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Abstract We present numerically verified a posteriori estimates of the norms of
inverse operators for linear parabolic differential equations. In case that the corre-
sponding elliptic operator is not coercive, existing methods for a priori estimates of
the inverse operators are not accurate and, usually, exponentially increase in time vari-
able. We propose a new technique for obtaining the estimates of the inverse operator by
using the finite dimensional approximation and error estimates. It enables us to obtain
very sharp bounds compared with a priori estimates. We will give some numerical
examples which confirm the actual effectiveness of our method.
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1 Introduction

We consider the following linear parabolic initial-boundary value problems,

⎧
⎪⎪⎨

⎪⎪⎩

Ltw ≡ ∂w

∂t
− ν�w + (b · ∇)w + cw = g, in Ω × J , (1a)

w(x, t) = 0, on ∂Ω × J , (1b)

w(x, 0) = 0, in Ω , (1c)

where Ω ⊂ R
d (d = 1, 2, 3) is a bounded convex polygonal or polyhedral domain,

J = (0, T ) ⊂ R a bounded interval, ν a positive parameter, b ∈ L∞(
J ; L∞(Ω)

)d ,
c ∈ L∞(

J ; L∞(Ω)
)

and g ∈ L2
(
J ; L2(Ω)

)
.

As well known, for all g ∈ L2
(
J ; L2(Ω)

)
, there exists a unique solution w ∈

L2
(
J ; H1

0 (Ω)∩ H2(Ω)
)

to the problem (1). Denoting the solution operator of (1) by
L−1

t , it is bounded from L2
(
J ; L2(Ω)

)
into L2

(
J ; H1

0 (Ω)
)
. In this paper, we present

a numerical method to compute a positive constant CL−1
t

s.t.

∥
∥
∥L−1

t

∥
∥
∥L(

L2(J ;L2(Ω)),L2(J ;H1
0 (Ω))

) ≤ CL−1
t

. (2)

It is not so difficult to determine such a constant, by some theoretical consideration
(e.g. [10]), which we call ‘a priori estimates’. However, in general, CL−1

t
obtained by

existing a priori methods is exponentially dependent on the time interval J unless that
the corresponding elliptic operator to the right-hand side of (1a) is coercive [3]. For
example, in case of b = 0, the following a priori estimate is easily derived [10],

∥
∥
∥L−1

t

∥
∥
∥L(

L2(J ;L2(Ω)),L2(J ;H1
0 (Ω))

) ≤ exp(βT )
C p

ν
, (3)

where C p is a Poincaré constant and β a nonnegative parameter defined as β ≡
max{supΩ×J (−c), 0}. Therefore, if the function c takes negative value, then the right-
hand side of (3) becomes very large and it leads to an over-estimation of the inverse
operator L−1

t , which yields the worse results for various purposes using the norm
bounds. For example, applying the estimates (2) or (3), we can develop a numerical
verification method for solutions of nonlinear problem (4) in a similar way as in [7].

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
− ν�u = f (t, x, u,∇u), in Ω × J, (4a)

u(x, t) = 0, on ∂Ω × J, (4b)

u(x, 0) = u0, in Ω. (4c)

In the verification process, the estimation of the norm for L−1
t plays an essential role.

In order to obtain a successful and efficient verification, we usually need to estimate
it as small as possible. As described later, our a posteriori estimates will present more
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On a posteriori estimates of inverse operators 153

accurate bounds than a priori bounds (3) or similar result in [4]. Particularly, it will be
illustrated by some numerical examples that our method could remove the exponential
dependency on T even though c is negative. Therefore, our a posteriori approach is
more efficient than the existing a priori method.

