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Abstract

We consider the problem of splitting a symmetric positive definite (SPD) stiffness matrix A arising from
finite element discretization into a sum of edge matrices thereby assuming that A is given as the sum of
symmetric positive semidefinite (SPSD) element matrices. We give necessary and sufficient conditions
for the existence of an exact splitting into SPSD edge matrices and address the problem of best positive
(nonnegative) approximation.

Based on this disassembling process we present a new concept of “strong” and “weak” connections
(edges), which provides a basis for selecting the coarse-grid nodes in algebraic multigrid methods. Fur-
thermore, we examine the utilization of computational molecules (small collections of edge matrices) for
deriving interpolation rules. The reproduction of edge matrices on coarse levels offers the opportunity
to combine classical coarsening algorithms with effective (energy minimizing) interpolation principles
yielding a flexible and robust new variant of AMG.

AMS Subject Classifications: 65F10, 65N20, 65N30.

Keywords: Edge matrices, algebraic multigrid, interpolation weights, coarse-grid selection.

1. Introduction

We are concerned with the solution of large-scale systems of linear equations

Au = f (1)

arising from finite element (FE) discretization of second-order self-adjoint elliptic
boundary-value problems. In this situation, the matrix A in (1) is typically sparse
and symmetric positive definite (SPD).

In many instances (of this huge class of problems) Algebraic MultiGrid (AMG)
methods [2]–[5] can be used to build highly efficient and robust linear solvers
[10], [12], [16], [18], [19], [21]. AMG using element interpolation (AMGe) [6], [13],
[14], so-called spectral AMGe [9], and AMG based on smoothed aggregation [17],
[22], [24], [25], [26] have even broadened the range of applicability of the classical
AMG algorithm [18]. These more recent developments are based on techniques
of energy-minimizing interpolation (or prolongation), which can be achieved by
different means.

The computation of edge matrices, we are suggesting in the present paper, is
motivated by the fact that they provide a good starting point for building efficient
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AMG components, while keeping the set-up costs low. The main emphasis of this
paper is on the algebraic construction of edge matrices and their utilization in the
framework of algebraic multigrid: We discuss how to alter the concept of “strong”
and “weak” connections, as it is used in the process of coarse-grid selection (and
interpolation) with classical AMG. The interpolation component in our approach
is very similar to the element interpolation used in so-called AMGe methods. How-
ever, the computational molecules involved in the arising local min-max problem are
assembled from edge matrices in our case.

The resulting method lies in-between classical AMG (strong and weak edges affect
the coarsening and the formation of interpolation molecules) and AMGe based on
element agglomeration (small-sized neighborhood matrices serve for the computa-
tion of the actual interpolation coefficients). Numerical tests indicate the robustness
of the considered method to which we refer as AMGm (Algebraic MultiGrid based
on computational molecules) with respect to anisotropy as well as perturbations of
the M-matrix property.

2. Edge Matrices

Let AT be an (nd)×(nd) symmetric and semipositive element matrix. Here, n denotes
the number of nodes in the element T , and d denotes the number of degrees of free-
dom in each node. For i, j , 1 ≤ i < j ≤ n, let Eij be an (nd) × (nd) symmetric
matrix whose entries are zero except for the (2d)× (2d) entries corresponding to the
nodes i, j . Such a matrix will also be called an edge matrix. We say that AT has a
positive splitting iff we can write it as a sum of positive semidefinite edge matrices.
Note that positivity implies that Eij v = 0 for all v ∈ ker(AT ), because for any sum
of positive semidefinite matrices, the kernel of the summands contains the kernel of
the sum.

As the edge matrices correspond to edges connecting nodes, we sometimes write
Eij := Eji for i > j ; if i = j , then Eij is not defined.

The main goal in this section is to give a necessary and sufficient criterion for the
existence of a positive splitting in the case d = 1. We also specify the construction
for the case when this criterion is fulfilled.

Using the terminology from [23], we say that a matrix is irreducible iff the graph with
nodes 1, . . . , n and edges representing nonzero matrix entries is connected. If AT is
reducible, then there is a numbering of nodes for which AT has the shape of a block
diagonal matrix. One can show that AT has a positive splitting iff every diagonal
block has a positive splitting. Therefore, we will focus our attention to irreducible
matrices.

We say that AT = (aij )i,j is an L-matrix iff aii > 0 and aij ≤ 0 for 1 ≤ i �= j ≤ n.
If AT is not an L-matrix, then there is a unique L-matrix B := (bij )i,j such that
|aij | = |bij | for all i, j . We say that B is the L-ation of AT .

Lemma 2.1: A symmetric matrix AT has a positive splitting iff its L-ation has a
positive splitting.
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Proof: Let AT = ∑
i,j Eij be a positive splitting into edge matrices. Then the L-ation

of AT is the sum of the L-ations of the edge matrices Eij . Because positivity of a
symmetric 2 × 2-matrix does not depend on the sign of the off-diagonal entry, this
decomposition is a positive splitting of the L-ation.

