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Abstract Power efficiency is one of the main challenges in large-scale distributed
systems such as datacenters, Grids, and Clouds. One can study the scheduling of
applications in such large-scale distributed systems by representing applications as a
set of precedence-constrained tasks and modeling them by a Directed Acyclic Graph.
In this paper we address the problem of scheduling a set of tasks with precedence con-
straints on a heterogeneous set of Computing Resources (CRs) with the dual objective
of minimizing the overall makespan and reducing the aggregate power consumption of
CRs. Most of the related works in this area use Dynamic Voltage and Frequency Scal-
ing (DVFS) approach to achieve these objectives. However, DVFS requires special
hardware support that may not be available on all processors in large-scale distributed
systems. In contrast, we propose a novel two-phase solution called PASTA that does
not require any special hardware support. In its first phase, it uses a novel algorithm to
select a subset of available CRs for running an application that can balance between
lower overall power consumption of CRs and shorter makespan of application task
schedules. In its second phase, it uses a low-complexity power-aware algorithm that
creates a schedule for running application tasks on the selected CRs. We show that the
overall time complexity of PASTA is O(p.v2) where p is the number of CRs and v is
the number of tasks. By using simulative experiments on real-world task graphs, we
show that the makespan of schedules produced by PASTA are approximately 20 %
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longer than the ones produced by the well-known HEFT algorithm. However, the
schedules produced by PASTA consume nearly 60 % less energy than those produced
by HEFT. Empirical experiments on a physical test-bed confirm the power efficiency
of PASTA in comparison with HEFT too.

Keywords DAG scheduling · Energy-awareness · High performance computing ·
Heterogeneous computing resources

Mathematics Subject Classification (2010) 68M14 · 68M20

1 Introduction

High Performance Computing (HPC) has become one of the most essential needs of
current scientific activities. Providing more computational power for executing sci-
entific and industrial compute-intensive programs is the main goal of HPC. In recent
years, large-scale distributed systems such as clustered commodity computers, dat-
acenters, Grids, and Clouds have taken a big share of the HPC market from super-
computers and parallel machines. The power efficiency of these distributed systems
has remained a challenge though. For example, a typical datacenter with 1,000 racks
can well consume nearly 10 MW of electricity power per day to operate nowadays
[1]. High power consumption of such systems raises their operational costs, generates
more heat requiring extra cooling, and generates more carbon dioxide making them
environmentally unfriendly. Therefore, the use of less power can result in more cost
effective and environmentally friendly computations. However, the challenge is to find
a tradeoff between performance and power consumption.

In the past few years, several technologies have been deployed to improve power
efficiency in large-scale distributed systems. Dynamic Voltage and Frequency Scaling
(DVFS) [2] has been used to scale up or to scale down the input voltage and operational
frequency of processors. This is because the reduction of computational capability of a
processor reduces its energy dissipation. Virtualization [3] is another technology whose
mechanisms have been used to reduce power consumption. For example, consolidation
of several Virtual Machines (VMs) to a single Physical Machine (PM) can reduce
the total number of active PMs resulting in lower overall system power consumption;
unused PMs can be switched to power-saving mode or even turned off. Another popular
approach in this area is the use of green policies [4]. Green policy is heavily used in
Grids and large scale datacenters containing a large pool of machines. The approach
is simple. A component called resource manager checks the overall workload and
utilization of the computing infrastructure. When the resource manager detects that
the overall utilization of the computing infrastructure is low and predictions show that
this utilization will not increase in the near future, it switches redundant machines off.
Later on, when the resource manager detects that there is a need for more computational
power, it brings the switched off machines back to work again.

Generally, reducing power consumption may lead to slower execution of appli-
cations because approximately all of the known power reduction solutions decrease
the overall computational power of computing infrastructures. Scaling down the input
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voltage, consolidating several VMs to a single PM, and switching off a subset of
machines, reduce the computational capability and increase the overall makespan of
the schedule (that is also referred to as the schedule length in the paper interchange-
ably). Hence, when targeting power efficiency, one must also take care of the perfor-
mance loss. Satisfying both goals is to some extent hard because they are contradictory.
Among the mentioned solutions for power efficiency, DVFS needs hardware support
and virtualization needs hypervisor installation and sometimes processor support and
operating system modifications in some cases [3]. Therefore, these two approaches are
not always feasible or applicable to all large-scale distributed systems. On the other
hand, green policy cannot reduce power consumption largely because it is not aware
of application behavior and structure.

In this paper, we present a two-phase solution called PASTA for power-aware exe-
cution of precedence-constrained tasks modeled by a Directed Acyclic Graph (DAG).
Unlike DVFS-based solutions, PASTA schedules the execution of tasks by considering
both power efficiency and overall makespan, without requiring any special hardware
support. Getting information from the resource manager about the maximum available
resources in a distributed system, and by using the task graph of an application to be
run, PASTA selects a subset of available Computing Resources (CRs) for the execu-
tion of tasks that it estimates they can provide the best balance of power efficiency
and overall makespan. It then uses a novel power-aware list-scheduling algorithm to
schedule tasks on the selected CRs. By using just a subset of CRs to run the tasks of this
application, the resource manager can use the unused resources to execute the tasks of
other applications; it can turn the unused resources to standby mode; or it can switch
off the unused resources to reduce power consumption. Therefore, the main idea is to
schedule the tasks of an application in such a way to both shorten the makespan and
consume less power.