2 Function spaces and projections

In this section, we introduce some function spaces and finite dimensional projections.
Let Sh(Ω) ⊂ H1

0 (Ω) be a finite dimensional subspace dependent on the parameter h.
For example, h stands for the mesh size when we use the finite element method. Let
{φi }1≤i≤n be a basis for Sh(Ω). Then, letting P0

h : L2(Ω) → Sh(Ω) be the orthogonal
L2-projection, we extend it to the projection P0

h : L2
(
J ; L2(Ω)

) → L2
(
J ; Sh(Ω)

)

by

(
u(t) − P0

h u(t), vh

)

L2(Ω)
= 0, ∀vh ∈ Sh(Ω), a.e. t ∈ J. (5)

Here, (·, ·)L2(Ω) means L2 inner product on Ω . It is easy to show that

∥
∥
∥P0

h

∥
∥
∥L

(
L2(J ;L2(Ω)), L2(J ;L2(Ω))

) ≤ 1. (6)

Also using the orthogonal H1
0 -projection P1

h : H1
0 (Ω) → Sh(Ω), we define P1

h :
L2

(
J ; H1

0 (Ω)
) → L2

(
J ; Sh(Ω)

)
by

(
u(t) − P1

h u(t), vh

)

H1
0 (Ω)

= 0, ∀vh ∈ Sh(Ω), a.e. t ∈ J. (7)

Here, H1
0 inner product on Ω is defined as (u, v)H1

0 (Ω) := (∇u,∇v)L2(Ω)d . Further,

we define the function space V 1(J ) ⊂ H1(J ) by

V 1(J ) :=
{

u ∈ H1(J ) ; u(0) = 0
}

and the inner product (u, v)V 1(J ) := (
u′, v′)

L2(J )
.

And define V 1
(
J ; L2(Ω)

) ⊂ H1
(
J ; L2(Ω)

)
by

V 1(J ; L2(Ω)
) :=

{
u ∈ H1(J ; L2(Ω)

) ; u(0) = 0, in L2(Ω)
}

and the inner product (u, v)
V 1

(
J ;L2(Ω)

) := (ut , vt )L2
(

J ;L2(Ω)
), where ut := ∂u

∂t and

(u, v)
L2

(
J ;L2(Ω)

) means L2 inner product on Ω × J . Further, L2
(
J ; H1

0 (Ω)
)

is a

Hilbert space with the inner product (u, v)
L2

(
J ;H1

0 (Ω)
) := (∇u,∇v)

L2
(

J ;L2(Ω)
)d .

Let V :=V 1
(
J ; L2(Ω)

)∩L2
(
J ; H1

0 (Ω)
)

and X (Ω) :={u ∈ L2(Ω);�u ∈ L2(Ω)}.
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We assume that the following estimates hold for P1
h .

Assumption 1 There exists a constant C(h) > 0 satisfying

∥
∥
∥u − P1

h u
∥
∥
∥

H1
0 (Ω)

≤ C(h) ‖�u‖L2(Ω) , ∀u ∈ H1
0 (Ω) ∩ X (Ω), (8)

∥
∥
∥u − P1

h u
∥
∥
∥

L2(Ω)
≤ C(h)

∥
∥
∥u − P1

h u
∥
∥
∥

H1
0 (Ω)

, ∀u ∈ H1
0 (Ω). (9)

In many cases, the explicit values for C(h) satisfying Assumption 1 are decidable. For
examples, see [6].

3 Constructive a priori error estimates for a simple problem

In this section, we discuss the a priori estimate for linear simple equations, which is
important to estimate a more general problem (1).
For a given constant ν > 0 and g ∈ L2

(
J ; L2(Ω)

)
, we consider a linear heat equation

of the form
⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
− ν�u = g, in Ω × J , (10a)

u(x, t) = 0, on ∂Ω × J , (10b)

u(x, 0) = 0, in Ω . (10c)

We define the weak solution of (10) by

(
∂u
∂t (t), v

)

L2(Ω)
+ν (∇u(t),∇v)L2(Ω)d =(g(t), v)L2(Ω) , ∀v∈ H1

0 (Ω), a.e. t ∈ J,

(11)

It is known that (11) has a unique solution u ∈ V .
We now define the linear differential operator �t : V ∩ L2

(
J ; X (Ω)

) →
L2

(
J ; L2(Ω)

)
by �t := ∂

∂t −ν�. Then we have the following estimate [5, Lemma 2].

