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Abstract

Curves are commonly drawn by piecewise linear interpolation, but to worry about the error is rather
seldom. In the present paper we give a strong mathematical error analysis for curve segments with
bounded curvature and length. Though the result seems very clear, the proof turned out to be unexpect-
edly hard, comparable to that of the famous four vertex theorem.
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1. Introduction

“Drawing a parametric curve” C . . . x : I −→ IR2 currently means the following
procedure: Choose a sufficiently dense sequence of points on C : x(t0), . . . , x(tn)

and then draw the polygon with these points as vertices

Problem: What is the sharp error bound for this kind of piecewise linear interpolation ?
Or – equivalently – : What is the maximal distance a point of the curve segment can
have from the corresponding chord ?

Clearly, that distance from the chord can be arbitrarily large if the length L of the
curve segment is unrestricted. On the other hand, there is a trivial error bound given
by the height h =

√
(L′)2 − a2 of the isosceles triangle, built with the chord (of

length 2a) and two legs of length L′ := L/2. But the C1-condition forbids that solu-
tion and an upper bound of the curvature should lead to a better error estimate. So
our problem makes sense only for curve segments joining two fixed points a and b
if restrictions on the length and the curvature are imposed. Even in that case there
is a trivial solution if the curve segment is a so-called spiral arc:

Definition 1: A compact C1 curve, being piecewise C2, is called a spiral arc if its
curvature function κ : [0, L] −→ IR is non-decreasing.

There are many classical theorems on spiral arcs and questions around them. Besides
the famous four vertex theorem (Muckhopadhaya [3]) we mention here only
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Theorem 1 (Kneser [2]): For any pair of parameter values s1 < s2 of a spiral arc the
curvature circle at s1 completely contains that one at s2 .

(More about spiral arcs can be found in [1].) From Kneser’s theorem we take imme-
diately:

Theorem 2: If the curve segnent C from a to b is a spiral arc with angle α of the tangent
at a with the chord a b, then the maximal distance d of C from the chord satisfies

d ≤ r · (1 − cos α), with r = 1/κ(0). (1)

This error bound is sharp because C itself can be a circular arc.

The remainder of the present paper deals with the general case which turned out to
be incomparable more complicated. The final result will be obtained by several steps.
However, the strong limit of pages forces us to make simplifying assumptions and
to omit some details of the proof.

2. Assumptions and the question of symmetry

Assumptions:

(1) C is a compact planar curve segment from a to b with length L ≤ L0 (L0 being
a given quantity satisfying L0 > |ab|). C is assumed to be C1 throughout and
piecewise C2. So there is a parametric representation with arc length as param-
eter:

C . . . x : [0, L] −→ IR2 with x(0) = a, x(L) = b.

(2) The curvature function over [0, L] is non-negative and bounded by κ0.
(3) Denoting r := 1/κ0 and a := |ab|/2, the condition r < a must hold.
(4) The (unoriented) tangent angles α, β at a, b resp. are restricted to α < π/2,

β < π/2.

(5) The curve C is convex. (So it has no other intersection points with the chord than
a and b and it may wlog. be assumed to lie below the chord).

The set of curves satisfying these conditions is denoted by A . Define, for C ∈ A,
the chord distance by d(C) = max{d(x(s), ab) | s ∈ [0, L]}. Then, clearly, d(C) <

L/2 for all C ∈ A and thus d0 = sup{d(C) | C ∈ A} exists.

Problem: Determine d0 in terms of a, L0 and κ0, provide an answer to the question
whether this maximal chord distance will be attained and, if so, describe that curve
C0 (which will be called the extremal arc in the sequel).

Remarks:

(1) The assumptions are redundant! In particular, Condition 4 on the tangent angles
is imposed only for simplicity.
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(2) Condition 3 is imposed only to avoid cases where A is empty.
(3) The convexity condition may also be renounced, because it is implied by Lemma 1

(see below). The idea to prove convexity from it is to replace a bump by a
bi-tangent leg.

Lemma 1: An arc C with L < L0 is not extremal.

(Visually clear, exact proof omitted.)

