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Abstract Sparse grids, combined with gradient penalties provide an attractive tool
for regularised least squares fitting. It has earlier been found that the combination
technique, which builds a sparse grid function using a linear combination of approx-
imations on partial grids, is here not as effective as it is in the case of elliptic partial
differential equations. We argue that this is due to the irregular and random data dis-
tribution, as well as the proportion of the number of data to the grid resolution. These
effects are investigated both in theory and experiments. As part of this investigation we
also show how overfitting arises when the mesh size goes to zero. We conclude with a
study of modified “optimal” combination coefficients who prevent the amplification
of the sampling noise present while using the original combination coefficients.

Keywords Sparse grids · Combination technique · Regression · High-dimensional
data · Regularisation
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1 Introduction

In this paper we study the convergence behaviour of a grid based approach for the
regression problem arising in machine learning. A set of (noisy) data points xi in a
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2 J. Garcke, M. Hegland

d-dimensional feature space is given, together with associated values yi . Often one
assumes that a function f∗ describes the relation between the predictor variables x
and the response variable y. One now wants to (approximately) reconstruct the func-
tion f∗ from the given data. This allows the prediction of the function value for any
newly given data point for future decision-making. The dimension d of the attribute
domain can be high and m, the number of data points, can be large, both pose a severe
computational challenge.

We investigate a discretisation approach introduced by Garcke et al. [9] for the
regularised least squares ansatz [18]. It uses a gradient based regularisation and dis-
cretises the minimisation problem with an independent grid with associated local basis
functions. The approach is similar to the numerical treatment of partial differential
equations by finite element methods. This way the data information is transferred into
the discrete function space defined by the grid and its corresponding basis functions.

To cope with the complexity of grid-based discretisation methods in higher dimen-
sions the sparse grid combination technique [11] is applied to the regression prob-
lem [9]. Here, the regularised least squares ansatz is discretised and solved on a certain
sequence of anisotropic grids, i.e., grids with different mesh sizes in each coordinate
direction. The sparse grid solution is then obtained from the (partial) solutions on
these different grids by their linear combination using combination coefficients which
depend on the involved grids. The approach was shown to successfully treat machine
learning problems in an intermediate dimensional regime, d � 20, with only a linear
scaling in the number of data and therefore suitable for a large number of data [8,9].

Following empirical results in [5], which show instabilities of the combination tech-
nique in certain situations, we investigate in this article the convergence behaviour of
full and sparse grid discretisation of the regularised regression problem. There are
two approaches to analyse the convergence behaviour of the combination technique.
Originally, extrapolation arguments were used where a certain error expansion for the
partial solutions is assumed [4,11]. Alternatively, one can view the combination tech-
nique as an approximation of a projection into the underlying sparse grid space, which
is exact only if the partial projections commute [14]. Both these assumptions do not
hold for the regularised regression problem; the combination technique can actually
diverge. While we investigated the projection view in detail in Hegland et al. [14], we
consider here the extrapolation view.

Of particular interest is the effect of the gradient based regularisation in higher
dimensions since it does not enforce continuous functions as it only gives H1-func-
tions. Its systematic theoretical investigation is the main contribution of this paper.

Already in two dimensions empirical investigations show divergence of the com-
bination technique depending on the number of data and the regularisation parameter.
This is partly due to the the finiteness of the random sample. This effect vanishes
asymptotically as the number of data points goes to infinity. Therefore the assumed
error expansion needed for the extrapolation arguments for the convergence of the
combination technique does not hold for a fixed number of data. Furthermore, after
deriving a discrete version of the Sobolev inequality we formulate the overfitting effect
in the data points of grid based approaches in higher dimensions and finish our theo-
retical investigations by showing how the solution between the data points converges
to a constant.
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Fitting multidimensional data 3

It was seen that applying the optimised combination technique [13,14] repairs
the instabilities of the combination technique to a large extent. The combination
coefficients now not only depend on the grids involved, but on the function to be
reconstructed as well, resulting in a non-linear approximation approach. We show in
numerical experiments the stable behaviour of this numerical scheme. Note that recent
empirical studies show competitive results of this approach for a number of standard
regression benchmarks in machine learning [6].

2 Regularised sparse grid regression and the combination technique

In this section we introduce the regularised least squares problem in a finite dimen-
sional space V , establish the corresponding linear systems of equations and describe
the sparse grid combination technique.

2.1 Regularised least squares regression

We consider the regression problem in a possibly high-dimensional space. Given is a
data set

S = {
(xi , yi )

}m
i=1 xi ∈ R

d , yi ∈ R,

where we denote by x a d-dimensional vector or index with entries x1, . . . , xd . We
assume that the data has been obtained by sampling an unknown function f∗ which
belongs to some space V of functions defined over R

d . The aim is to recover the func-
tion f∗ from the given data as well as possible. To achieve a well-posed (and uniquely
solvable) problem Tikhonov-regularisation theory [17,18] imposes a smoothness con-
straint on the solution. We employ the gradient as a regularisation operator which leads
to the variational problem

fV = argmin
f ∈V

R( f )

with

R( f ) = 1

m

m∑

i=1

(
f (xi ) − yi

)2 + λ||∇ f ||2, (1)

where yi = f∗(xi ). The first term in (1) measures the error and therefore enforces
closeness of f to the labelled data, the second term ||∇ f ||2 enforces smoothness of
f , and the regularisation parameter λ balances these two terms.

Let us define the following semi-definite bi-linear form

〈 f, g〉rls = 1

m

m∑

i=1

f (xi )g(xi ) + λ〈∇ f,∇g〉 (2)
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4 J. Garcke, M. Hegland

and choose V so that 〈·, ·〉rls is a scalar product on it. With respect to this scalar
product the minimisation (1) is an orthogonal projection of f∗ into V [13], i.e., if
‖ f − f∗‖2

rls ≤ ‖g − f∗‖2
rls then R( f ) ≤ R(g). As the point evaluations f �→ f (x)

are not continuous in the Sobolev space H1 for d ≥ 2 we do not get a H1-elliptic
problem. For the space V we thus suggest to choose a finite dimensional subspace
V ⊂ H1 of continuous functions containing the constant function.

