
Computing (2012) 94:163–172
DOI 10.1007/s00607-011-0178-4

VERICOMP: a system to compare and assess
verified IVP solvers

Ekaterina Auer · Andreas Rauh

Received: 11 March 2011 / Accepted: 18 November 2011 / Published online: 29 November 2011
© Springer-Verlag 2011

Abstract Obtaining verified numerical solutions to initial value problems (IVPs) for
ordinary differential equations (ODEs) is important in many application areas (e.g.
biomechanics or automatic control). During the last decades, a number of solvers have
been developed for this purpose. However, they are rarely used by industry engineers.
One reason for this is the lack of information about what tool with what settings to
choose. Therefore, it is necessary to develop a system for testing the available tools
and recommending an ODE solver best suited for the task at hand in the area of verified
software. In this paper, we present the first version of our web-based platform VERI-
COMP for assessing verified IVP solvers. We discuss a possible classification for user
problems, suitable comparison criteria and measures for the quantification of over-
estimation. After that, we introduce the platform itself, which allows us to compare
different solvers on a problem class or to evaluate the performance of a single solver
on different problem classes. In addition, we describe how to extend VERICOMP with
a recommender system that automatically suggests the most suitable solver based on
user preferences and solver statistics.

Keywords Initial value problem solvers · Verified methods ·
Recommender systems · Comparison systematics

Mathematics Subject Classification (2000) 65G30 · 65L99

The authors have presented the results of this paper during the SCAN 2010 conference in Lyon,
September 2010.

E. Auer (B)
University of Duisburg-Essen, INKO, 47048 Duisburg, Germany
e-mail: auer@inf.uni-due.de

A. Rauh
Chair of Mechatronics, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
e-mail: andreas.rauh@uni-rostock.de

123

164 E. Auer, A. Rauh

1 Introduction

Obtaining verified numerical solutions to initial value problems (IVPs) for ordinary
differential equations (ODEs) is important in many application areas, such as biome-
chanics or automatic control. During the last decades, a number of solvers have been
developed for this purpose, for example, VNODE-LP [12], RiOT [2], VSPODE [8],
ValEncIA- IVP [19] and COSY VI [9]. They compute numerical sets that are mathe-
matically proved to contain exact solutions. The goal of such software is to provide as
tight enclosures as possible over a sufficiently long time span. Whether they succeed
depends on different factors, for example, the type of the problem or the presence of
explicitly uncertain parameters. Although successful attempts to apply verified tools
to real life problems are fairly numerous [15,17,20], a typical industry engineer rarely
uses them. One reason is the lack of information on what solver to choose. Espe-
cially, finding the ‘optimal’ settings for a solver, that is, conditions under which the
best result (in a given sense) can be obtained, might prove to be difficult for a person
unacquainted with the underlying algorithms.

This is not a problem characterizing verified algorithms in particular. In the the area
of standard ODE solvers, comparison systematics have been developed since the early
1970s, which resulted in the appearance of DETEST [6] and several web-based sys-
tems (e.g. ODELab [14] or a test set from [11], called in the following IVPtestset).
In these works, the authors develop a set of benchmark problems and a set of criteria
to highlight typical properties of the considered solvers in a unified manner. However,
verified solvers have to be assessed differently due to the problem of overestimation
inherently present in all of them. The most important criterion is obviously the width
of the resulting enclosure in relation to the CPU time required to obtain it [1]. None-
theless, the width of an enclosure itself offers little information in the case of problems
with explicit uncertainties, so that new quality measures have to be developed. This
situation is important, because many engineering applications are afflicted by uncer-
tainties. For example, it is quite common that parameters can be obtained only with
an incertitude of several percent of their nominal values. To ensure the usefulness
of verified techniques in this case, we need to assess reliably the maximum possible
amount of overestimation present in the computed enclosures.

Aside from the web sites describing verified IVP solvers or general overview sites1,
there are no platforms addressing such topics in the verified case. Therefore, it is nec-
essary to develop a system that would test the available software and recommend a
solver best suited for the task at hand. The methodological and theoretical aspects
induced by this task are described in [1,16]. In this paper, we present an implemen-
tation and develop a recommender formalism to give users a suggestion as to which
solver with which settings is most suitable for their problems.

The paper is structured as follows. In Sect. 2, we summarize the principles of com-
parison systems for floating-point ODE solvers and describe a classification scheme for
the problems of interest. Besides, we touch upon several general criteria for the com-
parison of verified IVP solvers, as well as measures for quantifying overestimation.

