
Computing (2013) 95:1087–1119
DOI 10.1007/s00607-013-0293-5

Adaptive-Multilevel BDDC and its parallel
implementation

Bedřich Sousedík · Jakub Šístek · Jan Mandel

Received: 1 October 2012 / Accepted: 4 January 2013 / Published online: 19 January 2013
© Springer-Verlag Wien 2013

Abstract We combine the adaptive and multilevel approaches to the BDDC and
formulate a method which allows an adaptive selection of constraints on each decom-
position level. We also present a strategy for the solution of local eigenvalue problems
in the adaptive algorithm using the LOBPCG method with a preconditioner based on
standard components of the BDDC. The effectiveness of the method is illustrated on
several engineering problems. It appears that the Adaptive-Multilevel BDDC algo-
rithm is able to effectively detect troublesome parts on each decomposition level and
improve convergence of the method. The developed open-source parallel implemen-
tation shows a good scalability as well as applicability to very large problems and core
counts.

Dedicated to Professor Ivo Marek on the occasion of his 80th birthday.

B. Sousedík
Department of Aerospace and Mechanical Engineering,
University of Southern California, Los Angeles, CA 90089-2531, USA
e-mail: sousedik@usc.edu

B. Sousedík
Institute of Thermomechanics, Academy of Sciences of the Czech Republic,
Dolejškova 1402/5, CZ, 182 00 Prague 8, Czech Republic

J. Šístek (B)
Institute of Mathematics, Academy of Sciences of the Czech Republic,
Žitná 25, 115 67 Prague 1, Czech Republic
e-mail: sistek@math.cas.cz

J. Mandel
Department of Mathematical and Statistical Sciences,
University of Colorado Denver, Denver, CO 80217-3364, USA
e-mail: jan.mandel@ucdenver.edu

123

1088 B. Sousedík et al.

Keywords Parallel algorithms · Domain decomposition · Iterative substructuring ·
BDDC · Adaptive constraints · Multilevel algorithms

Mathematics Subject Classification (2000) 65N55 · 65M55 · 65Y05

1 Introduction

The Balancing Domain Decomposition by Constraints (BDDC) was developed
by Dohrmann [7] as a primal alternative to the Finite Element Tearing and
Interconnecting-Dual, Primal (FETI-DP) by Farhat et al. [8]. Both methods use con-
straints to impose equality of new ‘coarse’ variables on substructure interfaces, such
as values at substructure corners or weighted averages over edges and faces. Primal
variants of the FETI-DP were also independently proposed by Cros [5] and by Fra-
gakis and Papadrakakis [9]. It has been shown in [24,38] that these methods are in
fact the same as BDDC. Polylogarithmic condition number bounds for FETI-DP were
first proved in [28] and generalized to the case of coefficient jumps between sub-
structures in [15]. The same bounds were obtained for BDDC in [20,21]. A proof
that the eigenvalues of the preconditioned operators of both methods are actually the
same except for the eigenvalues equal to one was given in [21] and then simplified
in [3,19,24]. FETI-DP, and, equivalently, BDDC are quite robust. It can be proved
that the condition number remains bounded even for large classes of subdomains with
rough interfaces in 2D [13,44] as well as in many cases of strong discontinuities of
coefficients, including some configurations when the discontinuities cross substruc-
ture boundaries [29,30]. However, the condition number does deteriorate in many
situations of practical importance and an adaptive method is warranted.

Adaptive enrichment for BDDC and FETI-DP was proposed in [22,23], with the
added coarse functions built from eigen problems based on adjacent pairs of substruc-
tures in 2D formulated in terms of FETI-DP operators. The algorithm has been devel-
oped directly in terms of BDDC operators and extended to 3D by Mandel, Sousedík
and Šístek [27,35], resulting in a much simplified formulation and implementation
with global matrices, no explicit coarse problem, and getting much of its parallelism
through the direct solver used to solve an auxiliary decoupled system. The only require-
ment for all these versions of the adaptive algorithms is that there is a sufficient number
of corner constraints to prevent rigid body motions between any pair of adjacent sub-
structures. This requirement has been recognized in other contexts [4,18], and in the
context of BDDC by Dohrmann [7], and recently by Šístek et al. [33].

Moreover, solving the coarse problem exactly in the original BDDC method
becomes a bottleneck as the number of unknowns and, in particular, the number of
substructures gets too large. Since the coarse problem in BDDC, unlike in the FETI-
DP, has the same structure as the original problem, it is straightforward to apply the
method recursively to solve the coarse problem only approximately [7]. The origi-
nal, two-level, BDDC has been extended into three-levels by Tu [41,42] and into a
general multilevel method by Mandel, Sousedík and Dohrmann [25,26]. Recently the
BDDC has been extended into three-level methods for mortar discretizations [12], and

123

Adaptive-Multilevel BDDC and its parallel implementation 1089

into multiple levels for saddle point problems [37,43]. The abstract condition number
bounds deteriorate exponentially with increasing number of levels.

Here we combine the adaptive and multilevel approaches to the BDDC method in
order to develop its variant that would preserve parallel scalability with an increasing
number of subdomains and also show its excellent convergence properties. The adap-
tive method works as previously. It selects constraints associated with substructure
faces, obtained from solution of local generalized eigenvalue problems for pairs of
adjacent substructures, however this time on each decomposition level. Because of
the multilevel approach, the coarse problems are treated explicitly (unlike in [27,35]).
The numerical examples show that the heuristic eigenvalue-based estimates work rea-
sonably well and that the adaptive approach can result on each decomposition level
in the concentration of computational work in a small troublesome parts of the prob-
lem, which leads to a good convergence behavior. The developed open-source parallel
implementation shows a good scalability as well as applicability to very large problems
and core counts.

The theoretical part of this paper presents a part of the work from the thesis [36]
in a shorter, self-contained way. Also some results by the serial implementation of
the algorithm from [36] are reproduced here for comparisons. The two-dimensional
version of the algorithm was described in conference proceedings [39]. The main
original contribution of this paper is the description of the parallel implementation of
the method, and numerical study of its performance.

The paper is organized as follows. In Sect. 2 we establish the notation and introduce
problem settings and preliminaries. In Sect. 3 we recall the Multilevel BDDC originally
introduced in [26]. In Sect. 4, we describe the adaptive two-level method in terms of the
BDDC operators with an explicit coarse space. In Sect. 5 we discuss a preconditioner
for LOBPCG used in the solution of the local generalized eigenvalue problems in
the adaptive method. Section 6 contains an algorithm for the adaptive selection of
components of the Multilevel BDDC preconditioner. Numerical results are presented
in Sect. 8, and Sect. 9 contains summary and concluding remarks.

2 Notation and substructuring components

We first establish notation and briefly review standard substructuring concepts and
describe BDDC components. See, e.g., [17,34,40] for more details about iterative
substructuring in general, and in particular [7,20,24,26] for the BDDC. Consider a
bounded domain � ⊂ R

3 discretized by conforming finite elements. The domain
� is decomposed into N nonoverlapping subdomains �i , i = 1, . . . N , also called
substructures, so that each substructure �i is a union of finite elements. Each node
is associated with one degree of freedom in the scalar case, and with three displace-
ment degrees of freedom in the case of linear elasticity. The nodes contained in the
intersection of at least two substructures are called boundary nodes. The union of all
boundary nodes of all substructures is called the interface, denoted by �, and �i is
the interface of substructure �i . The interface � may also be classified as the union
of three different types of sets: faces, edges and corners. We will adopt here a simple
(geometric) definition: a face contains all nodes shared by the same two subdomains,

123

1090 B. Sousedík et al.

an edge contains all nodes shared by same set of more than two subdomains, and a
corner is a degenerate edge with only one node; for a more general definition see, e.g.,
[14].

We identify finite element functions with the vectors of their coefficients in the
standard finite element basis. These coefficients are also called variables or degrees
of freedom. We also identify linear operators with their matrices, in bases that will be
clear from the context.

Here, we find it more convenient to use the notation of abstract linear spaces and
linear operators between them instead of the space R

n and matrices. The results can
be easily converted to matrix language by choosing a finite element basis. The space
of the finite element functions on � will be denoted as U . Let W s be the space of
finite element functions on substructure �s , such that all of their degrees of freedom
on ∂�s ∩ ∂� are zero. Let

W = W 1 × · · · × W N ,

and consider a bilinear form a (·, ·) arising from the second-order elliptic problem
such as Poisson’s equation or a problem of linear elasticity.

Now U ⊂ W is the subspace of all functions from W that are continuous across
the substructure interfaces. We are interested in the solution of the problem

u ∈ U : a(u, v) = 〈 f, v〉 , ∀v ∈ U, (1)

where the bilinear form a is associated on the space U with the system operator A,
defined by

A : U �→ U ′, a(u, v) = 〈Au, v〉 , ∀u, v ∈ U, (2)

and f ∈ U ′ is the right-hand side. Hence, (1) is equivalent to

Au = f. (3)

Define UI ⊂ U as the subspace of functions that are zero on the interface �,
i.e., the ‘interior’ functions. Denote by P the energy orthogonal projection from W
onto UI ,

P : w ∈ W �−→ vI ∈ UI : a (vI , zI) = a (w, zI) , ∀zI ∈ UI .

Functions from (I − P) W , i.e., from the nullspace of P, are called discrete harmonic;
these functions are a-orthogonal to UI and energy minimal with respect to increments
in UI . Next, let ̂W be the space of all discrete harmonic functions that are continuous
across substructure boundaries, that is

̂W = (I − P) U. (4)

123

Adaptive-Multilevel BDDC and its parallel implementation 1091

In particular,

U = UI ⊕ ̂W , UI ⊥a ̂W . (5)

The BDDC method [7,24] is a two-level preconditioner characterized by the selec-
tion of certain coarse degrees of freedom, such as values at the corners and averages
over edges or faces of substructures. Define ˜W ⊂ W as the subspace of all functions
such that each coarse degree of freedom has a common value for all relevant sub-
structures and vanishes on ∂�, and ˜W� ⊂ ˜W as the subspace of all functions such
that their coarse degrees of freedom vanish. Next, define ˜W� as the subspace of all
functions such that their coarse degrees of freedom between adjacent substructures
coincide, and such that their energy is minimal. Clearly, functions in ˜W� are uniquely
determined by the values of their coarse degrees of freedom, and

˜W� ⊥a ˜W�, and ˜W = ˜W� ⊕ ˜W�. (6)

The component of the BDDC preconditioner formulated in the space ˜W� is called
the coarse problem and the components in the space ˜W� are called substructure
corrections.

