
Computing (2014) 96:951–973
DOI 10.1007/s00607-013-0357-6

Generalized integer transform based reversible
watermarking algorithm using efficient location map
encoding and adaptive thresholding

Chi-Man Pun · Ka-Cheng Choi

Received: 25 February 2013 / Accepted: 26 September 2013 / Published online: 11 October 2013
© Springer-Verlag Wien 2013

Abstract A novel algorithm that improves a generalized integer transform based
reversible watermarking scheme is proposed in this paper. In our proposed algorithm,
two main improvements have been achieved: adaptive thresholding and efficient loca-
tion map encoding. With adaptive thresholding, suitable threshold t is selected adap-
tively, which ensures enough embedding capacity for the watermark while keeps the
distortion introduced as low as possible. This modification is influential as an unsuit-
able threshold can lead to insufficient space for the watermark or even degrade the
visual quality of the image. Moreover, efficient location map encoding helps in reduc-
ing the location map size, which down to 0.4 of the one unmodified in average. There-
fore, more capacity is available for embedding as there is lesser overhead information.
Overall, it provides more embedding capacity whereas improves the visual quality of
the embedded image.

Keywords Generalized integer transform · Location map · Reversible
watermarking · Threshold

Mathematics Subject Classification 62H35 · 68U10 · 94A08 · 68P25

1 Introduction

Recently, many researches have been carried out on the topic of digital watermarking.
Digital watermarking is a process of embedding information into a digital signal, just
like audio, pictures or video, which can be used for authentication, attachment of own-
ership or other descriptive information, or as means of covert communication. Many
types of digital watermarking have been proposed so far, among these watermarking

C.-M. Pun (B) · K.-C. Choi
Department of Computer and Information Science, University of Macau, Macau SAR, China
e-mail: cmpun@umac.mo

123



952 C.-M. Pun, K.-C. Choi

techniques, reversible watermarking attracts lots of attention in recent decades for its
reversibility characteristic. Reversible watermarking is a type of digital watermark-
ing that allows total recovery of the original image without any distortions after the
hidden data is retrieved from the marked content. The characteristic that the signal
can be restored is desirable, especially in the fields of law enforcement, medical and
military image systems where even a small distortion is intolerable. For reversible
watermarking, the original cover signal and marked signal are usually perceptually
indistinguishable, and its target is to minimize the distortion introduced by the water-
mark in the embedding procedure while embed as much data as possible. Moreover, for
full recovery proposes, information that helps in recovery is also embedded together
with the watermark in embedding procedure. If the marked image is altered, this
information will probably be ruined and the image cannot be restored to its original
form, therefore this technique is fragile, i.e. it is not robust to any attacks or even
transformation, restoration of the signal will fail even a slight modification has been
made to the marked signal. For this reason, reversible watermarking is also used for
tamper detection. The proposed reversible watermarking scheme is also one that is
not robust to modification. Many valuable reversible watermarking algorithms have
been published up to today, which can be classified into three categories [1]: data
compression [2–7], difference expansion [8–13] and histogram modification [14–17].
Data compression is to losslessly compress the image to be overlaid to leave space
for embedding watermark bits. As in [2], the host signal is quantized to obtain the
residual, and the residual is then compressed to create capacity for the payload data.
For data compression, the compression algorithm influences a lot, the better the com-
pression, the higher the lossless-embedding capacity, due to this, it usually involves
complex computation and has limited capacity [18], since it does not fit our purpose of
large embedding capacity, no further study is carried out. Difference expansion (DE)
is first proposed by Tian [8], many variants are then presented. Like other expansion
embedding approaches, it makes use of some decorrelating operators to create features
with small magnitudes, and the data embedding is done by expanding these features to
create vacancies in which data bits are embedded. DE is an integer wavelet transform
where the watermark bits are hidden in the expanded differences. It usually achieves
a high embedding capacity and keeps distortion low [19], that’s why it attracts a lot of
attention including us. Among the variants of Tian’s DE, Alattar [10] started extending
it in a generalized manner by applying it to a triple or quad of pixels which increases
the hiding ability and computation efficiency. Histogram modification usually utilizes
the zero or minimum points of the image histogram and modifies the pixel values to
leave space for bits to be embedded, and histogram shifting technique is often adopted
together to prevent overflow and underflow. In [8], a binary tree structure is used in
communicating pairs of peak points, and distribution of pixel differences is used to
achieve large hiding capacity and low distortion. Nevertheless, the embedding capacity
of histogram modification is usually not as high as difference expansion [20].

In this paper, an algorithm that improves a recently proposed generalized integer
transform reversible watermarking method [21] which is based on Tian’s DE is pro-
posed, to remove the weakness of [21] that an influential threshold value needs to be
preselected, and be able to adapt to the watermark to be embedded. With the proposed
method, application of multi-level embedding and the threshold value are determined

123



Generalized integer transform based reversible watermarking 953

according to the watermark size, which achieves the target that the whole watermark
can be embedded with the least visual degradation. Moreover, the location map, which
occupies a large proportion of the overhead, has been reduced in size in the proposed
method, so more space is left for the watermark.

The rest of the paper is organized as follows. In Sect. 2, background information
like the generalized reversible watermarking scheme based is briefly reviewed and the
general concept of the proposed method is introduced shortly. In Sect. 3, the embedding
procedure of the proposed method is introduced in detail. For the extraction procedure,
it is described in Sect. 4. The experimental results and comparison with other methods
are shown in Sect. 5, and finally, we conclude the paper in Sect. 6.

2 Background information

2.1 Related works

Tian [8] proposed a high capacity, low distortion reversible watermarking method by
exploring the redundancy in the digital content. This approach divides the image into
pairs of pixels, and then calculates the pixel differences for each pair, some of the pixel
pairs that are expected not to cause overflow or underflow after embedding are selected
for watermark embedding by DE. In Tian’s DE, one bit is embedded into the expanded
difference of the pixel pair. For the purpose of indicating the expanded pair locations, a
location map is employed in this method, and afterwards, this technique of location map
is widely applied by many algorithms. The location map as an overhead is compressed
and embedded together with the watermark in the data embedding procedure.