Lemma 2 It holds that

∥
∥ ∂

∂t u
∥
∥

L2
(

J ;L2(Ω)
) ≤ ‖�t u‖

L2
(

J ;L2(Ω)
) , ∀u ∈ V ∩ L2(J ; X (Ω)

)
. (12)

Defining the PV
h -projection PV

h : V → V 1
(
J ; Sh(Ω)

)
by

(
∂
∂t

(
u(t) − PV

h u(t)
)
, vh

)

L2(Ω)
+ ν

(
∇(

u(t) − PV
h u(t)

)
,∇vh

)

L2(Ω)d
= 0,

∀vh ∈ Sh(Ω), a.e. t ∈ J.

(13)

We have the following estimates [5].
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Lemma 3 We have
∥
∥
∥ ∂

∂t PV
h u

∥
∥
∥

L2
(

J ;L2(Ω)
) ≤ ‖�t u‖

L2
(

J ;L2(Ω)
) , ∀u ∈ V ∩ L2(J ; X (Ω)

)
. (14)

Also, we have the following error estimates.

Theorem 4 Under Assumption 1, the following inequality holds.

∥
∥
∥u−PV

h u
∥
∥
∥

L2
(

J ;H1
0 (Ω)

) ≤ 2C(h)
ν

‖�t u‖
L2

(
J ;L2(Ω)

) , ∀u ∈V ∩L2(J ; X (Ω)
)
, (15)

Proof See [5, Lemma 2]. ��
Note that the statements in Lemma 2 and 3 and Theorem 4 are valid not only for

the case of d = 1 but also d = 2 and 3, because the concerning arguments in [5] are
exactly same as to the multi-dimensional case.

The Aubin-Nitsche trick is a well-known technique to obtain a higher order a priori
L2 error estimate than H1

0 estimates by considering the dual problem. We now present
a priori L2 error estimates using the Aubin-Nitsche trick by [3] for applied numerical
verification methods. Consider the conjugate problem of (10),

⎧
⎪⎪⎨

⎪⎪⎩

∂w

∂t
+ ν�w = u⊥, in Ω × J , (16a)

w(x, t) = 0, on ∂Ω × J , (16b)

w(x, T ) = 0, in Ω , (16c)

where u⊥ := u − PV
h u. Let w be a weak solution of (16) satisfying

(
∂
∂t w, v

)

L2(Ω)
−ν (∇w,∇v)L2(Ω)d =(u⊥, v)L2(Ω) , ∀v∈ H1

0 (Ω), a.e. t ∈ J,

(17)

By the variable transformation s := T − t and setting
V 1∗

(
J ; L2(Ω)

) := {
w ∈ H1

(
J ; L2(Ω)

) ; w(T ) = 0, in L2(Ω)
}
, it is seen that

(17) has a unique solution w ∈ V 1∗
(
J ; L2(Ω)

) ∩ L2
(
J ; H1

0 (Ω)
)
.

Next, let wh ∈ V 1∗
(
J ; Sh(Ω)

)
be the semi-discrete approximate solution of the (17)

satisfying

(
∂
∂t wh, vh

)

L2(Ω)
− ν (∇wh,∇vh)L2(Ω)d = (u⊥, vh)L2(Ω) ,

∀vh ∈ Sh(Ω), a.e. t ∈ J. (18)

Theorem 5 Under Assumption 1, we have the following inequality,

∥
∥
∥u − PV

h u
∥
∥
∥

L2
(

J ;L2(Ω)
) ≤ 4C(h)

∥
∥
∥u − PV

h u
∥
∥
∥

L2
(

J ;H1
0 (Ω)

) , ∀u ∈ V . (19)
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Proof For arbitrary u ∈ V , we put u⊥ := u − PV
h u. Let w ∈ V 1∗

(
J ; L2(Ω)

) ∩
L2

(
J ; H1

0 (Ω)
)

be the solution of (17). For almost every t ∈ J , by taking the test
function v = u⊥(t) ∈ H1

0 (Ω) in (17), we have

‖u⊥(t)‖2
L2(Ω)

= (
∂
∂t w, u⊥

)

L2(Ω)
− ν (∇w,∇u⊥)L2(Ω)d

= d
dt (w, u⊥)L2(Ω) − (

w, ∂
∂t u⊥

)

L2(Ω)
− ν (∇w,∇u⊥)L2(Ω)d .

