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Summary

Diffusion tensor magnetic resonance imaging, is a image acquisition method, that provides matrix-
valued data, so-called matrix fields. Hence image processing tools for the filtering and analysis of these
data types are in demand. In this article, we propose a generic framework that allows us to find the
matrix-valued counterparts of the Perona–Malik PDEs with various diffusivity functions. To this end we
extend the notion of derivatives and associated differential operators to matrix fields of symmetric matri-
ces by adopting an operator-algebraic point of view. In order to solve these novel matrix-valued PDEs
successfully we develop truly matrix-valued analogs to numerical solution schemes of the scalar setting.
Numerical experiments performed on both synthetic and real world data substantiate the effectiveness
of our novel matrix-valued Perona–Malik diffusion filters.

AMS Subject Classifications: Primary 35K55, 15A57; Secondary 35Q80.

Keywords: diffusion tensor magnetic resonance imaging; DT-MRI; Jordan product; Perona–Malik dif-
fusion; matrix fields.

1. Introduction

Matrix-fields are used, for instance, in civil engineering to describe anisotropic
behaviour of physical quantities. Stress and diffusion tensors are prominent exam-
ples. The output of diffusion tensor magnetic resonance imaging (DT-MRI) [22]
are symmetric 3× 3-matrix fields as well. In medical sciences this image acquisition
technique has become an indispensable diagnostic tool in recent years.

There is an increasing demand to develop image processing tools for the filtering
and analysis of such matrix-valued data.
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In modern image processing d-dimensional scalar images f : � ⊂ R
d → R

have been denoised, segmented and/or enhanced successfully with various filters
described by nonlinear parabolic PDEs. In this article we focus on one of the most
prominent examples of PDEs used in image processing, the Perona–Malik equation
[21]. The corresponding initial boundary value problem is given by

∂tu− div (gλ(|∇u|2) · ∇u) = 0 in I ×�,

∂nu = 0 in I × ∂�, (1)

u(x, 0) = f (x) in �,

where � ⊂ R
d is the image domain and I = [0, T [ a potentially unbounded time

interval.
The diffusivity function gλ with parameter λ > 0 is positive, decreasing on the

interval [0,+∞[ with gλ(0) = 1 and limx→+∞ gλ(x) = 0. Practically relevant are
diffusivities such as the Perona–Malik diffusivity [20]:

gλ(s
2) = 1

1+ ( s
λ
)2

(2)

or the family of Weickert diffusivities [29]

gλ,p(s2) = 1− exp

(
− cp

( s
λ
)2p

)
, (3)

where cp is a normalising constant such that

d

ds
(s · gλ(s

2)) |s=λ = 1− 1+ 2pcp

exp(cp)
= 0.

For p = 4 one obtains c4 = 3.31488. Noticing that cp depends logarithmiclly on
p > 0 it is not hard to see that in the limit we get a 0–1-diffusivity

gλ,∞(s) := lim
p→+∞ gλ,p(s) =

{
1 for 0 ≤ s ≤ λ

0 for λ < s .
(4)

In effect the diffusivities (2,3) entail a forward diffusion in the image at locations
where |∇u| < λ and a backward diffusion where |∇u| > λ. This accounts for
the well-known edge-preserving or even edge-enhancing properties of this nonuni-
form process, since edges are locii of high grey value variations. Hence the visually
impressive denoising results when these filter type is applied do not come as a sur-
prise. However, backward diffusion is an ill-posed process and hence some unwanted
effects appear such as the creation of artificial edges known as staircaising. Theory
has not yet progressed so far to be able to predict where these discontinuities appear
during Perona–Malik diffusion in dimension d ≥ 2. Investigations even in the case
of the continuous Perona–Malik diffusion in one (spatial) dimension proved to be
extremely difficult [9], [18], [28], [31], [16], [23], [12], [2], [19], [4], [34]. Nevertheless,
in practice Perona–Malik-type diffusion provides a successful method to smooth
noisy images while preserving important contour information [17], [31], [25]. Exten-
sions of nonlinear PDEs from scalar grey value to vectorial colour images have been
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proposed in [14], [27], [10], [30]. There, in essence, the summation over the struc-
ture tensors stemming from the vector components ensure an appropriate channel
coupling.

The goal of this article is to extend the important Perona–Malik diffusion process
to matrix-valued images or matrix fields, for short. Here a matrix field is considered
as a mapping

F : � ⊂ R
d −→ Mn(R),

from a d-dimensional image domain into the set of n× n-matrices with real entries,
F(x) = (fp,q(x))p,q=1,... ,n. Of particular importance for us is the subset of sym-
metric matrices Symn(R). The set of positive (semi-)definite matrices, denoted by
Sym++n (R) (Sym+n (R), resp.), consists of all symmetric matrices A with

〈v, Av〉 := v
Av > 0 (≥ 0, resp.,) for v ∈ R
n \ {0} .