In the following we restrict the problem explicitly to a finite dimensional subspace
VN ⊂ V with an appropriate basis {ϕ j }N

j=1. A function f ∈ V is then approximated
by

fN (x) =
N∑

j=1

α jϕ j (x). (3)

We now plug this representation of a function f ∈ VN into (1) and obtain the linear
system of equations

(
B�B + λm · C

)
α = B�y (4)

and therefore are able to compute the unknown vector α for the solution fN of (1)
in VN . C is a symmetric N × N matrix with entries C j,k = 〈∇ϕ j ,∇ϕk〉, and cor-
responds to the smoothness penalty. B� is a rectangular m × N matrix with entries
(B�) j,k = ϕ j (xk) and transfers the information from the data into the discrete space,
B correspondingly works in the opposite direction. The vector y contains the data
labels yi and has length m.

In particular we now employ a finite element approach, using the general form of
anisotropic mesh sizes ht = 2−lt , t = 1, . . . , d and number the grid points using the
multi-index j, jt = 0, . . . , 2lt . We use piecewise d-linear functions

φl, j (x) :=
d∏

t=1

φlt , jt (xt ), jt = 0, . . . , 2lt

where the one-dimensional basis functions φl, j (x) are the so-called hat functions. We
denote with Vn the finite element space which has the mesh size hn in each direction.

2.2 Combination technique

The sparse grid combination technique [11] is an approach to approximate functions
defined over higher dimensional spaces. Following this ansatz we discretise and solve
the problem (1) on a sequence of small anisotropic grids �l = �l1,...,ld . For the
combination technique we now in particular consider all grids �l with

|l|1 := l1 + · · · + ld = n − q, q = 0, . . . , d − 1, lt ≥ 0,

123



Fitting multidimensional data 5

Fig. 1 Grids involved for the combination technique of level n = 4 in two dimensions

set up and solve the associated problems (4). The original combination technique [11]
now linearly combines the resulting discrete solutions fl(x) ∈ Vl from the partial
grids �l according to the formula

f c
n (x) :=

d−1∑

q=0

(−1)q
(

d − 1

q

) ∑

|l|1=n−q

fl(x).

The function f c
n lives in the sparse grid space

V s
n :=

⊕

|l|1 = n − q
q = 0, . . . , d − 1 lt ≥ 0

Vl .

The space V s
n has dimension of order O(h−1

n (log(h−1
n ))d−1) in contrast to O(h−d

n ) for
conventional grid based approaches.

For the two-dimensional case, we display the grids needed in the combination
formula of level 4 in Fig. 1 and give the resulting sparse grid.

The approximation properties of the combination technique are connected to sparse
grids in two different ways. First, using extrapolation arguments, it can be shown
that the approximation property of the combination technique is of the order O(h2

n ·
log(h−1

n )d−1) as long as error expansions of the form

f − fl =
d∑

i=1

∑

j1,..., jm⊂1,...,d

c j1,..., jm (h j1, . . . , h jm ) · h2
j1 · · · · · h2

jm (5)

for the partial solutions hold [11].
Second, viewing the minimisation of (1) as a projection, one can show that the com-

bination technique is an exact projection into the underlying sparse grid space (and
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6 J. Garcke, M. Hegland

therefore of approximation order O(h2
n · log(h−1

n )d−1)) only if the partial projections
commute, i.e., the commutator [PV1 , PV2 ] := PV1 PV2 − PV2 PV1 is zero for all pairs of
involved grids [14].

3 Asymptotics for h → 0

3.1 Empirical convergence behaviour

We first consider the convergence behaviour of full grid solutions for a simple regres-
sion problem, measured against a highly refined grid (due to the lack of an exact
solution). As in [5] we consider the function

f (x, y) = e−(x2+y2) + x · y.

in the domain [0, 1]2 where the data positions are chosen randomly. To study the
behaviour with different number of data we take hundred, thousand, ten-thousand,
hundred-thousand and one million data points. In Fig. 2, left, we show the difference
between a full grid solution of level l and one of level n = 12 using the functional (1)
as a norm, in this experiment we use λ = 0.01. We see that the difference shows two
different types of convergence behaviour, first it displays the usual h2 convergence,
but this convergence deteriorates when h gets smaller. Furthermore, the more data is
used, the later this change in the reduction rate takes place. Qualitatively these obser-
vations do not depend on the regularisation parameter λ, in Fig. 3, left, we provide
results for a smaller regularisation parameter of λ = 0.0001.

A somewhat different picture arises if we employ the sparse grid combination tech-
nique. In Fig. 2, right, we show the behaviour of the difference of the solution with
the combination technique and the full grid solution of level n = 12, again using the
functional (1) as a norm and λ = 0.01. We see a similar type of behaviour, although the
change in convergence is more clearly present. On the other hand, using λ = 0.0001,
shown in Fig. 3, right, we observe for the sparse grid combination technique on smaller
data sets an intermediate rise of the difference to the highly refined full grid solution.

Fig. 2 Convergence against highly refined solution measured using (1) for λ = 0.01. Left full grid, right
sparse grid combination technique
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Fitting multidimensional data 7

Fig. 3 Convergence against highly refined solution measured using (1) for λ = 0.0001. Left full grid, right
sparse grid combination technique

Fig. 4 Value of the least squares error, the regularisation term and the residual (1) for 1000 data using the
combination technique. Top left with λ = 10−2, top right with λ = 10−3. Bottom left with λ = 10−4,
bottom right with λ = 10−6

In a different experiment we consider the combination technique for the solution
and record the following values: the least squares error on the given data (xi , yi ), i =
1, . . . , m, the regularisation term, and the residual (1) of the approximation using
m = 1000 data, λ = 10−2, λ = 10−3, λ = 10−4 and λ = 10−6. These val-
ues are presented in Fig. 4. We observe that for small regularisation parameters the
errors increase, which cannot happen with a true variational discretisation ansatz for
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8 J. Garcke, M. Hegland

the residual. With larger regularisation parameters the now stronger influence of the
smoothing term results in a (more) stable approximation method. Note that this insta-
bility is more common and significant in higher dimensions.

