
Computing (2012) 94:313–324
DOI 10.1007/s00607-011-0179-3

A verified realization of a Dempster–Shafer based
fault tree analysis

Gabor Rebner · Ekaterina Auer · Wolfram Luther

Received: 31 March 2011 / Accepted: 18 November 2011 / Published online: 30 November 2011
© Springer-Verlag 2011

Abstract Fault tree analysis is a method to determine the likelihood of a system
attaining an undesirable state based on the information about its lower level parts.
However, conventional approaches cannot process imprecise or incomplete data. There
are a number of ways to solve this problem. In this paper, we will consider the one
that is based on the Dempster–Shafer theory. The major advantage of the techniques
proposed here is the use of verified methods (in particular, interval analysis) to handle
Dempster–Shafer structures in an efficient and consistent way. First, we concentrate
on DSI (Dempster–Shafer with intervals), a recently developed tool. It is written in
MATLAB and serves as a basis for a new add-on for Dempster–Shafer based fault tree
analysis. This new add-on will be described in detail in the second part of our paper.
Here, we propagate experts’ statements with uncertainties through fault trees, using
mixing based on arithmetic averaging. Furthermore, we introduce an implementation
of the interval scale based algorithm for estimating system reliability, extended by new
input distributions.

Keywords Dempster–Shafer theory · Fault tree analysis · MATLAB · INTLAB ·
Interval analysis

Mathematics Subject Classification (2000) 65G30 · 60A99

The authors have presented the results of this paper during the SCAN 2010 conference in Lyon,
September 2010.

G. Rebner (B) · E. Auer · W. Luther
University of Duisburg-Essen, 47048 Duisburg, Germany
e-mail: rebner@inf.uni-due.de

123

314 G. Rebner et al.

1 Introduction

An important task in engineering is to accurately specify the point of time after which
a given system attains an undesirable state, for example, the number of hours after
which it fails. Fault tree analysis is an approach to compute such characteristics for
the whole system from the corresponding characteristics of its low level compo-
nents. Besides unavoidable discretization errors, traditional numerical implementa-
tions based on floating point (FP) arithmetic have several limitations. One of them
is the possibility of rounding errors. They arise inevitably on a computer because of
the finite nature of machine numbers as opposed to real numbers, and they might lead
to severe failures under unfavorable circumstances [1]. Another difficulty is that the
above mentioned low level characteristics, for example, failure probabilities, are not
known exactly. They might vary depending, for instance, on measurement precision
or the uncertainty in statements of experts.

Imprecision can be characterized by providing upper and lower bounds on all pos-
sible results using interval analysis [14] or other verified methods. Further options are
probability theory, Dempster–Shafer theory (DST), or the Bayes theory. In this paper,
we concentrate on the use of DST [16], the significance of which for modeling and
propagating uncertainty has grown recently. The newly implemented software DSI
(Dempster–Shafer with intervals) [2] builds the basis for our research. It differs from
the few existing implementations [10,12] in a number of ways. The most important one
is the consistent use of interval analysis to deal with rounding errors and appearing sets.

A method is called verified, if it guarantees the correctness of its output. In this
context, interval arithmetic is a widely used approach to verifying results obtained on
a computer. It provides a (multidimensional) box—described in terms of FP arithme-
tic—that is proved to contain the exact result.

Our goal was to combine the advantages of verified methods with fault tree analysis.
In this paper, we show a method to analyze failure probabilities using verified DST
structures and a scale based method relying on interval analysis.

Accordingly, our paper is structured as follows. In Sect. 2, we provide a short
overview of the three concepts important for the understanding of this paper: interval
analysis, DST, and fault tree analysis. On their basis, we give an overview of working
with DST using DSI and compare it to the older tool IPP [10] from which it originates
in Sect. 3. Over the course of the next section, we introduce the recently developed
add-on for fault tree analysis and illustrate its verified implementation in MATLAB
with INTLAB [15] using an example. Furthermore, we consider a robotic system and
compute a lower and upper bound of failure probability at a certain point of the system’s
operation time, using a verified implementation of the algorithm introduced in [18]. We
extended the basic version by adding the possibility to choose as an input distribution
not only the trapezoid one, but also the beta and the normal distribution. We conclude
by recapitulating the main results and providing a perspective on future research.