The rest of paper is organized as follows. Section 2 discusses the most notable related
scheduling algorithms and solutions from both performance and energy consumption
points of view. Section 3 presents the underlying models of PASTA including its
application model, its target system model, and its scheduling model. This section also
explains the well-known existing HEFT algorithm [5] that is one of the most effective
static scheduling algorithms. Section 4 presents the internals of the two-phased PASTA
solution and Sect. 5 reports the experimental results of applying PASTA to real-world
scientific task graphs. Section 6 concludes the paper and presents some future works.

2 Related work

Scheduling of a set of precedence-constrained tasks on a set of heterogeneous distrib-
uted CRs has been studied with different objectives. Scheduling algorithms usually
pursue three goals [6]: low time complexity, minimum makespan of resulting sched-
ule, and maximum efficiency (i.e., high ratio of speedup to the number of used CRs).
Unfortunately, these three goals are in conflict. For example, the minimization of
makespan conflicts with the maximization of efficiency. When such conflicts arise,
a scheduling algorithm should prioritize the goals. In most of the existing schedul-
ing algorithms, low time complexity has the highest priority and the minimization of
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makespan has a higher priority than the maximization of efficiency. This prioritization
implies that most existing scheduling algorithms are low complexity algorithms that
aim to produce a schedule with minimum possible makespan but not necessarily with
maximum efficiency.

The most common approach to DAG scheduling is list-based scheduling. In list-
based algorithms, tasks are first sorted into a list and then picked from the sorted list
and scheduled one by one. The Heterogeneous Earliest Finish Time (HEFT) is the most
well-known list-based scheduling algorithm for heterogeneous systems [5]. HEFT is a
low-complexity algorithm that aims to schedule the tasks of an application to shorten
the makespan. Low Complexity Performance Efficient Task Scheduling (PETS) [7],
Longest Dynamic Critical Path (LDCP) [8], Heterogeneous Critical Parents with Fast
Duplicator (HCPFD) [9], Iterative List Scheduling (ITL) [10] and Heterogeneous
Earliest Finish with Duplicator (HEFD) [11] are amongst the more recent notable
list-based algorithms.

Another popular approach is task graph clustering in which the task graph is clus-
tered firstly and then task clusters are scheduled on the target system. The most well-
known clustering-based scheduling algorithm is the Dominant Sequence Clustering
(DSC) algorithm [6] that does not support heterogeneous systems. Triplet [12] is
another clustering-based scheduling algorithm that supports heterogeneous systems
and also claims to produce shorter schedules than HEFT, but it does not consider power
efficiency.

Scheduling of a set of precedence-constrained tasks on a set of heterogeneous
CRs has been proved [13] to be an NP-Complete optimization problem. That is why
researchers in this field (including us in this paper) have been forced to find approxima-
tions or meta-heuristics to solve this problem through the maximization of scheduling
goals. Genetic Algorithms (GAs) [14], Particle Swarm Optimization (PSO) [15], and
Ant Colony Optimization (ACO) [16] are amongst the well-known meta-heuristics
that have been applied to the task scheduling problem. Although these solutions pro-
vide shorter makespan compared to list-based and clustering-based algorithms, they
spend a significantly longer time to find acceptable schedules. As a result, they are
only appropriate for static scheduling of task graphs containing a limited number of
tasks.

All scheduling algorithms we have reviewed up to this point have tried to shorten
the makespan of task schedules with no or little consideration for power efficiency.
However, power efficiency has become a first-class goal nowadays. As a result, more
research works on power-efficient task scheduling using either hardware or software
supports have been reported recently. Hardware-assisted power-efficient scheduling
approaches require specific hardware support. In contrast, software-based approaches
do not need specific hardware support and only rely on system resource managers and
on algorithmic solutions to scheduling to decrease power consumption. A relevant
survey on power-aware scheduling algorithms has been done by Zhuravlev et al. [17].

Solutions based on DVFS are the most well-known solutions in the hardware-
assisted category [2]. When DVFS support is available, a CR can scale up or
scale down its frequency or input voltage of its processor. In this case, by decreas-
ing the computational performance, there will be less power dissipation in return.
Baskiyar and Abdel-Kader [18] have presented a power-aware scheduling algorithm
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for precedence-constrained tasks called Energy-Aware DAG Scheduling (EADAGS)
based on DVFS. Apart from EADAGS, Zhang et al. [19] have also proposed a two-
phase algorithm that formulates the scheduling problem as an Integer Programming
problem. Pruhs et al. [20] have proposed a poly-log(m) approximation algorithm that
considers both makespan and power consumption too. Mishra et al. [21] have proposed
both a dynamic and a static power-aware scheduling algorithm for a set of real-time
tasks with precedence constraints.

The deployment of Virtualization Technology (VT) [22] constitutes another solu-
tion to the scheduling problem. There are two types of system virtualization, namely
full-virtualization, and para-virtualization. Full-virtualization usually needs hardware
support (e.g., Intel-VT or AMD-V) for reaching acceptable performance while para-
virtualization requires the guest operating system to be changed. Although VT has
made it easy to consolidate two or more VMs into one PM and save energy, but its
specific requirements for hardware support or modifications to the guest operating
systems may not be feasible in every distributed computing system. Zhu et al. have
proposed pSciMapper, a power-aware consolidation framework for scientific work-
flow tasks that uses hierarchical clustering for consolidating workloads [23]. Cioara et
al. have proposed a power-aware dynamic resource consolidation algorithm that uses
reinforcement learning to dynamically consolidate virtualized resources [24]. Lee and
Zomaya have also analyzed some power-aware heuristics for task consolidation [22].
Graubner et al. have also investigated the effect of power-aware management of VMs
in Cloud computing systems.

