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Abstract

The class of #-matrices allows an approximate matrix arithmetic with almost linear complexity. In the
present paper, we apply the #-matrix technique combined with the Kronecker tensor-product
approximation (cf. [2, 20]) to represent the inverse of a discrete elliptic operator in a hypercube
(0, l)de R? in the case of a high spatial dimension d. In this data-sparse format, we also represent the
operator exponential, the fractional power of an elliptic operator as well as the solution operator of the
matrix Lyapunov-Sylvester equation. The complexity of our approximations can be estimated by
O(dnlog? n), where N = n? is the discrete problem size.

AMS Subject Classifications: 65F50, 65F30, 46B28, 47A80.

Keywords: Hierarchical matrices, Kronecker tensor products, high space dimensions, Sinc-quad-
rature.

1. Introduction

There are several sparse N x N-matrix approximations which allow to construct
optimal solution methods for elliptic/parabolic boundary value problems with
O(N) arithmetic operations. In many applications, one has to deal with full
matrices arising from boundary element discretisations (BEM) or FEM methods.
In the latter case the inverse of a sparse FEM matrix is a full matrix.

A class of hierarchical (#) matrices has been introduced and developed in [15]-
[19], [11]. These structured matrices allow an approximate matrix arithmetic
(including the computation of the inverse) of almost linear complexity and can be
considered as data-sparse. Given an elliptic operator .7, it is of important the-
oretical and practical interest to find s#-matrix approximations of the operator

exponential exp(t.eZ), of sinh(tv/.<7) and of cos(tv/.«7), which represent the solu-
tion operators for evolution differential equations of parabolic, elliptic and
hyperbolic types, respectively. Another interesting example of an operator-valued
function is given by sign (/) that arises in many-particle simulations, control
theory and linear algebra. Data-sparse (#)-matrix approximations of almost
linear complexity in N based on the efficient Sinc-quadrature for the Dunford-
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Cauchy integral representation to the above mentioned operator-valued functions
have been developed in [7]-[9]. Note that generalised Gaussian quadratures for
certain improper integrals were described in [27]. The basic approximation theory
by exponential sums is presented in [3].

There are important applications requiring computations in higher spatial
dimensions, where the problem size may grow exponentially in d, i.e., N = O(n?).
In particular, we mention the many-particle Schrédinger equation in quantum
chemistry and material sciences, the Black-Scholes equation describing option
pricing problems in financial models as well as multi-dimensional data mining
problems. We stress that due to the “curse of dimensionality”, in the case of
higher dimensions linear complexity (O(N) is not satisfactory, hence we are
looking for efficient methods with a cost O(dnr” log? n), with p, ¢ independent of d.
A desirable cost would be a clearly sublinear cost like ¢(dnlog?n) (i.e., p=1).

The approximability of integral operators in higher dimensions using the so-
called hierarchical Kronecker tensor-product format (abbreviation: HKT format) is
proven in [20]. Therein, also numerical experiments indicating exponential con-
vergence of the HKT approximation to the inverse of an elliptic operator were
presented. Moreover, the efficiency of the corresponding matrix algebra involving
tensor-product vector representation was also addressed (see also [26] for tensor
representation of function generated matrices). In paper [2], the idea was de-
scribed on how the inverse to the multi-dimensional Laplace operator A can be
approximated in the Kronecker tensor-product format using an integral repre-
sentation to (—A)_] that includes the operator exponential exp(tA) (cf. (37)).
However, both the theoretical analysis and numerical tests are missing there.
Computational aspects of a low Kronecker-rank approximation to the solution of
a tensor system with tensor right-hand side were considered in [10]. The HKT
approximation to the matrix-valued functions 4~! and sign (4) for indefinite
matrices 4 representing the discrete elliptic operators is addressed in [18].

In the present paper, we construct and analyse an HKT approximation to .o/~
and to exp(—z.o/) in higher dimensions d for the general class of strongly positive
operators . in R, defined as a sum of low-dimensional commutative operators.
Combining the tensor-product representation that includes one-dimensional
operators and then approximating the latter in the #-format, we arrive at the
complexity O(dN'/?log! N'/*) = O(dnlog? n). Finally, we develop the data-sparse
HKT approximation to fractional powers .«/~% (¢ > 0) of an elliptic operator as
well as to the solution operator of the matrix Lyapunov-Sylvester equation. In
the case of discrete elliptic operators we provide a unified construction of the
approximate inverse to a family of matrices provided that the spectrum of the
corresponding matrix family lies in a fixed sector in the right half-plane.