In order to control the embedding capacity and distortion introduced, Tian used a
predefined threshold, only those pixel pairs with absolute difference less than or equal
to the threshold are expanded for watermark embedding. However, in case of small
threshold value, its embedding capacity is usually low since most of the capacity is
used up the location map due to its low compressibility.

Weng [13] utilized the invariability of the sum of pixel pairs to devise a novel
reversible data embedding method. For each pixel pair, to preserve the sum of pixel
pairs to be unchanged, whenever a certain value is added to one pixel, the same value
is subtracted from the other pixel. In addition, to minimize the distortion introduced
during data embedding, half the difference of the pixel pair plus the watermark bit
is chosen as that certain value. Moreover, pairwise difference adjustment (PDA) is
proposed in the algorithm to solve the problem in Tian’s method, it significantly
reduces the capacity consumed by overhead information through largely increases the
compressibility of the location map, especially when the threshold value is small. The
technique PDA uses is to form a considerable bias between the numbers of 1s and
0a in the location map, so that a higher compression ratio can be achieved, and the
number of pixel pairs available for embedding increases.

Alattar [10] generalized Tian’s DE to vectors of a triple or a quad of pixels, instead
of pairs, this approach allows several bits to be embedded in the difference expansion
in a single pass, so a higher embedding ability and more efficient computation can be
obtained.

123



954 C.-M. Pun, K.-C. Choi

In [21], it suggests that Tian’s DE [8] can be reformulated with marked pixel pair
(x ′, y′) as:

x ′ = 2x − a (z) + b, y′ = 2y − a (z) , (1)

where a(z) is the rounded average of vector z, here z = (x, y), i.e. the pixel pair, and
b is the watermark bit, the bit to be embedded into the pixel pair. Moreover, it also
suggests that (1) can be generalized in a general form and applied to vector x with
arbitrary length n,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ′
1 = 2x1 − 2f (a (x)) + b1,

...

x ′
n−1 = 2xn−1 − 2f (a (x)) + bn−1,

x ′
n = 2xn − a (x) .

(2)

f(z) is the ceiling of half of z. In the generalized form, there is a small modification,
where a(x) is replaced by 2f(a(x)), with this, the recovery of the transform can be
ensured and a payload-dependent location map can be built, since this minor difference
gives the following important property which is also utilized in the proposed method
to improve [21],

vh
(
x′) = v(x) (3)

where

v (x) =
√

∑n

i=1
(xi − a(x))2, vh (x) = v(h(x)), (4)

and h(x) is floor of half of x and h(x) = (h(x1), . . . , h(xn)). With this generalized
transform, given n pixels, we can embed n − 1 bits and return n watermarked pixels
back.

In order to restore the original vector x and extract the watermark b, the inverse of
(2) is defined in [21] as follows,

xi = h
(
x ′

i

) + a
(
h

(
x′)) + LSB(x ′

n), b j = LSB(x ′
j ) (5)

where LSB(x) is the least significant bit of x, i ∈ {1, . . . , n} and j ∈ {1, . . . , n − 1}.
With (2), an efficient embedding procedure is proposed in [21]. Image is firstly

divided into non-overlapping blocks of length n, which can be categorized into embed-
dable (E), changeable (C) and others (O). Embeddable blocks are the blocks that have
the property v(x) ≤ t , for the rest of the blocks, they are divided into changeable
and others by the characteristic that changeable block has vh(x) ≤ t . Location map
for E ∪ C is then built, compressed and embedded into the embeddable and change-
able blocks with (2) and least significant bit (LSB) replacement respectively, so as to
preserve the property that vh(x′) ≤ t for E ∪ C blocks and vh(x′) > t for O blocks.

123



Generalized integer transform based reversible watermarking 955

With the property that O can be distinguished from E ∪ C through vh(x′), the size
of the location map is greatly reduced, however, there are still rooms to be improved.
Moreover, t is a threshold that needs to be preselected; unsuitable threshold may cause
visual degradation or not enough capacity for the watermark W to be embedded.
Therefore, carefully choosing t is an important task that needs to be done.

Finally, the bit string CLSB1, which stores LSBs being replaced in the changeable
blocks, and the watermark W are embedded into the remaining embeddable blocks
E by (2). The reason that embeddable blocks which has the property v(x) ≤ t are
chosen for watermark embedding is because the difference between the original and
embedded block is related to the block variation v(x), ‖ x′ − x ‖≈ v(x), therefore,
choosing embeddable blocks which has property v(x) ≤ t for embedding, distortion
introduced can be minimized. The property ‖ x′ − x ‖≈ v(x) in fact can be known
from (2), as ‖ x′ − x ‖≈‖ x − a(x) ‖= v(x). With the variation v(x) being minimized
through the condition v(x) ≤ t for embeddable blocks, difference between original
and embedded images is also minimized, so the visual degradation to human eyes after
watermarking can be guaranteed to be the minimal.

For many existing reversible watermarking algorithms, multi-level embedding is
applied to increase its embedding capacity. In fact, multi-level embedding is a tech-
nique that repeats the embedding procedure again and again into an already embedded
image, with the target that more information can be carried by the image.