The use of green policies in scheduling can yield a software-based solution that
minimizes the power consumption and decreases the production of heat and carbon
dioxide. Energy Aware Reservation Infrastructure (EARI) [4] is a solution that has
been constructed based on green polices. EARI has a monitoring module that inspects
the utilization of CRs periodically. When the overall utilization is below a thresh-
old or some of the CRs are underutilized, the system resource manager component
switches off or suspends the unused CRs to reduce power consumption. When there
are demands for more computational power, switched off resources are put back to
work again. Goiri et al. have proposed GreenSlot, a batch scheduler that tries to maxi-
mize the green energy consumption e.g., solar energy while meeting tasks’ execution
deadlines [25]. Goiri et al. have also proposed GreenHadoop that is a MapReduce
framework for running data-intensive jobs in datacenters powered by a photovoltaic
solar array and the electrical grid (as a backup) [26].

To summarize this section, most of the related works on DAG scheduling either
have not considered power efficiency or have required special hardware and technol-
ogy support. For example, solutions based on DVFS need special technology in the
processors, Virtualization Technology needs specific hardware assistance to perform
efficiently, green policies need defining special polices and a green energy source like
solar energy. In contrast, our solution is independent of these technologies and tries
to balance the makespan of task schedules against the total power consumption just
by selecting efficient resources and considering power efficiency while building the
schedule. Given these differences, our solution can be used on clustered commodity
computers (and also legacy ones) to schedule precedence-constrained tasks with low
power consumption.
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Fig. 1 A sample application
represented as a task graph,
adopted from [5]

3 Underlying models

Before presenting our proposed power-aware PASTA solution to the scheduling of
precedence-constrained tasks on heterogeneous CRs, we first present our assumed
underlying models of application, target system, and scheduling in this section. In
addition, we discuss the well-known HEFT scheduling algorithm for heterogeneous
systems, which we have used it as a part of PASTA.

3.1 Application model

We have assumed that applications are represented by a Directed Acyclic Graph (DAG)
[27]. In a DAG representation of an application, the application is partitioned into a set
of tasks wherein each task can depend on the results of executions of other tasks in the
application, as depicted in Fig. 1. A parallel program is represented by G = (T,<, E),
where T = {ti , i = 1, 2, . . ., v} is a set of v tasks, < is a partial order on T , and E is the
set of directed edges of the DAG. Each task is assumed to be a serial task (e.g., a single
threaded procedure), and for any two tasks ti , t jεT , the existence of the partial order
ti < t j means that ti depends on t j implying that t j cannot start executing until ti has
completed. A weight Di, j is associated with each edge that represents the magnitude
of dependency of task ti on task t j (e.g., the amount of data passed from task ti
to task t j ).

3.2 Target system model

Our assumed target system consists of a set P = {p j , j = 1, 2, . . ., p} of p inde-
pendent CRs that are fully connected by an underlying communication subsystem.
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p1 p2 p3

t1 14 16 9
t2 13 19 18 

t3 11 13 19 

t4 13 8 17 

t5 12 13 10 

t6 13 16 9 

t7 7 15 11 

t8 5 11 14 

t9 18 12 20 

t10 21 7 16 

(a) 

WPD IPD IPD/WPD 

p1 164 102 0.6071 

p2 85 55 0.6470 

p3 44 27 0.6136 

(b) 

p1:
A workstation with a 2.4 GHz Intel Pentium 
4 processor and 1GB RAM

p2:
A workstation with a 2.4 GHz Intel Core 2 
Quad Q6600 processor and 4GB of RAM

p3:
A Dell Inspiron 5010 laptop with a 2.27 GHz 
Intel Core i5 processor and 4GB of RAM

Fig. 2 The model of a sample target system: a the ECT matrix, b power dissipation values measured
experimentally on three different real machines

Because of our assumed heterogeneity of the system, each task may have different
execution times on different CRs. For each task ti , the Estimated Computation Time
(ECT) of the task on p j is represented by ECTi, j that denotes the estimated compu-
tation time of task ti on p j . We assume that the ECT value for each task-CR pair is
available as a v × p matrix. For example, ECTi, j = 150 means that the estimated
computation time of task ti on p j is 150 units of time. ECTi, j = ∞ means that ti
cannot be run on p j . Each CR is connected to all other CRs and all communication
links are assumed to work concurrently and without contention. We also assume that
each CR is able to compute and communicate simultaneously. Communication links
can be heterogeneous too. Therefore, the communication rate between each pair of
CRs can be different. The communication rate between two CRs, namely pi and p j ,
is represented by Ri, j .

If two tasks, namely ti and t j , are scheduled to run on the same CR, then their
Communication Cost (CC) is zero, otherwise if they are scheduled to run on different
CRs, namely pm and pn , then their communication cost is given by Eq. 1.