2 Basic theory

The algorithms in this paper combine interval and DST methods with fault tree anal-
ysis. In this section, we overview briefly the basic ideas of these three research areas.

123

A verified realization of a Dempster–Shafer based fault tree analysis 315

2.1 Interval analysis

Interval analysis is a field of numerics with applications in engineering, robotics, or
medicine. It belongs to the group of verified methods that can guarantee the correctness
of an outcome of a simulation using mathematically exact proofs. Let x = [x, x] be a
real interval in infimum–supremum notation, which is defined as [x, x] = {x ∈ R|x ≤
x ≤ x}. An interval operation ◦ = {+,−, ·, /} is defined for the intervals x and y as

x ◦ y = [min{x ◦ y, x ◦ y, x ◦ y, x ◦ y}, max{x ◦ y, x ◦ y, x ◦ y, x ◦ y}].

The result is an interval that includes all possible combinations of x ◦ y with
x ∈ [x, x] and y ∈ [y, y]. In case of division, y is in general assumed not to contain
zero. These notations can be extended to interval vectors and matrices. To indicate
interval computations, we use the notation ◦ =

{
+ , − , · , /

}
.

To obtain verified results on a computer relying on finite FP arithmetic, the concept
of a machine interval has to be introduced. A machine interval can be obtained from
a real interval x by rounding the lower bound downward (fl�x) and the upper bound
upward (fl�x) to the next FP number. Throughout this paper, we use the interval arith-
metic implementation supplied by INTLAB. For example, we employ elementary
operations and functions to compute natural interval evaluations of non-monotonic
functions with uncertainty. This allows us to dispense with optimization methods that
are usually used to compute the range. It makes our computations faster and addi-
tionally guarantees that the solution is enclosed. The problem of overestimation is
addressed in Sect. 3.

2.2 Dempster–Shafer theory

Dempster–Shafer theory [16] is a mathematical theory of evidence developed to com-
bine information supplied by different experts or from other sources. It provides a
measure of confidence that a given event occurs. A special feature of this theory is
the possibility to characterize uncertainties arising because of lack of knowledge as
discrete probability assignments associated with the power set 2X of a given set X . A
mass assignment to each subset of 2X is known as the basic probability assignment
(BPA) m. If A1, . . . , An are the sets of interest with Ai ∈ 2X , then a BPA is defined as

m : 2X → [0, 1],
n∑

i=1

m(Ai) = 1, m(∅) = 0. (1)

In the continuous case, we assume that each set Ai is an interval. Intervals with masses
greater than zero are known as focal elements and can be viewed as evidence given
by experts. To work with such structures, the plausibility and the belief functions are
defined over all focal elements as

P L(Y) :=
∑

Ai ∩Y
=∅
m(Ai), B E L(Y) :=

∑
Ai ⊆Y

m(Ai) with Y ⊆ X. (2)

123

316 G. Rebner et al.

Nevertheless, the mass has to be normalized because real life experts tend to ignore
the restriction in Eq. (1). An example of verified normalization is given in Sect. 3.
If several experts give their estimations in the same context, BPAs have to be aggre-
gated. A number of aggregation laws have been published [6], of which we use mixing
based on arithmetic averaging in this paper.

Furthermore, a BPA is associated with a probability box (p-box). Ferson [5] defines
a p-box as an enclosure of a cumulative distribution function (CDF) which is charac-
terized by two non-decreasing functions:

F = R → [0, 1] (3)

F = R → [0, 1] (4)

F(x) ≤ F(x). (5)

In this paper, we employ finite BPAs with focal elements expressed as closed real
intervals. We obtain the associated p-box from a BPA A with n focal elements (Ai =
([Ai , Ai], m(Ai)) | i = 1 . . . n) by using the formulas [6]

F(x) =
∑

Ai <x

m(Ai) (6)

F(x) =
∑
Ai ≤x

m(Ai). (7)

In the context of DST, we can assume that formula (6) expresses the cumulative believe
function and formula (7) the cumulative plausibility function.