2.2 General concept

In the next sections, the proposed method will be described in detail, for better illus-
tration, definition of different location map are given in Table 1, and in Fig. 1a and
b, the flowchart of the embedding and extraction procedure of the proposed method

Table 1 Definition for different
location map LM Location map which records the states

of all the blocks
LM′ Reduced-size location map, derived

from LM in efficient location map
encoding procedure, block states of
E ∪ C blocks in LM are recorded in
LM′ only when its vh(x′) ≥ L B

Compressed LM′ Derived from compressing LM′ by
lossless Arithmetic encoder
(Arith07)

L Location map that distinguishes
E ∪ C blocks from other blocks, it
can only identify whether the block
is E ∪ C block or other block, in
case of E ∪ C blocks, it can not
identify whether the block is
embeddable or changeable

L′ Derived from L by identifying the
block state (either embeddable or
changeable) of the E ∪ C blocks that
stores FLSB

123



956 C.-M. Pun, K.-C. Choi

(a)

(b)
Fig. 1 Flowchart of a embedding procedure, b extraction procedure

are shown respectively. The embedding procedure of the proposed method improves
[21] in two approaches mainly, further reducing the location map size and adaptive
thresholding, other steps may refer to the original method. As shown in Fig. 1a, in
order to perform the modification, as soon as the location map is built, the efficient
location map encoding algorithm is implemented to reduce its size, and the threshold t
instead of passing as a parameter, there is a process to adaptively selecting it. The fol-
lowing shows the algorithms of the proposed watermarking embedding and extraction
procedures:

123



Generalized integer transform based reversible watermarking 957

Algorithm 1. Watermarking embedding procedure

Input: original image I and watermark W
Output: watermarked image I ′

Step1. Divide I into blocks of pixel.
Step2. Find the threshold t adaptive to W , details can be referred to Algorithm 3.
Step3. With the just found t , build the location map LM which records the states

of the blocks.
Step4. Efficient location map encoding is then applied to LM to reduce its size,

and gives out LM′, details are shown in Algorithm 4.
Step5. Compress LM′ to further reduce its size, the lossless compression algo-

rithm used in the proposed method is Arith07 [22].
Step6. Check if enough capacity available for the overheads (including t and

compressed LM′) and W , modify t and back to Step 3 if necessary.
Step7. Embed the overheads and W into I to produce I ′, where compressed LM′

and some other overheads are embedded into E∪C blocks, t is embedded into the
LSBs of the first 7 pixels of I , and W and the rest of the overheads are embedded
into the embeddable blocks left over.

Algorithm 2. Watermarking extraction procedure

Input: watermarked image I ′
Output: original image I and watermark W

Step1. Divide I ′ into blocks of pixel.
Step2. Extract the threshold t by reading the LSBs of the first 7 pixels of I ′.
Step3. Extract the compressed, encoded location map, LM′ and relative infor-

mation by reading the LSBs of the E ∪ C blocks, i.e. blocks that satisfyvh(x′) ≤ t
where vh(x′) is defined in (4).

Step4. Decompress the just extracted location map with Arith07 [22] to give out
LM′.

Step5. Apply the efficient location map decoding to LM′ to restore the whole
location map LM, details referred to Algorithm 5.

Step6. Extract W and overhead that is needed in restoring I by reading the LSBs
of embeddable blocks with the help of LM.

Step7. Restore I ′ to the original form I with the help of the overhead extracted.

3 Embedding procedure of proposed method

3.1 Overview

In Fig. 2 general visualization of the embedding procedure for given image is shown
for the introduction of the proposed method. In embedding procedure, four strings of
bits are built for embedding:

123



958 C.-M. Pun, K.-C. Choi

Fig. 2 Embedding in the given image

More layer bit: indicates whether it is the last layer to extract in multi-layer embed-
ding.
LB: parameter needed for location map decoding.
Length: length of compressed LM′.
Compressed LM′: compressed encoded location map.

FLSB: original LSBs of the first 7 pixels in the image before replaced by the
threshold.

Length: total length of CLSB1, W and CLSB2.

123



Generalized integer transform based reversible watermarking 959

CLSB1: original LSBs of changeable blocks before replaced by A.
CLSB2: original LSBs of changeable blocks before replaced by B.

With the length portion, we know the length of the component, so get exactly what
we want, neither more nor less. In addition, it is suggested to add padding to the bit
streams to be embedded to a multiple of n − 1, so that recovery of the image is more
convenient as no tests for checking the end is needed when restoring a block, test is
only carried out on every block, but not every pixel.

3.2 Adaptive thresholding

As mentioned before, correctly choosing the threshold (t) is crucial, since it may
help to raise peak signal-to-noise ratio (PSNR), an objective evaluation standard for
image quality, of the watermarked image. In order to do this, at first, the number
of bits can be embedded for different values of t need to be known, so that enough
space for the watermark (W) can be forecasted. Since t affects whether the blocks
belong to embeddable group through the requirement that embeddable blocks need
to have v(x) ≤ t , therefore, the larger t is, the more embeddable blocks are available
for embedding, and more bits can be hidden in the image. However, as explained in
[21], the distortion introduced to the embeddable block is close to its variance v(x),
so the value of t should not be too large so that the visual quality is guaranteed. To
compromise between the embedding capacity and visual quality, a small t that can
accommodate W should be chosen.

In fact, it is easy to find the embedding capacity of an image for different values of t ,
what is needed is to find the number of embeddable blocks for different t and multiplies
it by n − 1, where n is the size of the block. However, in order to know the number of
bits available for the watermark, the information that capacity used by the overhead is
necessary. Actually, in the embedding procedure, the size of the overhead except the
location map portion is fixed; therefore, the main task is to estimate the compressed
encoded location map size (LS) as accurate as possible. The way to do this is to utilize
the number of embeddable blocks (ENO) as a parameter to estimate LS as shown in
(6), with different types of image, different constant is applied in the equation, and
the range of the constant is from 0.45 to 1.5. The image with more patterns or more
textured would have a larger constant value, since the result of efficient encoding and
lossless compression of the location map for this type of image are not satisfactory
comparatively, due to lesser embeddable blocks are available in textured image, which
is caused by larger block variation. Therefore, we can know how textured an image by
observing the embeddable block percentage, so the image with smaller embeddable
block percentage will have a larger constant value in the equation. Since t is not
determined in this state, the embeddable block percentage of the image is calculated
with t = 100 for comparison. With ENO and estimated LS, bits available for the
watermark (CAP) can roughly be estimated; finally, value for t can be suggested. Due
to LS is estimated, t suggested is not accurate, it needs to be adjusted to increase its
accuracy with (8), which depends on the range of t . The reason that t is adjusted in
this way is because the efficient location map encoding algorithm performs better with
increasing t , so more capacity than what have been estimated is left for the watermark