CC(ti , t j ) = Di, j

Rm,n
(1)

Each CR has also a power dissipation that takes different values when the CR is idle
or busy working. Therefore, two additional attributes are defined for each CR: Idle
Power Dissipation (IPD) and Working Power Dissipation (WPD). For each CR, these
attributes are maintained in two vectors, namely, IPD and WPD vectors. Therefore,
I P Di and W P Di denote idle and working power dissipations of pi , respectively.
Figure 2 shows the model of a sample target system. Figure 2a shows a sample ECT
matrix that is adopted from [2]. Figure 2b shows the IPD and WPD of three different
real CRs we have measured experimentally on three different machines. The specifi-
cations of the three mentioned machines are given below Fig. 2b. As the Idle Power
Dissipation (IPD) and Working Power Dissipation (WPD) vectors in Fig. 2b show,
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the idle power consumptions of all three CRs are close to 60–65 % of their working
power consumption.

In the assumed target system model, CRs can compute and communicate simul-
taneously. In addition, no task preemption is allowed. Furthermore, the Finish Time
(FT) of a task ti denoted by FT (ti ) is the time taken to finish the execution of ti .
The Computation Available Time (CAT) of a computational resource pi denoted by
C AT (pi ) is the earliest time that pi can start executing, that is the time pi has finished
executing all of its previously assigned tasks. The Data Ready Time (DRT) of a task ti
on p j is denoted by DRT (ti, p j ) showing the time taken until all of the required data
of task ti have arrived from its parent tasks. Formally, DRT is defined by Eq. 2.

DRT (ti , p j ) = max
t j ∈parents(ti )

(FT (t j ) + CC(ti , t j )) (2)

3.3 Scheduling model

Given a task graph of a parallel program, a set p of CRs, a communication matrix
R, the Estimated Computation Time (ECT) values for each task-CR pair, and the Idle
Power Dissipation (IPD) and Working Power Dissipation (WPD) values for each CR,
the scheduling problem amounts to the finding of an order for the execution of tasks on
CRs selected from p. This order must satisfy all task dependencies, lower the aggregate
power consumption of CRs running the tasks, and shorten the overall makespan of
the task schedule as much as possible. Considering F = { fi , i = 1, 2, . . ., p} as the
set of finish times of all CRs, i.e., when a CR has done all of its computations and
communications, the schedule length can be expressed by Eq. 3 [27].

LengthSchedule = max{ f : f ∈ F} (3)

Actually, schedule length shows the total execution time of program. In this paper, we
use the terms schedule length and makespan interchangeably. We can also define the
power consumption of the whole schedule by calculating the power consumption of
each CR from the beginning of the schedule to that CR’s finish time:

PowerConsumptionSchedule

=
∑

pi ∈P

(I P Di × idle_timepi + W P Di × working_t imepi ) (4)

Therefore, we have a multi-objective problem whose goal is both to lower the power
consumption and to shorten the schedule length. Unfortunately, these two goals con-
tradict each other. Usually, the deployment of more resources decreases the schedule
length but additional resources consume more power. Hence, a good scheduling for
a parallel or distributed system must consider both goals simultaneously. PASTA is
a novel scheduling solution that tries to minimize the schedule length as well as the
power consumption of running applications simultaneously.
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3.4 The HEFT algorithm

The most well-known algorithm for scheduling precedence-constrained tasks on a
heterogeneous distributed system is the Heterogeneous Earliest First Finish Time
(HEFT) algorithm [5]. HEFT is a static list-based scheduling algorithm with low
time complexity and high performance. The objective of HEFT has been to achieve
both high performance and fast scheduling time. HEFT uses upward rank values as
formulated in Eq. 5 to sort tasks into a list. At each step, the task with the highest
upward bottom level is assigned to the CR that minimizes its finish time by using an
insertion policy.

ranku(ti ) = Average
p j ∈P

(ECTi, j ) + max
t j ∈children(ti )

(Di, j + ranku(t j )) (5)

Although HEFT is a good scheduling algorithm, it does not consider power efficiency.
It usually tries to use more CRs without considering the impact of additional CRs on the
makespan. This causes HEFT to utilize unnecessary CRs and hence to increase energy
consumption. The time complexity of HEFT is O(pv2) where p and v represent the
number of CRs and tasks, respectively.

4 PASTA Solution

To satisfy both scheduling goals of lowering energy consumption of CRs and short-
ening the makespan of task schedules, we must first select a subset of available CRs
that give the best tradeoff between power consumption and schedule length. Deter-
mining such a subset is complex because obtaining a schedule that has the minimum
schedule length given a set of CRs has proved to be an NP-complete problem [13]. To
determine this subset, we can try to estimate that subset. For example, we can use a
greedy approach to estimate the most power efficient subset of available CRs. To do
this, we first calculate an estimation of the maximum parallelism of the task graph,
referred to as max_par. This parameter is the maximum number of tasks that can be
run in parallel. Given the available CRs in the given CR set, we sort CRs into a list
in an ascending order of values of each CR’s effective computation score. This score
represents the average energy consumption of a CR when it executes the application
tasks. We then generate the entire prefix subsequences of the CR list, i.e., subsequences
that start from the first item, from length equal to 2 to length equal to max_par. Using
this approach, we narrow the possible subset count from 2p to max_par subsets. After
constructing the mentioned CR subsets, we schedule the tasks for each CR subset
using the HEFT algorithm.