In the following we will present some theory which supports these observations.

3.2 Case where m = m(h) is large

If the number m of data points is large, the data term in R( f ) approximates an integral.
For simplicity, we discuss only the case of � = (0, 1)d and a uniform distribution of
the data positions, however, most results hold for more general domains and probability
distributions. Then, if f∗(x) is a square integrable random field with f∗(xi ) = yi and

J ( f ) = λ

∫

�

|∇ f (x)|2dx +
∫

�

( f (x) − f∗(x))2dx (6)

it follows that J ( f ) ≈ R( f ) for large m.
Consider a finite element space VN ⊂ C(�) with rectangular elements Q of side

lengths h1, . . . , hd and multilinear element functions. The number k of data points xi
contained in any element Q is a binomially distributed random variable with expecta-
tion m · h1 · · · hd . When mapped onto a reference element I = [0, 1]d , the data points
ξ1, . . . , ξk are uniformly distributed within I .

Let φ be a continuous function on Q with expectation φ = ∫
I φ(ξ)dξ and vari-

ance σ(φ)2 = ∫
I (φ(ξ)−φ)2dξ . By the central limit theorem, the probability that the

inequality
∣
∣
∣
∣
∣

∫

I
φ(ξ)dξ − 1

k

m∑

i=1

φ(ξi )

∣
∣
∣
∣
∣
≤ cσ(φ)√

m

holds for m → ∞ is in the limit 1√
2π

∫ c
−c e−t2/2dt .

As we will apply the first lemma of Strang [1] on the bilinear forms corresponding
to J ( f ) and R( f ) we need this bound for the case of φ(ξ) = u(ξ)v(ξ). Using a
variant of the Poincaré–Friedrichs inequality [1] with the observation that the aver-
age of w := φ − φ equals zero, the product rule, the triangular inequality, and the
Cauchy–Schwarz inequality we obtain

σ(φ) ≤ C

√√
√
√
∫

I

|∇φ(ξ)|2 dξ ≤ C (‖v‖‖∇u‖ + ‖u‖‖∇v‖) ≤ C‖u‖1‖v‖1.

Transforming this back onto the actual elements Q, summing up over all the elements
and applying the Cauchy-Schwarz inequality gives, with high probability for large m,
the bound:

∣
∣
∣
∣
∣
∣

∫

�

u(x)v(x)dx − 1

m

m∑

i=1

u(xi )v(xi )

∣
∣
∣
∣
∣
∣
≤ c‖u‖1‖v‖1√

m
.
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Fitting multidimensional data 9

A similar bound can be obtained for the approximation of the right hand side in the
Galerkin equations. We now can apply the first lemma of Strang to get the bound

‖ f − fN ‖1 ≤ C

(∥
∥
∥ f − f best

N

∥
∥
∥

1
+ ‖ f ‖1√

k

)
,

where f best
N is the best approximation of f in the ‖ · ‖1-norm.

This bound is very flexible and holds for any intervals I —it does not depend on
the particular hi just on the product. This is perfectly adapted to the situation of the
sparse grid combination technique where one has on average kl = 2−|l|m data points
per element on level |l|. It is known that the combination technique acts like an extrap-
olation method for the Poisson problem. This is not the case in the regression problem
as there is no cancellation of the random errors. Assuming that the errors el are i.i.d.
we conjecture that the error of an approximation using the sparse grid combination
technique (for large enough k) satisfies a bound of the form

∥
∥ f − fsg

∥
∥

1 ≤ C

⎛

⎝
∥
∥
∥ f − f best

sg

∥
∥
∥

1
+

‖ f ‖1

√∑
l c2

l 2|l|
√

m

⎞

⎠ (7)

where, as usual, cl are the combination coefficients and the summation is over all full
subgrids of the sparse grid indexed by the vector of levels l.

To study this effect experimentally let us consider (6) with

f∗(x, y) = −100λ ·
(

(2x − 1)

(
1

4
y4 − 1

3
y3
)

+
(

1

3
x3 − 1

2
x2
)(

3y2 − 2y
))

+100 ·
(

1

3
x3 − 1

2
x2
)(

1

4
y4 − 1

3
y3
)

.

The function f (x, y) = 100·( 1
3 x3 − 1

2 x2
) ( 1

4 y4 − 1
3 y3

)
is the solution of the resulting

continuous problem.
As indicated, if we now assume that a Monte Carlo approach is used to com-

pute the integrals
∫
�

f (x)g(x)dx and
∫
�

f (x) f∗(x)dx in the Galerkin equations we
obtain the regularised least squares formulation (1). For different data set sizes we
measure the difference between the resulting discrete solutions using the sparse grid
combination technique for the now fixed number of data and the above continuous
solution. In Fig. 5, left, we show the behaviour of the error for increasing discretisa-
tion levels measured in the H1-seminorm. At first we have the “usual” decrease in the
error, but after about one sample point per element the error increases instead due to
the second term in (7).

3.3 Behaviour as N → ∞—overfitting in data points

The bound (7) holds only asymptotically in k and thus for a fixed number of data and
very small mesh size it will break down. We give a bound for the residuals |yi − fN (xi )|
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10 J. Garcke, M. Hegland

Fig. 5 Left H1-seminorm difference of the solutions of J ( f ) and R( f ) plotted against the number k of
data points per cell. Right decrease of functional R

first for general reproducing kernel Hilbert spaces and then for the special case of reg-
ular grids. For a discussion of the framework of reproducing kernel Hilbert spaces,
see [16,18]. Let in the following V0 always be the space of constant functions and let
the L2-orthogonal decomposition

VN = V0 ⊕ VN ∩ V ⊥
0

hold, where VN ∩ V ⊥
0 is the space of functions with zero mean. The seminorm ‖∇ f ‖

defines a norm on VN ∩ V ⊥
0 . As every linear functional is continuous on a finite

dimensional linear space there exists a reproducing kernel kx ∈ VN ∩ V ⊥
0 such that

f (x) = 〈∇kx ,∇ f 〉 for f ∈ VN ∩V ⊥
0 , and one easily verifies that for f ∈ VN one gets

f (x) = 〈1, f 〉 + 〈∇kx ,∇ f 〉, f ∈ VN .