This set is interesting for applications since DT-MRI acquisition technique pro-
duces data with this property. Note that at each point the matrix F(x) of a field of
symmetric matrices can be diagonalised, respectively, decomposed into its spectral
components yielding

F(x) = V (x)
D(x)V (x) =
n∑

i=1

λi(x) vi(x)v
i (x).

Here x �→ V (x) ∈ O(n) is a matrix field of orthogonal matrices V (x) with column
vectors vi(x), i = 1, . . . , n, while x �→ D(x) is a matrix field of diagonal matrices
with entries λi(x), i = 1, . . . , n. In the sequel we will denote n×n – diagonal matrices
with entries λ1, . . . , λn ∈ R from left to right simply by diag(λi), and O(n) stands
for the matrix group of orthogonal n× n-matrices.

Nonlinear partial differential equations have been employed to process matrix
fields in [13] and more recently in [24]. Some extensions of scalar PDEs to matrices
proposed in these works rely on generalisations of the so-called structure tensor.
The considerations in [32], [6] spearheaded these generalisations of structure-tensor
concepts.

Other approaches to positive definite matrix field filtering with a differential geo-
metric background have been suggested in [26], [11]. In their setting the set of positive
definite matrices is endowed with a structure of a manifold and the methodology is
geared towards application to DT-MRI data. Comprehensive survey articles on the
analysis of matrix fields using a wide range of different techniques can be found in
[33] and the literature cited therein.

The path we take in this article is a different one. We will develop a general generic
framework for deriving matrix-valued counterparts for scalar PDEs by adopting an
operator-algebraic point of view. This means that we are not just deriving systems of
PDEs which can be written in matrix form. Instead we will exploit the operator-alge-
braic properties of (symmetric) matrices to establish truly matrix-valued PDEs. We
consider the symmetric matrices as a natural generalisation of real numbers with a
rich algebraic structure. For this work we concentrate on the matrix-valued analogs
of the Perona–Malik PDE for a proof-of-concept. It is also worth mentioning that
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in contrast to [13], [24], [5] our framework does not rely on a notion of a structure
tensor. Nevertheless, the proposed concept ensures an appropriate and desirable
coupling of channels. The methodology to be developed will enable us to transfer
numerical schemes from the scalar to the matrix-valued setting as well.

The article is organised as follows: Sect. 2 provides the basic definitions necessary
for our framework, such as functions of a matrix, partial derivatives, and general-
ised gradient of a matrix field. In Sect. 3, we turn first to the simple linear diffusion
for matrix fields for the sake of later comparison. The Perona–Malik PDE requires
the definition of a symmetrised multiplication for symmetric matrices. We will focus
on two possibilities and study their influence on the evolution process later on.
Within this framework we then formulate the matrix-valued counterparts of the
Perona–Malik diffusion equation. By considering the already rather complicated
one-dimensional case, first properties of the matrix-valued Perona–Malik diffusion
processes are inferred.

The transition from scalar numerical solution schemes to matrix-valued algo-
rithms for the solutions of the new diffusion equations is made in Sect. 4. Exemplary
applications of the proposed framework to synthetic data as well as real DT-MRI
data are presented in Sect. 5. We conclude with a summary in Sect. 6. Some results
related to this work have been presented at a conference [8]. However, the investiga-
tions presented here encompass a more detailed analysis of the suitable symmetric
matrix products, the enhancement properties of nonlinear diffusion processes, and
a significantly extended experimental validation.

2. Generic framework for matrix-valued PDEs

In this section, we provide the key definitions for the formulation of matrix-valued
PDEs. The basic idea is that to a certain extend symmetric matrices can be regarded
as a generalisation of real numbers. Hence we transfer notions from scalar calculus
to the the matrix-valued setting: as instigated in [7] we define functions of matrices
and especially derivatives and gradients of such functions.

We juxtapose the corresponding basic definitions in Table 1, and comment on
them in the remarks below. We assume the matrix field U(x) to be diagonisable with
U = (uij )ij = V 
diag(λ1, . . . , λn)V , where V ∈ O(n) and λ1, . . . , λn ∈ R.