We assume that

a is positive definite on ˜W . (7)

This will be the case when a is positive definite on the space U and there are sufficiently
many coarse degrees of freedom [26]. We further assume that the coarse degrees of
freedom are zero on all functions from UI , that is,

UI ⊂ ˜W�. (8)

In other words, the coarse degrees of freedom depend on the values on substructure
boundaries only. From (6) and (8), it follows that the functions in ˜W� are discrete
harmonic, that is,

˜W� = (I − P) ˜W�. (9)

Next, let E be a projection from ˜W onto U , defined by taking some weighted
average on substructure interfaces. That is, we assume that

E : ˜W → U, EU = U, E2 = E . (10)

Since a projection is the identity on its range, it follows that E does not change the
interior degrees of freedom,

EUI = UI , (11)

since UI ⊂ U . Finally, we recall that the operator (I − P) E is a projection [26].

123

1092 B. Sousedík et al.

3 Multilevel BDDC

We recall Multilevel BDDC which has been introduced as a particular instance of Mul-
tispace BDDC in [26]. The substructuring components from Sect. 2 will be denoted
by an additional subscript 1, as �s

1, s = 1, . . . N1, etc., and called level 1. The level 1
coarse problem will be called the level 2 problem. It has the same finite element struc-
ture as the original problem (1) on level 1, so we put U2 = ˜W�1. Level 1 substructures
are level 2 elements and level 1 coarse degrees of freedom are level 2 degrees of
freedom. Repeating this process recursively, level i − 1 substructures become level i
elements, and the level i substructures are agglomerates of level i elements. Level i
substructures are denoted by �s

i , s = 1, . . . , Ni , and they are assumed to form a con-
forming triangulation with a characteristic substructure size Hi . For convenience, we
denote by �s

0 the original finite elements and put H0 = h. The interface �i on level i
is defined as the union of all level i boundary nodes, i.e., nodes shared by at least two
level i substructures, and we note that �i ⊂ �i−1. Level i − 1 coarse degrees of free-
dom become level i degrees of freedom. The shape functions on level i are determined
by minimization of energy with respect to level i − 1 shape functions, subject to the
value of exactly one level i degree of freedom being one and the other level i degrees
of freedom being zero. The minimization is done on each level i element (level i − 1
substructure) separately, so the values of level i − 1 degrees of freedom are in general
discontinuous between level i −1 substructures, and only the values of level i degrees
of freedom between neighbouring level i elements coincide.

The development of the spaces on level i now parallels the finite element setting in
Sect. 2. Denote Ui = ˜W�,i−1. Let W s

i be the space of functions on the substructure
�s

i , such that all of their degrees of freedom on ∂�s
i ∩ ∂� are zero, and let

Wi = W 1
i × · · · × W Ni

i .

Then Ui ⊂ Wi is the subspace of all functions from Wi that are continuous across the
interfaces �i . Define UIi ⊂ Ui as the subspace of functions that are zero on �i , i.e.,
the functions ‘interior’ to the level i substructures. Denote by Pi the energy orthogonal
projection from Wi onto UIi ,

Pi : wi ∈ Wi �−→ vI i ∈ UIi : a (vI i , zI i) = a (wi , zI i) , ∀zI i ∈ UIi .

Functions from (I − Pi) Wi , i.e., from the nullspace of Pi , are called discrete harmonic
on level i ; these functions are a-orthogonal to UIi and energy minimal with respect to
increments in UIi . Denote by ̂Wi ⊂ Ui the subspace of discrete harmonic functions
on level i , that is

̂Wi = (I − Pi) Ui . (12)

In particular, UIi ⊥a ̂Wi . Define ˜Wi ⊂ Wi as the subspace of all functions such that
each coarse degree of freedom on level i has a common value for all relevant level i
substructures, and ˜W�i ⊂ ˜Wi as the subspace of all functions such that their level i

123

Adaptive-Multilevel BDDC and its parallel implementation 1093

coarse degrees of freedom have zero value. Define ˜W�i as the subspace of all func-
tions such that their level i coarse degrees of freedom between adjacent substructures
coincide, and such that their energy is minimal. Clearly, functions in ˜W�i are uniquely
determined by the values of their level i coarse degrees of freedom, and

˜W�i ⊥a ˜W�i , ˜Wi = ˜W�i ⊕ ˜W�i . (13)

We assume that the level i coarse degrees of freedom are zero on all functions from
UIi , that is,

UIi ⊂ ˜W�i . (14)

In other words, level i coarse degrees of freedom depend on the values on level i
substructure boundaries only. From (13) and (14), it follows that the functions in ˜W�i

are discrete harmonic on level i , that is

˜W�i = (I − Pi) ˜W�i . (15)

Let E be a projection from ˜Wi onto Ui , defined by taking some weighted average
on �i

Ei : ˜Wi → Ui , E2
i = Ei .

Since projection is the identity on its range, Ei does not change the level i interior
degrees of freedom, in particular

EiUI i = UIi . (16)

The Multilevel BDDC method is now defined recursively [7,26] by solving the
coarse problem on level i only approximately, by one application of the preconditioner
on level i + 1. Eventually, at the top level L − 1, the coarse problem, which is the
level L problem, is solved exactly. A formal description of the method is provided by
the following algorithm.

Algorithm 1 (Multilevel BDDC, [26, Algorithm 17]) Define the preconditioner r1 ∈
U ′

1 �−→ u1 ∈ U1 as follows:

for i = 1, . . . , L − 1,

Compute interior pre-correction on level i ,

u I i ∈ UIi : a (uI i , zI i) = 〈ri , zI i 〉 , ∀zI i ∈ UIi . (17)

Get an updated residual on level i ,

rBi ∈ Ui , 〈rBi , vi 〉 = 〈ri , vi 〉 − a (uI i , vi) , ∀vi ∈ Ui . (18)

123

1094 B. Sousedík et al.

Find the substructure correction on level i:

w�i ∈ W�i : a (w�i , z�i) = 〈rBi , Ei z�i 〉 , ∀z�i ∈ W�i . (19)

Formulate the coarse problem on level i ,

w�i ∈ W�i : a (w�i , z�i) = 〈rBi , Ei z�i 〉 , ∀z�i ∈ W�i . (20)

If i = L − 1, solve the coarse problem directly and set uL = w�L−1, otherwise
set up the right-hand side for level i + 1,

ri+1 ∈ ˜W ′
�i , 〈ri+1, zi+1〉 = 〈rBi , Ei zi+1〉 , ∀zi+1 ∈ ˜W�i = Ui+1, (21)

end.
for i = L − 1, . . . , 1
Average the approximate corrections on substructure interfaces on level i ,

u Bi = Ei (w�i + ui+1) . (22)

Compute the interior post-correction on level i ,

vI i ∈ UIi : a (vI i , zI i) = a (u Bi , zI i) , ∀zI i ∈ UIi . (23)

Apply the combined corrections,

ui = uI i + u Bi − vI i . (24)

end.

The condition number bound for Multilevel BDDC is given as follows.

Lemma 1 [26, Lemma 20] The condition number κ of Multilevel BDDC from Algo-
rithm 1 satisfies

κ ≤ ω ≡ �L−1
i=1 ωi , (25)

where

ωi = sup
w∈ ˜Wi

‖(I − Pi) Eiw‖2
a

‖w‖2
a

. (26)

For the purpose of the adaptive selection of constraints, we use the bound based on
jump at the interface defined on the subspace of discrete harmonic functions from ˜Wi .
More precisely, we modify (26) using the identity

(I − Pi)Ei (I − Pi) = (I − Pi)Ei (27)

123

Adaptive-Multilevel BDDC and its parallel implementation 1095

and the fact that Pi is an a-orthogonal projection, as

ωi = sup
w∈ ˜Wi

∥

∥

∥

∥

(I − Pi) Eiw

∥

∥

∥

∥

2

a
∥

∥

∥

∥

w

∥

∥

∥

∥

2

a

= sup
w∈ ˜Wi

∥

∥

∥

∥

(I − Pi) Ei (I − Pi) w

∥

∥

∥

∥

2

a
∥

∥

∥

∥

w

∥

∥

∥

∥

2

a

= sup
w∈ ˜Wi

∥

∥

∥

∥

(I − Pi) Ei (I − Pi) w

∥

∥

∥

∥

2

a
∥

∥

∥

∥

Piw

∥

∥

∥

∥

2

a

+
∥

∥

∥

∥

(I − Pi) w

∥

∥

∥

∥

2

a

= sup
w∈ ˜Wi

∥

∥

∥

∥

(I − Pi) Ei (I − Pi) w

∥

∥

∥

∥

2

a
∥

∥

∥

∥

(I − Pi) w

∥

∥

∥

∥

2

a

= sup
w∈(I−Pi) ˜Wi

∥

∥

∥

∥

(I − Pi) Eiw

∥

∥

∥

∥

2

a
∥

∥

∥

∥

w

∥

∥

∥

∥

2

a

= sup
w∈(I−Pi) ˜Wi

∥

∥

∥

∥

(I − (I − Pi) Ei) w

∥

∥

∥

∥

2

a
∥

∥

∥

∥

w

∥

∥

∥

∥

2

a

.

(28)

The last equality in (28) holds because (I − Pi) Ei is a projection and the norm of
a nontrivial projection in an inner product space depends only on the angle between
its range and its nullspace [10].

4 Adaptive coarse degrees of freedom

To simplify notation, we formulate the algorithm for the adaptive selection of the
coarse degrees of freedom for one level at a time and drop the subscript i . The basic
idea of the method is still the same as in [23,27,35]. However, the current formulation
in terms of the BDDC method, though equivalent and written similarly as in [27],
is different enough to allow for an explicit treatment of the coarse space correction.
Therefore, it is suitable for multilevel extension which will be introduced later in
Sect. 6.

As mentioned before, the space ˜W is constructed using coarse degrees of freedom.
These can be, e.g., values at corners, and averages over edges or faces. The space ˜W is
then given by the requirement that the coarse degrees of freedom on adjacent substruc-
tures coincide; for this reason, the terms coarse degrees of freedom and constraints
are used interchangeably. The edge (or face) averages are necessary in 3D problems
to obtain scalability with subdomain size. Ideally, one can prove the polylogarithmic
condition number bound

κ ≤ const

(

1 + log
H

h

)2

, (29)

where H is the subdomain size and h is the finite element size.