Introducing this into the functional R gives

R( f ) = λ〈∇ f,∇ f 〉 + 1

m

m∑

i=1

(〈1, f 〉 + 〈∇kxi
,∇ f 〉 − yi

)2
.

Due to the representer theorem [18] it follows that the minimiser of R is a linear
combination of reproducing kernels

fN (x) = c0 +
m∑

i=1

ci kxi
(x). (8)

Inserting this in the formula for R gives

R( f ) = λ cT Kc + 1

m

(
c01 + Kc − y

)T (
c01 + Kc − y

)
, (9)

where the kernel matrix K has entries Ki j = kxi
(x j ) and 1 is the vector of ones.
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Fitting multidimensional data 11

The reproducing kernel depends on N and to make this clear we will denote k by
kN and K by KN in the following, but also use the notation kN (xi , x j ) = kxi

(x j ).

Proposition 1 Let V0 = { f = const.}, V1, V2, . . . be a sequence of linear function
spaces and fN ∈ VN be the minimiser of R( f ) in VN . Furthermore assume that
R( fN ) ≤ C for some C > 0 and all integers N. Then

∣
∣yi − fN (xi )

∣
∣ ≤

2m
(
λ‖y‖∞ + κC1/2m1/2

)

kN (xi , xi )
,

where kN is the reproducing kernel of VN ∩ V ⊥
0 with respect to the H1-seminorm and

κ = supN maxi �= j |kN (xi , x j )|.
Proof As R( fN ) is bounded the sum of the squared residuals is bounded:

1

m

m∑

i=1

∣
∣yi − fN (xi )

∣
∣2 ≤ C.

Taking the gradient of (9) with respect to c0 and multiplying with m gives for the
minimum

mc0 + 1T KN c − 1T y = 0.

Taking the gradient of (9) with respect to c and multiplying the result with m times
the inverse of KN gives

mλc +
(

c01 + KN c − y
)

= 0. (10)

In block form this is

[
m 1T KN

1 mλI + KN

] [
c0
c

]
=
[

1T y
y

]
.

An elimination step leads then to the saddle point system

[
0 1T

1 mλI + KN

] [
c0
c

]
=
[

0
y

]
. (11)

From Eqs. (8) and (10) one gets yi − fN (xi ) = mλci and thus

|ci | ≤
√√
√
√

m∑

i=1

c2
i ≤ 1

λm1/2 C1/2.
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12 J. Garcke, M. Hegland

Now let KN = D + H where D contains the diagonal and H the offdiagonal compo-
nents of the kernel matrix KN , respectively, and set r = −Hc. One then has

‖r‖∞ ≤ κ

λ
C1/2m1/2.

Introducing r into Eq. (11) gives

[
0 1T

1 D + mλI

] [
c0
c

]
=
[

0
y + r

]
.

Eliminating c gives

|c0| =
∣
∣
∣
∣
∣

1T (D + mλI)−1(y + r)

1T (D + mλI)−11

∣
∣
∣
∣
∣
≤ ‖y + r‖∞ ≤ ‖y‖∞ + κ

λ
C1/2m1/2

as D + mλI has only positive elements and so c0 is uniformly bounded in N . Now
(D + mλI)c = y + r − c01 and one then gets

|ci | ≤ (
kN (xi , xi ) + mλ

)−1 2
∥
∥
∥y + r

∥
∥
∥∞

≤ kN (xi , xi )
−12

∥
∥
∥y + r

∥
∥
∥∞

≤ 2kN (xi , xi )
−1
(∥∥
∥y
∥
∥
∥∞ + κ

λ
C1/2m1/2

)
.

With that one achieves the desired bound as

∣
∣yi − fN (xi )

∣
∣ = mλ|ci | ≤

2m
(
λ‖y‖∞ + κC1/2m1/2

)

kN (xi , xi )
.

��
In the following let VN be the space of piecewise multilinear functions of d vari-

ables using isotropic rectangular grids with size h = 1/(N 1/d − 1). We will now
formulate discrete versions of some well known analytical results. The foundation is
the following lemma which could be called “discrete Sobolev inequality”, it can be
found in [2,3] for the cases d = 1, 2, 3.

Lemma 1 (Discrete Sobolev inequality) There are constants Cd > 0 such that for all
f ∈ VN

1. | f (x)| ≤ Cd‖ f ‖1 for d = 1
2. | f (x)| ≤ Cd(1 + | log h|)‖ f ‖1 for d = 2
3. | f (x)| ≤ Cd h1−d/2‖ f ‖1 for d > 2

where h is the grid size of VN . These bounds are tight, i.e., they are attained for some
functions f ∈ VN , and, for d > 2 one has
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Fitting multidimensional data 13

Cd ≥ 1√
3d + 1

(
3

2

)d/2

.

Proof For d = 1 the inequality is just the usual Sobolev inequality, and the inequality
for d = 2 is known as discrete Sobolev inequality. The case of d > 2 uses the Sobolev
embedding H1(�) ↪→ L2d/(d−2)(�) from which one gets

‖ f ‖L2d/(d−2) (�) ≤ Ad‖ f ‖1

and the inverse inequality

‖ f ‖L∞(�) ≤ Bd h−d/p‖ f ‖L p(�)

for some constants Ad , Bd and Cd = Ad Bd .
To show the tightness for d = 1 one chooses f = ky (the reproducing kernel). For

d = 2 this can be found in the literature. Here we show that this is also the case for
d > 2. We consider for VN piecewise multilinear functions with a regular isotropic
grid with mesh size h. Choose as f a tent function which is one on an interior grid
point and zero on all other grid points. In one of the cells touching the point where
f (x) = 1 one has, after translation,

f (x) = x1 · · · xd

hd
.