Since the problem is symmetric wrt. the mid-perpendicular of the chord, one could
expect that the solution is so, too. In the talk at the Dagstuhl Seminar we proved
it by Steiner’s symmetrisation (see [5]), however it was necessary to introduce an
auxiliary assumption excluding the possibility that this procedure increases the cur-
vature beyond its naximal value κ0. Later on, all trials to prove symmetry otherwise
(at this stage) failed. Though symmetry would considerably simplify the rest of the
investigations, we renounce it here at all and will obtain it at the very end automat-
ically.

3. The structure of the extremal arc

In the sequel, we divide the curve C into two “half-arcs” B1, B2, separated by the
point p having maximal distance from the chord ab. We think of the lengths L1, L2
and the corresponding parts a1, a2 of the chord to be fixed and given (not only
the sums L1 + L2 = 2L′ = L0, a1 + a2 = 2a). Now we can treat both half-arcs
separately.

We attach a coordinate system with origin at the minimum and x-axis parallel to the
chord ab. The (right) half-arc B1 starts at the origin with slope zero, has length L1
and ends at the line x = a1. The other half-arc B2 goes analogously to the left side
with length L2 and ends at x = −a2. In the sequel, we focus on B := B1.

By convexity and Assumption 4, B has a representation as a function

f : [0, a1] −→ IR, x �→ f (x), x ∈ [0, a1]. (2)

The set of half-arcs satisfying these conditions (together with the other assumptions
of Sect. 2) is denoted by D. The ordinate y(a) is called the “height”and denoted by
H(B).

The problem now reads as follows:

(1) Find H0 := sup{H(B) | B ∈ D} and (2) determine B ∈ D with H(B) = H0 (“the
extremal arc”) and describe it geometrically.

Besides the functional representation (2) we use a parametric representation of its
slope angle by arc length: φ : [0, L1] −→ IR. By convexity, this function is
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monotonically increasing, continuous and piecewise C1; in addition it satisfies the
inequalities1

φ(0) = 0, φ(L1) ≤ π/2, 0 ≤ φ′(s) ≤ κ0. (3)

The curvature is given by φ′(s) = κ(s) (at break points one-sided limits) and one has

A :=
L1∫

0

cos(φ(s)ds = a1 and H(B) =
L1∫

0

sin(φ(s)ds, (4)

because the tangent unit vector is (cos(φ), sin(φ)).

So we seek among all piecewise C1-functions satisfying the conditions (3), (4) that
one with maximal height H(B).

To solve this extreme value problem with side conditions, we use methods (and deno-
tations) of the calculus of variations. Denoting by φ0 the function for the extremal
arc, we consider a variation of φ0 by εv, i.e., the function φ(s, ε) = φ0(s)+εv(s), s ∈
[0, L1] ; then the extremal condition δ(H + λA) = 0 (with a Lagrangian multiplier
λ), implies

L1∫

0

v(s) (cos(φ0(s)) − λ sin(φ0(s))) ds = 0. (5)

In contrast to the usual methods of the calculus of variations the integral does not
depend on the derivative of φ0; so no Euler equation can be expected. Further-
more, the perturbation function v can not be chosen arbitrarily, but the further
side conditions φ(0, ε) = 0, and 0 ≤ ∂φ(s, ε)/∂s ≤ κ0 have to be observed. The
first one implies v(0) = 0. As to the second, we must distinguish between places s

where φ′
0(s) = 0 or φ′

0(s) = κ0 and all the others. At the first ones, φ0 must be kept
fixed, so v(s) = 0. Around the others, there are open intervals I where (5) implies
cos(φ0(s))−λ sin(φ0(s)) = 0 for all s ∈ I. Introducing α by λ = cos α/ sin α yields
sin(φ0(s) − α) = 0 for all s ∈ I.

So the whole interval [0, L1] is divided into subintervals I where either φ0(s) = α =
const or φ′

0(s) = κ0. This proves

Theorem 3: Existence provided, the extremal half-arc is composed by segments of
straight lines and by circular arcs; all the latter ones have the same radius r = 1/κ0.
All these segments join with C1-continuity.

The next step is to show that the extremal half arc is composed by exactly one circular
arc and one segment of its tangent at the endpoint (until the line x = a1 is reached).

Again, we use variational methods to prove this seemingly easy task. If we had at
least three segments or two with the circular arc as the last one, we consider the

1 In contrast to Assumption 4, we allow here φ(L1) = π/2 for reasons of compactness.
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I’ I’
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Fig. 1. Variation of φ0

last pair of intervals, I1 of the first kind (φ = const), followed by I2 being of the
second kind (φ linear with slope κ0). The latter may be the last one or there is still
one interval of the first kind following it.