In the next step, we assume that the makespan of HEFT’s schedule for each subset is
equal to an estimation of the best schedule length for that CR subset. Using the schedule
length for each subset, we determine the best subset and then use our power-aware
scheduling algorithm to construct a power-efficient schedule of CRs in the selected
CR subset. Instead of considering just the finish time in the CR selection phase, the
proposed scheduling algorithm considers both power consumption and finish time of
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Fig. 3 A high-level view of the proposed two-phased PASTA solution

each task-CR pair. Figure 3 shows our two-phased power-aware solution. We present
more details of these phases separately in the remainder of this section.

4.1 The CR selection phase

The first phase of our solution is the resource selection. To do the selection, the resource
manager is inquired about the maximum number of available CRs. In response to this
request, the resource manager returns a set of CRs. Given a set of heterogeneous
CRs, a subset of them is selected such that they can yield a fair tradeoff between
power efficiency and overall makespan of the schedule; fairness is defined in terms
of a balance point that is a subset of CRs that yields the best balance between energy
efficiency and speed. To select a subset of available CRs, the maximum number of
tasks that can be executed in parallel is determined.

Given a task graph, Algorithm 1 gives an estimation of the maximum parallelism
of that task graph. The algorithm is simple and uses a greedy approach. The algorithm
traverses the task graph using a priority queue as the ready task pool. The priority
queue prioritizes tasks by the number of their immediate children tasks. First, root
tasks are inserted into a priority queue. At each step, the task residing in front of the
priority queue is popped out and all of its immediate ready children are inserted into
the queue; a child task is ready if and only if all of its parents are popped out of the
ready pool. This process is repeated until all tasks are visited. The maximum length
of queue during this process gives the estimation of the maximum parallelism of the
task graph.

The time complexity of Algorithm 1 is O(e + v.log(max_par)), considering e and
v as the number of edges and tasks in the task graph and max_par as the maximum
parallelism of the task graph, respectively. Regarding the fact that each task is inserted
into the priority queue once and that the maximum length of priority queue is max_par,
the algorithm needs O(log(max_par)) steps at each iteration and it is repeated v times.
In addition, the total time taken to determine the parents of all tasks is O(e). There-
fore, the overall time complexity of Algorithm 1 is O(e + v.log max_par) that can be
considered as O(e) for non-sparse task graphs. Note that the algorithm uses a greedy
approach and may thus underestimate the maximum parallelism of a task graph. How-
ever, given it never overestimates the maximum parallelism of a task graph, we can
consider its estimation as being fair and approximately equal to the exact maximum
parallelism.
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The computing score of each CR is estimated by calculating the average estimated
computation costs of all tasks on that CR, as formulated by Eq. 6. Having calculated
the average computing score of each CR, we define the effective computation score of
each CR by Eq. 7.

ComputingScore(pi ) =
∑

t j ∈T ECT ( j, i)

|T | (6)

E f f ectiveComputationScore(pi ) = ComputingScore(pi ) × W P Di (7)

Having calculated the effective computation score of each CR, we sort CRs into a
sequence by an increasing order of effective computation score. After constructing
the sorted sequence of CRs, we begin to estimate the schedule length for each prefix
subsequence of sorted CR sequence (i.e., subsequences that start from the beginning
of the sequence of CRs).

In our proposed solution, we just calculate the schedule length from the prefix
subsequences of length 2 to max_par. If max_par is greater than the length of the
sequence then we compute the schedule length for all the prefix subsequences. We
use the HEFT algorithm to estimate the schedule length of each subsequence. We can
thus assume that the result of HEFT is a schedule with a minimum schedule length
for each CR subset. Now, having a schedule length value for each CR subset, we
define a function F(F(x) : int → real) that takes the size of a CR subset and returns
the normalized estimated schedule length for that subset. To normalize the schedule
lengths, we divide each schedule length by the minimum schedule length obtained
from the execution of HEFT. The returned value of F usually decreases by increases
in x . This decrease does not continue for the number of CRs greater than max_par.
Given this fact, a prefix subsequence of sorted CRs yields a fair tradeoff between
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power efficiency and schedule length because effective computation score of a CR is
a mixture of its processing power and power efficiency. A CR’s processing speed and
energy consumption are usually (but not always) opposing. Therefore, by selecting a
subsequence of CRs from the head of sorted CRs sequence, we try to select a subset
of CRs that yields the best balance between energy efficiency and speed. We call this
point as the balance point.

Now, we present a mechanism for estimating a fair balance point. We first define
�F as the average difference of F as formulated by Eq. 8.

�F = [Max(F) − Min(F)]
Max(x)

(8)

Starting from x = 2, we set the balance point equal to a point x where F(x)-F(x + 1)

is less than �F for the first time. Algorithm 2 shows the details of determining the
balance point and selecting a power-efficient subset of CRs.

The time complexity of Algorithm 2 is O(v2max_par2). This algorithm contains
two loops in steps 5 and 6 that iterate max_par times at the most. The time complexity
of the first loop is equal to the complexity of the HEFT algorithm that is O(pv2).
Since the number of CRs is at most max_par, so the time complexity of HEFT is
equal to O(v2max_par). The time complexity of the second loop is O(1). As a
result, we can conclude that the time complexity of Algorithm 2 is proportional to
O(max_par(v2max_par)) that is O(v2max_par2).

4.2 The Heterogeneous Power-Aware List Scheduler

We pursued two goals in PASTA, namely maximizing power efficiency and minimizing
schedule length. To do so, we have envisaged a two-phased solution and considered
each goal in one phase separately to get a fair tradeoff satisfying both goals. In the first
phase, we order tasks in such a way to minimize their schedule length. In the second
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phase, we reorder these preordered tasks from phase one in such a way that a set of
CRs with the least power consumption execute these tasks.