Since to have an interior point one requires h ≤ 1/2, and f behaves accordingly in
all 2d cells, one then has for the L2 norm

∫

�

f (x)2 dx = 2d
(

h

3

)d

and for the L2 norm of a derivative ∂ f/∂xi :

∫

�

(
∂ f (x)

∂xi

)2

dx = 2d
(

h

3

)d−1 1

h

and one gets

‖ f ‖2
1 =

(
2

3

)d (
hd + 3dhd−2

)
.

Consequently, as ‖ f ‖∞ = 1 one has

‖ f ‖∞
‖ f ‖1

= h1−d/2
(

3

2

)d/2 1√
3d + h2

from which the tightness of the bound and the lower bound for Cd follow. ��
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14 J. Garcke, M. Hegland

A direct consequence of this lemma is a discrete Poincaré inequality which is a
generalisation of the inequality for two dimensions in [3].

Lemma 2 (Discrete Poincaré inequality ) Let x0 ∈ � and f0 = f (x0) for f ∈ VN .
Then there exist constants Cd > 0 such that

1. ‖ f − f0‖ ≤ Cd‖∇ f ‖ for d = 1
2. ‖ f − f0‖ ≤ Cd(1 + | log h|)‖∇ f ‖ for d = 2
3. ‖ f − f0‖ ≤ Cd h1−d/2‖∇ f ‖ for d > 2.

Proof The proof follows the proof of the 2D version in [3]. First, by the triangle
inequality one has

‖ f − f0‖ ≤ ‖ f − f ‖ + | f − f0|

where f is the mean value of f . The (standard) Poincaré inequality gives ‖ f − f ‖ ≤
C‖∇ f ‖ for some C > 0. For the second term in the sum one uses the discrete Sobolev
inequality to get a bound for | f − f0| ≤ ‖ f − f ‖∞ in terms of the Sobolev norm
‖ f − f ‖1. One then inserts the (standard) Poincaré inequality to get a bound for the
component ‖ f − f ‖ of the Sobolev norm and so gets the claimed inequalities. ��
With these inequalities one can now derive bounds for the values of the energy norm
and thus establish a “discrete V-ellipticity”.

Proposition 2 (Discrete V-ellipticity) The energy norm for the penalised least squares
problem on VN satisfies the inequalities

αd,h‖ f ‖1 ≤ ‖ f ‖rls ≤ βd,h‖ f ‖1, f ∈ VN

where there exist cd and Cd such that for all N , m and λ one has:

1. αd,h = (cdλ−1/2 + λ−1/2 + 1)−1 and βd,h = Cd + √
λ for d = 1

2. αd,h = (cdλ−1/2(1 + | log h|) + λ−1/2 + 1)−1 and βd,h = Cd(1 + | log h|) + √
λ

for d = 2
3. αd,h = (cdλ−1/2h1−d/2 + λ−1/2 + 1)−1 and βd,h = Cd h1−d/2 + √

λ for d > 2.

Proof Consider first the upper bounds. One has

‖ f ‖rls ≤ ‖ f ‖∞ + √
λ‖ f ‖1.

The upper bounds follow then directly from the discrete Sobolev inequality.
For the lower bounds observe that as f ∈ VN is continuous there exists an x0 ∈ �

such that for f0 = f (x0) one has

f 2
0 = 1

m

m∑

i=1

f (xi )
2.

We then have by the triangle inequality

‖ f ‖ ≤ ‖ f − f0‖ + | f0|
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Fitting multidimensional data 15

and by the discrete Poincaré inequality

‖ f ‖ ≤
(

cdλ−1/2h1−d/2 + 1
)

‖ f ‖rls.

From this one gets the bound

‖ f ‖1 ≤
(

cdλ−1/2h1−d/2 + λ−1/2 + 1
)

‖ f ‖rls

for the case d > 2. The other two bounds follow by the same argument. ��
In the following we achieve specific bounds for kN (xi , xi ) and get:

Proposition 3 Let VN be the spaces of piecewise multilinear functions of d variables
and isotropic rectangular grids with size h = 1/(N 1/d − 1) ≤ h0 for some appropri-
ately chosen h0 ≤ 1/2. Furthermore, let fN be the minimiser of R( f ) in VN and let
R( fN ) ≤ C uniformly in N for some C > 0. Then

∣
∣yi − fN (xi )

∣
∣ ≤ Cdm

(
λ‖y‖∞ + κC1/2m1/2

)
hd−2

for some Cd ≥ 0 and d ≥ 3 and

∣
∣yi − fN (xi )

∣
∣ ≤ C2m

(
λ‖y‖∞ + κC1/2m1/2

)
(1 + | log h|)−2

for some C2 ≥ 0 and d = 2.

Proof We use the discrete Sobolev inequality (Lemma 1) to get a lower bound for
kN (xi , xi ) = kxi

(xi ) and then apply Proposition 1. Here we explicitly show the case
d ≥ 3, the case d = 2 is similar.

Now let k̃x be the reproducing kernel of VN (which exists as VN is finite dimen-
sional) with respect to the H1-norm ‖ · ‖1 such that

f (x) = (k̃x , f )1, f ∈ VN .

Using Cauchy–Schwarz it follows that

f (x)2

‖ f ‖2
1

≤ ‖k̃x‖2
1 = k̃x (x) = k̃(x, x), f ∈ VN .

By the discrete Sobolev inequality, and specifically its tightness, there exists an
f ∈ VN such that

f (x)2

‖ f ‖2
1

≥ Cd h2−d

and consequently k̃(x, x) ≥ Cd h2−d .
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16 J. Garcke, M. Hegland

Since the reproducing kernel for the direct sum of two perpendicular subspaces is
the sum of the reproducing kernels [18] the previously introduced reproducing kernel
kx of VN ∩ V ⊥

0 with respect to the Sobolev seminorm (∇·,∇·) satisfies

kx = k̃x − 1.