Comments:

(1) The proposed notions for a calculus on symmetric matrix fields are extensions
of the calculus of scalar multivariate functions. As such it must be possible to
regain the scalar calculus from the newly introduced matrix-valued framework
by specification. There are two ways to view scalar calculus as a special case
of the matrix calculus: clearly, setting n = 1 turns the matrix field into a scalar
function. However, one can also embed the set of real numbers R into the set
of symmetric matrices Symn(R) by the identification R 
 r ←→ r · In with the
n × n identity matrix In. Hence, asides from having a certain simplicity, it is
mandatory that the proposed extensions collapse to the scalar calculus when
making the transition from scalar functions to matrix fields in one way or the
other.
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Table 1. Extensions of elements of scalar valued calculus (middle) to the matrix-valued setting (right)

Setting Scalar valued Matrix-valued

Function h :
{

R −→ R

x �→ h(x)
h :

{
Symn(R) −→ Symn(R)

U �→ V
diag(h(λ1), . . . , h(λn))V

Partial ∂ωu, ∂ωU := (∂ωuij

)
ij

,

derivatives ω ∈ {t, x1, . . . , xd } ω ∈ {t, x1, . . . , xd }

Higher ∂k
ωu, ∂

k
ωU :=

(
∂k
ωuij

)
ij

,

derivatives ω ∈ {t, x1, . . . , xd } ω ∈ {t, x1, . . . , xd }

Laplacian �u :=∑d
i=1 ∂2

xi
u �U :=∑d

i=1 ∂
2
xi

U

Hessian H u(x) :=
(
∂xi

∂xj
u(x)

)
i,j=1,... ,d

, H U(x) := (∂xi
∂xj

U(x))i,j=1,... ,d ,

H u(x) ∈ Symd (R) H U(x) ∈ Symd (Symn(R))

Gradient ∇u(x) := (∂x1 u(x), . . . , ∂xd
u(x))
, ∇U(x) := (∂x1 U(x), . . . , ∂xd

U(x))
,

∇u(x) ∈ R
d ∇U(x) ∈ (Symn(R))d

Divergence div (a(x))
 :=∑d
i=1 ∂xi

ai (x), div (A(x))
 :=∑d
i=1 ∂xi

Ai(x),

a(x) := (a1(x), . . . , ad (x)) A(x) := (A1(x), . . . , Ad(x))

Length |w|p := p
√|w1|p + . . .+ |wd |p , |W |p := p

√|W1|p + . . .+ |Wd |p ,

|w|p ∈ [0,+∞[ |W |p ∈ Sym+n (R)

Product a · b A •P B := A
1
2 BA

1
2 ,

A •J B := 1
2 (AB + BA)

(2) Functions of matrices. The definition of a function h on Symn(R) is standard
[15]. As an important example, we emphasise that |U | denotes the matrix-val-
ued equivalent of the absolute value of a real number, |U | = V 
diag(|λ1|, . . . , |λn|)
V ∈ Sym+n (R), not to be confused with the determinant det(U) of U . Note
that |U | =

√
U2 is in complete accordance with the scalar case.

(3) Partial derivatives. The componentwise definition of the partial derivative for
matrix fields is a natural extension of the scalar case:

∂ωU(ω0) = lim
h→0

1
h

(U(ω0 + h)− U(ω0))

=
(

lim
h→0

uij (ω0 + h)− uij (ω0)

h

)
i,j

= (∂ωuij (ω0)
)
i,j

.

In this way higher-order partial differential operators, such as the Laplacian,
or other more sophisticated operators, find their natural counterparts in the
matrix-valued framework. It is worth mentioning that for the operators ∂ω a
product rule holds:

∂ω(A(ω0) · B(ω0)) = (∂ωA(ω0)) · B(ω0))+ A(ω0) · (∂ωB(ω0)).
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(4) Generalised gradient of a matrix field. The definition of a generalised gradient is
somewhat different from the one that might be expected when viewing a matrix
as a tensor (of second order). The rules of differential geometry would tell us
that derivatives are tensors of third order. Instead, we adopt a more operator-
algebraic point of view: The matrices are self-adjoint operators that can be
added, multiplied with a scalar, and concatenated. Thus, they form an algebra,
and we aim at consequently replacing the field R by the algebra Symn(R) in the
scalar, that is, R-based formulation of PDEs used in image processing. Hence,
the generalised gradient ∇U(x) at a voxel x is regarded as an element of the
module (Symn(R))d over Symn(R) in close analogy to the scalar setting where
∇u(x) ∈ R

d .
In the sequel we will call a mapping from Rd into (Symn(R))d a module field
rather than a vector field.

(5) Generalised Hessian. The generalised Hessian of a field of symmetric matrices
is a nd × nd block matrix with blocks of size n × n. If the entries of each of
the matrices of the matrix field are twice continuously differentiable then the
Hessian is a symmetric matrix, just as its smaller counterpart derived from a
multivariate scalar function.

(6) Generalised divergence of the module field. The generalisation of the divergence
operator div acting on a vector field to an operator div acting on a module
field A is straightforward, and is in accordance with the formal relation

�U = div∇U = ∇.∇U

known in its scalar form from standard vector analysis.
(7) Generalised length in (Symn(R))d . Considering the formal definition in the table

the length of a element of a module field A is close at hand. Moreover, it results
in a positive semidefinite matrix as the direct counterpart of a nonnegative
real number as the length of a vector in R

d . However, one cannot assume that
this generalised length fulfils a triangle inequality with respect to the Loewner
ordering.