In this subsection, we introduced two representations of BPAs, which can be used
to implement an interface to RAMAS Risk Calc [5]. In the future, we plan to compare
the results of Risk Calc with DSI.

2.3 Fault tree analysis

Fault tree analysis is a method to examine a system with respect to the likelihood
(from the probabilistic point of view) of it attaining an undesirable state based on the
information about its lower level parts. A fault tree consists of basic events, logical
gates and one top event. A basic event is a part of a system that is not subdivided into
smaller parts. A logical gate (in our case, either the AND or the OR gate) combines
failure probabilities from different sources. The top event is at the head of the tree and
represents the main failure of the system.

Usually, probabilities are assigned to the basic events and propagated through the
gates to the top event using boolean logic. We discuss how to integrate imprecise
information about such probabilities into a fault tree using DST in Sect. 4.

3 DSI toolbox

The focus of this section is the DSI toolbox, which implements DST in a verified
way. It is realized in MATLAB extended by INTLAB. Functionalities of DSI include

123

A verified realization of a Dempster–Shafer based fault tree analysis 317

Table 1 Averaged CPU times
in seconds

Benchmark IPP DSI

Distribution sampling 1.37725 0.19144

Aggregation 0.50923 0.00837

Non-monotonic functions 2.68565 1.44652

generation of BPAs from uncertain data and several kinds of distributions in a verified
way. BPAs can be aggregated and propagated through various system functions, and
results can be represented graphically afterwards.

In our toolbox, we assume that experts give independent evidence. To compute
solutions based on dependent evidence, a user has to employ other tools, for example,
Risk Calc that provides a p-box circumscribing all possibilities. In the future, we plan
to enhance our toolbox with this option too.

DSI is based on IPP [10] for R, which makes no use of interval analysis or directed
rounding. For a more detailed description of DSI key features (see [2]). In this sec-
tion, we explain in what sense our implementation is verified using an example and
compare DSI to IPP.

Our implementation verifies the results of DST computations by taking rounding
and conversion errors into account. The meaning of verification in our context can
be illustrated by our interpretation of the normalization. If a BPA consists of n focal
elements A1, . . . , An , the sum of all masses has to equal one. If this condition does
not hold, the masses have to be normalized in a verified way. To do so, each mass of a
focal element is represented by a point interval of the form m(Ai) = [m(Ai), m(Ai)].
To obtain a normalized mass mnew(Ai) for i = 1 . . . n, we compute the hull of the two
intervals

m(Ai) /

⎛
⎝fl�

n∑
j=1

m(A j)

⎞
⎠ , m(Ai) /

⎛
⎝fl�

n∑
j=1

m(A j)

⎞
⎠ .

In DSI, users can sample CDFs with uncertain parameters by an outer discretization
method [17]. The number of samples influences the unavoidable discretization error.
More samples lead to tighter enclosures and a lower discretization error. Each CDF
can be used to model the probability of a basic event in fault tree analysis.

CDFs can be used to work with system models described by (non-)monotonic func-
tions. In contrast to IPP, there is no need to use optimization routines to compute the
(exact) range of a function over a given interval. In DSI, we use INTLAB interval
operations, standard functions, and their combinations to obtain an enclosure of the
range, which is faster than the implementation in IPP, especially for non-monotonic
functions. To work with a system described by such a function, the user has to specify
the number of Monte-Carlo samples, a CDF, and the function itself.