123



960 C.-M. Pun, K.-C. Choi

Fig. 3 Flowchart of adaptive threholding

when t is large enough, i.e. for large t , LS is overestimated, and actual CAP is more
than estimated. In this case, a smaller t is usually efficient for W. Nevertheless, this
is still a rough estimation, there can be cases that when the actual location map is
built, find out that the estimated location map size is overestimated or underestimated,
so modification may need to be made to adjust it. When the location map size is
overestimated, reduces t by 1 until it finds the smallest t that is capable for W to
be embedded, in contrast, when the size of location map is underestimated, repeats
modification through increasing t by 1 until W can be wholly embedded. Normally,
this can be done in a few trials as the first estimation for t is usually quite good. With
this technique, t that can embed W and gives the best visual quality can be found. For
better illustration, the flowchart of adaptive thresholding is shown in Fig. 3 and its
algorithm is given below:

Algorithm 3. Adaptive thresholding

Input: blocks of pixel PB
Output: threshold t

Step1. In PB, find the blocks that will not cause overflow/underflow, and from
these blocks, for different value of t , count number of blocks that satisfies the
statement v(x) ≤ t to find the number of embeddable bocks ENO, where v(x) is
the variance of the block and defined in (4).

Step2. With ENO and depends on the type of the given image, for all t , estimate
the size of location map to be embedded LS through

LS =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ENO × 0.45 if ENO
number_of _blocks ≥ 0.85,

ENO × 0.75 if 0.85 > ENO
number_of _blocks ≥ 0.70,

ENO × 1.5 if ENO
number_of _blocks < 0.70.

(6)

123



Generalized integer transform based reversible watermarking 961

Step3. With ENO and LS, estimate the capacity available for the watermark
CAP with

CAP = ENO × (n − 1) − LS − other_overhead. (7)

Step4. Find the smallest t that is able to embed the given watermark by comparing
the size of watermark with CAP.

Step5. Due to the fact that LS is estimated, adjustment needs to be made to t
according to the range of t to increase its accuracy,

t =

⎧
⎪⎪⎨

⎪⎪⎩

t + 1 if 0 ≥ t > 30,

t if 30 ≥ t > 40,

t − 1 if 40 ≥ t > 70,

t − 2 if 70 ≥ t > 100.

(8)

Finally, output the determined t .

Now as t is not a parameter anymore, but is computed in the embedding procedure,
it is better to embed it into the image, as in multiple-layer embedding, t can be different
values, and it would be confusing and inconvenient in passing this information. Since
t is needed to distinguish E ∪ C blocks from O blocks, it should be embedded in a
place where can still be extracted even a single information is not available. Here we
choose to embed it by replacing the LSBs of the first 7 pixels of the image after the
compressed LM′ is embedded, where the original 7 LSBs are stored in FLSB, and is
then embedded into the E ∪ C blocks starting from the last block in the same way
as embedding compressed LM′. In case of embedding into changeable blocks, the
LSBs being replaced are recorded in CLSB2, which is then attached to the end of W
and embedded with it. The reason that FLSB is embedded in the this way just like
compressed LM′ is because before we can extract compressed LM′, FLSB is needed to
restore the first 7 pixels of the image to the state that compressed LM′ is just embedded,
so the only information available in this state is the value t which helps in identifying
the E ∪ C blocks, just in the same situation as compressed LM′, this is why they have
the same embedding method.

Now, with the proposed method, given W, according to its length, a suitable t that
can fully accommodate W while keeps distortion low can be chosen. With experiments
conducted, we found out that t should not be larger than 100, otherwise the PSNR
value drops below 30, therefore, the range of t in our experiments are kept between 0
and 100.

In the case of very large watermark, there is opportunity that not enough space
available for the bits to be completely embedded into the image for all the values of t .
In this situation, multiple-layer embedding may be used which will be described in
detail in later subsection.

123



962 C.-M. Pun, K.-C. Choi

3.3 Efficient location map encoding

In the proposed method, modification has been made to the location map before it is
compressed and embedded to the image to further reduce its size, so that for the same
PSNR value, more bits can be embedded to the image. With this modification, for
“Airplane” (F-16), the encoded location map (LM′) is reduced down to 0.2 of the size
of unmodified one in the best case and down to 0.4 in average. The unmodified location
map originally records all the E ∪ C blocks, where all of them has the characteristic
vh(x′) ≤ t , therefore, usually vh(x′) of both E and C blocks have the same or very
near upper bounds, however, their lower bounds usually are not the same, which can
be utilized in our proposed location map encoding procedure to reduce the location
map size. As mentioned before, embeddable blocks have the feature vh(x′) = v(x),
and for changeable blocks, vh(x) keeps unchanged, so we can easily get vh(x′) for
E ∪ C blocks. With this information and the whole location map (LM), we can find
LB, the lower bound of vh(x′) of changeable blocks which have been rounded down
for storage reason, with this value being recorded, during extraction, any blocks of
the watermarked image I′ with vh(x′) < L B, we can ensure that it is embeddable, as
vh(x′) of changeable blocks is always larger than or equal to L B, there is no need to
record these blocks in LM′, therefore, in the location map encoding procedure, only
those blocks with vh(x′) ≥ L B need to be recorded so as to distinguish its identity in
the extraction procedure. The value L B must be embedded together with compressed
LM′ in order to recover LM for the image; it should never be embedded with the
watermark, as the retrieval of the watermark needs the help of LM. In Fig. 4a, it
illustrates this efficient location map encoding procedure in detail and the algorithm
is given below.

Algorithm 4. Efficient location map encoding

Input: Pixel blocks PB and location map LM
Output: reduced-size location map LM′

Step1. Calculate the expected vh(x′) of PB with the help of LM where E blocks
has vh(x′) = v(x) and C blocks has vh(x′) = vh(x), in which v(x) and vh(x) are
defined in (4) and x′ is the watermarked block.