For small enough h one thus has

k(x, x) ≥ Cd h2−d

for some Cd > 0. The desired bound on the residual is then obtained by an application
of Proposition 1. ��
Note that for the minimal distance of any two points of the given data it holds |xi−x j | ≥
ε > 0, therefore κ , the supremum over kN (xi , x j ), i �= j is bounded in this propo-
sition. A proof for d = 2 can be found in a similar situation in Section 4.7 in [12],
where |kN (xi , x j )| ≤ C(1 + | log(|xi − x j | + h)|) is shown.

The case d = 2 is illustrated in Fig. 5, right. While we have proved this result for
a special VN one can easily extend it to other spaces VN .

3.4 Asymptotics between the data points

While the approximations fN do converge on the data points they do so very locally.
In an area outside a neighbourhood of the data points the fN tend to converge to a
constant function so that fN may recover fast oscillations only if sufficient data is
available and only close to the data points.

We have seen that the residuals fN (xi ) − yi go to zero with increasing N , now we
will show that even the whole penalised squared residual goes to zero for dimensions
larger than 2.

Proposition 4 The value of functional R converges to zero on the estimator fN and

R( fN ) ≤ Cmλhd−2

for some C > 0. As ‖∇ fN ‖ ≤ √
R( fN ) it follows that ‖∇ fN ‖ ≤ C

√
mλh(d−2).

Proof While we only consider regular partitioning with hyper-cubical elements Q,
the proof can be generalised to other elements. First, let bQ be a member of the finite
element function space such that bQ(x) = 1 for x ∈ Q and bQ(x) = 0 for x in any
element which is not a neighbour of Q. One can easily see that

∫

Q

|∇bQ |2dx ≤ Chd−2. (12)

Choose h such that for the kth component of xi one has

|xi,k − x j,k | > 3h, for i �= j . (13)

123



Fitting multidimensional data 17

In particular, any element contains at most one data point. Let furthermore Qi be
the element containing xi , i.e., xi ∈ Qi . Then one sees that g defined by

g(x) =
m∑

i=1

yi bQi (x)

interpolates the data, i.e., g(xi ) = yi . Consequently,

R(g) = λ

∫

�

|∇g|2dx .

Because of the condition on h one has for the supports supp bQi ∩ supp bQ j = ∅
for i �= j and so

R(g) = λ

m∑

i=1

y2
i

∫

�

|∇bQi |2dx

and, thus,

R(g) ≤ Cmλhd−2.

It follows that inf R( f ) ≤ R(g) ≤ Cmλhd−2. ��

We conjecture that in the case of d = 2 one has R( fN ) ≤ Cmλ/| log h|.
Proposition 5 For d ≥ 3 the solution fN of (1) converges towards a constant function
almost everywhere.

Proof Let uN := fN − ∫
fN dx . Obviously

∫
uN dx = 0 and with Proposition 4 it

holds
∫ |∇uN |2dx ≤ Cmh(d−2). Using a suitable form of the Poincaré inequality,

e.g., (7.45) from [10], one has the existence of a constant ω such that

‖uN ‖2
1 ≤ ω‖∇uN ‖2 ≤ ωCmh(d−2),

It follows uN → 0 in H1 for h → 0 and therefore fN = ∫
fN dx almost everywhere.

��

In experiments for large N one sees that fN varies only very close to the data points
and is otherwise almost exactly constant. This suggests the following decomposition:

fN = f +
m∑

k=1

ck gk

where the values gk(x) are very small except in a neighbourhood of xk , respectively.
Let us assume the normalisation

gk(xk) = 1
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18 J. Garcke, M. Hegland

and that the bounds

2λ|〈∇gi ,∇g j 〉| ≤ εh (14)

and

|gi (x j )|2 ≤ εh (15)

hold for some εh = O(h2(d−2)). The existence of such gi will be shown shortly and
follows from the localisation of the variations of fN close to the data points. The exact
size of εh is of less importance as long as it is o(R( fN )). Under this assumption one
then gets for the penalised squared residual

R( fN ) = 1

m

m∑

i=1

(
f + ci − yi

)2 + λ

m∑

i=1

c2
i ‖∇gi‖2 + O(εh).

An approximation to fN can then be obtained by minimising the approximate penalised
squared residual to find functions gi and coefficients ci . Through the approximation
the functions gi are “decoupled” in R.

Working in the weak formulation one observes that the reproducing kernels kxi

minimise the functional

φ(u) = 1

2
‖∇u‖2 − u(xi )

and that

gi = kxi

‖∇kxi
‖2

minimises 1
2‖∇u‖2 under the constraint u(xi ) = 1. Using results from the previous

section one can show that furthermore the values

gi (x j ) = 〈∇gi ,∇kx j
〉 = ‖∇kx j

‖2〈∇gi ,∇g j 〉 = 〈∇kxi
,∇kx j

〉/‖∇kxi
‖2

are very small and fulfil conditions (14) and (15). It follows thus that this choice of
gi leads to good candidates for fN and it remains to determine the coefficients ci and
f . Inserting these particular gi one then gets for the approximate penalised squared
residuals

R( fN ) = 1

m

m∑

i=1

(
f + ci − yi

)2 + λ

m∑

i=1

c2
i

‖∇kxi
‖2 + O(εh).
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Fitting multidimensional data 19

Setting the gradient with respect to ci to zero gives the formula

ci = yi − f

1 + mλ/‖∇kxi
‖2 ,

while setting the gradient with respect to f to zero gives

f = 1

m

m∑

i=1

(yi − ci ).

One now substitutes ci using the formula given above and solves for f to get (after
some algebraic manipulations):

f =
∑m

i=1 yi/(‖∇kxi
‖2 + mλ)

∑m
i=1 1/(‖∇kxi

‖2 + mλ)
.