There is no optimal way for ordering tasks. However, Kwok and Ahmad [28] have
shown that using static bottom levels (b_levels) for ordering tasks show superior results
compared to other ordering methods. The b_level of a task ti is the longest path from
ti to an exit task, which is a task that has no children. The b_level for every task is
bounded from above to the critical path of the task graph. The b_level for each task is
defined recursively by Eq. 9.

b_level(ti ) = wi + max
t j ∈children(ti )

(Di, j + b_level(t j )) (9)

In Eq. 9, children(ti ) is the set of immediate successors of ti , and wi is the weight of
ti . In a homogeneous environment, the weight of each task is defined by estimating the
computation time of that task on a CR. However, in a heterogeneous environment, the
computation time of each task on different CRs may vary. The most common solution
is to assign the average estimated computation costs of running each task on all CRs as
the weight of that task (wi ), i.e., wi = ECTi . Although using ECTi as the weight of
each task is common, Zhao and Sakellariou [29] have shown that using the minimum
or the maximum values of estimated computation times of a task as its weight for
computing b_level may yield better schedules. Therefore, we compute static bottom
levels using minimum, average, and maximum values of estimated computation times
of a task and generate a list using each bottom level to produce better results. However,
for simplicity, it is also acceptable just to use the average of estimated computation
times.

The algorithm for computing b_levels using minimum, average, and maximum ECT
values is trivial and can be implemented by upward traversal of the task graph and
updating of the values of b_levels. After b_level values for each task are computed,
tasks are sorted by their b_levels. Using average, minimum, and maximum ECT values
for computing b_level attributes for each task, three lists are constructed as the result
of the first phase of our scheduling solution.

An attribute that is used in the allocation phase is the Earliest Finish Time (EFT).
As the name implies, E FT (ti, p j ) is the earliest finish time of task ti on p j as defined
by Eq. 10.

E FT (ti , p j ) = Max(DRT (ti , p j ), C AT (p j )) + ECTi, j (10)

In Eq. 10, DRT is the data ready time of task ti on C Rp j and CAT is the earliest
computation available time of C Rp j , as defined earlier in Sect. 3.2. EFT is a proper
attribute for choosing the best CR for a task when the goal is only to minimize the
overall schedule length. Most of the list-based scheduling algorithms proposed for
heterogeneous systems, like HEFT, use EFT in their second phase. At each step, the
task at the head of the list is selected and the EFT value for this task is computed on all
CRs and the task is scheduled on a CR that minimizes the EFT value. However, in the
second phase, our solution focuses on maximizing the power efficiency while trying
to minimize the overall schedule length. Hence, we define a new attribute called the
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Energy Consumption (EC) for each task-CR pair, as formulated in Eq. 11.

EC(ti , Pj ) (11)

=
⎧
⎨

⎩ W P D j × ECTi, j i f C AT (Pj ) ≥ DRT (ti .Pj )

W P D j × ECTi, j + I P D j × (DRT (ti .Pj ) − C AT (Pj )) else

According to Eq. 11, the energy consumption of task ti executed on p j is the sum of
energy consumptions of p j when p j is executing ti as well as when p j is idle. Finally,
we can define Score(ti, p j ) by Eq. 12.

Score(ti , p j )

=
{

E FT (ti , p j ) i f ti or one of i ts children ∈ cri ticalpath
E FT (ti , p j ) × EC(ti , p j ) else

(12)

PASTA uses the Score value to choose the best CR in the second phase. At each step,
the task at the head of the list is selected and its Score values for all CRs are computed.
Then, the task is scheduled on the CR that yields the minimum Score value. Algorithm
3 presents more details of PASTA.

The last line in Algorithm 3 returns the schedule with the minimum power con-
sumption. The power consumption of a schedule is the sum of the overall power that
is consumed by active CRs. The power consumption of each CR is the total power it
uses from the start of the schedule to the finish time of that CR. We can define the
power consumption of a schedule by Eq. 13.

PowerConsumptionSchedule

=
∑

p j ∈P

(W P D j × working_time(p j ) + I P D j × idle_t ime(p j ))

(13)
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(a) (b)

Fig. 4 a HEFT’s schedule (makespan = 80), b PASTA’s schedule (makespan = 76)

The time complexity of PASTA is equal to O(p.v2). For a sparse task graph, where
e is much less than O(v2), we can consider the time complexity to be equal to O(p.e
+ v.log v). Sorting tasks in line 2 of Algorithm 3 can be performed in O(v.log v) but
the main part of PASTA is the for-each loop in line 3. The body of for-each loop is
executed vtimes and at each iteration it needs O(pv) operations (computing the Score
for each CR). As a result, the overall execution of the for-each loop needs O(pv2)

time units. Hence, the overall time complexity of PASTA is equal to O(p.v2 +v.logv)

or simply O(p.v2).
Figure 4 shows the schedules of HEFT and PASTA when applied to the sample task

graph shown in Fig. 1 by using the estimated computation times given in Fig. 2a. The
b_level and score values for the sample task graph that are computed by PASTA are
given in Fig. 5.