Conversely, assume that
∑

i,j Eij is a positive splitting of the L-ation. We multiply
the off-diagonal entries of the matrices Eij by ± 1, according to the sign of the entry
(AT )i,j . The 2 × 2-matrices remain positive semidefinite, and sum up to AT . ��

Lemma 2.2: If AT is a symmetric irreducible singular L-matrix, then its kernel has
dimension 1, and it is generated by a positive vector.

Proof: This is well-known. We include a proof for the sake of self-containedness.

Let v = (v1, . . . , vn)
t be an element of the kernel. By simultanuous permutation of

rows and columns, and maybe replacing v by −v, we may assume that v1, . . . , vl > 0,
vl+1, . . . , vm < 0, and vm+1 = . . . = vn = 0 for indices l, m such that 1 ≤ l ≤ m ≤ n.
Then AT can be written as block matrix

AT =



A11 A12 A13
A21 A22 A23
A31 A32 A33





with positive semidefinite Aii , and Aij ≤ 0 elementwise for i �= j .

For i = l + 1, . . . , m, we have

ai1v1 + · · · + ailvl +
m∑

j=l+1

aij vj = 0,

hence

m∑

j=l+1

aij vivj = vi




l∑

j=1

aij vj



 ≤ 0.

Summing up, we get
∑m

i,j=l+1 aij vivj ≤ 0. But A22 is positive semidefinite, which

shows that we have equality everywhere. Hence A21 = 0 and the vectors w :=
(v1, . . . , vl, 0, . . . , 0)t and v − w are both in the kernel of A. But Aw = 0 implies
A31 = 0, and A(v − w) = 0 imples A32 = 0. Since A is assumed to be connected, we
have l = m = n. ��

Lemma 2.3: If AT is a symmetric irreducible singular L-matrix, then it has a unique
splitting into edge matrices. Moreover, this splitting is positive.

Proof: By Lemma 2.2, there is a positive vector v = (v1, . . . , vn)
t generating the

kernel. For any i, j , 1 ≤ i < j ≤ n, there is a unique edge matrix Eij annihilating v
and with off-diagonal entry aij , namely the matrix with nonzero entries
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(−aij vj /vi aij

aij −aij vi/vj

)

(except when aij = 0, which yields a zero edge matrix). Direct computation shows
that the sum of these Eij equals AT . This shows that we have a unique splitting. The
positivity is a consequence of aij ≤ 0 and vivj > 0. ��

Lemma 2.4: Any positive semidefinite matrix can be written as a sum of a singular
positive semidefinite matrix and a positive semidefinite diagonal matrix.

Proof: Let B be a positive semidefinite matrix. Let D be a nonzero positive diagonal
matrix. The set of all real numbers λ such that B − λD is positive semidefinite is
closed and it contains zero. Moreover, it is bounded because −D is certainly not
positive semidefinite. If λ0 is the maximum of this set, then B − λ0D is singular and
positive semidefinite and λ0D is a positive semidefinite diagonal matrix. ��

Theorem 2.1: A symmetric matrix AT has a positive splitting iff its L-ation is positive
semidefinite.

Proof: Without loss of generality, we may assume that AT is irreducible. By
Lemma 2.1, we may also assume that AT is an L-matrix. Then one direction is
obvious: if AT has a positive splitting, then it is positive semidefinite.

Assume that AT is positive semidefinite. If AT is singular, then it has a positive des-
composition by Lemma 2.3. Otherwise, we use Lemma 2.4 and write AT = A′ + D,
where A′ is a singular L-matrix and D is a positive diagonal matrix. By Lemma 2.3,
A′ has a positive splitting. Clearly, D has a positive splitting. By summing the edge
matrices for A′ and for D, we get a positive splitting for AT . ��
We turn to the question how to compute a positive splitting, in case we know there
exists one? If AT is a singular positive semidefinite L-matrix, then we can use the
explicit construction in the proof of Lemma 2.3. If AT is a nonsingular positive
semidefinite L-matrix, then we compute the smallest eigenvalue λmin, construct a
positive splitting of AT − λminI , and add suitable diagonal edge matrices. If AT is
not an L-matrix but its L-ation is positive semidefinite, then we L-ate AT , compute a
positive splitting of the L-ation, and de-L-ate the edge matrices again by multiplying
the off diagonal elements with ±1.

The next question is what to do when there does not exist a positive splitting? In such
a case, we want to come as close as possible to a positive splitting. More precisely,
we want to compute a symmetric matrix A+ with a positive splitting, such that there
exist positive numbers λ, µ with

λ〈x, A+ x〉 ≤ 〈x, AT x〉 ≤ µ〈x, A+ x〉 ∀x, (2)

and the quotient µ/λ is minimal. Such an A+ will be called a best positive approxi-
mation.
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Such a best positive approximation does not always exist: if rank(AT ) ≤ n − 2,
and the kernel is not in a special position with respect to the basis, then there is
no nonzero edge matrix that annihilates the kernel. It follows that for any nonzero
matrix A+ with a positive splitting, there is a vector v ∈ ker(AT ) which is not in the
kernel of any of its edge matrix summands. It follows that 〈v, A+v〉 > 0, and there
is no positive λ such that (2) holds.