When N → ∞ then all the ‖∇kxi
‖2 go to the same constant K which goes to infinity

and it follows that

f → y = 1

m

m∑

i=1

yi .

Furthermore ci → yi − y and one gets the approximation

fN ≈ y +
m∑

i=1

(yi − y)
kxi

‖kxi
‖2

and consequently one gets the asymptotic behaviour “between the points” as

fN → y.

We are now going to show that the estimator fN is bounded everywhere. First we
give the following lemma, which is a variant of the Aubin–Nitsche-Lemma.

Lemma 3 For fN as above it holds for d ≥ 4

∥
∥
∥
∥ fN −

∫
fN

∥
∥
∥
∥ ≤ Ch‖∇ fN ‖,

where C only depends on �, i.e., the dimension.

Proof Let uN := fN − ∫
fN . We define the function space

Ĥ1 :=
{

f ∈ H1 |
∫

�

f (x) = 0

}
.
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20 J. Garcke, M. Hegland

For g ∈ Ĥ1 let ϕg ∈ Ĥ1 be

〈∇ϕg,∇v〉 = 〈g, v〉, v ∈ Ĥ1.

It holds uN ∈ Ĥ1, therefore 〈∇ϕg,∇uN 〉 = 〈g, uN 〉.
Since fN fulfills the Galerkin equations and by definition of uN

〈∇uN ,∇v〉 = 〈∇ fN ,∇v〉 = 1

λm

m∑

i=1

(
yi −

(
uN (xi ) +

∫
fN

))
v(xi ), ∀v ∈ VN ,

and so

〈uN , g〉 = 〈∇uN ,∇(ϕh − v)〉 + 1

λm

m∑

i=1

(
yi − uN (xi ) −

∫
fN

)
v(xi ),

∀v ∈ VN ∩ Ĥ1.

It follows that

‖uN ‖ = sup
g∈Ĥ1

〈uN , g〉
‖g‖

≤ ‖∇uN ‖ sup
g∈Ĥ1

⎛

⎝
infv

{
‖∇(ϕg − v)‖ | v ∈ VN ∩ Ĥ1, v(xi ) = 0

}

‖g‖

⎞

⎠ .

Now let v0 ∈ VN ∩ Ĥ1 be the best approximant of ϕg . We now define v1 (for fine
enough meshes) such that

v1(x) = 0, x in cells outside the neighbourhood of all xi
v1(x) = −v0(x), x in cells containing an xi

and set v := v0 + v1, it follows directly that v(xi ) = 0 ∀i . In this case

‖∇(ϕg − v)‖ ≤ ‖∇(ϕg − v0)‖ + ‖∇v1‖.

Note that ϕg ∈ H2 due to the regularity of the Neuman boundary value problem on
the cube [3,10]. Standard approximation theory (e.g., section 4.4. in [3]) now gives

‖∇(ϕg − v0)‖ ≤ Ch|ϕg|H2 ≤ Ch‖g‖.

For the second expression it follows after (12) in the proof of Proposition 4 that

‖∇v1‖ ≤ Chd/2−1‖g‖.
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Fitting multidimensional data 21

Putting these together gives for d ≥ 4

‖∇(ϕg − v)‖ ≤ Ch‖g‖

and therefore

‖uN ‖ ≤ Ch‖∇uN ‖

which is the desired result. ��
Lemma 4 For fN as above it holds for d ≥ 4 that ‖ fN ‖∞ is uniformly bounded in h.

Proof

∥
∥ fN − ∫

fN
∥
∥∞ ≤ Ch−d/2

∥
∥ fN − ∫

fN
∥
∥ inverse inequality, e.g Chapter 4 in [3]

≤ Ch−d/2+1‖∇ fN ‖ Lemma 3
≤ Ch−d/2+1hd/2−1 ≤ C Proposition 4

The bound follows since

| fN (x)| ≤ | fN (xi )| +
∣
∣
∣
∣ fN (xi ) −

∫
fN (x)

∣
∣
∣
∣+

∣
∣
∣
∣ fN (x) −

∫
fN (x)

∣
∣
∣
∣

≤ Cmλhd/2−1 + 2C

≤ Cmλ + 2C ≤ C ′

��
4 Projections and the combination technique

In the previous section we have seen that due to the discrete data term the usual con-
vergence behaviour for the numerical solution of partial differential equations does
not exist in the case of regression. Therefore the assumed error expansion (5) for the
approximation property of the combination technique [11] does not hold.

The combination technique was studied as a sum of projections into partial spaces
[14]. We reproduce in the following some of the work presented there.

It is well known that finite element solutions of V-elliptic problems can be viewed
as Ritz projections of the exact solution into the finite element space satisfying the
following Galerkin equations:

〈 fN , g〉rls = 〈 f∗, g〉rls, g ∈ VN .

The projections are orthogonal with respect to the energy norm‖·‖rls. Let Pl : V → Vl

denote the orthogonal projection with respect to the norm ‖ · ‖rls and let P S
n be the

orthogonal projection into the sparse grid space V S
n = ∑

|l|≤n Vl . If the projections Pl

form a commutative semigroup, i.e., if for all l, l ′ there exists a l ′′ such that Pl Pl ′ = Pl ′′
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then there exist cl such that

P S
n =

∑

|l|≤n

cl Pl .

We have seen in the previous section why the combination technique may not provide
good approximations as the quadrature errors do not cancel in the same way as the
approximation errors. The aspect considered here is that the combination technique
may break down if there are angles between spaces which are sufficiently smaller than
π/2 and for which the commutator may not be small.

In numerical experiments we estimated the angle of two spaces under the scalar
product 〈·, ·〉rls from the regularised regression setting [14]. In a first example, the
data points are chosen to be the four corners of the square � = [0, 1]2. In this case,
the angle turns out to be between 89.6 and 90 degrees. Lower angles corresponded
to higher values of λ. In the case of λ = 0 one has the interpolation problem at the
corners. These interpolation operators, however, do commute. In this case the penalty
term is actually the only source of non-orthogonality. A very similar picture evolves if
one chooses the four data points from {0.25, 0.75}2. The angle is now between 89 and
90 degrees where the higher angles are now obtained for larger λ and so the regulariser
improves the orthogonality.

