for components. However, for parame-
ters passed using normal C/C++ datatypes, the composition tool cannot reason about

2 As the PEPPHER runtime system is C based and the C language does not permit to call functions with
varying types depending on the actual task being run.
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Fig. 2 Example for usage of smart containers with component calls and other user code. The middle part
shows a code scenario with four component calls and one vector operand on a system containing 1 CPU and
1 CUDA GPU. The effect of each instruction on the state of the data is also shown right for each instruction,
assuming the four component calls are executed on the GPU. The left part highlights inter-component
parallelism for asynchronous component executions based on data dependencies

their access patterns in the application program (due to pointer-aliasing and other
issues) and hence ensures data consistency by always copying data back to the main
memory before returning control back from the component call. Although ensuring
consistency, it may prove sub-optimal as data locality cannot be exploited for such
parameters across multiple component calls.

4.5 Inter-component parallelism

In the PEPPHER framework, a major source of parallelism comes from exploita-
tion of independence between different component invocations. This can be obtained
when a component invocation is made asynchronous so that subsequent component
invocations can overlap in the actual execution. By using the smart containers, the
independence between different asynchronous component invocations is implicitly
inferred by the PEPPHER runtime system based on data dependencies [2].

Figure 2 depicts how usage of smart containers can help in achieving inter-
component parallelism. The figure shows a simple scenario with four component calls
and one vector operand on a system containing 1 CPU and 1 CUDA GPU. When the
vector container v0 is created, the payload data is placed in the main memory (mas-
ter copy). Subsequently, depending upon the component calls using that data along
their respective data access pattern (read, readwrite or write), other (partial) copies of
operand data may get created in different memory units. In this case, we have CUDA
device memory which has a separate address space than main memory. Assuming that
all component calls are actually executed on the GPU, the figure also shows the effect
of each instruction execution on the vector data state, i.e., creation/update/invalidation
of data copies. As we can see, a PEPPHER container not only keeps track of data
copies on different memory units but also helps in minimising the data communica-
tion between different memory units by delaying the communication until it becomes
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necessary. In this case, only 2 copy operations of data are made in the shown pro-
gram execution instead of 7 copy operations which are required if one considers each
component call independently, as done in e.g., Kicherer et al. [9,10].

The first component call (line 4) only writes the data and hence no copy is made.
Instead, just a memory allocation is made in the device memory where data is written
by the component call. After the completion of the component call (line 4), the master
copy in the main memory is marked outdated which means that any data access to this
copy, in future, would first require update of this copy with the contents of the latest
copy. The next statement (line 6) is actually a read data access3 from main memory.
As the master copy was earlier marked outdated, a copy from device memory to main
memory is implicitly invoked before the actual data access takes place. This is man-
aged by the container in a transparent and consistent manner without requiring any
user intervention. The copy in the device memory remains valid as the master copy
is only read. Next, we have a component call (line 8) that both reads and modifies
the existing data. As we assume execution of all component calls on the GPU in this
scenario, the up-to-date copy already present in the device memory is read and modi-
fied. The master copy again becomes outdated. Afterwards, we have two component
calls (line 10 and 12) that both only read the data. Executing these operations on the
GPU means that no copy operation is required before or after the component call.
Finally the statement in line 14 modifies the data in main memory so data is copied
back (implicitly) from the device memory to the main memory before the actual oper-
ation takes place. Afterwards, the copy in the device memory is marked outdated
and can be de-allocated by the runtime system if it runs short of memory space on
the device unit. Doing so would however require re-allocation of memory for future
usage.

As all four component calls are asynchronous, the inter component parallelism is
automatically inferred by the runtime system based on data dependencies. In this case,
there exists a read-after-write dependency between first (line 4) and second (line 8)
component call; however, independence exists between third (line 10) and fourth (line
12) component call as they access the same data but in a read only manner.

In the application program, the execution looks no different to the synchronous
execution as data consistency is ensured by the smart containers. Blocking is implicitly
established for a data access from the application program to a data that is still in use
with the asynchronous component invocations made earlier (with respect to program
control flow) than the current data access.

4.6 Intra-component parallelism

A common source of intra-component parallelism is a parallel component implemen-
tation, e.g. a CUDA or OpenMP implementation. However, for certain computations,
more parallelism can be spawned from a single component invocation by partitioning
and dividing the work into several chunks that all can be processed concurrently, pos-

3 The read and write accesses to container data are distinguished by implementing proxy classes for element
data in C++ [11].
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sibly on different devices. This is achieved by mapping a single component invocation
to multiple independent runtime (sub-)tasks rather than a single task where these (sub-
)tasks can be executed on different computing units in parallel. This feature is imple-
mented for data-parallel computations where the final result can be produced either by
simple concatenation or simple reduction of intermediate output results produced by
each sub-task (e.g. blocked matrix multiplication, dotproduct). When applicable, this
feature can be used in a transparent manner as it does not require any modification in
the user code and/or component implementations.