123

1096 B. Sousedík et al.

Remark 1 The initial selection of constraints in the proposed adaptive approach will
be done in a way such that (29) is satisfied for problems with sufficiently regular
structure. See, e.g., [15] for a theoretical justification.

To choose the space ˜W , cf. [23, Section 2.3] , suppose we are given a space X and
a linear operator C : W → X and define,

˜W = {w ∈ W : C (I − E) w = 0} . (30)

The values Cw will be called local coarse degrees of freedom, and the space ˜W consists
of all functions w whose local coarse degrees of freedom on adjacent substructures
have zero jumps. To represent their common values, i.e., the global coarse degrees
of freedom of vectors u ∈ ˜W , we use a space Uc and a one-to-one linear operator
Rc : Uc → X such that

˜W = {w ∈ W : ∃uc ∈ Uc : Cw = Rcuc} .

Observe that (I − E) Pv = 0 for all v ∈ W , so we can define the space ˜W in (30)
using discrete harmonic functions w ∈ W� = (I − P) W , for which

(I − (I − P) E) w = (I − P) (I − E) w. (31)

Let us denote ˜W� = (I − P) ˜W = ˜W ∩ W� . Then the bound (26) in the form of the
last term in Eq. (28) can be found, for a fixed level i , as a maximum eigenvalue of an
associated eigenvalue problem, which can be using (31) written as

a ((I − P) (I − E) w, (I − P) (I − E) z) = λa (w, z) ∀z ∈ ˜W�. (32)

We can then control the condition number bound by adding constraints adaptively
by taking advantage of the Courant–Fisher–Weyl minimax principle, cf., e.g., [6,
Theorem 5.2], in the same way as in [23,27,35].

Corollary 1 [27] The generalized eigenvalue problem (32) has eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn ≥ 0. Denote the corresponding eigenvectors by w
. Then, for any
k = 1, . . . , n − 1, and any linear functionals L
,
 = 1, . . . , k,

max

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∥

∥

∥

∥

(I − P) (I − E) w

∥

∥

∥

∥

2

a
∥

∥

∥

∥

w

∥

∥

∥

∥

2

a

: w ∈ ˜W�, L
 (w) = 0 ∀
 = 1, . . . , k

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

≥ λk+1,

with equality if

L
 (w) = a ((I − P) (I − E) w
, (I − P) (I − E) w) . (33)

123

Adaptive-Multilevel BDDC and its parallel implementation 1097

Therefore, because (I − E) is a projection, the optimal decrease of the condition
number bound (26) can be achieved by adding to the constraint matrix C in the defi-
nition of ˜W the rows c
 defined by cT

 w = L
 (w).
Solving the global eigenvalue problem (32) is expensive, and the vectors c
 are not of

the form required for substructuring, i.e., each c
 with nonzero entries corresponding
to only one corner, an edge or a face at a time. For these reasons, we replace (32)
by a collection of local problems, each defined by considering only two adjacent
subdomains �s and �t . Subdomains are called adjacent if they share a face. All
quantities associated with such pairs will be denoted by a superscript st . In particular,
we define

W st = W s × W t , W st
� = (I − Pst)W st , (34)

where (I − Pst) realizes the discrete harmonic extension from the local interfaces �s

and �t to interiors. Thus, functions from W st
� are fully determined by their values at

the local interfaces �s and �t , and they may be discontinuous at the common part
�st = �s ∩ �t .

The bilinear form ast (·, ·) is associated on the space W st
� with the operator Sst of

Schur complement with respect to the local interfaces, defined by

Sst : W st
� �→ W st

�
′
, ast (u, v) = 〈Sst u, v〉, ∀u, v ∈ W st

� . (35)

Operator Sst is represented by a block-diagonal matrix composed of symmetric posi-
tive semi-definite matrices Ss and St of individual Schur complements of the subdo-
main matrices with respect to local interfaces �s and �t , resp.,

Sst =
[

Ss

St

]

. (36)

The action of the local projection operator Est is realized as a (weighted) average
at �st and as an identity operator at (�s ∪ �t)\�st .

Let Cst be the operator defining the initial coarse degrees of freedom that are
common to both subdomains of the pair. We define the local space of functions with
the shared coarse degrees of freedom continuous as

˜W st = {

w ∈ W st : Cst (I − Est)w = 0
}

. (37)

Finally, we introduce the space ˜W st
� = ˜W st ∩ W st

� .
Now the generalized eigenvalue problem (32) becomes a localized problem to find

w ∈ ˜W st
� such that

ast ((

I − Pst) (

I − Est) w,
(

I − Pst) (

I − Est) z
) = λ ast (w, z) ∀z ∈ ˜W st

� .

(38)

123

1098 B. Sousedík et al.

Assumption 1 The corner constraints are already sufficient to prevent relative rigid
body motions of any pair of adjacent substructures, so

∀w ∈ ˜W st : ast (w,w) = 0 ⇒ (

I − Est)w = 0,

i.e., the corner degrees of freedom are sufficient to constrain the rigid body modes
of the two substructures into a single set of rigid body modes, which are continuous
across the interface �st .

The maximal eigenvalue ωst of (38) is finite due to Assumption 1, and we define
the heuristic condition number indicator

ω̃ = max
{

ωst : �s and �t are adjacent
}

. (39)

Considering two adjacent subdomains �s and �t only, we get the added constraints
L
 (w) = 0 from (33) as

ast ((

I − Pst) (

I − Est) w
,
(

I − Pst) (

I − Est)w
) = 0 ∀
 = 1, . . . , k, (40)

where w
 are the eigenvectors corresponding to the k largest eigenvalues from (38).
Let us denote D the matrix corresponding to Cst (I −Est). We define the orthogonal

projection onto null D by

� = I − DT
(

DDT
)−1

D.

The generalized eigenvalue problem (32) now becomes

�
(

I − Pst)T (

I − Est)T
Sst (

I − Est) (

I − Pst) �w = λ�Sst�w. (41)

Since

null�Sst� ⊂ null�
(

I − Pst)T (

I − Est)T
Sst (

I − Est) (

I − Pst) �, (42)

the eigenvalue problem (41) reduces in the factorspace modulo null�Sst� to a prob-
lem with the operator on the right-hand side positive definite. In our computations, we
have used the subspace iteration method LOBPCG [16] to find the dominant eigenval-
ues and their eigenvectors. The LOBPCG iterations then simply run in the factorspace.

From (41), the constraints to be added are

L
 (w) = wT

 �

(

I − Pst)T (

I − Est)T
Sst (

I − Est) (

I − Pst)�w = 0.

That is, we wish to add to the constraint matrix C the rows

cst

 = wT

 �
(

I − Pst)T (

I − Est)T
Sst (

I − Est) (

I − Pst)�. (43)

123

Adaptive-Multilevel BDDC and its parallel implementation 1099

Proposition 1 [27] The vectors cst

 , constructed for a domain consisting of only two

substructures �s and �t , have matching entries on the interface between the two
substructures, with opposite signs.

That is, each row cst

 can be split into two blocks and written as

cst

 = [

cs

 −cs

]

.

Either half of each row from the block cst

 is then added into the matrices Cs and

Ct corresponding to the subdomains �s and �t . Unfortunately, the added rows will
generally have nonzero entries over the whole �s and �t , including the edges in 3D
where �s and �t intersect other substructures. Consequently, the added rows are not
of the form required for substructuring, i.e., each row with nonzeros in one edge or
face only. In the computations reported in Sect. 8, we drop the adaptively generated
edge constraints in 3D. Then it is no longer guaranteed that the condition number
indicator ω̃ ≤ τ . However, the method is still observed to perform well.

The proposed adaptive algorithm follows.

Algorithm 2 (Adaptive BDDC [23]) Find the smallest k for every two adjacent sub-
structures �s and �t to guarantee that λst

k+1 ≤ τ , where τ is a given tolerance, and
add the constraints (40) to the definition of ˜W .

5 Preconditioned LOBPCG

As pointed out already for adaptive 2-level BDDC method in [27], an important step for
a parallel implementation of the adaptive selection of constraints is an efficient solution
of the generalized eigenvalue problem (41) for each pair of adjacent subdomains.

There are several aspects of the method immediately making such implementation
challenging: (i) parallel layout of pairs of subdomains does not follow the natural
layout of a domain decomposition computation with distribution of data based on
subdomains, (ii) the multiplication by Sst on both sides of Eq. (41) is done only
implicitly, since action of Ss and St is available only through solution of local discrete
Dirichlet problems on subdomains �s

i and �t
i , (iii) the process responsible for solving

an st-eigenproblem typically does not have data for subdomains �s
i and �t

i , and thus
it has to communicate the vector for multiplication to processors able to compute the
actions of Ss and St .

With respect to these issues, it is necessary to use an inverse-free method for the
solution of each of these problems. In our case, the LOBPCG method [16] is applied
to find several largest eigenvalues λ
 and corresponding eigenvectors w
 solving the
homogeneous problem

M(A − λ
B)w
 = 0, (44)

with

A = �
(

I − Pst)T (

I − Est)T
Sst (

I − Est) (

I − Pst) �, B = �Sst�,

123

1100 B. Sousedík et al.

and M a suitable preconditioner. The LOBPCG method requires only multiplications
by matrices M, A, and B, and it can run in the factorspace with B only positive semi-
definite. This is important for our situation – although each pair of subdomains has
enough initial constraints by corners and edge averages to avoid mechanisms between
the two substructures (enforced by the projection �), no essential boundary conditions
are applied to the pair as a whole, and matrix B of such ‘floating’ pair typically has a
nontrivial nullspace (e.g. rigid body modes for elasticity problems).

Initial experiments in [27,35,36] revealed that while the unpreconditioned
LOBPCG (M = I) works reasonably well for simple problems, it requires pro-
hibitively many iterations for problems with very irregular substructures and/or high
jumps in coefficients. Since each iteration requires communicating the vector for mul-
tiplication, reducing the iteration counts of LOBPCG by preconditioning is a very
sensible way of accelerating the adaptive BDDC method.