Step2. Find LB whereL B = 	lower bound
, lower bound is the smallest vh(x′)
of changeable blocks in LM.

Step3. Record the LM state of the E∪C blocks that has vh(x)′ ≥ LB to construct
LM′.

With this technique, the location map size is further reduced, however, in case of
W is not long enough to use up all the embeddable blocks, it causes problem. As for
visual quality reason, the embeddable blocks left over are kept unchanged, however,
in building LM′, for all embeddable blocks, we assume bits are embedded into them
and vh(x′) = v(x), but now some of them (the embeddable blocks left behind) are
kept unchanged which has vh(x′) = vh(x) rather, so the treat to record E ∪ C block
state of LM only when vh(x′) ≥ L B will cause error starting from the part that
embeddable blocks are kept unchanged, i.e. after W is fully embedded, LM′ afterward

123



Generalized integer transform based reversible watermarking 963

(a)

(b)

Fig. 4 a Efficient location map encoding procedure. b Efficient location map decoding procedure

is not accurate, this is because blocks that need to be recorded may have not been
recorded, blocks that do not need to be recorded may have been recorded. Luckily,
that part of the location map is not so important; the only block states needed are
those of the blocks that are used to embed FLSB, so that they can be restored to its
original form. To record those states, instead of n − 1 bits are embedded each block,
here only n − 2 bits can be embedded, where the first bit to be embedded to the block
is used to record its state, by this way, LM′ can be corrected to have right block states
in necessary part.

123



964 C.-M. Pun, K.-C. Choi

3.4 Multi-level embedding

Multi-level embedding is a technique that repeats the embedding procedure once
again into an already embedded image, so that more information can be carried by
the image. In multi-level embedding, instead of embedding the watermark into the
image in a single pass, the watermark is partitioned into segments, with one segment
being embedded in each pass, and repeats the embedding procedure until the whole
watermark is embedded.

Multiple embedding can also be applied to the proposed method, and it is encour-
aging to be used together. As with multiple layers, usually more bits can be embedded
into the same image, and with the same number of bits to be embedded, the visual
quality of the one using multiple layers is usually better. The reason is that instead
of embedding into the blocks that will cause more distortion, multi-level will choose
to embed twice in blocks that cause less distortion. This can be done through the
following steps:

• When the embedding capacity is not big enough even t has been set to 100, multiple
embedding is used.

• In order to identify whether multiple embedding is being used, header information
“more layer bit” is embedded before the location map. The bit ‘0’ represents it is
the first embedding layer or multiple-layers has not been used, generally speaking,
this is the last layer to be extracted, the bit ‘1’ is the opposite. For the watermark,
it is embedded as long as possible; the remaining portion of the watermark will be
embedded in the next round/layer. This procedure will continue until the watermark
is fully embedded.

• For the extraction procedure, extraction continues until the header information that
records the multi-level state indicates that it is the last layer need to be extracted.
Finally, the watermark is concatenated with the newest extracted watermark portion
attached at the front.

With this method, given a large watermark, the embedding procedure would choose
multiple embedding rather than a large t that use single embedding. As described
before, a large t usually provides more blocks for embedding which results a larger
capacity, however, blocks introduce more distortion would also be used, so large t
should be prevented. Therefore, it is natural to have the decision to use multi-level
embedding which uses smaller thresholds instead, with the principle to embed multiple
times in blocks introduce less distortion.

4 Extraction procedure of proposed method

At first, watermarked image (I)′ is divided into blocks in the same way as embedding
and t is extracted which is needed to distinguish E ∪ C blocks from O blocks, the way
that it is extracted is to get the LSBs of the first 7 pixels of the image. With t , location
map (L) that distinguishes E∪C and O can be built, followed by, we need to extract the
original LSBs of those 7 pixels, FLSB (String B), in order to restore those blocks to the
state that the compressed LM′ is just embedded into them. As those bits are embedded
in the E ∪ C blocks starting from the end, therefore, what have to do is continue to

123



Generalized integer transform based reversible watermarking 965

extract the first n −1 LSBs of E ∪C blocks starting from the end which can be known
from L until that 7 LSBs are got. Notice that, here the first bit of the extracted LSBs
of every block is its state, indicates that it is embeddable or changeable, which is then
used to modify the location map L to L′ by replacing with the respective states got
from previous step. The 7 LSBs extracted just now are then used to restore the LSBs
of the first 7 pixels.

Now, the efficient location map decoding procedure can be done, first extract the
compressed LM′ and related information (String A), the way that it is extracted is the
same as [21], the difference is that a few bits extracted is the overhead including LB.
Compressed LM′ is then decompressed, then with LM′, LB and L′ built previously,
LM that identifies the embeddable blocks can be built as shown in Fig. 4b. To change
L′ to LM, i.e. location map that only identifies E ∪ C to distinguish E, the only thing
need to do is to check the state of every E ∪ C blocks to see if it is embeddable. This
is done with the help of LB and LM′, for every E ∪ C blocks that with vh(x′) < L B,
where x′ is a block vector of I′, set its state as embeddable. At last, for the E∪C blocks
with unknown state, just change its state referring to LM′. Below shows the algorithm
of this procedure:

Algorithm 5. Efficient location map decoding

Input: Pixel blocks PB
Output: location map LM

Step1. Build a location map L for PB that distinguishes E∪C blocks from other
blocks by vh(x′) ≤ t , where t is extracted from the first 7 LSBs of PB and
vh(x′) is defined in (4).

Step2. Extract the reduced-size location map LM′ together with LB from PB.
Step3. Set E ∪ C blocks with vh(x′) < LB in L as embeddable.
Step4. Set state of unknown blocks in L correspond to LM′ to build the whole

location map LM.