Assume now that rank(AT ) ≤ n− 1, and that the vector v generating the kernel has
nonzero entries. By multiplying AT from both sides with a suitable diagonal matrix,
we can reduce to the case v = (1, . . . , 1)t . If A+ is a sum of positive semidefinite
edge matrices Eij such that (2) holds for some positive λ, µ, then Eij v = 0 for all
edge matrices Eij . This determines Eij up to a constant factor, as in the proof of
Lemma 2.3.

We define an SPM matrix to be a symmetric positive definite matrix with off diag-
onal entries negative or zero, and with row sums (or, equivalently, column sums)
positive or zero. Our problem of computing a best approximation to matrices with
kernel as above can be reduced to best SPM approximation, in the following way.

Lemma 2.5: Let AT be a symmetric semipositive matrix with kernel K generated by
v = (1, . . . , 1)t . Let An−1 be the first minor of AT (obtained by removing the last row
and column). Let B be a symmetric matrix with kernel K, such that its first minor
Bn−1 is an SPM matrix. Then B is a best positive approximation of AT iff Bn−1 is a
best SPM approximation of An−1.

Proof: Note that B is uniquely determined by Bn−1 and the requirements to be
symmetric and to have v in the kernel. In fact, there is a unique way of adding a new
row and column such that all row sums are zero and the new matrix is symmetric.
As Bn−1 is an SPM matrix, the so constructed matrix has no positive off diagonal
elements. For any negative off diagonal entry, there is exactly one positive semidefi-
nite edge matrix annihilating v with the same off diagonal entry. Obviously, B is the
sum of all these edge matrices. This shows in particular that B is a sum of positive
definite edge matrices.

As Bn−1 is a best SPM approximation of An−1, there exist λ, µ > 0 such that

λ〈x, Bn−1x〉 ≤ 〈x, An−1x〉 ≤ µ〈x, Bn−1x〉 ∀x

holds, and such that the quotient µ/λ is minimal. Because the construction described
above (adding a row and column such that row and column sums are zero) is linear
and preserves positivity, we conclude that (2) holds with the same λ, µ > 0. The
quotient µ/λ is minimal with respect to the validity of (2), because otherwise we
could find a better SPM approximation of An−1 by cutting off the last row and
column. ��
The problem of computing the best SPM approximation has been considered in
[16]. They gave a complete solution for n = 3 and n = 4 (i.e., for matrices of size
2 × 2 and 3 × 3). We write down the solution for n = 3, which will be used later.
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As (1, 1, 1)t is in the kernel of AT , we can write the matrix uniquely as

AT =



a + b −a −b

−a a + c −c

−b −c b + c





with a, b, c ∈ R. Because AT is positive semidefinite, there is at most one negative
number among a, b, c (otherwise we have a negative diagonal entry). We distinguish
two cases.

Case 1: All numbers a, b, c are positive or zero. Then AT has itself a positive
splitting:

AT =



a −a 0

−a a 0
0 0 0



 +



b 0 −b

0 0 0
−b 0 b



 +



0 0 0
0 c −c

0 −c c



 .

Case 2: One number, say a, is negative. Then the best positive approximation is

A+ =



a + b 0 −a − b

0 0 0
−a − b 0 a + b



 +



0 0 0
0 a + c −a − c

0 −a − c a + c



 .

If AT has full rank n, then there exists also a best positive approximation, but we
could not compute a solution formula.

3. Coarse Grid Selection

3.1. “Strong” and “Weak” Edges

In contrast to Geometric MultiGrid (GMG) the relaxation in AMG is fixed [18].
Thus the coarsening process and the interpolation rule have to be chosen in a way
such that the range of interpolation approximates those errors not efficiently reduced
by relaxation.1 These algebraically smooth error components e are characterized by

‖Se‖A ≈ ‖e‖A, (3)

wherein S denotes the smoother. For (most of) the common smoothers, e.g., Gauß-
Seidel or Jacobi, error that is slow to converge in energy norm equivalently fulfills
the condition

aiiei ≈ −
∑

j �=i

aij ej . (4)

In particular, for M-matrices this means that for each node i the error component
ei is essentially determined by those ej for which −aij is large. This leads to the
following definition of strong connections used in classical AMG [18]:

1 In GMG the hierarchy of grid equations is given, i.e., a fixed coarsening is used, and
the smoother is adjusted in order to obtain efficient multigrid cycles.
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Definition 3.1 (Strong connections in Classical AMG): Node i is strongly connected
to node j (strongly depends on j) if −aij ≥ θ · maxk �=i{−aik} with some 0 < θ ≤ 1
(e.g., θ = 0.25).