(8) Symmetrised product of symmetric matrices. The product of two symmetric
matrices A, B ∈ Symn(R) is not symmetric unless the matrices commute.
Among the numerous options to define a symmetrised matrix product we focus
on two specific ones: The first is inspired from pre-conditioning of symmetric
linear equation systems.

A •P B = A
1
2 BA

1
2 for A ∈ Sym+n (R), B ∈ Symn(R). (5)

The following short list of properties is easily verified: it is neither associative,
nor commutative, and distributive only in the second argument. However, if
A is non-singular, the so-called signature s = (s+, s−, s0) of B is preserved,
where s+, s−, and s0, stand for the number of positive, negative, and vanish-
ing eigenvalues of B, respectively. This implies in particular that the positive
definiteness of B is preserved. A multiplication rule for the determinant holds,

det(A •P B) = det(A) · det(B).
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(a) (b) (c)

Fig. 1. The cone of all positive semidefinite 2× 2-matrices is displayed in all three pictures. Each matrix
of a set of positive semidefinite-matrices {Ai } (ring of black diamonds) is multiplied by a fixed matrix B

(single black diamond) utilising the Jordan product Ai •J B (line of boxes), the preconditioning product
Ai •P B (line of crosses) and, if applicable, the logarithmic product (line of circles). (a) Left the matrices
Ai, B are positive definite but have one small eigenvalue. The boxes indicate the matrices produced by
the Jordan-product, they lie outside the cone. Hence •J does not preserve positive semidefiniteness. As
expected the preconditioning product (crosses) and the logarithmic product (circles) preserve positive
semidefiniteness. (b) Middle if the two eigenvalues of each matrix Ai, B are positive and comparable in
magnitude (corresponding points are in the vicinity of the center axis of the cone), the three types of
products are very similar to each other. (c) Right The products •J and •P are produce quite different
results if the one of the matrices multiplied is indefinite. Note that the logarithmic product is not defined

in this case

Furthermore, for commuting matrices A, B we have A•P B = A ·B. Note that
the first argument has to be positive semidefinite.
The second choice is well-known from algebra and called Jordan product:

A •J B = 1
2
(AB + BA) for A, B ∈ Symn(R). (6)

This product is commutative and distributive but not associative. It is one
half of the anti-commutator of A and B, but due to its additive structure
no determinant product rule holds. Most important, it does not preserve the
positive semidefinitness of its arguments. Again, for commuting A and B we
have A •J B = A · B.

It should be mentioned that the logarithmic multiplication introduced in [1] and
given by A •L B := exp(log(A)+ log(B)) is defined only for positive definite matri-
ces. However, the matrix-valued Perona–Malik diffusion proposed here requires the
multiplication to be able to cope with at least one factor matrix being indefinite.
Furthermore matrix fields that are not necessarily positive semidefinite should also
be within the reach of our PDE-based filtering. Hence the logarithmic multiplication
is not suitable for our purpose.

For a better comparison of the products we represent symmetric 2 × 2-matrices
by points in R

3 via the mapping [7](
α β

β γ

)
←→ 1√

2
(2β, γ − α, γ + α).
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The set Sym+2 (R) of positive semidefinite matrices then appears as a cone in R
3, the

cone corresponding to the Loewner ordering, see Fig. 1, where a comparison of the
products is displayed: a set of matrices {Ai : i ∈ I } with constant trace is multiplied
by a single matrix utilising the Jordan-, the preconditioning, and, as long as the
matrices are positive definite, the logarithmic product.

3. Diffusion equations for matrix fields

3.1 Matrix-valued linear diffusion

The linear diffusion equation ∂tu =
∑d

i=1 ∂xi
∂xi

u = ∑d
i=1 ∂xixi

u = �u on R
d ×

[0,∞[ is directly extended to the matrix-valued setting:

∂tU =
d∑

i=1

∂xi
∂xi

U =
d∑

i=1

∂xixi
U = �U (7)

with initial condition U(x, 0) = F(x). The diffusion process described by this equa-
tion acts on each of the components of the matrix independently. It is not imme-
diately clear that positive (semi-)definiteness of the initial matrix field F is indeed
bequeathed to U for all times. Let us denote the i-th real eigenvalue of U , resp., F ,
as λi , resp., λF

i , numbered according to decreasing value.

Proposition: The following inequality holds for all (x, t) ∈ R
d × [0,∞[:

sup
x

λF
1 (x) ≥ λi(x, t) ≥ inf

x
λF

n (x).

Especially the positive (semi)definiteness of the initial field F is preserved in U .