Note that our approach represents the (approximate) inverse of the finite
difference or finite element approximations to .«Z~! on a hypercube and, hence, it
can be interpreted as an extension of the widely used Fast Fourier Transform
(FFT). In fact, contrary to the FFT, the presented method applies to nonuniform
tensor-product grids and to variable equation coefficients.
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2. Preliminaries

In the following, we use the notation .o/, 4, ... for operators and 4,B,... for
matrices.

2.1. Excursus to the Approximation Theory

Practically relevant methods approximating functions in higher dimensions are
usually based on some kind of separation of variables. One may try to approx-
imate a multi-variate function F : R — R, d > 2, in the form

Fr(x1, o0y x, Zqﬂ x1) xq) ~ F, (2.1)

where the set of functions {®}(x;)} can be fixed or chosen adaptively (cf. dis-
cussion in [2]). Here the key quantity is », which is usually called the separation
rank and which should be reasonably small. One expects the approximation error
to tend to zero as r — oo, but the crucial question is how r depends on the
required approximation accuracy.

Let ¢ > 0 be the required approximation accuracy. In the case of globally analytic
data, the classical polynomial approximation by interpolation at tensor-product
Chebyshev nodes implies

r= 6’((10g|10g8|)d*1|loge|d*1)7 (2.2)

where the low-order factor O((log|loge|)?™") appears because of the bound
O(log | log ¢|) on the Lebesque constant due to the tensor-product interpolation (cf.
[17],[21, Theorem 4.1]). The above mentioned estimates are based on the standard
results for the best polynomial approximation of analytic functions. Let
I :=[-1, l]d and let E! C C be the interior of the ellipse with focal points £1 such
that the sum of semi-axes equals r > 1. Weset £, := E, X ... X E} . Let A(Ey, 1o; M)
be the subset of those continuous functions on /y which can be extended analyti-
cally into E; and are bounded there by the positive constant M. In opposite to the
one-dimensional construction in the multi-dimensional case there are various
possibilities to choose the polynomial space 7,. One can use, for example,

P(x) = Z axx* € tm, x €1y C R,

0<k<m-1
with the multi-index notation k= (ki,....,ks), m= (my,...my), m—1=
(my —1,...,mg—1), xX = x’f‘ ‘--x’;”, where 0 < k < m — 1 means the component-

wise inequahtles 0<ki<m;j—1 (j=1,..,d). The dimension of my Iis
N =dimny, = H;l:l m;. Given a function f(x) € A(E;,Ip; M), choosing N points
x( ... x™) lying on a m; x ... x my tensor-product grid in Iy, we want to deter-
mine a polynomial P(x)) = P(x"), f) — the interpolation polynomial — satisfying
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PV, f)=f(xY),  j=1,..,N.

These conditions define the projector P: C(ly) — &, P: f — P(-,f). It is known
(see, e.g., [17]) that for m; = --- = my = m there exists a constant C independent
of n such that

||f(X) - P(XU))HOc < C(lOg m)dr”"

for some r > 1. Thus, in order to arrive at a given tolerance & we require
m = 0((log|loge|)|logel), i.e., one needs at least

N, =0 ((log |loge|)?| log e|d)

parameters. Obviously, one can apply interpolation algorithms to achieve these
optimal characteristics for the separable approximation (2.1). The constructions
of such algorithms for analytic data that represent certain operator-valued
functions is one of the aims of this paper.

For more general classes of multi-variate functions one obtains much worse
complexity estimates. Let X = W) (M;1) with M = (M, ..., Mq) and r = (r1, ..., 7q)
be the class of anisotropic Sobolev spaces defined on the d-dimensional interval

I= Hj.':l la;,b;] possessing generalised x;-derivatives of order »; which are boun-

ded by the constants M; with respect to the Chebyshev norm | -|. The
important characteristics of this function class are the effective class smoothness
p= 1/(27:1 rj’l) and the class constant u = Hj.’:l M]’-)/rf (cf. [1, p. 81]). It is known
(cf. [1, p. 232]) that for this class we need

N < const(y) - ¢~ 1/ (P = 1/P)

parameters in order to approximate an arbitrary function of this class with a

given tolerance &¢. Note that Ng(op 2 grows exponentially as d — oo. This phe-

nomenon is known as the ““‘curse of dimensionality’.
The familiar hyperbolic-cross approximation (cf. [25], [13]) allows to get rid of

this phenomenon. It applies to the class of functions with higher mixed derivatives
and leads to a complexity » = O(n log?™! n).