Here we want to base the concept of strong connectivity on edge matrices. In [8]
a reliable evaluation of strong connections based on element stiffness matrices has
been presented. It uses the simple formula

sij := |aij |√
aiiajj

, (5)

where AT = (aij )i,j is a local stiffness matrix corresponding to some element T ∈T
and T is a triangulation of the computational domain. Note that (5) defines the
energy cosine of the abstract angle between the i-th and j -th (nodal) basis func-
tion in this case. However, the reproduction of local element stiffness matrices on
coarser levels increases the set-up costs of an AMG method significantly and – what
is even more serious – is subject to strong geometrical restrictions. That is why we
suggest to construct edge matrices (from element matrices) and reproduce those on
coarser levels.

Definition 3.2 (Direct connections): Any two nodes i and j are said to be directly con-
nected iff there is an edge {i, j} connecting i and j ; let Eij denote the corresponding
edge matrix.

Now for every loop of length three (triangle) in the algebraic grid with direct con-
nections (edges) {i, j}, {j, k}, and {k, i} we consider the molecule

M(i,j,k):= Eij + Ejk + Eki. (6)

Furthermore, let

M�:= {M(i,j,k) = (cpq)p,q : cpp �= 0 ∀p = 1, 2, 3} (7)

be the set of all such local matrices given as the sum of three edge contributions (for
edges that form a triangle) having non vanishing diagonal entries. Then the following
definition provides an altered concept of strong connections (“strong” edges).

Definition 3.3 (Strong connections via edge matrices): The strength of a (direct)
connection {i, j} is defined by

sij := min
{

1, min
M(i,j,k)∈M�

{|cpipj
|/(√cpipi

cpj pj
)}

}

(8)

where connections with sij ≥ θ are said to be strong, 0 < θ < 1 (e.g., θ = 0.25).
Here pi and pj denote the local indices associated with nodes i and j , respectively,
i.e., 1 ≤ pi ≡ p(i), pj ≡ p(j) ≤ 3.
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Remark 3.1: Note that the strength of a connection {i, j} computed via either of the
formulas (5) or (8) will be nonnegative and bounded above by 1 for general symmetric
positive semidefinite stiffness matrices. A value close to one (an abstract angle close to
zero) indicates a strong connection. Extending the definition (8) by min∅{. . . }:= ∞
we have sij = 1 whenever nodes i and j are directly connected but there is no path of
length two connecting i and j via a third node k.

3.2. Coarsening Algorithm

There are several reasonable ways of selecting the coarse grid nodes in AMG. Our
approach is similar to the one used in classical AMG [18] in that it is based on
a concept of strong connections (here “strong” edges). However, since the precise
coarsening algorithm we use in detail differs from the one proposed in [18] it will
be presented in this section. Following [18] a good coarse grid Dc should satisfy the
following two criterions:

C1: Dc should be a maximum independent set, which means that no strong connections
within Dc are allowed.

C2: Each node j being strongly connected to an f-node i is either contained in Dc or it
strongly depends on at least one c-node k that itself is strongly connected to node i.

Similar to the procedure proposed in [18] we select the coarse grid in a two-stage
process: First, a quick c-node choice attempts to enforce criterion (C1). Then, at
a second stage, all f-nodes resulting from the first stage are tested to ensure that
criterion (C2) holds, adding new c-nodes if necessary.

The main difference to the methodology in [18] is that our relation of strong con-
nectivity, as defined in Definition 3.3, is symmetric whereas this is not the common
practice in classical AMG, even not in the SPD case. That means, whenever a node
i is strongly connected to a node j the reverse (j being strongly connected to i) is
also true. However, this even simplifies the selection of an initial coarse grid that
takes into account criterion (C1). A greedy algorithm serving this purpose is given
by Algorithm 3.1. The testing of the initial coarse grid, and its adjustment with
respect to criterion (C2), can be performed according to Algorithm 3.2. Note that
we slightly simplified the corresponding procedure from [18] by avoiding multiple
testing of f-nodes in the course of adding c-nodes (doing without an intermedi-
ate choice of “tentative” c-nodes). Instead, we prefer to decide immediately which
f-nodes are going to be changed into c-nodes: if two f-nodes are strongly connected
to each other with no c-node that strongly depends on both of them the necessity
arises to change either of them to a c-node; we take the one having fewer strongly
dependent c-nodes. For a formal description of this two stage process we define the
node sets:

Df . . . fine nodes (f-nodes)
Dc . . . coarse nodes (c-nodes)
D:= Df ∪ Dc . . . all nodes
Ni . . . direct neighbors of node i

N f
i

:= Ni ∩ Df . . . fine direct neighbors
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Si . . . strongly connected direct neighbors of node i