Proof: We infer from the linearity of the differential operators ∂t and � that for
any fixed unit vector w ∈ R

n the scalar diffusion equation

∂t 〈w, Uw〉 = �〈w, Uw〉

holds, with initial condition 〈w, U(x, 0)w〉 = 〈w, F(x)w〉. Hence, the Rayleigh coef-
ficient 〈w, U(x, t)w〉 is a scalar function obeying a max-min-principle leading to the
estimates

sup
x

λF
1 (x) ≥ sup

x
〈w, F(x)w〉 ≥ 〈w, U(x, t)w〉 ≥ inf

x
〈w, F(x)w〉 ≥ inf

x
λF

n (x)

valid for all (x, t) ∈ R× [0,∞[ and unit vectors w. Choosing w as the eigenvector
corresponding to the eigenvalue λi(x, t) we can ensure the equality

〈w, U(x, t)w〉 = λi(x, t)

which proves the claim. ��
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3.2 Matrix-valued Perona–Malik diffusion equations

The scalar Perona–Malik diffusion Eq. (1) requires the multiplication of the compo-
nents of a vector (namely∇u) with a scalar (namely g(|∇u|2)). In the matrix-valued

setting the components of ∇U , that is, ∂xi
U , i = 1, . . . , d, its generalised length

|∇U |2 =: |∇U | and hence g(|∇U |2) are symmetric matrices. We opted for two pos-
sibilities: The Jordan product •J and the preconditioning product •P as defined in
Eqs. (6) and (5), respectively.

With these definitions we are now in the position to state the matrix-valued coun-
terpart of the Perona–Malik PDE Eq. (1). It is given by

∂tU = div (g(|∇U |2) • ∇U) (8)

which becomes manifest in the following two versions:

∂tU =
d∑

i=1

∂xi

(√
g((∇U)2) · (∂xi

U) ·
√

g(|∇U |2)
)

, (9)

∂tU =
d∑

i=1

∂xi
(g((∇U)2) · (∂xi

U)+ (∂xi
U) · g(|∇U |2)), (10)

depending on the usage of the preconditioning Eq. (9) or the Jordan Eq. (10)
product.

3.3 Enhancement properties/diffusion properties

In this section we will show that the matrix-valued Perona–Malik diffusion pro-
cess can be expected to have the same properties as their scalar counterparts. This
is an important confirmation of the validity of the proposed generic approach to
matrix-valued PDEs. We restrict ourselves for the moment to the case of one spatial
dimension (d = 1): U : R −→ Symn(R), that is, to matrix-valued signals since
then simplifications occur. Only one spatial derivative appears and the expressions
containing the matrix ∂xU commute. Hence, in those expressions the symmetric
multiplication “•” collapses to “·”, facilitating the analysis. The equation for the
matrix-valued Perona–Malik diffusion in one space dimension simplifies to

∂tU = ∂x(g((∂xU)2) · ∂xU).

However, even in this simplified setting matrix-valued data exhibit directional
(through eigenvectors) as well as shape information (through eigenvalues) which
allows for the appearance of new phenomena.

The partial derivative ∂x of a signal U of symmetric matrices results again in
symmetric matrices, ∂xU(x) ∈ Symn(R). Hence

∂xU(x) = Ṽ 
(x)diag(λ̃i(x))Ṽ (x)
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with Ṽ (x) ∈ O(n) for all x ∈ �. We observe that g((∂xU)2) is also diagonalised by
Ṽ , and it follows that

g((∂xU)2) · ∂xU = Ṽ 
diag(g(λ̃i
2
) · λ̃i ) Ṽ .

In allusion to the analysis of the Perona–Malik equation in [29] we introduce a flux
function 	 by

	(s) := s · g(s2)

which gives d 	
d s

(s) = 	′(s) = 2s2g′(s2)+ g(s2) at least for s > 0. The product rule
for matrix-valued functions then yields, if we suppress the explicit dependence of Ṽ

and λ̃i on x notationally:

∂x(g((∂xU)2) · ∂xU)

= ∂xṼ diag(g(λ̃i
2
) · λ̃i ) Ṽ 
 + Ṽ diag(g(λ̃i

2
) · λ̃i ) ∂xṼ


 + Ṽ diag(∂x [g(λ̃i
2
) · λ̃i ]) Ṽ 


= (∂Ṽ 
, Ṽ 
, Ṽ 
)

⎛
⎜⎝diag(g(λ̃i

2
) λ̃i) 0 0

0 diag(g(λ̃i
2
) λ̃i) 0

0 0 diag(	′(λ̃i) ∂xλ̃i)

⎞
⎟⎠

︸ ︷︷ ︸
=:M

⎛
⎝ Ṽ

∂Ṽ

Ṽ

⎞
⎠

= (∂Ṽ 
, Ṽ 
, Ṽ 
)diag(g(λ̃i
2
); g(λ̃i

2
);	′(λ̃i)) diag(λ̃i; λ̃i; ∂xλ̃i)

⎛
⎝ Ṽ

∂Ṽ

Ṽ

⎞
⎠ , (11)

where the 3× 3-block-matrix M has been decomposed into a product of the block-
matrices

diag(h(λ̃i
2
);h(λ̃i

2
);	′(λ̃i)) :=

⎛
⎜⎝diag(h(λ̃i

2
)) 0 0

0 diag(h(λ̃i
2
)) 0

0 0 diag(	′(λ̃i))

⎞
⎟⎠ ,

diag(λ̃i; λ̃i; ∂xλ̃i) :=
⎛
⎝diag(λ̃i) 0 0

0 diag(λ̃i) 0
0 0 diag(∂xλ̃i)

⎞
⎠ .