Then, extract the watermark portion (String D) in the same way as mentioned in
[21], CLSB1 and CLSB2 are extracted altogether with the watermark, and the block
index of the end of string D is recorded. Finally, what is left is to restore the image to
its original form by (5) as described in [21] until it reaches the block index recorded
before, as the blocks afterward are unchanged, so nothing have to be done, except
the blocks that are used to embed FLSB (String B) which is needed to be recovered,
it is recovered using the same way as recovering the blocks that are used to embed
the compressed LM′, for changeable blocks, the LSBs used in recovering are referred
to CLSB2 which is attached at end of W. Therefore, after recovery, the attached LSBs
CLSB1 and CLSB2 will be removed, and the extracted string D will leave over with the
watermark only which is what is needed.

5 Experimental results

As explained in [21], 4 × 4 (n = 16) is the size of the blocks that gets the best
performance, therefore, 4 × 4 sized blocks will be used in the experiments conducted.
Moreover, four 512 × 512 grayscale standard images which are shown in Fig. 5 are
used in our experiments.

123



966 C.-M. Pun, K.-C. Choi

Fig. 5 Test images from Computer Vision Group (http://decsai.ugr.es/cvg/index2.php). a Lena, b Airplane,
c Barbara and d Lighthouse

In the proposed method, the size of the location map has further been reduced; Fig. 6
shows the location map size of the original method and the proposed method of the four
standard images for comparison, as we can see, the size reduced is quite significant
and satisfactory. The location map size is reduced obviously and dramatically from
t ≈ 10 onwards, i.e. when the data to be embedded is not too small, the effect of
this modification is quite effective. In the best case, the reduced location map is just
around one-eighth of the original size; this reduction of the overhead provides more
capacity for embedding the payload, therefore, allows larger embedding capacity with
the same PSNR value.

In order to test the effect of adaptive thresholding, a watermark with 210,000 bits
is embedded into the given image, “Lena” and “Lighthouse” are used for this experi-
ment. By the original method, as threshold t is not adaptively selected and is needed
to be preselected, let’s try t = 30, in case of “Lena”, it is only capable to embed 166
230 bits, there is not enough space for the whole watermark, so the performance of
PSNR value is not applicable, and we need to choose a larger number, let t = 70,
in this case, whole watermark can be embedded with 32.6885 dB. With proposed
method, adaptive threshold is used, 63 is determined to be the threshold, where whole
watermark can be embedded with better PNSR 33.3402 dB. Moreover, the capacity
available for watermark embedding is also closer to the actual watermark size with the
proposed method. In case of the original method, the number of embeddable blocks
is much more than needed comparatively, which is due to unsuitable higher threshold

123

http://decsai.ugr.es/cvg/index2.php


Generalized integer transform based reversible watermarking 967

Fig. 6 Comparison of location map size between original and proposed modified method of a Lena,
b Airplane, c Barbara and d Lighthouse

Table 2 Effects of adaptive thresholding of the proposed method

Results of embedding 210,000 bits watermark into:
(i) Lena (ii) Lighthouse

Original method Proposed method Original method Proposed method

t 30 70 63 30 70 42

Capacity (bits) 166,230 212,550 210,132 192,555 226,395 210,552

PSNR N/A 32.6885 33.3402 N/A 34.6019 36.9687

value t with the condition v(x) ≤ t as the embeddable blocks. Therefore, in the orig-
inal method, blocks that with larger variation may be chosen for embedding instead,
and the one with smaller variation may leave behind, and causes more distortion. In
case of “Lighthouse”, the same situation happens, when t = 30, only 192 555 bits
can be embedded, when t = 70, whole watermark is embedded with 34.6019 dB,
whereas with proposed method, better PSNR 36.9687 dB is got with t = 42. For
better visualization, the above results are summarized in Table 2.

With suitable threshold being determined in adaptive thresholding algorithm, exper-
iment about the additional time consumed by this algorithm is also conducted. To
measure the time consumed by adaptive thresholding algorithm in the watermark
embedding procedure, we use the tic and toc command in MATLAB 2009b on a com-

123



968 C.-M. Pun, K.-C. Choi

puter with a 2.0-GHz Intel(R) Core(TM) 2 Duo CPU and 4 GB memory to carry out
this experiment. For the four test images, in average, 3.5 s are used for the algorithm,
rounding to one decimal place.

Moreover, as the proposed method adaptively use multiple-layered embedding, bet-
ter visual results can be achieved which can be shown by embedding same payload
(220,000 bits) into the given image, “Airplane” and “Barbara” are used here, by the
algorithm with and without multiple-layered embedding. The resulting information
is listed in Table 3. By the original method, for “Airplane”, with a larger preselected
threshold 125, whole watermark can be embedded with 29.7973dB in a single embed-
ding, however, with proposed method, as multiple-layered embedding is used, the
payload is embedded in double embedding instead with smaller thresholds 100 and 6
in the two passes respectively, therefore, less distortion is introduced in the resulting
image which has a higher PNSR value 31.2247 dB. For “Barbara”, similar results are
obtained which can refer to Table 3.

As distortion (differences between marked image and original image) introduced
to the watermarked image is proportional to v(x) of the embeddable blocks (blocks
used for embedding), for better visual results, blocks with small v(x) should be cho-
sen as the embeddable blocks, with the requirement that embeddable blocks have v(x)
≤ t , smaller threshold probably introduces less distortion. With multi-layer embed-
ding algorithm, the watermark is partitioned into two or more segments, and only
one segment is embedded into the image in each pass, the next watermark segment
is embedded again into the already embedded image in next pass until whole water-
mark is embedded. By this way, the whole watermark is embedded into the image by
multiple times of embedding, and in each pass, the bits need to be embedded is lesser
comparing with the whole watermark. Therefore, smaller thresholds are enough to
accommodate the watermark segments in the image, so less distortion is introduced.
The reason that smaller threshold introduces less distortion is due to small thresh-
old only embeds data to blocks that will cause smaller differences comparatively.
With large threshold, data is embedded to blocks even it knows the embedding will
cause large differences from the original blocks. In multiple-layered embedding, data
embedding can be carried out on the blocks with small v(x) in second layer and so on
instead of the blocks with large v(x) in a single layer. Since there are blocks which have
smaller v(x) than other blocks even they have been chosen as embeddable blocks in
the previous layer, therefore, with multi-layer algorithm, watermark bits can repeat-
edly embed to the blocks that have smaller v(x), and the marked image will have