1 For example, http://www.cs.utep.edu/interval-comp/.

123

http://www.cs.utep.edu/interval-comp/

VERICOMP: a system to compare and assess verified IVP solvers 165

In Sect. 3, we introduce our web-based implementation VERICOMP and the recom-
mender formalism based on a similarity measure between problems, user preferences
and solver statistics. Conclusions are in the last section.

2 Background: comparison of IVP Solvers

In this section, we overview briefly the main results in the area of comparing floating-
point based software and outline the methodological and theoretical background for
comparison of verified IVP solvers.

The task of comparing different software with the same purpose is of a great impor-
tance in their respective application areas. Systematics for IVP solvers are being devel-
oped since the early 70s, with [3–6] standing out. In these papers, the authors build up
the theoretical basis and implement the comparison systems DETEST and StiffDE-
TEST for non-stiff and stiff systems of ODEs, respectively. This work is continued by
the developers of the web site [11] and the online platform ODELab [14]. All compar-
ison platforms consist roughly of three components: descriptive and software parts,
as well as user interface. The first component comprises textual descriptions of the
considered problems and solvers supplemented by user manuals and other documen-
tation. The software part contains the solver libraries themselves along with drivers
coupling them to the overall platform, routines implementing comparison criteria and
gathering of statistics, and, finally, the coded problems. Users communicate with these
parts through a kind of an interface, for example, a web site. Such platforms support
both the user during the choice of the appropriate solver and the developer during the
characterization of the product.

In DETEST and StiffDETEST, the non-stiff problems are classified into single
equations, small systems, moderate systems, orbit equations and higher order equa-
tions, whereas the classes for stiff problems are linear with real/non-real eigenvalues,
nonlinear coupling as well as nonlinear with real/non-real eigenvalues. The groups in
IVPtestset are defined more roughly according to the type of the considered IVP:
for ordinary differential and explicit/implicit differential-algebraic equations.

The comparison criteria in DETEST are designed to describe the long-term behav-
ior of a given solver. They are based on the number of function evaluations and the
overhead (the overall CPU time minus the user CPU time for function evaluations
etc.). Moreover, the authors address the aspect of reliability by counting the number
of ‘deceptions’, that is, cases in which the true error exceeds the tolerance given by
the user. In IVPtestset, the most important criteria are: the minimum number of
significant correct digits in the numerical solution at the end of an integration interval,
the overall number of steps performed by the solver, the number of evaluations of the
right side of an IVP and its Jacobian, and the CPU time (on a reference computer).

The results are summarized for the user in the form of mainly text tables in DETEST
and StiffDETEST. In IVPtestset, the options are extended to solution plots and, more
importantly, work-precision diagrams (WPDs) bringing into relation the achieved
accuracy and the CPU time.

To the best of our knowledge, there is no similar systematics in the verified case,
although a few single aspects were covered from a theoretical point of view [13].

123

166 E. Auer, A. Rauh

On the one hand, verified IVP solvers have disparate interfaces, which makes devel-
oping a unified comparison platform a challenge. On the other hand, such solvers have
to be compared somewhat differently from their floating-point analogs. The main rea-
son is that solvers perform unequally on problems with and without uncertainty. In
either case, the result is an interval with a non-zero width, and it can happen, due to
dependency and wrapping, that the considered solver does not reach the predefined
integration time (possible break-down). Besides, we do not have to assess the reli-
ability of the result, because the obtained enclosures are mathematically proved to
contain it.

At present, we consider only non-stiff IVPs for ODEs. In [1,16], we proposed the
following problem classification for them. The two main classes are linear and non-
linear problems. Each of these classes has three subclasses: simple (with analytical
solutions), medium (wrt. their dimension, order, etc.) and complex. In each of these
subclasses, we differentiate between problems with uncertain and point (nominal)
parameters. For a justification of this classification, see Sect. 3. For example problems
for each class, see Table 1.

In this paper, we consider only three from the list of seven criteria published in [1],
namely, C4 wall clock time (tc), C5 user CPU time wrt. overestimation (tu vs. e) at a
predefined time tout, and C6 time to break-down (tbd). If xtrue(tk) is the true solution
of an IVP at the point tk, [xk] the enclosure produced by a solver in the same point, n
the dimension of the system, and w(x) the width of the interval x, then we consider
the value

e(tk) = max
i=1,...,n

{w([xk]) − w(xtrue(tk))}, (1)

as the overestimation of the true solution range at tk . However, the value w(xtrue(tk)) is
available only for the class of simple systems. For systems without uncertainties, this
value equals zero so that the overestimation can be assessed by the width of the result-
ing enclosure. To determine the overestimation for uncertain systems without explicit
analytical solutions, we propose the following technique based on subdivision.