Hence, the matrix-valued version of the Perona–Malik diffusion equation takes
on the form

∂tU = (∂xṼ

, Ṽ 
, Ṽ 
)diag(g(λ̃i

2
); g(λ̃i

2
);	′(λ̃i))diag(λ̃i; λ̃i; ∂xλ̃i)

⎛
⎝ Ṽ

∂xṼ

Ṽ

⎞
⎠ , (12)

while the matrix-valued linear diffusion equation can be cast into the form

∂tU = (∂xṼ

, Ṽ 
, Ṽ 
)diag(λ̃i; λ̃i; ∂xλ̃i)

⎛
⎝ Ṽ

∂xṼ

Ṽ

⎞
⎠ . (13)
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Juxtaposing this pairing with their scalar versions rewritten in this fashion, the
Perona–Malik equation turns out to be

∂tu = 	′(∂xu) · ∂xxu

= (∂x1, 1, 1) diag(g((∂xu)2), g((∂xu)2), 	′(∂xu))diag (∂xu, ∂xu, ∂x∂xu)

⎛
⎝1
∂x1
1

⎞
⎠ ,

whereas the standard scalar linear diffusion equation in 1D reads

∂tu = ∂xxu = (∂x1, 1, 1) diag (∂xu, ∂xu, ∂x∂xu)

⎛
⎝ 1
∂x1
1

⎞
⎠ .

What distinguishes Perona–Malik diffusion from the linear one is the multipli-
cative factor diag

(
g((∂xu)2), g((∂xu)2), 	′(∂xu)

)
in the scalar case as opposed to

diag(g(λ̃i
2
); g(λ̃i

2
);	′(λ̃i)) in the matrix-valued case.

This comparison brings to light the complete analogy between the scalar setting
and the matrix-valued framework as outlined above, down to the correspondence

(∂xṼ

, Ṽ 
, Ṽ 
)(Ṽ , ∂xṼ , Ṽ )
 = ∂x(Ṽ


Ṽ )+ Ṽ 
Ṽ = 0+ I

and its scalar counterpart (∂x1, 1, 1) (1, ∂x1, 1) = 0+ 1, with±1 being the only two
orthogonal 1 × 1 matrices. In the scalar setting the sign of 	′(∂xu) decides on the
direction of the diffusion: a negative sign if |∂xu| > λ results in a backward diffu-
sion whereas small gradients |∂xu| < λ entail a positive sign and hence a forward
diffusion. The role of 	′(∂xu) in the scalar setting is played in the matrix case by the
n×n-matrix diag(	′(λ̃i)) and we infer that forward diffusion occurs in those eigen-
directions where the corresponding eigenvalue λi satisfies λi < λ, and backward
diffusion in those eigen-directions where λj > λ. It is remarkable that the difference
between linear and Perona–Malik diffusion for both data types is made by multipli-
cative factors which correspond to each other perfectly: diag

(
g((∂xu)2), g((∂xu)2),

	′(∂xu)
)

in the scalar case, and diag(g(λ̃i
2
); g(λ̃i

2
);	′(λ̃i)) in the matrix-valued

setting.

Remarks:

(1) Considering the PDEs Eqs. (12) and (13) for matrix-valued Perona–Malik
and linear diffusion suggests that they inherit the smoothing and enhancing
properties of their scalar counterparts. So we may expect from Perona–Malik-
type matrix-valued diffusion good denoising qualities combined with
edge-preserving features.

(2) However, the matrix-valued data allow for a new phenomenon: Unlike in the scalar
setting, a matrix carries directional information conveyed through the eigenvec-
tors as well as shape information mediated via eigenvalues. The evolution process
described in Eq. (11) displays a coupling between shape and directional infor-
mation by virtue of the simultaneous occurrence of terms containing ∂xṼ (x) and
∂xλ̃(x). Clearly there is no equivalent for this in the scalar setting.
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4. Matrix-valued numerical solution schemes

In the previous sections the guideline to infer matrix-valued PDEs from scalar ones
was, roughly speaking, analogy by making a transition from the real field R to the
vector space Symn(R) endowed with some “symmetric” product “•”. We follow
this very guideline also in the issue of numerical schemes for matrix-valued PDEs.
For the sake of brevity we restrict ourselves to the numerical scheme for two space
dimensions (d = 2). The necessary extensions to dimensions d ≥ 3 are immediate.
A possible scheme for the scalar Perona–Malik diffusion can be cast into the form

du(i, j)

dt

= 1
h1

(
g

(
i + 1

2
, j

)
· u(i + 1, j)− u(i, j)

h1
− g

(
i − 1

2
, j

)
· u(i, j)− u(i − 1, j)

h1

)