Table 3 Effects of adaptive multiple-layered embedding

Results of embedding 220,000 bits payload into:
(i) Airplane (ii) Barbara

Original method Proposed method Original method Proposed method

Embedding Single-layered Double-layered Single-layered Double-layered

t 125 100/6 160 100/17

PSNR 29.7973 31.2247 25.6873 28.5157

123



Generalized integer transform based reversible watermarking 969

Fig. 7 Embeddable blocks (shown in white dots) in multi-layered and single-layered embedding for Air-
plane. a First layer, b Second layer in multi-layered algorithm, c (a)∨(b), d Single-layered algorithm and
e (a)∧(b)

Fig. 8 Embeddable blocks (shown in white dots) in mulit-layered and single-layered embedding for Bar-
bara. a First layer, b second layer in multi-layered algorithm, c (a)∨(b), d single-layered algorithm and e
(a)∧(b)

smaller differences from the original image and introduces lesser distortion. While in
single-layer algorithm, data embedding can only be executed in a single pass, once
for every block. Therefore, a larger threshold which causes more distortion is needed
to accommodate the watermark. Thus, in single layer embedding, blocks that have
larger v(x) will also be chosen for embedding if necessary, and causes more distortion
than multi-layer algorithm, as multiple small distortions is better than one large dis-
tortion that distorts the image seriously. For better clarification, embeddable blocks
chosen for watermark embedding for each layer in multi-layered and single-layered
algorithm are shown in Figs. 7 and 8. In the figures, logical conjunction and logi-
cal disjunction of the embeddable block locations in multi-layered algorithm are also
given, so that locations selected between single-layered and multi-layered embed-
ding can be compared, and locations that have been reselected in multi-layered algo-
rithm can be seen clearly. As shown in the figures, in multi-layered algorithm, many
blocks have been chosen repeatedly for embedding, while in single-layered algorithm,
most of the blocks including the ones with large v(x) are chosen as the embeddable
blocks.

Followed by, the performance of the original method, proposed method and
other three algorithms: (1) Tian’s method, (2) Alattar’s method and (3) Weng’s
method are compared, in Fig. 9, the embedding capacity versus image visual qual-
ity data for these methods of “Lena” and “Airplane” are shown, for the original
method, the preselected threshold is set to 70. From the figure, we can see that
our method is better than all the other methods. This is due to generalization is
applied in data embedding which increases the hiding ability and the computa-
tion efficiency of the algorithm. Moreover, the encoded location map in the pro-
posed method is much smaller than the location map in other methods, so more

123



970 C.-M. Pun, K.-C. Choi

Fig. 9 Performance comparison of our method with original and other methods for a Lena and b Airplane

embedding capacity is available for the watermark, Furthermore, in comparison
with the original method, we can see that unsuitable threshold affects the perfor-
mance significantly, with adaptive thresholding in the proposed method, least dis-
tortion can be ensured, and this is why the proposed method outperforms the other
methods.

Finally, the embedded images of different test images by the proposed method
having payloads of 131,072 bits with 0.5 bit per pixel (bpp), 262,144 bits with 1.0
bpp, and 512,000 bits with 1.95 bpp are given in Fig. 10, detailed information of
the embedded images is listed in Table 4. As shown in the figure, there is not much
difference between the original and watermarked images to human eyes; and for images
with a high embedding rate of 1.95 bpp, the image quality is still quite good. The result
is as expected, since reversible watermarking algorithm has the characteristic that no
significant difference between the original and marked images, human being usually
can not distinguish whether the given image is watermarked or not. Regardless of the
watermark size, details of the images usually are preserved quite well after reversible
watermarking, however, if the watermark to be embedded is too large, blocking effect
will appear.

In Table 4, detailed information including the embedding rate, the embedding type,
adaptively selected thresholds and PSNR value of the embedded image are shown.
For the thresholds, in case of multi-layered embedding, threshold of each layer are
given, in the format of 1st layer/2nd layer/and so on. From the results, we can see that
adaptive multi-layered algorithm will be applied when the watermark size increases, so
that low variation blocks can be reused for embedding repeatedly to reduce distortion
introduced. Overall, the results are quite satisfactory; PSNR values of the embedded
images are quite high, even for the images with high embedding rate of 1.95 bpp,
PSNR values are still greater than 23 dB.

Besides the objective evaluation experiments, subjective evaluation have also been
carried out on the embedded images shown in Fig. 10. These images are presented to
the testers, and every tester is asked to tell whether the given image carries watermark.
For embedded images with embedding rate of 0.5 bpp and 1.0 bpp, most testers tell
that there is no watermark, which indicates that only images with high embedding
rate can be identified by human eyes. Followed by, the original images are given to

123



Generalized integer transform based reversible watermarking 971

Fig. 10 Embedded images. a–c Lena (0.5, 1.0 and 1.95 bpp), d–f Airplane (0.5, 1.0 and 1.95 bpp),
g–i Lighthouse (0.5, 1.0 and 1.95 bpp) and i–k Barbara (0.5 and 1.0 bpp)

123



972 C.-M. Pun, K.-C. Choi

Table 4 Results of the proposed method

(i) Lena Payload size 131,072 bits (0.5 bbp) 262,144 bits (1.0 bbp) 512,000 bits
(1.95 bbp)

Embedding Single-layered Double-layered Triple-layered

t 20 100/18 100/100/56

PSNR 40.80 30.10 23.17

(ii) Airplane Payload size 131 072 bits (0.5 bbp) 262,144 bits (1.0 bbp) 512,000 bits
(1.95 bbp)