Sc
i
:= Si ∩ Dc . . . strongly connected coarse direct neighbors

|D| or |Sm| . . . cardinality of D respectively Sm

Algorithm 3.1: (Selection of initial coarse grid)
[

Dc:= ∅; Df := ∅; U := D;
λm = |Sm| ∀m = 1, 2, . . . , |D|; n = 0;



















while (n < |D|)
find i such that λi = maxm∈U λm

Dc:= Dc ∪ {i}
U := U \ {i}
n:= n + 1









for all j ∈ Si ∩ U

Df := Df ∪ {j}
U := U \ {j}
n:= n + 1[

for all k ∈ Sj ∩ U

λk:= λk + 1

Algorithm 3.2: (Adjustment of initial coarse grid)
[
λm = 0 ∀m = 1, 2, . . . , |D|; i = 0;













































while (i < |D|)
i:= i + 1









































if (i ∈ Df )

n1 = 0


for all k ∈ Si ∩ Dc

n1:= n1 + 1
λk = 1



























for all j ∈ Si ∩ Df

n2 = 0; n3 = 0;





for all k ∈ Sj ∩ Dc

n2:= n2 + 1[
if (λk = 1)

n3:= n3 + 1















if (n3 < 1)













if (n1 < n2)

Dc:= Dc ∪ {i}
Df := Df \ {i}

else
Dc:= Dc ∪ {j}
Df := Df \ {j}
n1:= n1 + 1
λj = 1[

for all k ∈ Ni λk = 0
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4. Interpolation

In this section, we want to figure out how to benefit from edge matrices when con-
structing the interpolation component of our AMGm method. The basic idea is to
construct suitable small-sized computational molecules from edge matrices and to
choose the interpolation coefficients in such a way that they provide a local minimum
energy extension with respect to the considered interpolation molecule.

4.1. Interpolation Molecules

We will say that M is a computational molecule if M is a small-sized irreducible
matrix that can be assembled from edge matrices. Let EM be a small subset of the set
of all edges E , EM ⊂ E . Then, for notational convenience we represent the molecule
associated with the edge set EM by

M:=
∑

{i,j}∈EM

Eij . (9)

Note that M is a small-sized nM × nM matrix where nM denotes the number of dis-
tinct nodes k belonging to any of the edges {i, j} ∈ EM . To be precise, this matrix is
obtained from the full-sized N × N matrix

C:=
∑

{i,j}∈EM

RT
ijEijRij (10)

by deleting all its zero rows and columns; the 2 × N permutation matrices Rij in (10)
provide the mapping to the global ordering of nodes.

Consider now the set {AT } of individual element matrices all of which are split
(disassembled) into edge matrices, i.e.,

AT ≈
∑

{i,j}⊂T

Eij ∀T . (11)

We note that if the splittings (11) are positive throughout, i.e., all edge matrices Eij

are SPSD, then every computational molecule locally preserves the kernel of the
global stiffness matrix:

Lemma 4.1: Let B = ∑
T ∈TB

AT and vB ∈ ker(B), i.e., BvB = 0. Further, let

M = ∑
{i,j}∈EM

Eij be any computational molecule such that every edge {i, j} ∈ EM

belongs to some element T ∈ TB . Moreover, let vM denote the restriction of vB to the
edges in EM , i.e., vM := vB |EM

. If the splitting (11) is positive for all elements T ∈ TB ,
it follows that

MvM = 0. (12)
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Proof: For an SPSD matrix B the condition BvB = 0 is equivalent to vT
BBvB = 0.

Thus,

0 = vT
BBvB = vT

B




∑

{i,j}∈EM

Eij +
∑

{i,j}∈EB\EM

Eij



 vB

= vT
M




∑

{i,j}∈EM

Eij



 vM + vT F v

for an SPSD matrix F and an adequate restriction v of the vector vB . This proves

vT
MMvM = 0 and thus (12). ��

The task is now to define suitable computational molecules for building interpola-
tion. Assume that “weak” and “strong” edges have been identified, the coarse grid
has been selected, and a set of edge matrices is available. Then for any f-node i

(to which interpolation is desired) we define a so-called interpolation molecule

M(i) :=
∑

k∈Sc
i

Eik +
∑

j∈N f
i : ∃k∈Sc

i ∩Nj

Eij +
∑

k∈Sc
i ∩Nj : j∈N f

i

Ejk. (13)

This molecule arises from assembling all edge matrices associated with three types
of edges: The first sum corresponds to the strong edges connecting node i to some
coarse direct neighbor k (interpolatory edges). The second sum represents edges con-
necting the considered f-node i to any of its fine direct neighbors j being directly
connected to at least one c-node k that is strongly connected to node i. Finally, the
last sum in (13) corresponds to these latter mentioned connections (edges) between
fine direct neighbors j and strongly connected coarse direct neighbors k of node i.
The formation of interpolation molecules is illustrated in Fig. 1.

k

i

j

Fig. 1. Formation of interpolation molecule



68 J. K. Kraus and J. Schicho

4.2. Interpolation Rule

Element interpolation has been established in connection with so-called AMGe
methods [6], [14]. This technique is based on a heuristic for SPD matrices that takes
into account the nature of algebraically smooth error, cf. (3): Provided that a stan-
dard smoother is used, error that is slow to converge in energy norm corresponds
to the lower part of the spectrum. Hence, one tries to fit interpolation to these low-
energy modes, in particular, to the (near) null space components. The key idea is to
construct local neighborhood matrices that represent the correct coupling between
any given fine node and its interpolatory coarse (neighbor) nodes. In AMGe these
neighborhood matrices are local versions of the stiffness matrix, i.e., small collec-
tions of element matrices. We propose the usage of the interpolation molecule (13),
instead.