By some simple calculations, taking into account the definition of P1
h - and PV

h -pro-
jection, we obtain the following equality

‖u⊥(t)‖2
L2(Ω)

= d
dt (wh, u⊥)L2(Ω) +

(
∂
∂t (w − wh), u − P1

h u
)

L2(Ω)

−ν
(
∇(w − wh),∇(u − P1

h u)
)

L2(Ω)d
.

Integrating this on J , we get

‖u⊥‖2
L2

(
J ;L2(Ω)

)

=
(

∂
∂t (w−wh), u−P1

h u
)

L2
(

J ;L2(Ω)
)−ν

(
∇(w−wh),∇(u−P1

h u)
)

L2
(

J ;L2(Ω)
)d

≤‖w−wh‖V 1(J ;L2)

∥
∥
∥u−P1

h u
∥
∥
∥

L2(J ;L2)
+ν ‖w−wh‖L2(J ;H1

0 )

∥
∥
∥u−P1

h u
∥
∥
∥

L2(J ;H1
0 )

(20)

where we used the properties u⊥(0) = 0 and wh(T ) = 0. By the fact that the error of
P1

h -projection in the H1
0 norm is minimized, we have from (9)

∥
∥
∥u − P1

h u
∥
∥
∥

L2
(

J ;L2(Ω)
) ≤ C(h)

∥
∥
∥u − PV

h u
∥
∥
∥

L2
(

J ;H1
0 (Ω)

) .

Next, since we can obtain the same error estimates in Theorem 4 for the dual problem,
we have

‖w−wh‖
L2

(
J ;H1

0 (Ω)
) ≤ 2C(h)

ν

∥
∥ ∂

∂t w + ν�w
∥
∥

L2
(

J ;L2(Ω)
)= 2C(h)

ν
‖u⊥‖

L2
(

J ;L2(Ω)
) .

Finally, from Lemmas 2 and 3, we have

‖w − wh‖
V 1

(
J ;L2(Ω)

) ≤ 2 ‖�tw‖
L2

(
J ;L2(Ω)

) = 2 ‖u⊥‖
L2

(
J ;L2(Ω)

) .

Therefore, (20) implies

‖u⊥‖2
L2

(
J ;L2(Ω)

) ≤ 4C(h) ‖u⊥‖
L2

(
J ;L2(Ω)

) ‖u⊥‖
L2

(
J ;H1

0 (Ω)
) .

��

123



On a posteriori estimates of inverse operators 157

4 A numerically verified a posteriori estimates for solutions of parabolic
problems

In this section, we discuss the a posteriori estimates for solutions of (1), especially,
an efficient computation of CL−1

t
in (2).

First, we define the n × n matrices Lφ , Dφ and Qφ associated with the equation
(1) by

Lφ,i, j := (
φ j , φi

)

L2(Ω)
, Dφ,i, j := (∇φ j ,∇φi

)

L2(Ω)d , (21)

Qφ,i, j := ν
(∇φ j ,∇φi

)

L2(Ω)d + (
(b · ∇)φ j , φi

)

L2(Ω)
+ (

cφ j , φi
)

L2(Ω)
. (22)

Note that Dφ and Lφ are symmetric positive definite matrices. Let Yφ and Zφ be the
Cholesky factors of Dφ and Lφ , respectively, i.e.,

Dφ = YφY T
φ and Lφ = Zφ Z T

φ .

Next, we consider the semi-discrete finite element solution wh ∈ V 1
(
J ; Sh(Ω)

)
of

(1) defined by

(
∂wh
∂t (t), vh

)

L2(Ω)
+ ν (∇wh(t),∇vh)L2(Ω)d

+ ((
b(t) · ∇)

wh(t) + c(t)wh(t), vh
)

L2(Ω)

= (g(t), vh)L2(Ω) , ∀vh ∈ Sh(Ω), a.e. t ∈ J. (23)

Defining two vector functions α and β by wh = ∑n
i=1 αi (t)φi (x) and βi :=

(g, φi )L2(Ω) (i = 1, . . . , n), (23) can be rewritten as

(
Lφ

d
dt + Qφ(t)

)
α(t) = β(t), a.e. t ∈ J.