In Table 1, we compare IPP and DSI with respect to the CPU time for generating the
triangle, the uniform and the Gumbel CDF, each over 210 Monte-Carlo samples (row
2), aggregating them by using Dempster’s rule, unweighted and weighted mixing (row
3) and evaluating ranges of non-monotonic functions over the obtained intervals (the
last row). We used four non-monotonic functions, sin(x2), cos(x2), cos(x2) + sin(y)

123

318 G. Rebner et al.

and the Rosenbrock function f (x, y) = (1 − x)2 + 100 · (y − x2)2. In each case,
we called the corresponding routines up to 200 times and averaged the resulting CPU
times. The times are obtained on an Intel® Core2™ Quad Q9450 CPU at 2.66 GHz
with MATLAB 7.11.0.

The comparison shows that DSI is faster than IPP, even though interval arithmetic
and directed rounding are in use. Furthermore, this (non-)monotonic function prop-
agation can be used to model probability for basic events in fault tree analysis (see
Sect. 4.1).

However, naive interval evaluation might overestimate the true solution set consid-
erably. To deal with this problem, we implemented a range of options. For example,
we test functions for monotonicity using a method based an algorithmic differentia-
tion. To compute a tight enclosure of the range of a function which is monotonic and
contains exclusively basic arithmetic operations {+,−, ∗, /} and their compositions,
we utilize FP arithmetic with directed rounding. This kind of computation can be used
because of the definition of basic arithmetic operations and their rounding behavior
in the FP standard IEEE754 [9]. Otherwise, we have to use interval arithmetic to get
a verified enclosure of the solution.

A list of all functions available in DSI can be found at http://udue.de/DSI.

4 Fault tree analysis add-on for DSI

We implemented two possible approaches to estimating the reliability of a system
described by a fault tree. The first one is to analyze the whole lifetime of a device
based on expert estimations of the corresponding failure probabilities (see Sect. 4.1).
Here, we extend the approach from [4,8] to compute a p-box that is bounded by the
belief and the plausibility functions. The second approach is to assess the likelihood
of a failure at a certain point in the lifetime of the device based on interval analysis
(see Sect. 4.2). We implement the approach from [18] using DSI and extend it with
two further models to represent the input uncertainty. The functionalities from Sect. 3
form the basis of our implementation.

4.1 Fault tree analysis with Dempster–Shafer

The aim of this approach is the computation of belief and plausibility at the top event.
For each basic event, two cases can be distinguished. If the corresponding estima-
tion depends on one source only (a BPA), there is no need for aggregation. However,
it becomes necessary if more than one estimation is given. In this situation, we use
unweighted mixing based on arithmetic averaging to avoid information loss. The cor-
responding formula for aggregating q finite random sets with BPAs m1, m2, . . . , mq

is shown below:

mnew(Ai) =
⎛
⎝ q∑

j=1
m j (Ai)

⎞
⎠ / q , i = 1 . . . n. (8)

123

http://udue.de/DSI

A verified realization of a Dempster–Shafer based fault tree analysis 319

0 5 10 15
x 10

4

0

0.2

0.4

0.6

0.8

1

hours

fa
ilu

re
 p

ro
ba

bi
lit

y

Pl
Bel

Fig. 1 Fault tree of a small RAID (left) and belief and plausibility of its failure (right)

We use BPAs to model estimations. The basic events can be defined by using CDFs
and (non-)monotonic functions.
To propagate the failure probabilities of the basic events to the top event, the extended
concept of logical gates from [4,8] is adapted to interval arithmetic. Generally, the
formulas for the AND and the OR gate are the following:

P(A ∧ B) = P(A) · P(B), (9)

P(A ∨ B) = 1 − (1 − P(A)) · (1 − P(B)), (10)

where A and B are events, which we can interpret as continuous parts of lifetime in
hours, and P(X) gives the failure probability of X . If A and B are BPAs, Eq. (9) turns
into [4]:

B E L(A ∧ B) = B E L(A) · B E L(B)

P L(A ∧ B) = P L(A) · P L(B).
(11)

The general formula to propagate uncertainties through the OR gate is

B E L(A ∨ B) = 1 − (1 − B E L(A)) · (1 − B E L(B))