5 Experiments

In this section, we describe our experimental results. Firstly, we define the performance
metrics that we have used to evaluate the performance of PASTA. We then define our
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min max avg 

t1 88 123 108 

t3 65 95 80 

t4 63 94 80 

t2 61 89 77 

t5 55 80 69 

t6 47 77 63.3 

t9 32 54 44 

t7 31 53 42.6 

t8 23 46 35.6 

t10 7 21 14.6 

(a) 

t1 14 16 9 14 16 9 

t3 32 34 28 33632 77554 87248 

t4 31 26 45 31 26 45 

t2 40 46 46 45 46 27 

t5 52 39 38 44 39 37 

t6 53 42 47 25740 57120 67896 

t9 69 68 76 68 62 69 

t7 58 83 49 52 77 66 

t8 62 79 73 58 73 74 

t10 102 80 97 96 76 91 

(b) 

Fig. 5 a Static b_levels using minimum, maximum, and average task weights, b EFTs and Score values
for each task-CR pair

experimental settings including the characteristics of task graphs and the specification
of our target system. Finally, we present the results of our simulative and empirical
experiments.

5.1 Performance comparison metrics

The most common metric for comparing the performance of different scheduling
algorithms is the makespan of resulting schedules. Because we have also focused
on the power consumption of the resulting schedules in this paper, we have used the
consumed power as our second metric. To present a more accurate comparison though,
we have normalized these two metrics by dividing the values of each schedule length
and consumed power to their minimum measured values for the sequential execution.
The normalized value of the schedule length is represented by the Schedule Length
Ratio (SLR) and the normalized value of power consumption is denoted by the Power
Consumption Ratio (PCR). The makespan of a sequential schedule is measured on a
CR that yields the minimum sequential makespan.

We have used the following input parameters to describe the characteristics of the
used task graphs:

• Heterogeneity factor (h) that represents the differences in the computation times
of running a task on different CRs. It is actually the variance value of a uniform
distribution with mean value of each task’s average computation time, determin-
ing the computation time of each task on each CR. In other words, a uniform
distribution D[ET Ci × (1−h), ET Ci × (1+h)] is used to determine each task’s
estimated execution time on each CR.

• Power heterogeneity factor (g) that represents the differences in the power dissipa-
tion of different CRs. We use a uniform distribution D[W P D × (1 − h), W P D ×
(1+h)] to determine the working power dissipation of each CR. We then generate
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the idle power dissipation of that CR from the range(0.6 × W P D, 0.65 × W P D)

randomly.
• Communication to Computation Ratio (CCR) that represents the ratio of the aver-

age communication cost to the average computation cost. The task graph represents
a computation-intensive program when the CCR is very low and it represents a
communication-intensive program when the CCR is very high. Eq. 14 defines the
CCR as the ratio of the sum of all communication costs to the sum of all average
computation costs.

CC R =
∑

Di, j∑
ECT i

(14)

5.2 Simulative evaluation

To evaluate the performance of PASTA, we have used the task graphs of two real-
world scientific workflows, namely the Gaussian Elimination (GE) and the Fast Fourier
Transform (FFT). The former task graph contained (m2 + m − 2)/2 tasks wherein m
is the dimension of the input matrix. On the other hand, the latter task graph contained
m × log(m) tasks in which m is the number of items in the FFT’s input vector.

For the GE case, we generated task graphs for matrices of size m={10,20,30,40,50}
and for the FFT, we generated task graphs for vectors of size m={10,20,30,40,50}.
We used different Communication to Computation Ratio (CCR) values for each task
graph, i.e., CCRs were selected from the set {0.1, 0.5, 1, 2, 10}. The h and g parameters
were generated as discussed in Sect. 5.1. We assumed a set of available heterogeneous
CRs equal to the number of tasks for each task graph. We also assumed that all tasks
in each task graph were fully connected by communication links with one unit of data
per unit of time transfer rate.

To simulate the scheduling of task graphs on heterogeneous resources based on the
introduced parameters, we designed and implemented the DAGSimul simulator. This
tool is able to schedule defined DAGs on a set of defined heterogeneous resources
using PASTA or HEFT and report many desired values, such as the energy consumed
by the schedule and its makespan.

Using DAGSimul to schedule the mentioned Gaussian Elimination (GE) and Fast
Fourier Transformation (FFT) task graphs, we found that for both task graph sets,
HEFT had shorter schedule lengths than PASTA while PASTA consumed significantly
less power than HEFT. Figures 6 and 7 show the comparative performances of HEFT
and PASTA, running these two task graph sets using SLR and Power Consumption
Ratio (PCR) metrics. As Figs. 6 and 7 demonstrate, although PASTA produced slightly
longer schedule lengths than HEFT, but it significantly increased the power efficiency
compared with HEFT.

5.3 Experimental evaluation

To have a more realistic evaluation of PASTA, we also performed a more practical
experiment on a physical test-bed consisting of a network of 20 machines, running
Ubuntu 10.4 and connected by a one Gigabyte LAN. The configuration of the deployed
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Fig. 6 Average Schedule Length Ratio (SLR) and Power Consumption Ratio (PCR) values for the Gaussian
Elimination (GE) task graph

Fig. 7 Average Schedule Length Ratio (SLR) and Power Consumption Ratio (PCR) values for the Fast
Fourier Transformation (FFT ) task graph

CRs in our physical test-bed was the same as the configuration of CRs in our assumed
target system model stated in Sect. 3.2. More precisely, we used 7 machines of type p1,
7 machines of type p2, and 6 machines of type p3. We used task graphs of three real
applications, namely LIGO, Epigenomics, and Montage workflows [30]. To sched-
ule these task graphs on the configured physical test-bed, we developed a simple
scheduler to execute these task graphs on the test-bed using HEFT and PASTA. The
scheduler ran on one of the CRs (of type p1) and was responsible for assigning tasks
to CRs and providing each task with its required data.