+ 1
h2

(
g

(
i, j + 1

2

)
· u(i, j + 1)− u(i, j)

h2
− g

(
i, j − 1

2

)
· u(i, j)− u(i, j − 1)

h2

)
,

where g(i, j) and u(i, j) are samples of the diffusivity g and of u at pixel (i h1, j h2)

and, for example, g(i ± 1
2 , j) := g(i±1,j)+g(i,j)

2 . In the numerical implementation
we approximate the time derivative by one-sided finite difference and the set h1 =
h2 = 1. According to our preparations in Sects. 2 and 3 its matrix-valued extension
to solve the Perona–Malik diffusion equation in the matrix setting reads

dU(i, j)

dt

= 1
h1

(
G

(
i + 1

2
, j

)
• U(i + 1, j)− U(i, j)

h1
− G

(
i − 1

2
, j

)
• U(i, j)− U(i − 1, j)

h1

)

+ 1
h2

(
G

(
i, j + 1

2

)
• U(i, j + 1)− U(i, j)

h2
− G

(
i, j − 1

2

)
• U(i, j)− U(i, j − 1)

h2

)
.

The arithmetic mean G(i ± 1
2 , j) := G(i±1,j)+G(i,j)

2 ∈ Symn(R) approximates the
diffusivity G(|∇U |2) between the pixels (i ± 1, j) and (i, j).

5. Experiments

In our experiments we used both artificial and real-world data. Figure 2 shows a 2D
artificial data set consisting of a 16× 16 field of matrices. The data are represented
as ellipsoids via the level sets of the quadratic form {x
A−2x = const. : x ∈ R

3}
associated with a matrix A ∈ Sym+(3). By using A−2 the length of the semi-axes of
the ellipsoid correspond directly with the three eigenvalues of the matrix. To dem-
onstrate the denoising capabilities, we have added random positive definite matrices
to the data. The eigenvalues of this noise were obtained by choosing Gaussian-
distributed numbers with standard deviation σ = 1,000.0 and taking the absolute
value for positive definiteness. The high standard deviation can be explained by the
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Fig. 2. Artificial test data. (a) Left original data set, 16×16 pixels. (b) Right data (a) with additive noise of
average Frobenius norm 1,430 per pixel

Fig. 3. Real-world data set. (a) Left original data set, 128×128×30 voxels. (b) Middle 3D section of (a)
with 45× 53× 5 voxels. (c) Right 2D section of (a) with 45× 53× 1 pixels

fact that in real-world data the typical eigenvalues are in the order of magnitude
of 1,000. The eigenvectors of the artificial noise result in choosing three uniformly
distributed angles and rotating the matrix by these angles around the coordinate
axes. The resulting data is shown in Fig. 2.

Besides the artificial data, we also use a real-world 3D DT-MRI data set of a
human head consisting of a 128 × 128 × 30-field of positive definite matrices, see

Fig. 3. We compare the results Ũ and ˜̃U of the filtering processes differing in the
selection of product or diffusivity function by considering the matrix field δ(x) of
absolute differences in the matrix sense (Sect. 2, Comment 1)

δ(x) := ∣∣Ũ (x)− ˜̃U(x)
∣∣ .
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Fig. 4. Image simplification properties with 2D real DT-MRI data. (a) Top row linear matrix-valued
diffusion at diffusion times t = 5, 10, 100. (b) Second row matrix-valued Perona–Malik diffusion with
classical diffusivity gλ and λ = 100 at diffusion times t = 5, 10, 100 using the Jordan product. (c) Third
row corresponding evolution of fractional anisotropy under matrix-valued Perona–Malik diffusion.
(d) Bottom row scalar Perona–Malik diffusion of the grey value image displaying the fractional anisotropy

of the original data, λ = 1, t = 5, 10, 100
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In Fig. 4 below, we compare the results of matrix-valued linear diffusion and
Perona–Malik diffusion. The edge preserving quality of the Perona–Malik filtering
is observable as can be expected following the discussion in Sect. 3.3. Figure 4 also
makes clear the importance of filtering the matrix data directly: the so called frac-
tional anisotropy (FA), a scalar quantity important in medical imaging [3], is defined
via the eigenvalues (λ1, λ2, λ3) of the matrix at a voxel x by

FA(x) :=
√√√√ (λ1 − λ̃)2 + (λ2 − λ̃)2 + (λ3 − λ̃)2

λ2
1 + λ2

2 + λ2
3

,

with the average λ̃ = 1
3 (λ1 + λ2 + λ3). Obtaining the FA image from the filtered

images gives a higher quality result than calculating the scalar FA image from the
original matrix field and then filtering this grey value image with the scalar Perona–
Malik process. It is clearly visible that for larger diffusion times, the FA of the filtered
image is getting smaller, while filtering the FA directly converges towards the average
FA in the initial data.