P L(A ∨ B) = 1 − (1 − P L(A)) · (1 − P L(B)).
(12)

In DSI, we implemented the routines dsiand and disor for that purpose. As an
example of how this works, consider a fault tree of a small redundant array of indepen-
dent disks (RAID) (shown in Fig. 1, left), which is composed of two hard disc drives
(HDD) and one power supply (PS). The system fails, if the PS or both HDDs fail.
Furthermore, we assume that the HDDs have the same specification. The distribution
on the time to failure for the power supply is assessed by two experts. The first expert
estimates it to be in the interval [0, 14 × 104] hours. The second expert states that the
time to failure for the PS is between 0 and 12 × 104 h of work with 80% confidence
and between 12.5 × 104 and 17 × 104 h with 20% confidence. We use unweighted

123

320 G. Rebner et al.

mixing to aggregate these pieces of evidence without loss of information. The third
expert estimates the failure probability for HDDs to follow a triangular distribution
between zero and 20 × 104 h, with an unsure mode of [8, 9] × 104.

The belief and plausibility of the failure at the top event are shown in Fig. 1, right.
The RAID will fail after 17×104 h with belief and plausibility of 100%. This example
illustrates that the belief function represents the worst case scenario as it rises directly
after 0 h while the plausibility function is still near zero.

4.2 Interval based approach

The purpose of this subsection is to introduce a verified implementation for computing
the lower and the upper bound of failure probability similar to [18]. In contrast to the
previous subsection, this algorithm is based on the interval propagation of meta-infor-
mation about failure probabilities themselves.

The quality of the result at the top event of a fault tree that is produced by the
model we use correlates strongly with the CPU time needed to obtain it. The interval
p = [0, 1] of failure probabilities is split into s intervals to which a certain weight
probability is assigned. The higher the number s is, the less conservative the obtained
bounds are, but the more computing time is required. As a trade-off between the qual-
ity and the performance, the first k intervals (situated near zero, where it matters most)
are further subdivided into l segments each to minimize possible pessimism in the
estimation. To work with such elements at the basic events, we implemented the class
scale, which used a matrix to store the intervals and the corresponding probabilities.

Consider a robot described in detail in [3]. Each joint of a robot consists of a motor
and two sensors working independently. The top event is reached if two of the joints
fail. This occurs if either the motor or both sensors of a joint are not functioning. Two
basic events, motor and sensor, are necessary for the fault tree. For example, if we want
to associate a scale object with the motor, we might call the constructor motor =
scale(s,k,l,bound) with bound ∈ {L B, U B} for the lower or upper bound
computation. It subdivides the whole probability interval into (s − k)+ k · l segments.
Usually, a trapezoid distribution is used to assign weight probabilities to these seg-
ments. We added the possibility to employ two further distributions for this purpose
(cf. Sect. 4.3). For such an assignment, the user should call the routine fillscale,
a member function of the class scale.

The scale objects are then propagated through logical gates of the fault tree. In
general, the usual laws are used for the gates. For example, if x and y are scale segments
of independent basic events with weight probabilities fx , fy that are to be propagated
through an AND gate, the result is the interval [x · y, x · y] with the probability of
fx · fy . After that, the new intervals and their weights have to be fitted into the original
segmentation of (s − k) + k · l intervals. The rules and their illustrations are to be
found in [18]. To guarantee the correctness of the obtained bounds, it is necessary to
round downwards while calculating intervals and upwards while computing weight
probabilities, if we want to obtain the lower bound on the failure probability, and vice
versa for the upper bound. The roundings do not depend on the kind of gate.