Recall, that the BDDC method provides a preconditioner for the interface problem
of the Schur complement by the exact solution of the problem at the larger space ˜W .
As such, components of a BDDC implementation, the coarse solver and subdomain
corrections, can be used to determine the approximate action of the Moore–Penrose
pseudoinverse of the matrix B, denoted as Mloc

B DDC ≈ (�Sst�)+. This operator can be
used as the preconditioner M for problem (44), effectively converting the generalized
eigenvalue problem to an ordinary eigenproblem inside the iterations. Using notation
from (36), the preconditioner is formally written as

Mloc
B DDC = �

(

[

I 0
]

[

Sst CT

C 0

]−1 [

I
0

]

+ �(�T Sst�)+�T

)

�, (45)

where in addition C =
[

Cs

Ct

]

is the matrix of initial constraints (continuity at

corners and arithmetic averages on edges), and � =
[

�s Rs
c

� t Rt
c

]

denotes the matrix of

coarse basis functions for the two subdomains. Here Ri
c, i = s, t , is the zero-one

matrix of restriction of the vector of global coarse degrees of freedom of the pair
to subdomain coarse degrees of freedom. Since some coarse degrees of freedom are
shared by the two subdomains, corresponding columns in � are nonzero in both parts,
while columns of coarse degrees of freedom not common to the two subdomains are
only nonzero in either �s Rs

c or � t Rt
c. Let us recall that in BDDC, the local coarse

basis functions are computed as the solution to the problem with multiple right hand
sides

⎡

⎢

⎢

⎣

Ss CsT

St CtT

Cs

Ct

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�s

� t

μs

μt

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣I s

I t

⎤

⎥

⎥

⎦

, (46)

which represents an independent saddle-point problem with invertible matrix for each
subdomain, and factorization of which is later reused in applications of the precon-

123

Adaptive-Multilevel BDDC and its parallel implementation 1101

ditioner (45). We also note that the coarse matrix is in the implementation explicitly
computed using the second part of the solution of (46) as

�T Sst� = −RsT
c μs Rs

c − RtT
c μt Rt

c. (47)

The coarse matrix of the st-pair �T Sst� has dimension of the union of the coarse
degrees of freedom of the subdomains of the pair, and it is typically only positive semi-
definite for a floating pair. Due to its small dimension, we compute its pseudoinverse
by means of dense eigenvalue decomposition performed by the LAPACK library,

�T Sst� = V V T , (�T Sst�)+ ≈ V ′−1V T , (48)

where diagonal matrix ′ arises from by dropping eigenvalues lower than a pre-
scribed tolerance.

Unlike the standard BDDC preconditioner, no interface averaging is applied to the
function before and after the action of Mloc

B DDC , because problem (41) is defined in
the space ˜W st

� . Correspondingly, the only approximation is due to using ′ instead of
.

6 Adaptive-Multilevel BDDC

We build on Sects. 3 and 4 to propose a new variant of the Multilevel BDDC with
adaptive selection of constraints on each level.

The development of adaptive selection of constraints in Multilevel BDDC now
proceeds similarly as in Sect. 4. We formulate (26) as a set of eigenvalue problems for
each decomposition level. On each level we solve for every two adjacent substructures
a generalized eigenvalue problem and we add the constraints to the definitions of ˜Wi .

The heuristic condition number indicator is defined as

ω̃ = �L−1
i=1 ω̃i , ω̃i = max

{

ωst
i : �s

i and �t
i are adjacent

}

. (49)

We now describe the Adaptive-Multilevel BDDC in more detail. The algorithm
consists of two main steps: (i) set-up (including adaptive selection of constraints), and
(ii) loop of the preconditioned conjugate gradients (PCG) with the Multilevel BDDC
from Algorithm 1 as a preconditioner. The set-up can be summarized as follows (cf.
[36, Algorithm 4] for the 2D case):

Algorithm 3 (Set-up of Adaptive-Multilevel BDDC) Adding of coarse degrees of
freedom to guarantee that the condition number indicator ω̃ ≤ τ L−1, for a given
target value τ :

for levels i = 1 : L − 1,

Create substructures with roughly the same numbers of degrees of freedom.

Find a set of initial constraints (in particular sufficient number of corners), and set
up the BDDC structures for the adaptive algorithm (the next loop over faces).

123

1102 B. Sousedík et al.

for all faces Fi on level i,

Compute the largest local eigenvalues and corresponding eigenvectors, until
the first mst is found such that λst

mst ≤ τ .
Compute the constraint weights and add these rows to the subdomain matrices

of constraints Cs and Ct .

end.

Set-up the BDDC structures for level i .
If the prescribed number of levels is reached, solve the problem directly.

end.

7 Implementation remarks

Serial implementation has been developed in Matlab in the thesis [36]. Parallel results
use the open-source package BDDCML1 (version 2.0). This solver is written in For-
tran 95 programming language and parallelized using MPI library. Apart of symmetric
positive definite problems studied in this paper, the solver also supports symmetric
indefinite and general non-symmetric linear systems arising from discretizations of
PDEs.

The matrices of the averaging operator E were constructed with entries proportional
to the diagonal entries of the substructure matrices before elimination of interiors,
which is also known as the stiffness scaling [13].

7.1 Initial constraints

Following Remark 1, in order to satisfy the polylogarithmic condition number bounds,
we have used corners and arithmetic averages over edges as initial constraints. It is
essential (Assumption 1) to generate a sufficient number of initial constraints to prevent
rigid body motions between any pair of adjacent substructures. The selection of corners
in our parallel implementation follows the recent face-based algorithm from [33].

7.2 Adaptive constraints

The adaptive algorithm uses matrices and operators that are readily available in an
implementation of the BDDC method with an explicit coarse space, with one excep-
tion: in order to satisfy the local partition of unity, cf. [24, eq. (9)],

Est
i Rst

i = I,

we need to generate locally the weight matrices Est
i to act as an identity operator at

(�s ∪ �t)\�st (cf. Sect. 4).

1 http://www.math.cas.cz/~sistek/software/bddcml.html.

123

http://www.math.cas.cz/~sistek/software/bddcml.html

Adaptive-Multilevel BDDC and its parallel implementation 1103

In the computations reported in Sect. 8, we drop the adaptively generated edge
constraints in 3D. Then, it is no longer guaranteed that the condition number indicator
ω̃ ≤ τ L−1. However, the method is still observed to perform well. Since the constraint
weights are thus supported only on faces, and the entries corresponding to edges are
set to be zero, we orthogonalize and normalize the vectors of constraint weights (by
reduced QR decomposition from LAPACK) to preserve numerical stability.

In our experience, preconditioning of the LOBPCG method as described in Sect. 5
led to a considerable reduction of the number of LOBPCG iterations. Or in other
words, since we usually put a limit of maximum 15 iterations for an eigenproblem, the
resulting eigenvectors are much better converged than without preconditioning. In the
parallel implementation of the adaptive selection of constraints, pairs are assigned to
processors independently of assignment of subdomains. The BDDCML package uses
the open-source implementation of LOBPCG method [16] available in the BLOPEX
package.2 Details of the parallel implementation of adaptive selection of constrains
were described for two-level BDDC method in detail in [31].

7.3 Multilevel implementation

The BDDCML library allows assignment of multiple subdomains at each process. At
each level, subdomains are assigned to available processors, always starting from root.
Distribution of subdomains on the first level is either provided by user’s application, or
created by the solver using ParMETIS library (version 3.2). On higher levels, where
the mesh is considerably smaller, METIS (version 4.0) [11] is internally used by
BDDCML to create mesh partitions. This means, that on higher levels, where number
of subdomains is lower than number of processors, cores with higher ranks are left
idle by the preconditioner.

For solving local discrete Dirichlet and Neumann problems on each subdomain,
BDDCML relies on a sequential instance of direct solver MUMPS [1]. A parallel
instance of MUMPS is also invoked for factorization and repeated solution of the final
coarse problem at the top level. More details on implementation of the (non-adaptive)
multilevel approach in BDDCML can be found in [32].

8 Numerical examples

To study the properties of the Adaptive-Multilevel BDDC method numerically, we have
selected four problems of structural analysis—two artificial benchmark problems and
two realistic engineering problems. Some of the results were obtained by our serial
implementation written in Matlab and reported in thesis [36]. This implementation is
mainly used to study convergence behaviour with respect to prescribed tolerance on
the condition number indicator τ . The other set of results is obtained using our newly
developed parallel implementation within the BDDCML library. Parallel results were
obtained on Cray XE6 supercomputer Hector at the Edinburgh Parallel Computing

2 http://code.google.com/p/blopex.

123

http://code.google.com/p/blopex

1104 B. Sousedík et al.

Fig. 1 Example of a division of the cube into 64 subdomains (left) and (magnified) deformed shape for
contrast E2/E1 = 106 coloured by vertical displacement (right)

Centre. In the computations, one step of the Adaptive-Multilevel BDDC method is
used as the preconditioner in the preconditioned conjugate gradient (PCG) method,
which is run until the (relative) norm of residual decreases below 10−8 (in Matlab
tests) or 10−6 (in BDDCML runs).

8.1 Elasticity in a cube without and with jump in material coefficients

As the first problem, we use the standard benchmark problem of a unit cube. In our
setting, we solve the elastic response of the cube under loading by its own weight,
when it is fixed at one vertical edge. There are nine bars cutting horizontally through
the cube. We test the case when the bars are of the same material as the rest of the cube
(homogeneous material) and the case when Young’s modulus of the outer material
E1 is 106 times smaller than that of the bars E2, creating contrast in coefficients
E2/E1 = 106. In Fig. 1 (right), the (magnified) deformed shape of the cube is shown
for this jump in Young’s modulus. We have recently presented a detailed study of
behaviour of the standard (2-level) BDDC method and its adaptive extension with
respect to contrast on the same problem in [31]. It was shown in that reference, that
while convergence of BDDC with the standard choice of arithmetic averages on faces
quickly deteriorates with increasing contrast, adaptive version of the algorithm is
capable of maintaining good convergence also for large values of contrast, at the cost
of quite expensive set-up phase.

The multilevel approach (without adaptivity), although it may lead to faster solution,
suffers from exponentially growing condition number and related number of iterations,
as reported in [26], or recently in [32]. Here, we investigate the effect of constraints
adaptively generated at higher levels in the multilevel algorithm. We also study the
parallel performance of our solver on this test problem.

The cube is discretized using uniform mesh of tri-linear finite elements and divided
into an increasing number of subdomains. On the first level, subdomains are cubic
with constant H/h = 16 ratio (see Fig. 1 left for an example of a division into 64
subdomains). On higher levels, divisions into subdomains are created automatically
inside BDDCML by the METIS package, in general not preserving cubic shape of
subdomains.