Let, as before, φ0 be the extremal function. Then we add a (small) variation func-
tion (ε, s) �→ h(ε, s), s ∈ [0, L1], ε ≥ 0 which increases the values of φ0(s) in

I ′
1 by ε and decreases them in I ′

2 by µ · ε (up to small transitions to keep the type of

φ̄ := φ0 +h to be alternatively constant and linear with slope κ0) as shown in Fig. 1.

In order to have still φ̄ := φ0 + h ∈ D, we must determine the factor µ such

that the two corrections in I ′
1 and I ′

2, respectively. compensate with respect to the

extend of the corresponding arc in x-direction: A(ε) := ∫ L1
0 cos(φ0 + h)ds = a1,

thus δA = 0, i.e.,

L1∫

0

sin(φ0)
∂h

∂ε

∣∣∣∣
ε=0

ds =
∫

I1

sin(φ0)ds − µ

∫

I2

sin(φ0)ds = 0 . (6)

On the other hand we get

δH =
∫

I1

cos(φ0)ds − µ ·
∫

I2

cos(φ0)ds. (7)

In order to be able to use (6) we insert the cotangens function and apply the second
mean value theorem, getting

δH =
∫

I1

cot(φ0) sin(φ0)ds − µ

∫

I2

cot(φ0) sin(φ0)ds

= c1

∫

I1

sin(φ0)ds − µ · c2

∫

I2

sin(φ0)ds, (8)
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where c1 = cot(φ0(s̃1)) and c2 = cot(φ0(s̃2) with certain mean values s̃1 ∈ I1 and
s̃2 ∈ I2. Applying now (6) finally yields

δH = (c1 − c2)

∫

I1

sin(φ0)ds > 0 (9)

since s̃1 ∈ I1 and s̃2 ∈ I2, hence s1 < s2 and φ0 is monotonically increasing and the
Cotangens function is monotonically decreasing.

This contradicts the extremal property of φ0! So there is exactly one interval of each
kind and that of the second kind must preceed that of the first one. This proves:

Theorem 4: The slope function of the extremal half-arc is

φ0(s) =
{

s · κ0 for s ∈ [0, s1]

s1 · κ0 for s ∈ [s1, L1]

}

(10)

(with some s1, 0 < s1 < L1). ��

4. Existence

First we observe that the investigations of the previous section remain true if we
renounce the C1-condition (but keeping C0) and replace the curvature bounds by

0 ≤ φ(s2) − φ(s1)

s2 − s1
≤ κ0 (11)

for all pairs s1, s2 ∈ [0, L1] with s1 	= s2. We denote this extended class of functions

by D̂. Then D̂ is equicontinuous and so, by the theorem of Arzelà-Ascoli, compact.

By definition of the supremum, there is a sequence of functions φn ∈ D̂ with

lim
n→∞ H(φn) = sup{H(φ) | φ ∈ D̂} =: H0. (12)

and, by compactnes, there is a subsequence of it, uniformly converging to a con-

tinuous function φ0 ∈ D̂ with H(φ0) = H0. This function satisfies also (11) and is

monotonically increasing in [0, L1] as all φ ∈ D̂ do and thus solves the problem in
that wider class of functions. It will also be called the extremal function.

If there exist any places s1, s2, s1 	= s2 with φ(s1) = φ(s2), then φ is constant in [s1, s2],
by monotonicity. For each occurence of such a pair, we take the maximal interval
where φ stays constant. By continuity, such an interval is closed. In the sequel, it
will be called an interval of the first kind. Thus the remaining subset of [0, L1], from
which all intervals of the first kind are removed, is an open subset of [0, L1] (wrt. the
relative topology), hence a union of open intervals each of which will be called an
interval of the second kind.

The results of the previous section imply that any point in an interval of the second
kind must be a limit of pairs s1, s2 ∈ [0, L1] where the divided difference attains its
maximal value κ0. By continuity we can conclude:
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Lemma 2: The extremal function is (automaticly) differentiable in each interval I of
the second kind and satisfies (11), hence φ′ = κ0 in I .