Suppose a factory produced a certain amount of robots. Our goal is to find out with
which probability a given percentage of them does not fail in the first 1,000 h of oper-

123

A verified realization of a Dempster–Shafer based fault tree analysis 321

Table 2 Comparison of the failure probabilities for the robot

x (%) Low. bound [18] Up. bound [18] Lower bound Upper bound Point [11]

5 1.48 × 10−4 1.60 × 10−4 1.34 × 10−4 1.574 × 10−4 1.6 × 10−4

16 3.6 × 10−4 3.74 × 10−4 3.4 × 10−4 3.7 × 10−4 3.7 × 10−4

25 5.6 × 10−4 5.76 × 10−4 5.4 × 10−4 5.7 × 10−4 5.68 × 10−4

38 9.46 × 10−4 9.68 × 10−4 9.2 × 10−4 9.6 × 10−4 9.54 × 10−4

45 1.224 × 10−3 1.248 × 10−3 1.186 × 10−3 1.24 × 10−3 1.2 × 10−3

84 7.58 × 10−3 7.63 × 10−3 7.47 × 10−3 7.6 × 10−3 7.8 × 10−3

95 2.78 × 10−2 2.84 × 10−2 2.68 × 10−2 2.82 × 10−2 2.82 × 10−2

Table 3 Comparison of the
computation time with and
without parallelization (in hours)

Benchmark Total CPU time Real time

Without parallelization 35.1 35.1

With parallelization 35.7 11.71

ation. We simulate the robot example using the scale with s = 5,000, k = 100, and
l = 60 using the same input data as in [18] to be able to compare results. In Table 2, the
upper and lower bounds obtained in DSI (columns 4 and 5) are shown in juxtaposition
to those from [18] (columns 2 and 3). Additionally, we compare them with the FP
results from [11] (column 6). The numbers in Table 2 indicate that x percent of the
weight probability for the failure is located in the interval [0, p]. The value p is the
true failure probability enclosed between its computed lower and upper bounds.

The results in Table 2 are interpreted as follows. For 95% of the produced robots,
an error probability of p = [2.68×10−2, 2.82×10−2] (columns 4 and 5) is obtained.
This implies that p percent of 95% of all robots will fail before 1,000 h. This means
that 0.95 − 0.95 · p = [92.32, 92.454] percent of all produced robots will not fail in
the first 1,000 h of their operation time.

Our values for the upper bound follow closely the values published in [11] (the
value at 84% in column 6 seems to be a misprint), whereas there is a small downward
shift in comparison to the enclosures in [18]. Note that the results are nonetheless
consistent because their intersection is not empty.

Furthermore, we had to optimize these routines, because the complexity of the pre-
sented algorithms leads to a long computation time. To speed up the implementation,
we used the “Parallel Computing toolbox” [13] for MATLAB to parallelize the com-
putations on the four available cores. We obtained an improvement of factor 2.99 for
real time computation for the example of the robot. The computation times with and
without optimization are given in Table 3.The bounds are obtained by utilizing the
same computer system as in Sect. 3.

4.3 Representing input failure probabilities

In the previous subsection, we assumed that the trapezoid distribution was used to
obtain weight probabilities at the basic events. In our implementation, we can use two

123

322 G. Rebner et al.

further distributions, which are similar to the beta and the normal distribution. In case
of these distributions, it is not necessary to verify all computations. It is sufficient to
show that the sum of the probabilities of each interval is a tight enclosure of one.

The CDF of the beta distribution is well suited for our algorithm because it is defined
in the interval [0, 1] and equals zero outside. Furthermore, both axis symmetric and
asymmetric structures can be defined in dependence on two real parameters, a > 0
and b > 0. We utilize the build in function of MATLAB to compute the inclosure.

To define a distribution similar to the normal one in the domain [0, 1], we suggest
to use the formula f (x) = k · cosn−1(a(x − m)) for the corresponding probability
density function (PDF). Now, we have to compute the parameters a, m, n and k, so
that the integral of f (x) over [0, 1] equals one (k · ∫ 1

0 cosn−1(a(x − m)) dx = 1).