If each uncertain parameter is subdivided into N segments resulting in L intervals in
total for the whole set of parameters, then the lower bound of the i th coordinate of the
true solution xtrue

i (tk) is not bigger than the number ξi (tk) = min j=1,...,L{x< j>
i (tk)}.

Here, x< j>
i,k is the upper bound of the enclosure obtained using the j th interval in the

subdivision instead of the whole parameter range. Analogously, the upper bound of
xtrue

i (tk) is not smaller than ζi (tk) = max j=1,...,L{x< j>
i,k }. Therefore, it holds for the

overestimation

e(tk) ≤ max
i=1,...,n

{|xi,k − ξi (tk)| + |xi,k − ζi (tk)|}. (2)

As statistics, we consider tables and work-precision diagrams in this paper. In WPDs,
we plot the user CPU times (the y axis) against e(tout) (the x axis) for a given tout and
different solver settings.

123

VERICOMP: a system to compare and assess verified IVP solvers 167

3 VERICOMP

In this section, we describe our comparison platform and show an example of how
to use it in the full test mode. Additionally, we provide a methodological basis for
a recommender system in VERICOMP that makes a suggestion about a solver with
suitable settings for a user-defined problem.

3.1 Implementation issues

After defining the sets of problems and criteria, and assuming we have a certain num-
ber of solvers to test, our goal is to automate the comparison process as much as
possible. For this purpose, we developed a web-based system VERICOMP, the first
version of which is available at http://vericomp.inf.uni-due.de. A general overview of
its structure is shown in Fig. 1. It consists of two servers. The first one is responsible
for user-platform communication and contains a database for problems, solvers and
statistics. The second server handles comparisons and generates statistics. Users com-
municate with the front-end via a web page. Their queries are sent to server 2 using a
safe ssh connection, and the result is reported to them via email (because a test can
take a long time depending on how complicated a problem is).

Currently, only the full test option is accessible online. Full test means that the user
can work with the problems from the database using the given solvers without having
the option of changing their parameters or adding his/her own problem. In the near
future, we plan to provide the following options: browsing the databases for problems
and solvers, adding a new problem to the database and analyzing it with (selected)
available solvers as well as testing a solver from the database on all the problems and
with different settings (these enhancements have been already implemented, but they
still need some checking and an improved user interface).

Our long term goal is to provide the option of adding a new solver to the database
automatically. A basis for this enhancement has been already laid: for example, the
routine for transforming the equations of interest into the syntax of the respective

dnet norf
res

U Web server

Database
Solvers

Comparison

Statistics

Request

Result

Server One ServerTwo

Drivers

Fig. 1 The structure of VERICOMP

123

http://vericomp.inf.uni-due.de

168 E. Auer, A. Rauh

Table 1 Problems from the database in VERICOMP

ID Class Description

7 P I L AU1 ẋ = −x, x(0) = 1, x(t) = e−t

1 P I L AU1 ẋ = −a · x, x(0) = 1, x(t) = e−a·t , a ∈ [−2;−1]

8 P I L BU1 ẋ = Ax , x(0) = [2 0 1]T, A =
⎛
⎝

−1 1 0
1 −2 1
0 1 −1

⎞
⎠ .

2 P I L BU1 As above but with x(0) ∈ [[2 − ε; 2 + ε] 0 1]T, ε = 0.5

5 P I LCU1 ẋ = Ax , x(0) = [1 0 · · · 0]T, (A) is a 51 × 51, triple diagonal matrix

9 P I LCU1 As above but with x(0) ∈ [1 0 · · · 0]T ± [ε 0 · · · 0]T, ε = 0.5

10 P I L AU1 ẋ = −x3/2, x(0) = 1, x(t) = 1/
√

t + 1

3 P I L AU1 As above but with x(0) ∈ [x0; x0] = [0.5; 1.5], x(t) ∈ 1/
√

t + [x0]−2

11 P I L BU1

{
ẋ1 = 2(x1 − x1x2), x1(0) = 1
ẋ2 = −(x2 − x1x2), x2(0) = 3

4 P I L BU1 As above but with x1(0) ∈ [1 − ε; 1 + ε], ε = 0.1

12 P I LCU1 C5 from [6] (the five body problem)

6 P I LCU1 As above but with k2 ∈ [2.950; 2.951] (the solar gravitational constant)

solver works not with this solver directly but rather with its pattern provided by the
developer. In our context, a pattern is a text file showing how to operate a given solver.
Additionally, we need means to install the new piece of code on the second server and
several drivers connecting it to further VERICOMP functionalities (e.g. user interface,
statistics).