In Fig. 5, the influence of the choice of multiplication, Jordan or precondition-
ing product, on the denoising capabilities of Perona–Malik filtering with classical
diffusivity function gλ is accented. In both instances the noise is removed while the
edge is preserved, in very good agreement with the well-known denoising properties
of their scalar predecessors. The influence of the type of multiplication is not very
prominent as the high magnification factor (×15) in the difference field confirms.

A more detailed experimental analysis of the effect of the diffusivity function
during the evolution process is depicted in Fig. 6 where the Perona–Malik and the
exponentially decaying Weickert diffusivity functions gλ, gλ,4 are employed. The
difference matrix field emphasises the influences of the choice of the diffusivity
function on the evolution process. These influences are magnified for visualisation
purposes. Nevertheless, if the PDE methods should be used as pre-processing step in
a larger application framework, it might be worthwhile to quantify the differences
more precisely.

Finally, we investigate the behaviour of our filtering methods for negative definite
or even indefinite matrices. For this purpose we have subtracted a factor times the
identity matrix from all matrices in the noisy artificial data set shown in Fig. 2. To
obtain indefinite data, we have chosen the factor as the mean between largest and
smallest eigenvalue in the data set. Negative definite data has been obtained by sub-
tracting the largest eigenvalues appearing in the whole data set. After filtering, the
same values have been added again to the results to visualise them. Figure 7 shows
that the filters are invariant under the addition of scaled identity matrices. They have
exactly the same behaviour independent of the definiteness properties of the initial
data.

6. Conclusion

In this article we have presented a novel and generic framework for the extension of
the Perona–Malik PDE to not necessarily positive definite symmetric matrix fields in
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Fig. 5. Comparison between Jordan and preconditioning product with artificial noisy data. (a) Top row
Perona–Malik diffusion with classical diffusivity (λ = 100) at diffusion times t = 5, 20, 100 using the Jor-
dan product. (b) Middle row the same, except using the preconditioning product. (c) Bottom row the absolute
value of the difference of the two filtered matrix fields at times t = 5, 20, 100 magnified by a factor 15

any spatial dimension. The approach assumes an operator-algebraic point of view
by emphasising the fact that symmetric matrices are finite-dimensional instances of
self-adjoint Hilbert space operators. Two reasonable types of a symmetric multipli-
cation for symmetric matrices have been considered ensuring appropriate channel
interaction. The different products cause only a slightly different evolution in the
associated Perona–Malik process. Also different types of diffusivities steering the
diffusion have been considered, the classical one with polynomial decay, one with
exponential decay, and finally a 1-0-diffusivity. The influence of the choice of the
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Fig. 6. Comparison between diffusivity functions with 3D real DT-MRI data, stopping time t = 10.
Top row Perona–Malik diffusivity, λ = 100, 200, 1000. Second row Weickert diffusivity, p = 4, λ =
100, 200, 1,000. Third row 0–1 diffusivity, gλ,∞, λ = 100, 200, 1,000. Bottom row absolute difference
between the results for λ = 100, t = 10, scaled by the factor 5. Bottom left Perona–Malik and Weickert

diffusivities. Bottom middle Perona–Malik and gλ,∞. Bottom right Weickert and gλ,∞
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Fig. 7. Results of filtering of indefinite or negative definite matrices if the evolution process is forced to
“detour” through indefinite data (middle image) and negative definite data (right image)

diffusivity on the evolution of the Perona–Malik diffusion is clearly noticeable as
experiments confirm.

Experiments on positive semidefinite DT-MRI and on indefinite/negative definite
artificial data also illustrate that the matrix-valued Perona–Malik diffusion inherits
desirable characteristic properties of their scalar valued predecessors, e.g., very good
denoising capabilities combined with feature preserving qualities. In future work we
will investigate how this framework can help to extend other scalar PDEs and more
sophisticated numerical solution concepts in image processing to the matrix-valued
setting.
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[11] Chefd’Hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Constrained flows of matrix-valued
functions: application to diffusion tensor regularization. In: (Heyden, A., Sparr, G., Nielsen, M.,
Johansen, P., eds.) Computer Vision – ECCV 2002, pp. 251–265. Lecture Notes in Computer
Science, vol. 2350. Springer, Berlin (2002)

[12] Esedoglu, S.: An analysis of the Perona-Malik scheme. Commun Pure Appl Math 54, 1442–1487
(2001)

[13] Feddern, C., Weickert, J., Burgeth, B., Welk, M.: Curvature-driven PDE methods for matrix-valued
images. Int J Comput Vis 69(1), 91–103 (2006)
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