As stated in the definition of CCR in Sect. 5.1, different values of CCR result in dif-
ferent schedules. We thus repeated the experiment with different CCR values, i.e., 0.1,
1, and 10 in order to compare the performance of PASTA with HEFT under different
I/O and CPU intensive workloads. All three selected task graphs had 100 tasks. The
task graph with low value of CCR, that is 0.1, represented a computation-intensive
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Fig. 8 Average Schedule Length Ratio (SLR) and Power Consumption Ratio (PCR) values for LIGO,
Epigenomics, and Montage task graphs measured through empirical experiments

program with a denser schedule wherein CRs were mostly engaged in processing than
in waiting for communication. The task graph with CCR value of 1 represented a
balanced computation to communication intensive program while the task graph with
the high value of 10 represented a communication-intensive program. We used PCR
and SLR metrics for comparison too. Figure 8 shows the experimental results.

As Fig. 8 shows, for all task graphs and all CCR values, HEFT produced shorter
schedules while in contrast PASTA produced schedules that consumed less power. For
the LIGO workflow, PASTA’s performance in power consumption was not significant.
It consumed about 30 % less power but produced schedules that were approximately
50 % longer and this outcome was not favorable. On the other hand, for Epigenomics
and Montage workflows, PASTA performed well. The schedules produced by PASTA
were slightly longer than the schedules produced by HEFT, but the power saving of
PASTA was considerable. For example, for the Montage workflow with Communi-
cation to Computation Ratio (CCR) equal to 10, PASTA produced a schedule whose
makespan was approximately equal to that of HEFT, but the schedule of PASTA con-
sumed approximately 60 % less power than the schedule of HEFT. It should be noted
too that for all task graphs, PASTA used less than half of the CRs while HEFT used
all 20 CRs during the experiments. This difference in resource consumption clearly
describes why PASTA consumed less power than HEFT to do the same job.

As an important concluding remark, we should note that PASTA usually produces
more power-efficient schedules compared to HEFT based on our experiments. The
main reason is that PASTA uses less CRs by considering power consumption as a
detrimental metric during scheduling. In some rare cases however, when HEFT uses
approximately the same amount of CRs as PASTA and yields shorter schedules than
PASTA schedules, HEFT can produce schedules that are more power efficient than
PASTA’s schedules. This usually happens because of the shorter schedules that result
from HEFT. In this case, although HEFT uses slightly more CRs, it completes the task
graphs faster by using CRs for shorter time periods and hence consumes less overall
power. But, given the fact that PASTA usually selects a subset of available CRs in its
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first phase and by considering both power efficiency and performance of each CR when
deciding to assign each task and also given the fact that HEFT on the contrary selects all
available CRs regardless of their power-efficiency when determining the schedules,
HEFT schedules can rarely become more power efficient than PASTA schedules.
Moreover, there may even be some cases in which PASTA outperforms HEFT in
schedule length too. This is generally attributed to heuristic nature of both HEFT and
PASTA. Figure 4 shows an example of such a case wherein HEFT has produced a
schedule of length 80, while PASTA’s schedule length is 76 on the same task graph.

6 Conclusion and further work

In this paper, we presented PASTA, a new two-phase solution for power-aware schedul-
ing of precedence-constrained tasks modeled by a DAG on a fully connected hetero-
geneous set of CRs. For the first phase of PASTA, we presented a novel algorithm
for selecting a subset of available CRs that offers a fair tradeoff between power effi-
ciency and overall makespan of the task schedule. For the second phase of PASTA, we
presented a new list-based scheduling algorithm for scheduling tasks on the selected
subset of CRs. This algorithm used the static bottom levels of tasks to make a task
list and then used a combination of the earliest finish time and the power consump-
tion metrics for selecting the most appropriate CR for assigning the task residing at
the head of the list. We performed various experiments through simulation and real
implementation. In these experiments, we used different real-world task graphs such
as Gaussian Elimination (GE), Fast Fourier Transformation (FFT), LIGO, Montage,
and Epigenomics. Our simulative experimental results showed that albeit PASTA pro-
duced schedules with approximately 20 % longer makespans than those of HEFT,
but PASTA’s schedules were approximately 60 % more energy-efficient than HEFT’s
schedules, indicating the superiority of PASTA over HEFT for scheduling tasks in
large datacenters and Clouds. Our empirical experiments also confirm the efficiency
of PASTA on consuming less power for Montage and Epigenomics workflows.

We stated that there are very few algorithms for power-aware scheduling of
precedence-constrained tasks and that the existing ones usually depend on hardware
assistance. A further work is to develop a power-aware task-scheduling algorithm that
supports task duplication technique. We are currently extending PASTA to support
task duplication and preliminary results have been encouraging. Another future work
is to extend PASTA with a communication-contention-aware model. Communication
congestion and contention can have a strong impact on the performance and behavior
of scheduling algorithms. The extension of PASTA to support multicore and multi-
processor architectures constitutes another future work. With the availability of high
performance shared memory and caches in a multicore chip, inter-chip communica-
tions have been very fast. This feature required especial investigation too.
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