A very different picture emerges for the case of four randomly chosen points. In
our experiments we now observe angles between 45 degrees and 90 degrees and the
larger angles are obtained for the case of large λ. Again, the regulariser makes the
problem more orthogonal. We would thus expect that for a general fitting problem a
choice of larger α would lead to higher accuracy (in regard to the sparse grid solution)
of the combination technique. In all cases mentioned above the angles decrease when
smaller mesh sizes h are considered. This gives another explanation for the divergence
behaviour of the combination technique observed in Fig. 4.

4.1 Optimised combination technique

In [13] a modification of the combination technique is introduced where the com-
bination coefficients not only depend on the spaces as before, which gives a linear
approximation method, but instead depend on the function to be reconstructed as
well, resulting in a non-linear approximation approach. In [14] this ansatz is presented
in more detail and the name “opticom” for this optimised combination technique was
suggested there.

Assume in the following that the generating subspaces of the sparse grid are suit-
ably numbered from 1 to s. To compute the optimal combination coefficients ci one
minimises the functional

θ(c1, . . . , cs) =
∣
∣
∣
∣
∣
P f −

s∑

i=1

ci Pi f

∣
∣
∣
∣
∣

2

rls

,
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where one uses the scalar product corresponding to the variational problem 〈·, ·〉rls,
defined on V to generate a norm. By simple expansion and by differentiating with
respect to the combination coefficients ci and setting each of these derivatives to zero
we see that minimising this norm corresponds to finding ci which have to satisfy

⎡

⎢
⎢
⎢
⎣

‖P1 f ‖2
rls · · · 〈P1 f, Ps f 〉rls

〈P2 f, P1 f 〉rls · · · 〈P2 f, Ps f 〉rls
...

. . .
...

〈Ps f, P1 f 〉rls · · · ‖Ps f ‖2
rls

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

c1
c2
...

cm

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

‖P1 f ‖2
rls

‖P2 f ‖2
rls

...

‖Pm f ‖2
rls

⎤

⎥
⎥
⎥
⎦

. (16)

The solution of this small system creates little overhead. However, in general an
increase in computational complexity is due to the need for the determination of the
scalar products 〈Pi f, Pj f 〉rls. Their computation is often difficult as it requires an
embedding into a bigger discrete space which contains both Vi and Vj . Note that in the
case of regularised regression the computation of the scalar product can be achieved
efficiently [6].

Since Pl f is a Galerkin-solution in Vl it follows that

‖Pl f ‖2
rls = 1

m

m∑

i=1

(Pl f (xi ), Pl f (xi )) + λ〈∇ fl ,∇ Pl f 〉2 = 1

m

m∑

i=1

Pl f (xi )yi .

We therefore can interpret the optimised combination technique (i.e., the sum of pro-
jections into the partial spaces with the opticom coefficients) as a Galerkin formulation
which uses the partial solution Pl f̂ as ansatz functions. This way one can formulate
an optimised combination technique for problems where the projection arguments
do not hold and are replaced by Galerkin conditions. This happens for example for
eigenvalue problems [7].

Using these optimal coefficients ci the combination formula is now

f c
n (x) :=

d−1∑

q=0

∑

|l|1=n−q

cl fl(x). (17)

In Fig. 6 we give results for the optimised combination technique on the data used
in Fig. 4 for the standard combination technique. The rise of the residual observed
before is not present anymore since the optimised combination technique repairs the
instabilities. The graph for the smallest regularisation parameter suggests potential
overfitting, the error in regard to the given data always gets smaller with finer discre-
tiations. Using larger regularisation parameters the influence of the smoothing term
prevents results too close to the training data.

An empirical comparison of the optimised combination technique with several
regression methods on typical benchmark data shows an excellent performance of the
procedure [6].
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Fig. 6 Value of the least squares error, the regularisation term and the residual (1) for 1000 data using
the optimised combination technique. Top left with λ = 10−2, top right with λ = 10−3. Bottom left with
λ = 10−4, bottom right with λ = 10−6

5 Conclusions

Here we consider a generalisation of the usual kernel methods used in machine learn-
ing as the “kernels” of the technique considered here have singularities on the diagonal.
However, only finite dimensional approximations are considered. The overfitting effect
which occurs for fine grid sizes is investigated. We found that the method (using the
norm of the gradient as a penalty) did asymptotically (in grid size) overfit the data but
did this very locally only close to the data points. It appeared that the information in
the data was concentrated on the data points and only the null space of the penalty
operator (in this case constants) was fitted for fine grids. Except for the overfitting in
the data points one thus has the same effect as when choosing very large regularisa-
tion parameters so that the overfitting in the data points does arise together with an
“underfitting” in other points away from the data. Alternatively, one could say that the
regularisation technique acts like a parametric fit away from the data points for small
grid sizes and overall for large regularisation parameters. A different view is regarding
the discretisation as a regularisation [15], so to avoid over-fitting the grid size needs
to be limited.

The effect of the data samples is akin to a quadrature method if there are enough
data points per element. In practise, it was seen that one required at least one data
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point per element to get reasonable performance. In order to understand the fitting
behaviour we analysed the performance both on the data points and in terms of the
Sobolev norm. The results do not directly carry over to results about errors in the
sup norm which is often of interest for applications. However, the advice to have at
least one data point per element is equally good advice for practical computations. In
addition, the insight that the classical combination technique amplifies the sampling
errors and thus needs to be replaced by an optimal procedure is also relevant to the
case of the sup norm.

The method considered here is in principle a “kernel method” [16] when combined
with a finite dimensional space. However, the arising kernel matrix does have diagonal
elements which are very large for small grids and, in the limit is a Green’s function
with a singularity along the diagonal. It is well known in the machine learning litera-
ture that kernels with large diagonal elements lead to overfitting, however, the case of
families of kernels which approximate a singular kernel is new.
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