Embedding Single-layered Double-layered Triple-layered

t 15 100/13 100/100/47

PSNR 43.84 31.03 24.53

(iii) Lighthouse Payload size 131 072 bits (0.5 bbp) 262 144 bits (1.0 bbp) 512,000 bits
(1.95 bbp)

Embedding Single-layered Double-layered Triple-layered

t 12 100/4 100/100/25

PSNR 45.68 32.63 26.18

(iv) Barbara Payload size 131,072 bits (0.5 bbp) 262,144 bits (1.0 bbp) 512,000 bits
(1.95 bbp)

Embedding Single-layered Double-layered N/A

t 37 100/26 N/A

PSNR 38.20 28.08 N/A

the testers for comparison with the embedded images. For embedded images with
embedding rate of 0.5 bpp, most testers tell that there is no difference between the
original and embedded images. With embedding rate of 1.0 bpp, only some testers
notice the difference, and for high embedding rate of 1.95 bpp, due to obvious blocking
effect, all testers identify the difference. Overall, human eyes mostly can not identify
the differences between the original and marked images if the embedding rate is not
too high.

6 Conclusion

In this paper, we proposed an algorithm that improves a recently proposed gen-
eralized integer transform reversible watermarking scheme in two aspects. One is
an improved distortion control through adaptively chosen threshold in the algo-
rithm. The other is further reducing the size of the location map to be embed-
ded, thus less capacity is used for storing overhead so as to increase its embed-
ding capacity. Overall, it provides high embedding capacity whereas maintains
good visual quality for the embedded image. Experimental results also indicate
that the proposed method has improved performance compared with the existing
methods.

Acknowledgments The authors would like to thank the referees for their valuable comments. This
research was supported in part by the Research Committee of the University of Macau and the Science and
Technology Development Fund of Macau SAR (Project No. 034/2010/A2).

123



Generalized integer transform based reversible watermarking 973

References

1. Agrawal R, Srikant R (2000) Privacy-preserving data mining. SIGMOD Rec 29:439–450
2. Fridrich J et al (2001) Invertible authentication watermark for JPEG images. In: Proceedings of the

international conference on information technology: coding and computing, 2001, pp 223–227
3. Fridrich J et al (2002) Lossless data embedding-new paradigm in digital watermarking. EURASIP J

Appl Signal Process 2002:185–196
4. Kalker T, Willems FMJ (2002) Capacity bounds and constructions for reversible data-hiding. In: 14th

international conference on digital signal processing, 2002. DSP 2002, vol 1, pp 71–76
5. Kamstra et al (2004) Wavelet techniques for reversible data embedding into images. Centrum voor

Wiskunde en Informatica, Amsterdam, PAYS-BAS
6. Celik MU et al (2005) Lossless generalized-LSB data embedding. In: IEEE transactions on image

processing, vol 14, pp 253–266
7. Kamstra L, Heijmans HJAM (2005) Reversible data embedding into images using wavelet techniques

and sorting. In: IEEE transactions on image processing, vol 14, pp 2082–2090
8. Jun T (2003) Reversible data embedding using a difference expansion. In: IEEE transactions on circuits

and systems for video technology, vol 13, pp 890–896
9. Alattar AM (2003) Reversible watermark using difference expansion of triplets. In: Proceedings of

international conference on image processing, ICIP 2003, vol 1, pp I-501–504
10. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer

transform. In: IEEE transactions on image processing, vol 13, pp 1147–1156
11. Alattar AM (2004) Reversible watermark using difference expansion of quads. In: Proceedings of the

IEEE international conference on acoustics, speech, and signal processing, 2004 (ICASSP ’04), vol 3,
pp iii-377–380

12. Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. In:
IEEE transactions on image processing, vol 16, pp 721–730

13. Shaowei W et al (2008) Reversible watermarking based on invariability and adjustment on pixel pairs.
IEEE Signal Process Lett 15:721–724

14. Zhicheng N et al (2006) Reversible data hiding. In: IEEE transactions on circuits and systems for video
technology, vol 16, pp 354–362

15. Xuan GS, Yao YQ, Ni Q, Yang Z, Gao J, Chai P (2006) Lossless data hiding using histogram shift-
ing method based on integer wavelets. In: Presented at the LNCS. International workshop digital
watermarking, Jeju Island, Korea

16. Fallahpour M, Sedaaghi MH (2007) High capacity lossless data hiding based on histogram modifica-
tion. In: Presented at the IEICE electron express

17. Wei-Liang T et al (2009) Reversible data hiding based on histogram modification of pixel differences.
In: IEEE transactions on circuits and systems for video technology, vol 19, pp 906–910

18. Lixin L et al (2010) Reversible image watermarking using interpolation technique. In: IEEE transac-
tions on information forensics and security, vol 5, pp 187–193

19. Shi YQ et al (2004) Lossless data hiding: fundamentals, algorithms and applications. In: Proceedings
of the 2004 international symposium on circuits and systems, 2004. ISCAS ’04, vol 2, pp II-33–36

20. Bin Z et al (2010) A near reversible image watermarking algorithm. In: International conference on
machine learning and cybernetics (ICMLC), vol 2010, pp 2824–2828

21. Xiang W et al (2010) Efficient generalized integer transform for reversible watermarking. IEEE Signal
Process Lett 17:567–570

22. Skretting K et al (1999) Improved Huffman coding using recursive splitting. In: NORSIG 1999.
Proceedings of Norwegian signal processing symposium, Asker, Norway

123


	Generalized integer transform based reversible watermarking algorithm using efficient location map encoding and adaptive thresholding
	Abstract
	1 Introduction
	2 Background information
	2.1 Related works
	2.2 General concept

	3 Embedding procedure of proposed method
	3.1 Overview
	3.2 Adaptive thresholding
	3.3 Efficient location map encoding
	3.4 Multi-level embedding

	4 Extraction procedure of proposed method
	5 Experimental results
	6 Conclusion
	Acknowledgments
	References