For a given f-node i let

M(i) = M =
(

Mff Mf c

Mcf Mcc

)

(14)

be the interpolation molecule where the 2 × 2 block structure in (14) corresponds

to the n
f
M f-nodes and the nc

M c-nodes the molecule is based on. Then there is a
bijection between the local and the global ordering of these nodes, which maps the

global number i to some local number i′, 1 ≤ i′ ≤ n
f
M . Consider now the small-sized

(local) interpolation matrix

PM = P =
(

Pf c

Icc

)

(15)

associated with (14). The n
f
M × nc

M submatrix Pf c produces interpolation in the
f-nodes; for the c-nodes P equals the identity. Under the assumption that M is
SPSD the AMGe interpolation concept can be applied directly [6], [11]:

For any vector eT = (eT
f , eT

c ) ⊥ ker(M) we denote by

df := ef − Pf cec (16)

the defect of (local) interpolation. With the objective of realizing the AMGe heuristic
we choose Pf c to be the argument that minimizes

max
e⊥ker(M)

(ef − Pf cec)
T (ef − Pf cec)

eT Me
. (17)

Using the substitutions (16) and G:= P T
f cMff Pf c + P T

f cMf c + Mcf Pf c + Mcc we

derive the follwing equivalence for (17):
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max
df ,ec

dT
f df

(
df + Pf cec

ec

)T (
Mff Mf c

Mcf Mcc

) (
df + Pf cec

ec

)

= max
df ,ec

dT
f df

〈Mff (df + Pf cec), df + Pf cec〉 + 2〈Mf cec, df + Pf cec〉 + 〈Mccec, ec〉

= max
df ,ec

dT
f df

(
df

ec

)T

B

(
df

ec

) , (18)

where

B =
(

Mff Mff Pf c + Mf c

P T
f cMff + Mcf G

)

(19)

is SPSD. Hence,

min
Pf c

max
df ,ec

dT
f df

(
df

ec

)T

B

(
df

ec

) = min
Pf c

max
df

dT
f df

minec

(
df

ec

)T

B

(
df

ec

)

= min
Pf c

max
df

dT
f df

dT
f

[
Mff − (Mff Pf c + Mf c)G−1(P T

f cMff + Mcf )
]

df

. (20)

Assuming that Mff and G both are SPD the denominator of (20) for an arbitrary
vector df is maximized and thus the minimum is attained for

Pf c := −M−1
ff Mf c (21)

which results in 1/(λmin(Mff )). This motivates to choose the interpolation coeffi-
cients for node i to equal the i′-th row of (21). For a more general framework of
AMG (including convergence analysis) we refer to [11].

5. Multilevel Algorithm

In this section we will describe briefly a multilevel procedure for AMGm (Algebraic
MultiGrid based on computational molecules). So far we discussed how to disas-
semble element matrices into edge matrices that can be utilized in the coarse-grid
selection process as well as in the interpolation set-up, resulting in a new two-level
method. However, assuming that the individual element matrices are given for the
initial (fine) grid only, we need some technique for generating coarse-edge matrices
in order to enable recursion and finally define a multilevel algorithm on this basis.
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5.1. Generation of Coarse-edge Matrices

The construction of edge matrices as described in Sect. 2 is such that their total con-
tributions add up to an auxiliary matrix B0, which agrees with the fine-grid stiffness
matrix A0 before imposing essential boundary conditions if all element matrices
have only nonpositive off-diagonal entries.

If we stick to the coarse-grid operator Ak = P T
k−1Ak−1Pk−1, obtained from the usual

Galerkin approach, the only way to control the amount of fill (number of nonzero
entries) in Ak is via the nonzero pattern of Pk−1. Since interpolation rests on “strong”
edges, the goal is to reduce the number of edges on coarser levels. Therefore, in the
first instance we determine which coarse-grid nodes to connect via coarse edges:

Every pair (i, j) of c-nodes is linked by a coarse edge iff there is a path of at most
three successive strong fine edges connecting nodes i and j via at most two f-nodes,
i.e., {i, j}, or {i, k1} and {k1, j}, or {i, k1} and {k1, k2} and {k2, j} are strong fine edges

where k1, k2 are f-nodes.2

Note that the adjacency matrix associated with coarse edges can easily be computed
by evaluating the product of three Boolean sparse matrices.