4.7 Support for performance-aware component selection

In the current prototype, the actual implementation variant selection is done by default
using the dynamic scheduling capabilities of the PEPPHER runtime system. The actual
implementation of performance-aware selection is made transparent in the prototype
by providing a simple boolean flag (useHistoryModels). The support can be
enabled/disabled both for an individual component by specifying the boolean flag in
the XML descriptor of that component interface or globally for all components as a
command line argument to the composition tool.

4.8 Utility mode

Porting existing applications to PEPPHER framework (PEPPHER-ization) requires
writing XML descriptors for interface and implementations as well as adding new
implementation variants. To facilitate this process, the current prototype can generate
a basic skeleton of these XML and C/C++ source files required for writing PEPPHER
components from a simple C/C++ method declaration. This can be really advantageous
as writing XML files from scratch can become a tedious task. Our experience with
porting several applications shows that the XML skeleton generation by the tool is
quite useful as we are required to only fill in certain missing information. For example,
the tool can successfully detect template parameters as well as suggest values for the
data access pattern field of the descriptors by analyzing ‘const’ and ‘pass by reference’
semantics of the function arguments.

5 Evaluation

For evaluation, we implemented (PEPPHERized) several applications from the
RODINIA benchmark suite [3], two scientific kernels (dense matrix-matrix and sparse
matrix-vector multiplication) and a light-field image refocusing application, using the
composition tool. Two evaluation platforms are used: The main evaluation platform is
System A with Xeon® E5520 CPUs running at 2.27 GHz with 2 NVIDIA® C2050 GPUs
with L1/L2 cache support. System B with Xeon® X5550 CPUs running at 2.67 GHz
with a lower-end GPU (NVIDIA® C1060 GPU) is used for showing performance
portability.
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Fig. 3 Directory structure before and after generation of the basic PEPPHER component skeleton files
from a simple C/C++ header file containing a method declaration. The main work left for the programmer
is now to fill in the implementation details in the XML descriptor fields and provide the implementation
variants’ code, which can be facilitated by the existence of architecture-specific algorithms and libraries

Composition example In the following, we will use the sparse matrix-vector multi-
plication to describe the complete composition (PEPPHER-ization) process.

The process starts with generation of basic skeleton files for components from a
C/C++ header file that includes the method signature

void spmv(float *values , int nnz , int nrows , int ncols , int first ,
size_t *colidxs , size_t *rowPtr , float *x, float *y);

The composition tool can be invoked to generate component skeleton files from
this method declaration: As shown in Fig. 3, the command

compose -generateCompFiles ="spmv.h"

generates the XML descriptors with most information pre-filled as well as basic
skeletons for implementation files. The programmer can then fill in the remain-
ing details both in the XML descriptors (e.g. preferences for partitioning of
input operands etc.) as well as the implementation files. For this example appli-
cation, we used one parallel OpenMP implementation for CPUs and a highly
optimized CUDA algorithm provided by NVIDIA as part of their CUSP library
[5]. In the application’s main module main.cpp, we only need to add one
include statement for peppher.h and calls to PEPPHER_INITIALIZE() and
PEPPHER_SHUTDOWN() macros in the beginning and end of the main function,
which in this case contains just a call to the spmv component. The last step is writing
of the XML descriptor (main.xml) for the main function. The composition tool can
now be called for generating composition code, by giving a reference to the main
descriptor:

compose main.xml

This generates all the wrapper files and compilation code (makefile), necessary to
compile and build the executable with the runtime support. The resulting executable
can then be executed on the given platform.
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Table 1 Showing saving in total source LOC (Lines of Code) written by the programmer when using the
composition tool compared to an equivalent code written directly using the runtime system

Application Savings (LOC, %) Application Savings (LOC, %)

bfs 108, 42 cfd 123, 62

hotspot 120, 37 lud 76, 15

nw 90, 25 particlefilter 96, 15

pathfinder 89, 48 nn 101, 41

streamcluster 84, 5 leukocyte 271, 8

b+tree 211, 10 lavaMD 94, 22

spmv 83, 29 sgemm 89, 63

Image refocusing 113, 11 ODE solver 452, 57

Productivity evaluation The current composition tool prototype generates low-level
glue code to use the runtime system. This essentially allows application programs to
run using the runtime system without requiring the programmer to actually write code
for the runtime system. In the following, we compare how much we gain in terms of
programming effort with this code generation functionality.