Furthermore, since the breakpoints are endpoints of a pair of intervals, one of the
first, the other of the second kind, these breakpoints are isolated. So there is at most
a finite number of them, hence φ0 is piecewise C1 and thus belongs to D. — So we
have proved:

Theorem 5: The extremal function exists in D. ��

5. Global solution

Joining the two extremal half-arcs yields a curve C consisting of a circular arc with
radius r and angle φ1 + φ2, tangent continuously continued by a leg at both ends
with lengths l1 and l2, respectively (p lying on the circular arc, separating the angles
φ1 and φ2 and with li = Li − rφi, (i = 1, 2)). Among the class of these curves we
seek that one which solves the following

Optimization problem:

Determine the quantities l1, l2, φ1, φ2 such that the function

H = (l1cos(φ1) + l2cos(φ2) + r(2 − cos(φ1) − cos(φ2))) /2 (13)

attains its maximal value under the conditions

– Total length:

l1 + l2 + r(φ1 + φ2) = L0. (14)

– Same hights at both sides:

l1sin(φ1) + r(1 − cos(φ1)) = l2sin(φ2) + r(1 − cos(φ2)). (15)

– Chord length fitting:

l1cos(φ1) + l2cos(φ2) + r(sin(φ1 + sin(φ2)) = 2a. (16)

Introducing the quantities

d := (1/2)(l1 − l2), φ := (1/2)(φ1 − φ2), δ := (1/2)(φ1 − φ2). (17)

and eliminating l1, l2 from (14), (15) we get (recall L′ = L/2)

l1 = L′ − rφ + d, l1 = L′ − rφ − d (18)

with

d = −((L′ − rφ)cos(φ) + rsin(φ))
sin(δ)

sin(φ)cos(δ)
. (19)
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Inserting this into (13) and (16) we obtain

H = (L′ − rφ)
(
sin2(φ)cos2(δ) − cos2(φ)sin2(δ)

)

sin(φ)cos(δ)
+ r

(
1 − cos(φ)

cos(δ)

)
, (20)

and the only remaining condition is

B := (L′ − rφ)cos(φ) + rsin(φ)

cos(δ)
− a = 0 (21)

(both for the new unknowns φ, δ).

By Lagrange’s method the extremal arc is obtained as the solution of

∂H

∂φ
− λ

∂B

∂φ
,

∂H

∂δ
− λ

∂B

∂δ
(22)

and (21). Performing all these partial derivations, all the necessary substitutions
and suitable simplifications (a huge amount of calculations, done with the aid of
MAPLE) we finally obtain the following condition (after λ has been eliminated):

sin3(δ)
[
(L′ − rφ)cos(φ) + rsin(φ)

] = 0. (23)

Since the term in square brackets is non-zero, the only solution of this condition is
δ = 0. This means:

Theorem 6: The extremal curve is symmetric wrt. the mid-perpendicular of the chord.

With δ = 0 (20) simplifies to

H = (L′ − rφ)sin(φ) + r · (1 − cos(φ)) (24)

and – according to (16) – the angle φ is determined by

(L′ − rφ) · cos(φ) + rsin(φ) = a. (25)

Summarising we have proved:

Theorem 7: Both half-arcs of the extremal curve – being symmetric wrt. the
mid-perpemdicular of the chord – consist of a circular arc with radius r and angle
φ and a segment of the tangent to this circular arc at each of its endpoints until the
line x = ±a resp. is reached. Furthermore, the angle φ is obtained as the solution of
Eq. (25) and the maximal distance (the “height”) is given by (24).

So our problems are completely solved. The solution is shown in the following figure:
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a b

d

φ

Fig. 2. The solution

6. Final remarks

– I attacked this problem already many years ago in a talk at a Geometry Sym-
posium on Schloß Seggauberg, Austria, 1987. But there arose some difficulties,
and so the preliminary results were not published other than in the conference
proceedings.

– Theorem 3 can also be obtained using methods of control theory. The fact that
the curvature of the extremal arc takes only the outermost values of the admis-
sible interval confirms the so-called “bang-bang principle” of La Salle [4].

– Most of the results carry over to the case of a positive lower bound of the cur-
vature. I acknowledge this remark to the kind anonymous referee. However I
could not yet confirm that the extremal curve is also symmetric in this case.
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