123

Adaptive-Multilevel BDDC and its parallel implementation 1105

In Tables 1 and 2, we present results of a weak scaling test for the case of the
homogeneous cube, i.e. E2/E1 = 1. This problem is very well suited for the BDDC
method, and the performance is generally very good. The growing problem is solved
on 8 to 32,768 processors (with each core handling one subdomain of the first level).
In these tables, N denotes the number of subdomains (and computer cores), n denotes
global problem size, n� represents the size of the reduced problem defined at the
interface �, n f is the number of faces in divisions on the levels (corresponding to
number of generalized eigenproblems solved in the adaptive approach), ‘its.’ is the
number of iterations needed by the PCG method, and ‘cond.’ is the estimated condition
number obtained from the tridiagonal matrix generated in PCG. We report times needed
by the set-up phase (‘set-up’), by PCG iterations (‘PCG’) and their sum (‘solve’).

In Table 1, no adaptivity is used, and only the number of levels is varying. We can
see, that for the standard (2-level) BDDC, we obtain the well-known independence of
number of iterations on problem size. We can also see, how condition number (and
number of PCG iterations) grows when using more levels. Although this can lead to
savings in time in certain circumstances (due-to cheaper set-up), no such benefits are
seen here and these are more common in tests of strong scaling with fixed problem
size [32].

The independence on problem size is slightly biased on higher levels, probably
due to the irregular subdomains. Computational times slightly grow with problem
size, suggesting sub-optimal scaling of BDDCML, especially when going from 512
to 4,096 computing cores. For the largest problem of 32×32×32 subdomains with 405
million degrees of freedom solved on 32,768 cores, all times grow considerably. This is
most likely due to the higher cost of global communication functions at this core count,
and these results will serve for future performance analysis and optimization of the
BDDCML solver. Note, that in the case of two levels, parallel direct solver MUMPS
failed to solve the resulting coarse problem at this level of parallelism, which is marked
by ‘n/a’ in the tables.

We are now interested in the effect of adaptively generated constraints on conver-
gence of the multilevel BDDC method. Based on recommendations from [31], we
limit number of LOBPCG iterations to 15 and maximal number of computed eigen-
vectors to 10 to maintain the cost of LOBPCG solution low. The target condition
number limit is set low, τ = 1.5, which leads to using most of the adaptively gener-
ated constraints in actual computation. Results are reported in Table 2. We can see, that
the adaptive approach is capable of keeping the iteration counts lower, and although
the independence of the number of levels is not achieved, the growth is slower than
for the non-adaptive approach. While the scalability of the solver is similar to the
non-adaptive case, it is not surprising that the computational time is now dominated
by the solution of the generalized eigenvalue problems. This fact makes the adaptive
method unsuitable for simple problems like this one, in agreement with conclusions
for the 2-level BDDC in [31].

The situation changes however, when some numerical difficulties appear in the
problem of interest. One source of such difficulties may be presented by jumps in
material coefficients. To model this effect, we increased the jump between Young’s
moduli of the stiff rods and soft outer material to E2/E1 = 106, and these results are
reported in Tables 3 and 4. For the non-adaptive method (Table 3) we can see growth

123

1106 B. Sousedík et al.

Table 1 Weak scaling for the cube problem with homogeneous material, non-adaptive multilevel BDDC

N

 = 1(/2/3)

n n� n f

 = 1(/2/3)

its. cond. Time (s)

set-up PCG solve

2 levels

8 0.1M 9.5k 12 15 6.7 3.9 1.6 5.5

64 0.8M 0.1M 0.1k 19 7.3 4.6 2.1 6.7

512 6.4M 1.0M 1.3k 20 6.8 9.4 3.2 12.6

4,096 50.9M 8.4M 11.5k n/a n/a n/a n/a n/a

3 levels

64/8 0.8M 0.1M 0.1k/18 23 9.6 4.5 2.4 7.0

512/64 6.4M 1.0M 1.3k/295 30 16.9 5.7 3.6 9.3

4,096/512 50.9M 8.4M 11.5k/2,930 31 13.2 19.0 7.3 26.3

32,768/128 405.0M 69.1M 95.2k/664 36 24.7 165.8 20.0 185.7

4 levels

512/64/8 6.4M 1.0M 1.3k/295/23 41 24.5 5.5 4.8 10.4

4,096/512/64 50.9M 8.4M 11.5k/2,930/380 64 87.7 9.2 11.5 20.8

32,768/512/8 405.0M 69.1M 95.2k/2,921/23 45 33.0 156.5 24.7 181.2

Table 2 Weak scaling for the cube problem with homogeneous material, adaptive multilevel BDDC

N

 = 1(/2/3)

n n� n f

 = 1(/2/3)

its. cond. Time (s)

set-up PCG solve

2 levels

8 0.1M 9.5k 12 11 2.5 56.1 1.2 57.3

64 0.8M 0.1M 0.1k 13 3.1 119.3 1.5 120.9

512 6.4M 1.0M 1.3k 14 3.1 160.8 2.4 163.3

4,096 50.9M 8.4M 11.5k n/a n/a n/a n/a n/a

3 levels

64/8 0.8M 0.1M 0.1k/18 14 3.3 121.0 1.6 122.7

512/64 6.4M 1.0M 1.3k/295 17 4.2 166.9 2.4 169.3

4,096/512 50.9M 8.4M 11.5k/2,930 18 4.4 221.7 5.5 227.3

32,768/128 405.0M 69.1M 95.2k/664 20 4.8 940.3 23.6 963.9

4 levels

512/64/8 6.4M 1.0M 1.3k/295/23 22 6.9 175.3 3.1 178.4

4,096/512/64 50.9M 8.4M 11.5k/2,930/380 31 12.2 289.5 7.9 297.5

32,768/512/8 405.0M 69.1M 95.2k/2,921/23 30 10.6 723.1 40.9 764.0

of number of iterations and condition number not only with adding levels, but also for
growing problem size. This growth is translated to large time spent in PCG iterations,
which now dominate the whole solution.

123

Adaptive-Multilevel BDDC and its parallel implementation 1107

Table 3 Weak scaling for the cube problem with jump in coefficients E2/E1 = 106, non-adaptive
multilevel BDDC

N

 = 1(/2/3)

n n� n f

 = 1(/2/3)

its. cond. Time (s)

set-up PCG solve

2 levels

8 0.1M 9.5k 12 582 236k 4.0 59.4 63.4

64 0.8M 0.1M 0.1k 1,611 233k 4.7 171.9 176.6

512 6.4M 1.0M 1.3k 2,195 240k 9.5 340.4 350.0

4,096 50.9M 8.4M 11.5k n/a n/a n/a n/a n/a

3 levels

64/8 0.8M 0.1M 0.1k/18 2,218 239k 4.7 234.1 238.8

512/64 6.4M 1.0M 1.3k/295 2,830 250k 5.5 328.2 333.7

4,096/512 50.9M 8.4M 11.5k/2,930 4,636 587k 19.3 1, 096.2 1, 115.5

32,768/128 405.0M 69.1M 95.2k/664 6,914 737k 155.0 3, 820.8 3, 975.8

4 levels

512/64/8 6.4M 1.0M 1.3k/295/23 3,771 729k 5.4 434.4 439.8

4,096/512/64 50.9M 8.4M 11.5k/2,930/380 8,548 1,860k 9.3 1, 502.3 1, 511.6

32,768/512/8 405.0M 69.1M 95.2k/2,921/23 9,532 2,362k 160.2 5, 096.6 5, 256.8

Table 4 Weak scaling for the cube problem with jump in coefficients E2/E1 = 106, adaptive multilevel
BDDC

N

 = 1(/2/3)

n n� n f

 = 1(/2/3)

its. cond. Time (s)

set-up PCG solve

2 levels

8 0.1M 9.5k 12 119 1,951 34.1 12.3 46.5

64 0.8M 0.1M 0.1k 76 102 96.0 8.1 104.1

512 6.4M 1.0M 1.3k 58 55 164.2 8.9 173.2

4,096 50.9M 8.4M 11.5k n/a n/a n/a n/a n/a

3 levels

64/8 0.8M 0.1M 0.1k/18 457 48k 96.7 48.0 144.7

512/64 6.4M 1.0M 1.3k/295 82 0.1k 165.7 10.2 175.9

4,096/512 50.9M 8.4M 11.5k/2,930 282 165k 238.7 74.1 312.9

32,768/128 405.0M 69.1M 95.2k/664 270 24k 909.4 297.6 1, 207.0

4 levels

512/64/8 6.4M 1.0M 1.3k/295/23 554 63k 169.5 68.3 273.7

4,096/512/64 50.9M 8.4M 11.5k/2,930/380 3,392 671k 299.3 800.1 1, 099.4

32,768/512/8 405.0M 69.1M 95.2k/2,921/23 3,762 10,495k 697.6 4, 925.1 5, 622.7

Results are very different for the adaptive approach in Table 4, for which the main
cost is still presented by the solution of the related eigenproblems (included into time
of ‘set-up’). Since we keep the number of computed eigenvectors constant (ten) for

123

1108 B. Sousedík et al.

Table 5 Comparison of adaptively selected constraints for different target condition number τ2, adaptive
3-level BDDC

τ2 1st level (11,520 pairs) 2nd level (144 pairs) ω̃ its. cond.

ad. cstrs. cstrs./pair ω̃1 ad. cstrs. cstrs./pair ω̃2

25.0 120 0.01 4.45 84 0.58 4.37 19.53 21 7.18

16.0 2,220 0.19 2.70 132 0.92 3.33 8.99 18 4.77

9.0 2,220 0.19 2.70 228 1.58 2.92 7.89 18 4.72

4.0 15,660 1.36 1.99 1,116 7.75 1.98 3.93 13 2.77

2.25 69,960 6.07 1.42 1,440 10.00 2.49 3.55 14 3.25

ad. cstrs. number of added adaptive constraints, cstrs./pair average number of constraints added for one
pair, ω̃ = ω̃1ω̃2 the condition number indicator from (49)

each pair of subdomains, the method is not able to maintain a low condition number
after all these eigenvectors are used for generating constraints. However, number of
iterations is always significantly lower than in the non-adaptive approach, and the
method typically requires about one half of the computational time. While this is an
important saving of computational time, it is also shown in [31], that the adaptive
approach can solve even problems with contrasts such high, that they are not solvable
by the non-adaptive approach with arithmetic averages on all faces and edges.