Table 1 shows a simple comparison of the source code written by the programmer
when doing hand-written implementations for the runtime system compared to when
using the composition tool. The comparison is done using standard LOC (Lines Of
Code) metric [12] for all applications. For the ODE Solver application, we have con-
sidered LOC related to the ODE solver, and not the complete LibSolve library which
contains more than 12,000 LOC. As we can see in Table 1, savings in terms of LOC
are significant (up to 63 % for cfd and sgemm). These savings become even more
significant considering the fact that the source code for the runtime system is at a low
level of abstraction (plain C) and requires handling concurrency issues associated with
asynchronous task executions.

The above comparison does not consider the XML descriptors which one needs
to provide when using the composition tool. However, this is justified as the XML
descriptor skeletons generated automatically from the C/C++ function declaration are
already quite concise. For all these applications, we have used the XML descriptor
generation feature of the composition tool to generate the XML descriptors and have
just filled in the missing information (e.g., values for partitioning attribute).

In the remaining part of this section, we will evaluate the efficiency of the generated
code by performance evaluation.

Hybrid execution As discussed in Sect. 4.6, a key aspect of the PEPPHER component
model is hybrid execution where, instead of using either CUDA or OpenMP imple-
mentation, the execution work is partitioned into multiple parts which can be processed
concurrently, possibly on different devices by different component implementations.
Figure 4 shows the advantage of hybrid execution for sparse matrix vector product
execution using the matrices from the UF collection [13] as example data. The hybrid
execution using the code generated by the composition tool supersedes direct OpenMP
and direct CUDA execution and, in some cases, reduces the execution time to half of
the best performing variant. The speedup by hybrid execution is obtained by divid-
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Fig. 4 Sparse matrix vector product execution for different matrices (with different number of non-zero
elements) from the UF collection [13] on System A (top using 1 C2050 GPU) and System B (bottom)
respectively

ing the computation work into multiple chunks and executing them on OpenMP and
CUDA in parallel rather than using either of them. When applicable (see Sect. 4.6), this
feature can be used in a transparent manner (controlled using the partition option
in the interface descriptor) for an application, as it does not require any modification
in the user code and/or component implementations.

Dynamic scheduling The architectural and algorithmic differences between differ-
ent devices (e.g., CPU, GPU with/without cache) and applications often have a pro-
found effect on the achieved performance. However, these execution differences are
often hard to model statically as they can originate from various sources (hard-
ware architecture, application/algorithm, input data, problem size etc.). Dynamic
scheduling (including selection) can help in this case by deciding which implementa-
tion/device to use by considering previous historical execution information as well as
information about current load balance, data locality and potential data-transfer cost
(performance-aware dynamic scheduling). Our tool generates the necessary code for
using performance-aware scheduling policies offered in the runtime system. Figure 5
shows how the usage of dynamic scheduling can help in achieving better performance
on two heterogeneous architectures for a variety of applications. The execution time
is averaged over different problem sizes. As we can see the execution time with gen-
erated code closely follows the best implementation from OpenMP and CUDA for all
these applications. In some cases, the execution with dynamic scheduling supersedes
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Fig. 5 Execution times for applications from the Rodinia benchmark suite, an ODE solver and sgemm
with CUDA, OpenMP and our tool-generated performance-aware code (TGPA) on System A (top) and B
(bottom)

Fig. 6 Light-field image refocusing application [14]: left shows inter-component parallelism; right com-
pare direct execution on a CUDA GPU with the composed version, using both C-Arrays (CA) and Smart
Containers (SC)

the best static selection by making appropriate decisions for each problem size. Above
all, the scheduling can effectively adjust to the architectural differences as depicted
in Fig. 5. This is achieved by effective utilization of the performance-aware dynamic
scheduling mechanism offered by the PEPPHER runtime system.

Smart containers and inter-component parallelism As mentioned earlier, smart con-
tainers provide high-level abstraction and underneath optimize data communication
for GPU execution while ensuring data consistency for accesses in the user program.
Figure 6 (left) highlights inter-component parallelism (i.e., data independence) for
the light-field image refocusing application [14] across three image color channels.
Furthermore, a single refocusing call can internally be partitioned into two or more
independent parts (sub-tasks) based on input data to further exploit intra-component
parallelism (see Sect. 4.6).