According to [7], the relation
∫ m− π

2a
m+ π

2a
cosn−1(a(x − m)) dx = 1

π
·2n−1 ·β(n

2 , n
2) =: 1

k

holds. In our case, m + π
2a = 1 and m − π

2a = 0 so that m = 0.5 and a = π . The
mean μ of this distribution can be set to 0.5 because the domain is [0, 1] and the PDF
is symmetric. The variance σ 2 is defined in dependence on n as:

k ·
1∫

0

(
x − 1

2

)2

· cosn−1
(

π

(
x − 1

2

))
dx

︸ ︷︷ ︸
I (n)

= σ 2. (13)

After substituting y = π · (x − 1
2) for x , we obtain

I (n) =
π
2∫

− π
2

(y

π

)2 · cosn−1(y) · 1

π
dy = 2

π3

π
2∫

0

y2 · cosn−1(y) dy. (14)

To compute I (n), we use the formula I (n) = 2
π3 C(n − 1) for n > 0, where

C(n−1)=
π
2∫

0

x2 · cosn−1(x) dx = n − 2

n − 1
· C(n − 3) − 2

(n − 1)2 · D(n−1) (15)

and

D(n − 1) =
π
2∫

0

cosn−1(x) dx = (n − 2)!!
(n − 1)!! ·

{
1, if n even
π
2 , if n odd.

(16)

The resulting distribution is defined by its CDF as

F(x, n) =
∫ 1

0 cos
(
π

(
x − 1

2

))n−1
dx

1
π

· 2n−1 · β
(n

2 , n
2

) . (17)

In Fig. 2, a few examples of the beta and the normal-like distribution are shown
for the sample scale with the same parameters as in Sect. 4.2 (s = 5,000, k = 100,

123

A verified realization of a Dempster–Shafer based fault tree analysis 323

Fig. 2 Normal-like and beta distributions computed for s = 5,000, k = 100 and l = 60

Table 4 Failure probabilities
for the robot with the beta and
the normal distribution as input

x (%) Lower bound Upper bound

5 8.18 × 10−2 8.38 × 10−2

16 1.132 × 10−1 1.154 × 10−1

25 1.3116 × 10−1 1.338 × 10−1

38 1.556 × 10−1 1.578 × 10−1

45 1.682 × 10−1 1.706 × 10−1

84 2.63 × 10−1 2.654 × 10−1

95 3.296 × 10−1 3.322 × 10−1

l = 60). The graphs are obtained by plotting the midpoint of each interval against
the weight of these intervals. Because of the small intervals in the fine scale, the
probabilities of this intervals approach zero.

Consider the robot from Sect. 4.2 again. Now, we use a beta distribution with a = 3
and b = 219 for modeling the sensor failure probability and the normal distribution
with n = 3 for the motor probability. The results obtained are shown in Table 4. In
the case of x = 95%, [63.440, 63.688] percent of all produced robots will not fail in
the first 1,000 h of their operation time.

5 Conclusion and perspective

In this paper, we presented the new verified implementation DSI for DST in MATLAB.
Additionally, we compared it to the older tool IPP with respect to CPU times. Based
on DSI, we introduced an add-on for verified fault tree analysis with Dempster–Shafer
structures. The advantage is the ability to compute verified failure probabilities with
uncertainties in evidence of experts over a lifetime of a system. Further, we showed

123

324 G. Rebner et al.

how to compute the lower and the upper bound of the failure probability similar to the
works of Carreras, Luther, and Traczinski [3,11,18]. We extended the original algo-
rithm by the normal and the beta-like distributions to represent the input uncertainty.
Finally, we demonstrated the functionality of the approach and its implementation in
DSI using a descriptive example.

In our future work, we plan to apply the verified DST to Markov chains with uncer-
tainty, which can be of use, for example, for modeling aging processes in SO fuel
cells.