To date, three solvers are available for testing in VERICOMP: VNODE- LP [12],
ValEncIA- IVP [19] and RiOT [2]. The three standard settings for the first one are
10th, 15th, 25th order of the Taylor expansion with absolute and relative tolerances
set to 10−14 and the minimal stepsize to 10−5 and the automatic stepsize control.
ValEncIA- IVP is tested with the stepsizes 0.025, 0.0025 and 0.00025 without the
exponential extension [18]. The settings for RiOT are 5th, 10th, 15th order of Taylor
models with the linear dominated bounding method, automatic stepsize control and
local error tolerances of 10−11. As test problems, we took the 12 examples from [1]
shown again in Table 1. As statistics, we generated WPDs for one problem and all
solvers as well as for one solver and selected problems for tout = 1. Note that the
characterization of the overestimation according to (2) is not automatized yet. For
now, we take the width of the interval as a reference, if no exact solution is available
for a problem with uncertainty. We performed our tests on an Intel Xeon CPU with
2.00GHz under Linux.

In Fig. 2, two example WPDs are shown. The left one characterizes the performance
of the three available solvers for the problem from the class P I L BU [1] (non-stiff,
non-linear, moderate, without uncertainty, cf. Table 1): Vnode- LP produced the best
results, because its enclosures are the tightest and the CPU times the lowest. Note
that for this nonlinear example, it is even better than RiOT, which should have pro-
duced the tightest enclosures, theoretically. On the right of the figure, this comparison

123

VERICOMP: a system to compare and assess verified IVP solvers 169

Fig. 2 Work-precision diagrams characterizing a problem (left) and a solver (right)

Fig. 3 RiOT for problems with (left) and without (right) uncertainty

result can be seen in relation to other problem classes. For the six problems without
uncertainties from our database, Vnode- LP performs as expected from theory: better
for linear problems (with numbers 7, 8, and 9 in Table 1), worse for nonlinear (with
numbers 10, 11, and 12 in the table).

The solvers also perform differently for problems with and without uncertainty
(Fig. 3 for RiOT; the same holds also for both other solvers). Note that RiOT could not
integrate high-dimensional problems 5, 6, 9, 12 (cf. Table 1) because it can currently
handle only eight independent Taylor model variables simultaneously. The shown
WPDs justify our choice in differentiating between linear/nonlinear and certain/uncer-
tain problems. The solvers also perform differently for the classes A, B, C, but we
need more examples to validate this assertion.

3.2 The uses of a recommender in VERICOMP

It is a well-known fact that finding verified solutions of even moderately complicated
problems might require a substantial amount of CPU time. To give users a quick
response as to what solver with what settings to choose for their problem, we propose
to employ a recommender system [7]. The user can validate an automatic suggestion
by running the usual range of tests. In this subsection, we describe a formal basis for
such a recommender in our case. We plan to implement it in the near future.

123

170 E. Auer, A. Rauh

A recommender system is defined as a 6-tuple <U, E, G, K , P, S>, where U rep-
resents the user, E is the entity set (e.g. products), G ⊆ E is the set of recommended
items, K = K (P, E, S) is the context, P stands for the user profile and S for the
situation [7]. The goal is to maximize a certain utility function χ depending on the
user, the context, and the set of recommended items.

In our case, U can be identified with the problem a user wants to solve, E consists
of the available solvers along with their settings, P coincides with the problem char-
acteristics defined by the VERICOMP classification from Sect. 2, and S is described
by the type of application the users have in mind for their problems (e.g. online/off-
line simulation). Note that the context K is independent of E , because the number of
solvers is not allowed to change during a session. The utility function is defined as a
weighted sum of normalized values for each criterion C1,. . .,C7:

χ(g) =
7∑

i=1

ωi n(Ci (g)), g ∈ G,

7∑
i=1

ωi = 1, (3)

where ωi are the weights, n(·) a normalizing function, and Ci (g) a function returning
the value of the criterion i for the solver g. Note that g is not merely one of the three
currently available solvers VNODE- LP, ValEncIA- IVP and RiOT, but rather an
element of a larger set because we consider each separate set of solver options as an
entity (e.g. ValEncIA- IVP with the stepsize of 0.025, VNODE- LP with the order
of 10).