Therefore, if we can compute
(
Lφ

d
dt + Qφ

)−1
then we can estimate wh .

We now define the positive constant

M10
φ (h) =

∥
∥
∥Y T

φ

(
Lφ

d
dt + Qφ

)−1
Zφ

∥
∥
∥L

(
L2(J )n , L2(J )n

) . (24)

We can compute an upper bound of M10
φ (h) by applying the numerical method intro-

duced in [2]. Also we define positive constants Cb :=
∥
∥
∥
∥

√

b2
1 + · · · + b2

d

∥
∥
∥
∥

L∞
(

J ;L∞(Ω)
),

C1 := Cb + C p ‖c‖
L∞

(
J ;L∞(Ω)

) and C2 := Cb + 4C(h) ‖c‖
L∞

(
J ;L∞(Ω)

).

Theorem 6 Under Assumption 1, let κφ > 0 be satisfy

κφ := 2C(h)C2
(
1 + C1 M10

φ (h)
)

< ν. (25)
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Then, we have following estimates,

∥
∥
∥L−1

t

∥
∥
∥L

(
L2(J ;L2(Ω)), L2(J ;H1

0 (Ω))
) ≤ νM10

φ (h) + 2C(h) + 2C(h)C1 M10
φ (h)

ν − κφ

. (26)

Proof For an arbitrary g ∈ L2
(
J ; L2(Ω)

)
, we put u := L−1

t g ∈ V ∩ L2
(
J ; X (Ω)

)

and decompose it into two parts, namely, the finite and infinite dimensional parts, as
follows

∂u

∂t
− ν�u + (b · ∇)u + cu = g ⇐⇒ u = �−1

t

(−(b · ∇)u − cu + g
)

⇐⇒
{

PV
h u = PV

h �−1
t

(−(b · ∇)u − cu + g
)
, (27a)

(I − PV
h )u = (I − PV

h )�−1
t

(−(b · ∇)u − cu + g
)
. (27b)

Denoting u⊥ := u − PV
h u and ∂t := ∂

∂t , by some simple calculations using (27a), it
is readily seen, for almost every t ∈ J and arbitrary vh ∈ Sh(Ω), that

(
∂t PV

h u, vh

)

L2(Ω)
+ ν

(
∇ PV

h u,∇vh

)

L2(Ω)d
+

(
(b · ∇)PV

h u + cPV
h u, vh

)

L2(Ω)

=
(

P0
h

(−(b · ∇)u⊥ − cu⊥ + g
)
, vh

)

L2(Ω)
. (28)

Since PV
h u and P0

h

(−(b · ∇)u⊥ − cu⊥ + g
)

are elements in V 1
(
J ; Sh(Ω)

)
and

L2
(
J ; Sh(Ω)

)
, respectively, they are represented by the linear combinations of the

basis of Sh(Ω). Namely, there exists α := (α1, . . . , αn)T ∈ V 1(J )n and β :=
(β1, . . . , βn)T ∈ L2(J )n such that

PV
h u(x, t) =

n∑

i=1

αi (t)φi (x), P0
h

(−(b · ∇)u⊥ − cu⊥ + g
)
(x, t) =

n∑

i=1

βi (t)φi (x).

Therefore, (28) is rewritten by using α and β of the form

Lφα′ + Qφα = Lφβ, (29)

where the matrices Lφ and Qφ are defined by (21) and (22), respectively. By (29), we
have

∥
∥
∥PV

h u(t)
∥
∥
∥

2

H1
0 (Ω)

= α(t)T Dφα(t)

=
(

Y T
φ α(t)

)T
Y T

φ

(
Lφ

d
dt + Qφ(t)

)−1
Zφ

(
Z T

φ β(t)
)

.
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Integrating both sides of the above in t and by using (24), we get

∥
∥
∥PV

h u
∥
∥
∥

2

L2
(

J ;H1
0 (Ω)

)

=
∫

J

(
Y T

φ α(t)
)T

Y T
φ

(
Lφ

d
dt + Qφ(t)

)−1
Zφ

(
Z T

φ β(t)
)

dt

≤
∥
∥
∥Y T

φ α

∥
∥
∥

L2(J )n

∥
∥
∥Y T

φ

(
Lφ

d
dt + Qφ

)−1
Zφ

∥
∥
∥L

(
L2(J )n , L2(J )n

)
∥
∥
∥Z T

φ β

∥
∥
∥

L2(J )n

≤
∥
∥
∥PV

h u
∥
∥
∥

L2
(

J ;H1
0 (Ω)

) M10
φ (h)

∥
∥
∥P0

h

(−(b · ∇)u⊥ − cu⊥ + g
)∥∥
∥

L2
(

J ;L2(Ω)
) .