Figure 6 (right) compares the refocusing application using direct execution on the
GPU with different versions of the composed application. The composed version using
C-Arrays (CA) only exploits intra-component parallelism by internally dividing each
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refocusing call into two parts. This gives a significant performance improvement over
direct execution even on a single GPU that supports concurrent kernel executions
by overlapping the memory transfers for the second part with computation work of
the first part. Using two GPUs further reduces execution time by scheduling both
computations on different GPUs.

Besides intra-component parallelism, the version using smart containers (SC) can
exploit inter-component parallelism across different image channels and hence per-
forms better than the version using C-Arrays, especially when using multiple GPUs.
Once PEPPHERized, this potential for both intra- and inter-component parallelism as
well as scaling across multiple GPUs can be exploited without requiring any further
modifications in the user code.

PEPPHER runtime overhead The main runtime overhead of the PEPPHER frame-
work is overhead of the PEPPHER runtime system. Measuring overhead of the runtime
system, in general, is a nontrivial task as it depends upon the computation structure and
granularity, scheduling policy, worker types as well as hardware and software architec-
ture. Micro-benchmarking results reported in [15] show that the task overhead of the
runtime system is less than two microseconds. This overhead is negligible when con-
sidering potential gains of dynamic performance-aware scheduling and overlapping
communication-computation offered by the runtime system.

6 Related work

Generating stubs (wrapper or proxy functions) from formal interface descriptions in
order to intercept and translate calls to components at runtime is a key concept in
CORBA and subsequent component frameworks to transparently bridge the techni-
cal gaps between different languages, platforms and network locations of caller and
callee, without having to change their source code. In our case, languages, platforms
and network locations are equal, while the stubs encapsulate the necessary logic for
determining a subset of suitable implementation variants and creating tasks for the
PEPPHER runtime system. An extension to support other languages than C/C++,
remote calls etc. following the CORBA approach would be a straightforward exten-
sion of our stub generation method.

Several language based systems for runtime composition of annotated implemen-
tation variants have recently been proposed in the literature, such as PetaBricks [16],
EXOCHI [17], Merge [18], IBM’s Liquid Metal [19] and Elastic computing [20].
Our approach with performance-aware components is different from these frame-
works as it does not require the programmer to use a new programming language (or a
domain-specific language [21]) to implement component implementations; PEPPHER
components may internally encapsulate arbitrarily specified intra-component paral-
lelism (e.g., using pthreads, OpenMP, or arbitrary accelerator specific code) running
on the resources allocated by the runtime system to the task created for its invocation,
as long as the actual composition points (calls to component-provided functionality)
are single-threaded, C/C++ linkable, and executed on CPUs (i.e., default execution
unit with access to main memory) only. Hence, the PEPPHER component frame-
work is, by default, non-intrusive, i.e., all metadata for components and the main
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program is specified externally in XML based descriptors. This enables an incremen-
tal ”PEPPHER-ization” process of making legacy applications performance-portable
(in principle) without modifying the existing source code.

The single-threaded call conventions, the XML format for external annotations, a
non-preemptive task-based runtime system and dynamic composition as the default
composition mechanism in PEPPHER are the major differences from the Kessler/Löwe
components [7] which assume SPMD calls, off-line generated dispatch tables and
nestable components instead.

Kicherer et al. [9,10] propose a C-based on-line learning solution for making
dynamic selection between available implementation variants for a given invocation
context. However, their approach is different as they represent each implementation
variant as a dynamic library that is loaded at runtime instead of a single binary solution.
Furthermore, they do not consider the issue of memory management for CUDA imple-
mentation variants nor do they consider simultaneous (hybrid) execution at multiple
devices present in the system.

7 Conclusion

Writing performance-portable applications for modern heterogeneous architectures is
a non-trivial task. The component-based approach of the PEPPHER framework allows
the specification of multiple implementation variants for a single functionality where
the expected best variant for a given execution context can be selected statically and/or
dynamically. The purpose of the PEPPHER composition tool is to build applications
from annotated components; it thereby supports ”PEPPHER-izing” both new and
legacy applications.

We have described the current composition tool prototype and how it could be
used to deploy applications with performance-aware components on heterogeneous
multi-/manycore systems. The composition tool can significantly reduce the program-
ming complexity by transparently handling the concurrency issues and generating the
low-level C code that interacts with the runtime system. On the performance side,
the composition tool can successfully meet different composition needs, ranging from
hybrid execution to dynamic scheduling. Usage of smart containers not only provides
higher abstraction to the application programmer but can also give increased perfor-
mance by exploiting inter-component parallelism. Experiments have shown that in all
cases, the code generated by our tool executes efficiently on different platforms with-
out any need for manual tuning, thanks to careful exploitation of features provided by
the underlying runtime system.
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