Finally, we compare properties of the coarse basis functions on the first and the
second level on this problem. We consider homogeneous material of the cube which
is divided into regular cubic subdomains both on the first and the second (unlike in
the previous test) level. Namely, the cube is divided into 4 × 4 × 4 = 64 subdomains
on the second level. Each of these subdomains is composed again of 4 × 4 × 4 = 64
subdomains of the first level, which gives 4,096 subdomains. Each of these first-level
subdomains is composed of 4 × 4 × 4 = 64 tri-linear finite elements. The problem
has in total 262,144 elements and 823,872 unknowns. Table 5 summarizes results of
the adaptive 3-level BDDC method for different values of prescribed tolerance τ . For
comparison, the non-adaptive 3-level BDDC method with three arithmetic averages
on each face requires 19 PCG iterations and the resulting estimated condition number
is 6.88.

We can see, that significantly (roughly five times) more constraints are selected on
the second level than on the first one, which suggests that the discrete harmonic basis
functions of the first level lead to worse conditioned coarse problem on the second
level. Thus, it underlines the importance of adaptive selection of constraints on higher
levels. For τ 2 = 2.25, the maximal number of adaptive constraints (ten) is used on
each pair, and the algorithm is ‘saturated’. Consequently, more constraints would be
necessary on each pair to satisfy the condition ω̃ ≤ τ 2 from Algorithm 3.

8.2 Elasticity in a cube with variable size of regions of jumps in coefficients

The performance of the Adaptive-Multilevel BDDC method in the presence of jumps
in material coefficients has been tested on a cube designed similarly as the problem

123

Adaptive-Multilevel BDDC and its parallel implementation 1109

Fig. 2 Cube with variable size of regions of jumps in coefficients: distribution of material with stiff bars
(E2 = 2.1 × 1011, ν2 = 0.3), and soft outer material (E1 = 106, ν1 = 0.45) (left), mesh consisting of
823k degrees of freedom distributed into 512 substructures with 1,344 faces on the first decomposition level
(centre), and 4 substructures with 4 faces on the second decomposition level (right). Reproduced from [36]

Table 6 Results for the cube
with variable size of regions of
jumps in coefficients (Fig. 2)
obtained using the non-adaptive
2-level BDDC method

Reproduced from [36]

constraint Nc cond. its.

c 2,163 312,371 > 3,000

c+e 5,691 45,849 1,521

e+e+f 9,723 16,384 916

c+e+f (3eigv) 9,723 3,848 367

above, with material properties E1 = 106, ν1 = 0.45, and E2 = 2.1×1011, ν2 = 0.3.
However, the stiff bars now vary in size, and while the thin bars create numerical diffi-
culties on the first level, the large bar creates a jump in the decomposition on the second
level, see Fig. 2. The computational mesh consists of 823k degrees of freedom and it
is distributed into 512 substructures with 1,344 faces on the first decomposition level,
and into 4 substructures with 4 faces on the second decomposition level (see Fig. 2).

First, we present results by our serial implementation in Matlab, published initially
in the thesis [36]. We include them here along the parallel results to make this study
of Adaptive-Multilevel BDDC more self-contained. Comparing the results in Tables 6
and 7 we see that a relatively small number of (additional) constraints leads to a
considerable decrease in number of iterations of the 2-level method. In these tables, Nc
denotes number of constraints, ‘c’,‘c+e’, ‘c+e+f’ denote combinations of constraints
at corners, and arithmetic averages at edges and faces, ‘3eigv’ corresponds to using
three adaptive constraints on faces instead of the three arithmetic averages, τ denotes
the target condition number from Algorithm 3, ω̃ is the indicator of the condition
number from (49), ‘cond.’ denotes estimated condition number, and ‘its.’ the number
of PCG iterations.

When the non-adaptive 2-level is replaced by the 3-level method (Tables 8 and 9),
the condition number estimate as well as the number of iterations grow, in agreement
with the estimate (25). However, with the adaptive 3-level approach (Table 9) we were
able to achieve nearly the same convergence properties for small τ as in the adaptive
2-level method (Table 7).

123

1110 B. Sousedík et al.

Table 7 Results for the cube
with variable size of regions of
jumps in coefficients (Fig. 2)
obtained using the adaptive
2-level BDDC method

Reproduced from [36]

τ Nc ω̃ cond. its.

∞ (=c + e) 5,691 O(104) 45,848.60 1,521

10,000 5,883 8,776.50 5,098.60 441

1,000 6,027 5.33 9.92 32

10 6,149 6.25 6.66 28

5 9,119 <5 4.79 24

2 25,009 <2 2.92 18

Table 8 Results for the cube
with variable size of regions of
jumps in coefficients (Fig. 2)
obtained using the non-adaptive
3-level BDDC method

Reproduced from [36]

Constraint Nc cond. its.

c 2,163/18 O(107) >3,000

c+e 5,691/21 O(106) >3,000

c+e+f 9,723/33 461,750 1,573

c+e+f (3eigv) 9,723/33 125,305 981

Table 9 Results for the cube
with variable size of regions of
jumps in coefficients (Fig. 2)
obtained using the adaptive
3-level BDDC method

Reproduced from [36]

τ2 Nc ω̃ cond. its.

∞(=c+e) 5,691 + 21 – O(106) >3,000

10,000 5,883/28 8,776.50 26,874.40 812

1,000 6,027/34 766.82 1,449.50 145

100 6,027/53 99.05 100.89 59

10 6,149/65 7.93 7.91 30

5 9,119/67 <5 6.18 25

2 25,009/122 <2 3.08 18

Next, we use this test problem to perform a strong scaling test of our parallel imple-
mentation of adaptive multilevel BDDC method. Since BDDCML supports assigning
several subdomains to each processor, the division is kept constant with 512 subdo-
mains on the basic level, and 4 subdomains on the second level (as in Fig. 2), and
number of cores is varied.

Figure 3 presents parallel computational time and speed-up when this problem
is solved by the parallel 2-level BDDC method, comparing efficiency of the non-
adaptive and adaptive solver. We report times and speed-ups independently for the
set-up phase (including solution of eigenproblems for adaptive method), the phase of
PCG iterations, and their sum (‘solve’). Figure 4 then presents parallel computational
time and speed-up for 3-level BDDC method.

We can see, that both phases of the solution are reasonably scalable. For large core
counts, scalability worsens, as each core has only little work with subdomain problems
and (the less scalable) solution of the coarse problem dominates the computation. It
is worth noting, that the overall fastest solution was delivered by the adaptive 2-level
BDDC method on 512 cores, while both other extensions of BDDC—non-adaptive

123

Adaptive-Multilevel BDDC and its parallel implementation 1111

Fig. 3 Strong scaling test for the cube with variable size of regions of jumps in coefficients (Fig. 2)
containing 823k degrees of freedom, on the first level divided into 512 subdomains with 1,344 faces with
arithmetic/adaptive constraints. Computational time (left) and speed-up (right) separately for set-up and
PCG phases, and their sum (‘solve’), comparison of non-adaptive (680 its.) and adaptive (85 its.) parallel
2-level BDDC

Fig. 4 Strong scaling test for the cube with variable size of regions of jumps in coefficients (Fig. 2)
containing 823k degrees of freedom, on the first level divided into 512 subdomains with 1,344 faces with
arithmetic/adaptive constraints, and on the second level into 4 subdomains with 4 faces. Computational
time (left) and speed-up (right) separately for set-up and PCG phases, and their sum (‘solve’), comparison
of non-adaptive (894 its.) and adaptive (150 its.) parallel 3-level BDDC

3-level BDDC and adaptive 3-level BDDC—were also considerably faster than the
standard (non-adaptive 2-level) BDDC method on large number of cores.

8.3 Linear elasticity analysis of a mining reel

The performance of the Adaptive-Multilevel BDDC has been tested on an engineering
problem of linear elasticity analysis of a mining reel. The problem was provided for
testing by Jan Leština and Jaroslav Novotný. The computational mesh consists of 141k
quadratic finite elements, 579k nodes, and approximately 1.7M degrees of freedom.
It was divided into 1,024 subdomains with 3,893 faces (see Fig. 5).

The problem presents a very challenging application for iterative solvers due to
its very complicated geometry. It contains a steel rope, which is not modelled as a
contact problem but just by a complicated mesh with elements connected through edges
of three-dimensional elements (Fig. 6). Its automatic partitioning by METIS creates
further problems such as thin elongated subdomains, disconnected subdomains, or

123

1112 B. Sousedík et al.

Fig. 5 Finite element discretization and substructuring of the mining reel problem, consisting of 1.7M
degrees of freedom, divided into 1,024 subdomains with 3,893 faces. Data by courtesy of Jan Leština and
Jaroslav Novotný. Reproduced from [36]

Table 10 Convergence of the
non-adaptive 2-level BDDC
method with different
constraints, mining reel problem

Reproduced from [36]

Constraint Nc cond. its.

c+e 27,183 - >2,000

c+e+f 38,868 1.18 × 106 1,303

c+e+f (3eigv) 38,868 72,704.80 674

subdomains with insufficiently coupled elements leading to ‘spurious mechanisms’
inside subdomains. See Fig. 6 for examples.

We first perform a series of computations by our serial implementation in Matlab
to study the effect of prescribed target condition number τ on convergence. Compar-
ing results by non-adaptive 2-level BDDC (Table 10) with adaptive 2-level BDDC
(Table 11), we see that the adaptive approach allows for a significant improvement in
the number of iterations.

We can also see, that convergence of the adaptive two- and three-level method
(Tables 11, 12) is nearly identical. For the three-level method, automatic division into
32 subdomains was used on the second level.

We note that the observed approximate condition number computed from the Lanc-
zos sequence in PCG (‘cond.’) is larger than the target condition number τ for this
problem. In [23,36], it was shown that these two numbers match remarkably well
for simpler problems, especially in 2D. Despite this difference, the algorithm still
performs very well.

Next, we solved this problem with the parallel implementation of the algorithm. In
Fig. 7, we present results of a strong scaling test.

The non-adaptive 2-level BDDC method requires 610 PCG iterations, while the
adaptive 2-level BDDC needs only 200 PCG iterations. Nevertheless, this difference
is only able to compensate the cost of solving the eigenproblems, and the adaptive
method is advantageous with respect to computing time only for 1,024 cores.