Therefore, by (6), we have

∥
∥PV

h u
∥
∥

L2
(

J ;H1
0 (Ω)

) ≤ M10
φ (h) ‖−(b · ∇)u⊥ − cu⊥ + g‖

L2
(

J ;L2(Ω)
) .

Moreover, from (19), we obtain

∥
∥
∥PV

h u
∥
∥
∥

L2
(

J ;H1
0 (Ω)

) ≤C2 M10
φ (h) ‖u⊥‖

L2
(

J ;H1
0 (Ω)

)+M10
φ (h) ‖g‖

L2
(

J ;L2(Ω)
) . (30)

Next, taking the L2
(
J ; H1

0 (Ω)
)

norm of (27b) with (15), we have

‖u⊥‖
L2

(
J ;H1

0 (Ω)
) =

∥
∥
∥(I − PV

h )�−1
t

(−(b · ∇)u − cu + g
)∥∥
∥

L2
(

J ;H1
0 (Ω)

)

≤ 2C(h)
ν

‖−(b · ∇)u − cu + g‖
L2

(
J ;L2(Ω)

)

≤ 2C(h)
ν

Cb

(∥
∥
∥PV

h u
∥
∥
∥

L2
(

J ;H1
0 (Ω)

) + ‖u⊥‖
L2

(
J ;H1

0 (Ω)
)
)

+ 2C(h)
ν

‖g‖
L2

(
J ;L2(Ω)

)

+ 2C(h)
ν

‖c‖
L∞

(
J ;L∞(Ω)

)
(

C p

∥
∥
∥PV

h u
∥
∥
∥

L2
(

J ;H1
0 (Ω)

) + ‖u⊥‖
L2

(
J ;L2(Ω)

)
)

.

Hence from (19) and (30), we have

‖u⊥‖
L2

(
J ;H1

0 (Ω)
)

≤ 2C(h)
ν

(
Cb + C p ‖c‖L∞(J ;L∞(Ω))

) (
C2 M10

φ (h) ‖u⊥‖L2(J ;H1
0 (Ω))

+ M10
φ (h) ‖g‖L2(J ;L2(Ω))

)

+ 2C(h)
ν

(
Cb + 4C(h) ‖c‖L∞(J ;L∞(Ω))

) ‖u⊥‖L2(J ;H1
0 (Ω)) + 2C(h)

ν
‖g‖L2(J ;L2(Ω))

= 2C(h)
ν

C2
(
1+C1 M10

φ (h)
) ‖u⊥‖L2(J ;H1

0 (Ω))+ 2C(h)
ν

(
1+C1 M10

φ (h)
) ‖g‖L2(J ;L2(Ω)).
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Therefore, by the assumption κφ := 2C(h)C2
(
1 + C1 M10

φ (h)
)

< ν, it implies that

‖u⊥‖
L2

(
J ;H1

0 (Ω)
) ≤ 2C(h)

1 + C1 M10
φ (h)

ν − κφ

‖g‖
L2

(
J ;L2(Ω)

) . (31)

Substituting (31) into the right-hand side of (30), we have

∥
∥
∥PV

h u
∥
∥
∥

L2
(

J ;H1
0 (Ω)

) ≤ νM10
φ (h)

ν − κφ

‖g‖
L2

(
J ;L2(Ω)

) . (32)

Finally, we obtain the following estimates by using (31) and (32),

‖u‖
L2

(
J ;H1

0 (Ω)
) ≤

∥
∥
∥PV

h u
∥
∥
∥

L2
(

J ;H1
0 (Ω)

) + ‖u⊥‖
L2

(
J ;H1

0 (Ω)
)

≤ νM10
φ (h) + 2C(h) + 2C(h)C1 M10

φ (h)

ν − κφ

‖g‖
L2

(
J ;L2(Ω)

) .