Given the set of coarse edges, we assemble the auxiliary matrix Bk−1 from all fine-

grid edge matrices and evaluate the tripple matrix product P T
k−1Bk−1Pk−1 in those

off-diagonal positions determined by adjacency along coarse-edges. This yields the
off-diagonal entries for the corresponding two-by-two coarse-grid edge matrices.3

5.2. AMGm

Regarding the multilevel algorithm, we notice that AMGm agrees with classical
AMG, except for the coarse-grid selection and the interpolation component, which
are controlled by edge matrices in case of AMGm. One can also view this as involv-
ing an auxiliary problem – the one determined by the edge matrices – in the process
of coarsening and interpolation. The coarse-grid operators, however, are computed

via the usual Galerkin tripple matrix product, i.e., Ak = P T
k−1Ak−1Pk−1 for all coarse

levels k = 1, . . . , l.

6. Numerical Experiments

For the numerical experiments presented in this section we considered the bound-
ary-value problem

2 The number of coarse edges can further be reduced by cutting down to paths of length
at most two.

3 For scalar elliptic PDEs every edge matrix has the form

E =
(

a −a
−a a

)

and thus we store only one value per edge.
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−∇ · [C∇u] = f in � ⊂ R2 (22)

u = g on �D ⊂ ∂� (23)
∂u

∂n
= 0 on �N = ∂�\�D. (24)

Two different specifications of the matrix C, the right-hand side f , the domain �,
and of the boundary conditions yield the considered test problems:

Problem 1:

C =
(

1 0
0 ε

)

, f = 0, � = (−3, 3) × (−3, 3) \ (�1 ∪ �2),

where �1 = (0.2, 0.3) × (−0.5, 0.5), �2 = (−0.3, −0.2) × (−0.5, 0.5),

�N = ∂((−3, 3) × (−3, 3)), �D = ∂�1 ∪ ∂�2, and

g =
{

1 on ∂�1
−1 on ∂�2

.

For discretization we used a finite element space of piecewise linear functions with
Lagrangian basis, where the underlying (locally refined) triangular mesh was gener-
ated using the NETGEN4 mesh generator [20] used in NGSolve5, see Fig. 2.

Problem 2:

C =
(

ε + (cos �)2 sin � cos �

sin � cos � ε + (sin �)2

)

, f = 1, � = (0, 2) × (0, 1),

�N = {(x, y) : 0 ≤ x ≤ 2 and y ∈ {0, 1}}, �D = ∂�\�N , and g = 0.

Fig. 2. Problem 1: Locally refined unstructured mesh

4 http://www.hpfem.jku.at/netgen/index.html
5 http://www.hpfem.jku.at/ngsolve/index.html
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Again we used linear shape-functions, in order to compute a numerical solution by
the finite element method. A value of π/12 was chosen for the angle � causing the
direction of anisotropy to be not aligned with the mesh.

Note that both problems result in stiffness matrices that are not contained in the
class of M-matrices. Moreover, the variation from an M-matrix increases when ε

tends to zero, i.e., the positive off-diagonal entries gain weight in this case. This
usually makes the problem harder to solve for (algebraic) multigrid methods.

In the first experiment, regarding Problem 1, we studied the convergence of the
preconditioned conjugate gradient method (PCG) utilizing either a single V(1,1),
V(2,2), or a W(1,1) cycle of AMGm with symmetric Gauß-Seidel pre- and post-
smoothing. Table 1 contains the number of PCG iterations that reduced the residual
norm by a factor 10−8, the average convergence factor, as well as the grid complexity
σ� and the operator complexity σA.6 The results for a three-dimensional analog of
Problem 1 can be found in [15].

Table 1. AMGm convergence results for Problem 1

#elements 4062 16248 64992 259968
#levels 2 4 5 7

ε = 1: V(1,1) 6 0.04 9 0.12 10 0.15 11 0.18
V(2,2) 4 0.02 7 0.06 7 0.07 8 0.09
W(1,1) - - 8 0.09 8 0.09 8 0.09
σ� 1.40 1.61 1.64 1.64
σA 1.70 2.31 2.48 2.52

ε = 0.5: V(1,1) 6 0.06 9 0.13 10 0.14 11 0.18
V(2,2) 5 0.03 7 0.06 7 0.06 8 0.09
W(1,1) - - 8 0.09 8 0.09 8 0.09
σ� 1.44 1.68 1.70 1.69
σA 1.80 2.50 2.64 2.65

ε = 0.1: V(1,1) 7 0.06 10 0.14 10 0.15 12 0.20
V(2,2) 5 0.03 8 0.08 8 0.08 9 0.11
W(1,1) - - 9 0.11 9 0.11 8 0.09
σ� 1.55 1.82 1.85 1.84
σA 1.97 2.76 2.94 2.95

ε = 0.05: V(1,1) 7 0.07 11 0.16 10 0.14 12 0.20
V(2,2) 6 0.04 8 0.08 8 0.08 9 0.12
W(1,1) - - 9 0.12 7 0.06 8 0.09
σ� 1.54 1.83 1.86 1.86
σA 1.94 2.75 2.91 2.95

ε = 0.01: V(1,1) 8 0.08 13 0.23 14 0.26 15 0.29
V(2,2) 6 0.05 10 0.14 11 0.18 12 0.22
W(1,1) - - 11 0.16 10 0.15 8 0.09
σ� 1.53 1.63 1.88 1.88
σA 1.89 2.68 2.85 2.91

6 σ� is the ratio of the total number of points on all grids to that on the fine grid; σA is
the ratio of the total number of nonzeros in all matrices to that in the fine-grid matrix.
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For the second experiment, regarding Problem 2, using a quasiuniform mesh with
decreasing mesh size, i.e., 49152, 196608, and 786432 elements, we decided to
compare the performance of AMGm to that of classical AMG (both used as a
preconditioner for conjugate gradients). For comparison (in terms of computing
time), we used the commercial software package FEMLAB version 3.1.7, which
implements the classical AMG algorithm.