We can see, that the scaling is nearly optimal, with the deviation caused probably
again by the small size of the problem compared to the core counts used in this
experiment. In the parallel case, the 3-level approach did not work well neither with

123

Adaptive-Multilevel BDDC and its parallel implementation 1113

Fig. 6 Examples of difficulties with computational mesh and its partitioning for the mining reel problem:
(i) rope modelled as axisymmetric rings connected at edges of three-dimensional elements (top left), (ii)
disconnected subdomains (top right), (iii) elongated substructures (bottom left), (iv) spurious mechanisms
within subdomains, such as elements connected to rest of the subdomain only at single node (bottom right).
Reproduced from [36]

Table 11 Convergence of the
adaptive 2-level BDDC method
with variable target condition
number parameter τ , mining reel
problem

Reproduced from [36]
Lower τ corresponds to more
constraints and better
convergence

τ Nc ω̃ cond. its.

∞(=c+e) 27,183 1.76 × 106 – >2,000

10,000 28,023 9,992.61 9,538.18 910

5,000 28,727 4,934.62 4,849.75 673

1,000 32,460 999.90 2,179.79 391

500 35,017 499.64 1,277.59 318

100 42,849 99.89 840.74 213

50 46,093 49.98 784.49 194

10 59,496 <10 321.20 129

5 69,249 <5 198.68 91

2 92,467 <2 91.24 72

123

1114 B. Sousedík et al.

Table 12 Convergence of the
adaptive 3-level BDDC method
with variable target condition
number parameter τ , mining reel
problem

Reproduced from [36]

τ2 Nc ω̃ cond. its.

100 42,849 + 2,378 99.89 3,567.02 382

10 59,496 + 6,419 <10 320.82 139

5 69,249 + 8,681 <5 198.55 98

Fig. 7 Strong scaling test for the mining reel problem containing 1.7M degrees of freedom and on the first
level divided into 1,024 subdomains with 3,893 faces with arithmetic/adaptive constraints, computational
time (left) and speed-up (right) separately for set-up and PCG phases, and their sum (‘solve’), comparison
of non-adaptive (610 its.) and adaptive (200 its.) parallel 2-level BDDC

nor without adaptive selection of constraints, requiring more than 5,000 PCG iterations
in both cases. The slow convergence of the adaptive 3-level method is probably caused
by the limit of ten adaptive constraints per face, which seems to be insufficient for this
difficult problem—in Matlab experiments, as many as 8,681 adaptive constraints were
generated among 32 subdomains on the second level in order to satisfy ω̃ ≤ τ 2 = 5
(Table 12).

8.4 Linear elasticity analysis of a geocomposite sample

Finally, the algorithm is applied to a problem of elasticity analysis of a cubic geocom-
posite sample. The sample was analyzed in [2] and provided by the authors for testing
of our implementation. The length of the edge of the cube is 75 mm, and the cube is
composed of five distinct materials identified by means of computer tomography.

Different material properties cause anisotropic response of the cube even for simple
axial stretching in z-direction (Fig. 8 right). The problem is discretized using unstruc-
tured grid of about 12 million linear tetrahedral elements, resulting in approximately
6 million degrees of freedom. The mesh was divided into 1,024 subdomains on the
first and into 32 subdomains on the second level, resulting in 5,635 and 100 faces,
respectively.

Table 13 summarizes the number of iterations and estimated condition number of
the preconditioned operator for the combinations of 2- and 3-level BDDC with non-
adaptive and adaptive selection of constraints. For this problem, number of iterations

123

Adaptive-Multilevel BDDC and its parallel implementation 1115

Fig. 8 Elasticity in a geocomposite sample; Young’s modulus due to different materials (left), magnitude
of displacement on slices (right). Mesh contains 12 million linear tetrahedral elements and approx. 6 million
degrees of freedom. Data by courtesy of Radim Blaheta and Jiří Starý

Table 13 Number of iterations and condition number estimate for the geocomposite problem, 6 million
degrees of freedom

Levels N

 = 1(/2)

n n� n f

 = 1(/2)

Non-adaptive Adaptive

its. cond. its. cond.

2 1,024 6.1M 1.3M 5,635 65 94.8 36 37.7

3 1,024/32 6.1M 1.3M 5,635/100 214 2,724.9 113 1,792.2

Comparison for two and three levels for non-adaptive and adaptive BDDC

Fig. 9 Strong scaling test for the geocomposite problem (Fig. 8) containing approx. 6 million degrees
of freedom, on the first level divided into 1,024 subdomains with 5,635 faces with arithmetic/adaptive
constraints. Computational time (left) and speed-up (right) separately for set-up and PCG phases, and their
sum (‘solve’), comparison of non-adaptive (65 its.) and adaptive (36 its.) parallel 2-level BDDC

was reduced to approximately one half by using adaptivity. We can also see, that
number of iterations grows considerably when going from 2 to 3 levels for this problem.

In Figs. 9 and 10, we report strong scaling of the parallel implementation on this
problem for 2-level and 3-level BDDC, respectively. The strong scaling is again nearly
optimal.

123

1116 B. Sousedík et al.

Fig. 10 Strong scaling test for the geocomposite problem (Fig. 8) containing approx. 6 million degrees
of freedom, on the first level divided into 1,024 subdomains with 5,635 faces with arithmetic/adaptive
constraints, and on the second level into 32 subdomains with 100 faces. Computational time (left) and
speed-up (right) separately for set-up and PCG phases, and their sum (‘solve’), comparison of non-adaptive
(214 its.) and adaptive (113 its.) parallel 3-level BDDC

We can again see that while for the non-adaptive approach, most time is spent
in the PCG iterations, for the adaptive approach, the curve for the set-up phase is
almost indistinguishable from the one for total solution time, and the set-up clearly
dominates the solution. For the two-level method, MUMPS was not able to solve the
coarse problem on 1,024 cores and so this value is omitted in Fig. 9.

9 Conclusion

We have presented the algorithm of Adaptive-Multilevel BDDC method for three-
dimensional problems, and its parallel implementation. The algorithm represents the
concluding step of combining ideas developed separately for adaptive selection of
constraints in BDDC [23,27,31,35], and for the multilevel extension of the BDDC
method [25,26,32]. The algorithm and its serial implementation was studied in the
thesis [36], and the serial algorithm for two dimensional problems also in [39].

The Adaptive BDDC method aims at numerically difficult problems, like those
containing severe jumps in material coefficients within the computational domain. It
recognizes troublesome parts of the interface by solving a generalized eigenvalue prob-
lem for each pair of adjacent subdomains which share a face. By dominant eigenvalues
the method detects where constraints need to be concentrated in order to improve the
coarse space, thus reducing number of iterations. On the other hand, the Multilevel
BDDC aims at improving scalability of the BDDC method for very large numbers
of subdomains, for which the coarse problem gets too large and/or fragmented to be
solved by a parallel direct solver. However, as theory suggests and experiments con-
firm, Multilevel BDDC leads to an exponential growth of the condition number and
the number of iterations.

The Adaptive-Multilevel BDDC method provides a kind of synergy of the adaptive
and the multilevel approaches. Our results confirm, that adaptively generated con-
straints are capable of reducing the rate of growth of the condition number with levels.
At the same time, the extension to three levels improved scalability of the adaptive

123

Adaptive-Multilevel BDDC and its parallel implementation 1117

2-level approach, and for large problems and core counts, we have been able to obtain
results we could not get by the 2-level method.

A convenient way of preconditioning the LOBPCG method based on components
of BDDC was presented, effectively converting the generalized eigenvalue problems
to ordinary eigenproblems. In our computations, this preconditioning led to large sav-
ings of number of LOBPCG iterations and corresponding computing time. However,
to reduce the time necessary for solving the eigenproblems further, we have restricted
the maximal number of adaptively generated constraints per face to ten in our paral-
lel computations. For this reason, the resulting performance of the adaptive method
was not as optimal as the serial tests (with arbitrary number of constraints per face)
suggested.

We have described a parallel implementation of the algorithm available in our
open-source library BDDCML. The solver has been successfully applied to systems
of equations with over 400 million unknowns solved on 32 thousand cores. Presented
results confirm, that both adaptive and non-adaptive implementations are reasonably
scalable. However, presented computations have also revealed sub-optimal scaling
especially on large numbers of cores, and these results will provide a basis for further
optimization of the solver.

We have presented results of two benchmark and two engineering problems of
structural analysis. On all problems, the adaptive selection of constraints led to reduced
number of PCG iterations. However, for most problems, this fact did not lead to
savings in computational time, and the cost of generating adaptive constraints was not
compensated by saved iterations.

It can be concluded that the adaptive method is not suitable for simple problems,
where also non-adaptive (even multilevel) method would converge reasonably fast.
For problems with difficulties, the non-adaptive BDDC method leads to large cost of
PCG iterations, especially for using several levels. On the contrary, the set-up phase
with solution of local eigenproblems mostly dominates the overall solution time for the
Adaptive-Multilevel BDDC method. Which approach is finally advantageous depends
on a particular problem. Apart of the aspect of computational time, we have already
encountered several problems for which the non-adaptive BDDC method failed, and
which have been successfully solved by adaptive BDDC.

Acknowledgements We would like to thank to Jaroslav Novotný, Jan Leština, Radim Blaheta, and Jiří
Starý for providing data of real engineering problems. This work was supported in part by National Science
Foundation under grant DMS-1216481, by Czech Science Foundation under grant GA ČR 106/08/0403,
and by the Academy of Sciences of the Czech Republic through RVO:67985840. B. Sousedík acknowledges
support from the DOE/ASCR and the NSF PetaApps award number 0904754. J. Šístek acknowledges the
computing time on Hector supercomputer provided by the PRACE-DECI initiative. A part of the work was
done at the University of Colorado Denver when B. Sousedík was a graduate student and during visits of
J. Šístek, partly supported by the Czech-American Cooperation program of the Ministry of Education,
Youth and Sports of the Czech Republic under research project LH11004.