References

1. Arnold D (2011) Computer arithmetic tragedies. http://www.ima.umn.edu/~arnold/455.f96/disasters.
html

2. Auer E, Luther W, Rebner G, Limbourg P (2010) A verified MATLAB toolbox for the Dempster-Sha-
fer theory. In: Proceedings of the workshop on the theory of belief functions. http://www.udue.de/
DSIPaperone, http://www.udue.de/DSI

3. Carreras C, Walker I (2001) Interval methods for fault-tree analyses in robotics. IEEE Trans Reliab
50:3–11. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00935010

4. Cheng Y (2000) Uncertainties in fault tree analysis. http://www2.tku.edu.tw/~tkjse/3-1/3-1-3.pdf
5. Ferson S (2002) RAMAS Risk Calc 4.0 software: risk assessment with uncertain numbers. Lewis

Publishers, Boca Raton
6. Ferson S, Kreinovich V, Ginzburg L, Myers D, Sentz K (2003) Constructing probability boxes and

Dempster–Shafer structures. SAND2002-4015. Sandia National Laboratories, Washington
7. Gradstein I, Ryshik I (1981) Summen, Produkt- und Integraltafeln. Harri Deutsch, Germany
8. Guth M (1991) A probability foundation for vagueness and imprecision in fault tree analysis. IEEE

Trans Reliab 1(40):563–570
9. IEEE Standard for Floating-Point Arithmetic (2008) IEEE Std 754-2008, pp 1–58. doi:10.1109/

IEEESTD.2008.4610935
10. Limbourg P (2011) Imprecise probability propagation toolbox (IPP toolbox). http://www.uni-due.de/

il/ipptoolbox.php
11. Luther W, Dyllong E, Fausten D, Otten W, Traczinski H (2001) Numerical verification and validation

of kinematics and dynamical models for flexible robots in complex environments. In: Perspectives on
enclosure methods. Springer, Wien, pp 181–200

12. Martin A (2009) Implementing general belief function framework with a practical codification for low
complexity. In: Smarandache F, Dezert J (eds) Advances and applications of DSmT for information
fusion. Collected works, vol 3. American Research Press, Rehoboth, pp 217–273

13. MathWorks (2011) Parallel Computing toolbox. http://www.mathworks.de/products/parallel-
computing/?s_cid=0210_webg_js_390079

14. Moore R, Kearfott B, Cloud M (2009) Introduction to interval analysis. Society for Industrial and
Applied Mathematics, Philadelphia

15. Rump S (1999) INTLAB–INTerval LABoratory. Dev Reliab Comput 1:77–104. http://www.ti3.
tu-harburg.de/

16. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton
17. Tonon F (2004) Using random set theory to propagate epistemic uncertainty through a mechanical

system. Reliab Eng Syst Saf 85(1–3):169–181
18. Traczinski H (2006) Integration von Algorithmen und Datentypen zur validierten Mehrkörpersimula-

tion in MOBILE. Dissertation, Universität Duisburg-Essen. Logos-Verlag, Berlin. ISBN 978-3-8325-
1457-0

123

http://www.ima.umn.edu/~arnold/455.f96/disasters.html
http://www.ima.umn.edu/~arnold/455.f96/disasters.html
http://www.udue.de/DSIPaperone
http://www.udue.de/DSIPaperone
http://www.udue.de/DSI
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00935010
http://www2.tku.edu.tw/~tkjse/3-1/3-1-3.pdf
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://www.uni-due.de/il/ipptoolbox.php
http://www.uni-due.de/il/ipptoolbox.php
http://www.mathworks.de/products/parallel-computing/?s_cid=0210_webg_js_390079
http://www.mathworks.de/products/parallel-computing/?s_cid=0210_webg_js_390079
http://www.ti3.tu-harburg.de/
http://www.ti3.tu-harburg.de/

	A verified realization of a Dempster--Shafer based fault tree analysis
	Abstract
	1 Introduction
	2 Basic theory
	2.1 Interval analysis
	2.2 Dempster--Shafer theory
	2.3 Fault tree analysis

	3 DSI toolbox
	4 Fault tree analysis add-on for DSI
	4.1 Fault tree analysis with Dempster--Shafer
	4.2 Interval based approach
	4.3 Representing input failure probabilities

	5 Conclusion and perspective
	References