The iteration was initialized with the zero start vector in all experiments. In Table 2,
we list the number of PCG iterations that reduced the norm of the initial residual by
a factor 10−6. The number of levels was chosen such that the number of nodes on
the coarsest grid was less or equal to one thousand. We used the same value for the
threshold parameter θ , i.e., θ = 1/4, for classical AMG and AMGm. The solution
time provided in the respective right column of Table 2 in each case includes the
set-up time for the AMG(m) components. All computations were performed on a
2.4 GHz Linux-PC.

7. Concluding Remarks

The application of any AMG method splits into a set-up phase and a solution phase.
Hence, solving a linear system (1) for a single right-hand side, the computational
costs of these two phases have to be balanced properly.

Table 2. Performance comparison for Problem 2

49152 elements (24833 degrees of freedom)

AMG AMGm
ε V(1,1) V(2,2) W(1,1) V(1,1) V(2,2) W(1,1)

1.0 15 1.38 13 1.48 10 1.49 12 1.31 9 1.30 10 1.43
0.5 15 1.57 13 1.67 11 1.83 9 1.35 8 1.42 7 1.49
0.1 20 1.70 18 2.11 14 1.92 11 1.43 9 1.48 9 1.55
0.05 23 1.81 21 1.93 16 2.03 12 1.49 10 1.51 9 1.57
0.01 34 2.10 32 2.32 24 2.43 15 1.54 13 1.62 10 1.56

196608 elements (98817 degrees of freedom)

AMG AMGm
ε V(1,1) V(2,2) W(1,1) V(1,1) V(2,2) W(1,1)

1.0 36 12.9 34 14.5 19 13.1 12 6.2 10 6.6 9 6.4
0.5 20 12.8 19 15.0 12 14.0 11 7.0 9 7.4 8 7.4
0.1 28 13.6 26 15.1 17 15.7 12 7.3 10 7.7 9 7.7
0.05 31 13.8 29 15.3 20 15.8 13 7.5 11 8.0 9 7.6
0.01 44 15.4 41 16.6 30 20.8 17 7.7 14 8.3 10 7.4

786432 elements (394241 degrees of freedom)

AMG AMGm
ε V(1,1) V(2,2) W(1,1) V(1,1) V(2,2) W(1,1)

1.0 79 189 72 202 35 197 13 29 11 31 9 29
0.5 56 251 51 253 20 245 11 32 9 34 8 33
0.1 52 245 50 252 21 246 12 33 10 35 9 36
0.05 60 244 56 255 27 250 14 35 12 38 9 35
0.01 60 244 56 256 36 264 21 38 16 40 10 33

7 http://www.comsol.com
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In fact, the set-up of AMGm took approximately half the (total) time reported in
Table 2. The improved robustness is achieved by controlling the coarse-grid selec-
tion and the interpolation component via edge-matrices. Using AMGm instead of
classical AMG preconditioning, a faster convergence and thence a shorter solution
time was obtained. In particular, as one would expect, the iteration count for the
W(1,1) cycle is (almost) independent of the mesh size (for both problems). The grid-
and operator complexity incurred by AMGm are comparable to those of classical
AMG, cf. [18].

Future investigations will deal with the generalization of the presented AMGm
methodology to cover also systems of PDEs.
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[12] Haase, G., Langer, U., Reitzinger, S., Schöberl, J.: Algebraic multigrid methods based on element
preconditioning. Int. J. Comp. Math. 78, 575–598 (2004).

[13] Henson,V. E., Vassilevski, P.: Element-free AMGe: general algorithms for computing the interpo-
lation weights in AMG. SIAM J. Sci. Comput. 23, 629–650 (2001).

[14] Jones, J. E., Vassilevski, P.: AMGe based on element agglomeration. SIAM J. Sci. Comput. 23,
109–133 (2001).

[15] Kraus, J. K.: On the utilization of edge matrices in algebraic multigrid. Lecture Notes in Computer
Science. Proc. 5th Int. Conf. on “Large-Scale Scientific Computations”, Sozopol, Bulgaria, June
6–10, 2005 (to appear).

[16] Langer, U., Reitzinger, S., Schicho, J.: Symbolic methods for the element preconditioning technique.
In: Proc. SNSC Hagenberg (Langer, U., Winkler, F., eds.). Springer 2002.



Algebraic Multigrid Based on Computational Molecules, 1: Scalar Elliptic Problems 75
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