To produce a recommendation, we use the multiattribute utility collaborative fil-
tering with the given criteria and weighting according to the situation S [10]. The
following example shows how this method works in our case. Suppose the user wants
to solve the IVP problem

x ′ =
√

1 − x2, x(0) = [0.1, 0.3] where x(t) = sin (t + arcsin ([0.1, 0.3])) (4)

online. We restrict ourselves to considering the three criteria C4, C5, C6 and the three
solvers: RiOT with the 5th order Taylor models, VNODE- LP with the 10th order
Taylor expansion, and ValEncIA- IVP with the step size of 0.025. The first step in
the process of the filtering is to establish similarity to a (group of) problem(s) from the
database with the help of a measure μ. In VERICOMP, μ = μ(l, c, u) depends on the
linearity l, complexity c, and the presence of uncertainty u in the problem according
to the classification from Sect. 2. The example problem (4) is nonlinear, simple and
with uncertainty so that μ can return a unique class assignment P.I.L.A.U (cf. [1]
for class labeling systematic).

The next step is weighting: because the user is planning to integrate (4) online over
small time intervals, the wall clock time (C4) and the relation of user CPU time to
overestimation (C5) are equally important, whereas the time to break down (C6) does
not play much of a role. Accordingly, the assigned weights are ω4 = 0.4, ω5 = 0.4
and ω6 = 0.2.

The third step is finding the appropriate neighborhood for the problem (4). In our
case, this neighborhood consists simply of all the problems from the class P I L AU .

123

VERICOMP: a system to compare and assess verified IVP solvers 171

Table 2 Recommender process with three criteria and three solvers, based on the problem 3

gi C4 (c4,i) C5 (c5,i) C6 (c6,i) Rating (χ(gi))

RiOT 5 4.000s tu,1 = 3.907s e1 = 0.06 >32 0.71

VNODE 10 0.011s tu,2 = 0.001s e2 = 0.43 10.688 1

Valencia 0.025 0.062s tu,3 = 0.047s e3 = 2.60 1.325 0.92

Table 3 Values of criteria C4,
C5, C6 for the problem (4)

C4 C5 C6

RiOT 5 70.22 tu,1 = 68.85s e1 = 0.04 1.06

VNODE 10 0.010 tu,2 = 0.007s e2 = 0.06 1.090

Valencia 0.025 – – –

Currently, there is only the problem 3 (cf. Table 1) in this class. The data on this
problem stored in VERICOMP are shown in Table 2, columns 2–4. Now we are ready
to rate the available solvers in the final step of the recommending process. We chose
the normalizing function as

n(x) = 1

1 + e1−x

for x ≥ 0. Note that bigger values of x should correspond to better solver perfor-
mance. That is, C4(gi) = 1/c4,i , C5(gi) = 1/(ei × tu,i), and C6(gi) = c6,i . The
ratings obtained using these definitions in formula (3) are shown in the last column
of Table 2 (rounded up to the second digit after the decimal point). The higher rating
(0 ≤ χ(gi) ≤ 1) indicates better performance so that VNODE- LP with the 10th order
of the Taylor expansion would be the recommended tool in this case. Note that the
problem (4) was not actually simulated to make the recommendation.

We can validate this by running the usual tests on (4), the result of which is shown
in Table 3. The recommendation was correct and VNODE- LP is really the fastest with
an acceptable overestimation–CPU time ratio. Note, however, that ValEnciIA- IVP
could not produce a result in these settings (for the step size 0.025), which was not
detected by the recommender. The reason is the low weight assigned to the criterion
C6 that usually helps to sort out such situations. One solution to this might be to
produce a warning, if a solver i has a relatively high ranking, but c6,i is much less than
the corresponding values for other solvers (cf. Table 2).

4 Conclusions

Our aim was to develop a comparison platform for verified IVP solvers. We have imple-
mented the conceptual basis described in [1], which resulted in the system VERI-
COMP, constructed a problem/solver/statistics database, made a full test for three
solvers and 12 problems accessible online and developed a recommender formalism.

123

172 E. Auer, A. Rauh

Our future work will include improving the user interface, implementing the recom-
mender and adding a possibility to integrate new IVP solvers into VERICOMP.