References

1. Amestoy PR, Duff IS, L’Excellent JY (2000) Multifrontal parallel distributed symmetric and unsym-
metric solvers. Comput Methods Appl Mech Eng 184:501–520

123

1118 B. Sousedík et al.

2. Blaheta R, Jakl O, Starý J, Krečmer K (2009) The Schwarz domain decomposition method for analysis
of geocomposites. In: Topping B, Neves LC, Barros R (eds) Proceedings of the twelfth international
conference on civil, structural and environmental engineering computing. Civil-Comp Press, Stirling-
shire

3. Brenner SC, Sung LY (2007) BDDC and FETI-DP without matrices or vectors. Comput Methods Appl
Mech Eng 196(8):1429–1435

4. Brož J, Kruis J, (2009) An algorithm for corner nodes selection in the FETI-DP method. In: Enginner-
ing mechanics 2009—CDROM [CD-ROM]. Institute of Theoretical and Applied Mechanics AS CR,
Prague, pp 129–140

5. Cros JM (2003) A preconditioner for the Schur complement domain decomposition method. In: Herrera
I, Keyes DE, Widlund OB (eds) Domain decomposition methods in science and engineering. In: 14th
international conference on domain decomposition methods, Cocoyoc, Mexico, January 6–12, 2002.
National Autonomous University of Mexico (UNAM), México (2003) , pp 373–380

6. Demmel JW (1997) Applied numerical linear algebra. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia

7. Dohrmann CR (2003) A preconditioner for substructuring based on constrained energy minimization.
SIAM J Sci Comput 25(1):246–258

8. Farhat C, Lesoinne M, Pierson K (2000) A scalable dual-primal domain decomposition method. Numer
Linear Algebra Appl 7:687–714

9. Fragakis Y, Papadrakakis M (2003) The mosaic of high performance domain decomposition meth-
ods for structural mechanics: formulation, interrelation and numerical efficiency of primal and dual
methods. Comput Methods Appl Mech Eng 192:3799–3830

10. Ipsen ICF, Meyer CD (1995) The angle between complementary subspaces. Am Math Monthly
102(10):904–911

11. Karypis G, Kumar V (1998) METIS: a software package for partitioning unstructured graphs, partition-
ing meshes, and computing fill-reducing orderings of sparse matrices, version 4.0. Technical report,
Department of Computer Science, University of Minnesota. http://glaros.dtc.umn.edu/gkhome/views/
metis

12. Kim HH, Tu X (2009) A three-level BDDC algorithm for mortar discretizations. SIAM J Numer Anal
47(2):1576–1600. doi:10.1137/07069081X

13. Klawonn A, Rheinbach O, Widlund OB (2008) An analysis of a FETI-DP algorithm on irregular
subdomains in the plane. SIAM J Numer Anal 46(5):2484–2504. doi:10.1137/070688675

14. Klawonn A, Widlund OB (2006) Dual-primal FETI methods for linear elasticity. Commun Pure Appl
Math 59(11):1523–1572

15. Klawonn A, Widlund OB, Dryja M (2002) Dual-primal FETI methods for three-dimensional elliptic
problems with heterogeneous coefficients. SIAM J Numer Anal 40(1):159–179

16. Knyazev AV (2001) Toward the optimal preconditioned eigensolver: locally optimal block precondi-
tioned conjugate gradient method. Copper Mountain conference, 2000. SIAM J Sci Comput 23(2):517–
541

17. Kruis J (2006) Domain decomposition methods for distributed computing. Saxe-Coburg Publications,
Kippen

18. Lesoinne M (2003) A FETI-DP corner selection algorithm for three-dimensional problems. In: Herrera
I, Keyes DE, Widlund OB (eds) Domain decomposition methods in science and engineering. In: 14th
international conference on domain decomposition methods, Cocoyoc, Mexico, January 6–12, 2002.
National Autonomous University of Mexico (UNAM), México, pp 217–223. http://www.ddm.org

19. Li J, Widlund OB (2006) FETI-DP, BDDC, and block Cholesky methods. Int J Numer Methods Eng
66(2):250–271

20. Mandel J, Dohrmann CR (2003) Convergence of a balancing domain decomposition by constraints
and energy minimization. Numer Linear Algebra Appl 10(7):639–659

21. Mandel J, Dohrmann CR, Tezaur R (2005) An algebraic theory for primal and dual substructuring
methods by constraints. Appl Numer Math 54(2):167–193

22. Mandel J, Sousedík B (2006) Adaptive coarse space selection in the BDDC and the FETI-DP iterative
substructuring methods: optimal face degrees of freedom. In: Widlund OB, Keyes DE (eds) Domain
decomposition methods in science and engineering XVI. Lecture notes in computational science and
engineering, vol 55. Springer, Berlin, pp 421–428

23. Mandel J, Sousedík B (2007) Adaptive selection of face coarse degrees of freedom in the BDDC and
the FETI-DP iterative substructuring methods. Comput Methods Appl Mech Eng 196(8):1389–1399

123

http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis
http://dx.doi.org/10.1137/07069081X
http://dx.doi.org/10.1137/070688675
http://www.ddm.org

Adaptive-Multilevel BDDC and its parallel implementation 1119

24. Mandel J, Sousedík B (2007) BDDC and FETI-DP under minimalist assumptions. Computing 81:269–
280

25. Mandel J, Sousedík B, Dohrmann CR (2007) On multilevel BDDC. Domain decomposition methods
in science and engineering XVII. Lecture notes in computational science and engineering, vol 60, pp
287–294

26. Mandel J, Sousedík B, Dohrmann CR (2008) Multispace and multilevel BDDC. Computing 83(2–
3):55–85. doi:10.1007/s00607-008-0014-7

27. Mandel J, Sousedík B, Šístek J (2001) Adaptive BDDC in three dimensions. Math Comput Simul
82(10):1812–1831. doi:10.1016/j.matcom.2011.03.014

28. Mandel J, Tezaur R (2001) On the convergence of a dual-primal substructuring method. Numer Math
88:543–558

29. Pechstein C, Scheichl R (2008) Analysis of FETI methods for multiscale PDEs. Numer Math
111(2):293–333

30. Pechstein C, Scheichl R (2011) Analysis of FETI methods for multiscale PDEs—Part II: interface
variations. Numer Math 118(3):485–529

31. Šístek J, Mandel J, Sousedík B (2012) Some practical aspects of parallel adaptive BDDC method. In:
Brandts J, Chleboun J, Korotov S, Segeth K, Šístek J, Vejchodský T (eds) Proceedings of Applications
of Mathematics 2012. Institute of Mathematics AS CR, pp 253–266

32. Šístek J, Mandel J, Sousedík B, Burda P (2013) Parallel implementation of Multilevel BDDC.
In: Proceedings of ENUMATH 2011. Springer, Berlin (to appear)

33. Šístek J, Čertíková M, Burda P, Novotný J (2012) Face-based selection of corners in 3D substructuring.
Math Comput Simul 82(10):1799–1811. doi:10.1016/j.matcom.2011.06.007

34. Smith BF, Bjørstad PE, Gropp WD (1996) Domain decomposition: parallel multilevel methods for
elliptic partial differential equations. Cambridge University Press, Cambridge

35. Sousedík B (2008) Comparison of some domain decomposition methods. Ph.D. thesis, Czech Technical
University in Prague, Faculty of Civil Engineering, Department of Mathematics. http://mat.fsv.cvut.
cz/doktorandi/files/BSthesisCZ.pdf. Retrieved December 2011

36. Sousedík B (2010) Adaptive-Multilevel BDDC. Ph.D. thesis, University of Colorado Denver, Depart-
ment of Mathematical and Statistical Sciences

37. Sousedík B (2011) Nested BDDC for a saddle-point problem. submitted to Numerische Mathematik.
http://arxiv.org/abs/1109.0580

38. Sousedík B, Mandel J (2008) On the equivalence of primal and dual substructuring precondition-
ers. Electron Trans Numer Anal 31:384–402. http://etna.mcs.kent.edu/vol.31.2008/pp384-402.dir/
pp384-402.html. Retrieved December 2011

39. Sousedík B, Mandel J (2011) On Adaptive-Multilevel BDDC. In: Huang Y, Kornhuber R, Wid-
lund O, Xu J (eds) Domain decomposition methods in science and engineering XIX. Lecture notes
in computational science and engineering vol 78, Part 1. Springer, Berlin, pp 39–50. doi:10.1007/
978-3-642-11304-8_4

40. Toselli A, Widlund OB (2005) Domain decomposition methods—algorithms and theory. In: Springer
series in computational mathematics, vol 34. Springer, Berlin

41. Tu X (2007) Three-level BDDC in three dimensions. SIAM J Sci Comput 29(4):1759–1780. doi:10.
1137/050629902

42. Tu X (2007) Three-level BDDC in two dimensions. Int J Numer Methods Eng 69(1):33–59. doi:10.
1002/nme.1753

43. Tu X (2011) A three-level BDDC algorithm for a saddle point problem. Numer Math 119(1):189–217.
doi:10.1007/s00211-011-0375-2

44. Widlund OB (2009) Accomodating irregular subdomains in domain decomposition theory.
In: Bercovier M, Gander M, Kornhuber R, Widlund O (eds) Domain decomposition methods in
science and engineering XVIII. Proceedings of 18th international conference on domain decompo-
sition. Jerusalem, Israel, January 2008. Lecture notes in computational science and engineering, vol
70. Springer, Berlin

123

http://dx.doi.org/10.1007/s00607-008-0014-7
http://dx.doi.org/10.1016/j.matcom.2011.03.014
http://dx.doi.org/10.1016/j.matcom.2011.06.007
http://mat.fsv.cvut.cz/doktorandi/files/BSthesisCZ.pdf
http://mat.fsv.cvut.cz/doktorandi/files/BSthesisCZ.pdf
http://arxiv.org/abs/1109.0580
http://etna.mcs.kent.edu/vol.31.2008/pp384-402.dir/pp384-402.html
http://etna.mcs.kent.edu/vol.31.2008/pp384-402.dir/pp384-402.html
http://dx.doi.org/10.1007/978-3-642-11304-8_4
http://dx.doi.org/10.1007/978-3-642-11304-8_4
http://dx.doi.org/10.1137/050629902
http://dx.doi.org/10.1137/050629902
http://dx.doi.org/10.1002/nme.1753
http://dx.doi.org/10.1002/nme.1753
http://dx.doi.org/10.1007/s00211-011-0375-2

	Adaptive-Multilevel BDDC and its parallel implementation
	Abstract
	1 Introduction
	2 Notation and substructuring components
	3 Multilevel BDDC
	4 Adaptive coarse degrees of freedom
	5 Preconditioned LOBPCG
	6 Adaptive-Multilevel BDDC
	7 Implementation remarks
	7.1 Initial constraints
	7.2 Adaptive constraints
	7.3 Multilevel implementation

	8 Numerical examples
	8.1 Elasticity in a cube without and with jump in material coefficients
	8.2 Elasticity in a cube with variable size of regions of jumps in coefficients
	8.3 Linear elasticity analysis of a mining reel
	8.4 Linear elasticity analysis of a geocomposite sample

	9 Conclusion
	Acknowledgements
	References