Therefore, this proof is completed. ��

5 Numerical examples

We considered the following linear problem, that is, b = 0 and c = −2uk
h in (1a) :

⎧
⎪⎨

⎪⎩

Ltw ≡ ∂
∂t w − ν	w − 2uk

hw = g, in Ω × J , (33a)

w(x, t) = 0, on ∂Ω × J , (33b)

w(x, 0) = 0, in Ω , (33c)

where uk
h is supposed to be an approximate solution of the following nonlinear prob-

lem,

⎧
⎪⎨

⎪⎩

∂
∂t u − ν	u = u2 + f (x, t), in Ω × J , (34a)

u(x, t) = 0, on ∂Ω × J , (34b)

u(x, 0) = 0, in Ω . (34c)

Therefore, (33) corresponds to the linearized problem of (34). We only considered
one dimensional case with Ω = (0, 1) and adjusted the function f (x, t) so that the
problem (34) has the following exact solutions.

• u(x, t) = 0.5t sin(πx), ν = 0.1, (Example 1);
• u(x, t) = sin(π t) sin(πx), ν = 0.1, (Example 2);

We used the finite element subspace Sh(Ω) spanned by piecewise linear functions with
n = 5 and uk

h is taken as the linear interpolation of u. Then, the values of constants
can be taken as C(h) = h/π , C p = 1/π and Cb = 0. Moreover, we have,
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Table 1 κφ and M10
φ T 0.5 1.0 1.5 2.0

Example 1 κφ 0.0119 0.0263 0.0451 0.0697

M10
φ 2.2978 3.1871 4.2178 5.1665

Example 2 κφ 0.0552 0.0622 0.0643 0.0656

M10
φ 2.1326 3.5926 4.0394 4.2974

Fig. 1 Example 1

Fig. 2 Example 2

‖c‖
L∞

(
J ;L∞(Ω)

) = 2
∥
∥
∥uk

h

∥
∥
∥

L∞
(

J ;L∞(Ω)
) ≤

{
T (Example 1)

2 (Example 2).

And computational results for κφ and M10
φ in Theorem 6 are shown in Table 1. We

compared a posteriori estimates CL−1
t

computed by the right-hand side of (26) with

a priori estimated values exp(βT )
C p
ν

in (3). Numerical results of Example 1 and
2 are given in Figs. 1 and 2, respectively. All computations are carried out on a
Dell Precision T7500 (Intel Xeon x5680, 72GB of memory) with MATLAB R2010b.

123



162 M. T. Nakao et al.

The computation errors have been taken into account by using INTLAB [8], a Toolbox
of MATLAB.

Remark 7 In these figures, the values computed by our numerical method are always
smaller than the a priori estimates. Particularly, both results by our method look like
no exponential dependency on T for T ≤ 2. The constant M10

φ (h) defined by (24) is

considered as an approximate value of the exact norm for L−1
t . In case of Example 1,

M10
φ (h) is rapidly, exponentially-like, increasing from T ≈ 5. Hence the exact value

for the norm of L−1
t should be actually exponential-like increasing in time. On the

other hand, in Example 2, which also has non-coercive elliptic part, we could not
observe such an exponential dependency at all for a long time, large T , in the compu-
tation of M10

φ (h). Therefore, we can say our verified computational result should be
more truly represent the actual behavior of the inverse norm.

6 Conclusions

We presented a posteriori estimates of inverse operators for linear parabolic differen-
tial equations (1). Our method uses an approximate operator norm and error estimates
of semi-discrete approximation as well as verified estimation of the inverse operator
for linear ordinary differential equations. The numerical results show that our method
gives more accurate value than existing a priori estimate. Particularly, there is a possi-
bility to remove the exponential dependency on time, even if the corresponding elliptic
problem is not coercive, which confirms us the actual usefulness of our approach for
the numerical verification of solutions for complicated nonlinear evolution problems.
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