References

1. Auer E, Rauh A (2010) Toward definition of systematic criteria for the comparison of verified solvers
for initial value problems. In: Proceedings of the 8th international conference on parallel processing
and applied mathematics PPAM 2009, LNSC 6067, vol 2. Wroclaw, pp 408–417

2. Eble I RiOT. http://iamlasun8.mathematik.uni-karlsruhe.de/~ae08/
3. Enright W, Pryce J (1987) Two FORTRAN Packages For Assessing Initial Value Methods. ACM Trans

Math Softw (TOMS) 13(1):1–27
4. Enright WH, Hull TE, Lindberg B (1975) Comparing numerical methods for stiff systems of ODEs.

BIT Numer Math 15:10–48
5. Hall G, Enright W, Hull T, Sedgwick A (1973) DETEST: a program for comparing numerical meth-

ods for ordinary differential equations. Technical Report 60, Department of Computer Science and
Technology, University of Toronto, Toronto

6. Hull TE, Enright WH, Fellen BM, Sedgwick AE (1972) Comparing numerical methods for ordinary
differential equations. SIAM J Numer Anal 9(4):603–637

7. Klahold A (2009) Empfehlungssysteme: Grundlagen, Konzepte und Lösungen. Vieweg+Teubner
(in German)

8. Lin Y, Stadtherr MA (2006) Validated solution of initial value problems for ODEs with interval param-
eters. In: NSF workshop proceedings on reliable engineering computing, Savannah

9. Makino K (1998) Rigorous analysis of nonlinear motion in particle accelerators. Ph.D. thesis,
Michigan State University

10. Manouselis N, Costopoulou C (2008) Personalization techniques and recommender systems. In: Exper-
imental analysis of multiattribute utility collaborative filtering on a syntetic data set. World Scientific
Publishing Company, pp 111–133

11. Mazzia F, Iavernaro F (2003) Test set for initial value problem solvers. Technical Report 40, Department
of Mathematics, University of Bari. http://pitagora.dm.uniba.it/~testset/

12. Nedialkov NS (2011) Implementing a rigorous ODE solver through literate programming. In: Rauh
A, Auer E (eds) Modeling, design, and simulation of systems with uncertainties. Mathematical Engi-
neering. Springer, Berlin, pp 3–19

13. Neher M, Jackson K, Nedialkov N (2007) On Taylor model based integration of ODEs. SIAM J Numer
Anal 45(1):236–262

14. Nowak U, Gebauer S, Pöhle U, Weimann L (2010) ODELab—towards an interactive WWW laboratory
for numerical ODE software. http://num-lab.zib.de/public/odelab/doc/a2.ps

15. Rauh A, Auer E (eds) (2011) Modeling, design, and simulation of systems with uncertainties.
Mathematical Engineering. Springer, Berlin

16. Rauh A, Auer E, Aschemann H (2010) Development of a quality measure for the characterization
of guaranteed solution sets to ODEs in Engineering. In: Proceedings of the 8th IFAC symposium on
nonlinear control systems, Bologna

17. Rauh A, Auer E, Hofer EP, Luther W (eds) (2009) Special issue of the International Journal of Applied
Mathematics and Computer Science AMCS, verified methods: applications in medicine and engineer-
ing, vol 19(3). University of Zielona Gora Press, Zielona Gora

18. Rauh A, Brill M, Günter C (2009) A novel interval arithmetic approach for solving differential-alge-
braic equations with ValEncIA-IVP. Spec Issue Int J Appl Math Comput Sci AMCS 19(3):485–499

19. Rauh A, Hofer E, Auer E (2006) ValEncIA- IVP: a comparison with other initial value problem solv-
ers. In: Proceedings of the 12th GAMM-IMACS international symposium on scientific computing,
computer arithmetic and validated numerics. IEEE Computer Society

20. Snopok P, Berz M, Johnstone C (2009) Calculation of nonlinear tune shift using beam position
measurement results. Int J Modern Phys A 24(5):974–986

123

http://iamlasun8.mathematik.uni-karlsruhe.de/~ae08/
http://pitagora.dm.uniba.it/~testset/
http://num-lab.zib.de/public/odelab/doc/a2.ps

	VERICOMP: a system to compare and assess verified IVP solvers
	Abstract
	1 Introduction
	2 Background: comparison of IVP Solvers
	3 VERICOMP
	3.1 Implementation issues
	3.2 The uses of a recommender in VERICOMP

	4 Conclusions
	References