On the level of operators (matrices) we distinguish the following structure. Given
amatrix 4 € CV*V of order N = n?, we try to approximate 4 by a matrix 4, of the
form

A=) Kl alixd, (23)
k=1

where the ¥/ are n x n-matrices and ® denotes the Kronecker product operation.
Now the crucial parameter is r, called the Kronecker rank (cf. [20]). Very little is



Hierarchical Tensor-Product Approximation 135

known about the approximability of nonlocal operators (e.g., integral and
pseudo-differential operators, operator-valued functions) by the Kronecker ten-
sor-product ansatz (2.3). The HKT approximation to the integral operators with
asymptotically smooth kernel was introduced in [20], tensor approximations of
some function-related matrices have been addressed in [26].

The main result of the present paper is a proof for the existence of tensor product
approximations to exp(—t.</), &/~ (¢ > 0) and the Lyapunov-Sylvester solution
operator, in the form (2.3) with a Kronecker rank » = (| log s|2) independent of
d (cf. (2.2)). Furthermore, we provide a constructive algorithm producing 4, in
the HKT form (cf. [20]), where each Kronecker factor ¥/ is given in the # -matrix
format with complexity 0O(n log* n). This leads to an overall cost

O(dnlog* n|loge|*) to compute the discrete elliptic inverse .#~'. Note that the
dimension d appears as a factor but not in the exponent.

2.2. Strongly Positive Operators

The following notation is commonly used in operator theory. A densely defined
closed linear operator .o/ with the domain D(.e7) in a Banach space X, with the
spectral set g(.<7), the resolvent set p(.«/) and the numerical range v(.e7) is said zo
be of type (0,M) for 0 € (0,n/2) and M > 1, if C\Zy C p(Z),

M
Iz —2)7"| < i for Re z < 0,
z

M, .
H(zz—ﬂ)*lugﬁ for 0+ € < |argz| < m with € > 0,
z

where Xy = {z € C: 0 < |argz| < 0} for 0 € (0,7/2) (cf. [5, p. 6]). In what fol-
lows, we suppose that zero belongs to the resolvent set of .«7. By #(X), we denote
the space of bounded linear operators in a Banach space X.

Let a;(x) = a;i(x), b;(x), c(x) be real valued smooth functions on Q € R? and
suppose uniform ellipticity,

d
éﬁezaij(x)éiéj > o for & = (&, &) € RY and x € Q

ij=1

with a constant ¢ > 0. Given

7 J

Jzi*—Zd:iw-(x)iwLXd:b-(x)iJrc(x)
=T = e

with X = L*(Q) the associated bilinear form reads

0= [ {3 a2 S0 24 el b
a\u,v) = o i.jZICZUX 8xj8xi - Jx 8ij c(x)uv
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with ¥ = H} (Q). The bilinear forma : ¥ x ¥ — R is continuous and it is assumed
to be V-elliptic:

la(u,0)| < Cllully ol Rea(v,0) > dollell3, 5 >0,
and the corresponding elliptic operator .o/ satisfies
1
||(ZI — ’52{)71”)0—)( S m for all z € C with 01 S |argZ| S , (24)

for any 0, € (0, n), where cos ) = d/C.

Note that operators of type (6,M) are also called strongly positive with the
spectral angle 0 € (0,7/2) (see, e.g., [6] and the references therein).

In the case of discrete elliptic operators (say, 7 is the FEM stiffness matrix
corresponding to @) the bound (2.4) on the matrix resolvent is valid uniformly in
the mesh-size 4 (cf. Example 4.3).

3. Exponentially Convergent Quadrature Rules

In the following, our low Kronecker rank tensor-product approximations are
based on efficient quadratures for the arising improper integrals on
R := (—o00,00). Quadrature rules with an exponentially convergent rate can be
based on the so-called Sinc-quadrature formulae from [24]. We consider the inte-
gral

I(f):/?(x)dx (0=R orw=R,), (3.1)
(&}
under different assumptions on the integrand & : v — #(X). The quadratures

discussed below can be applied, in particular, to operator- or matrix-valued
functions of a strongly positive elliptic operator .o7.

Let @ = R. We introduce the family H'(Ds) of all operator-valued functions of
strongly positive operators, which are analytic in Ds := {z € C: [Smz| < J},
0 < 6 < m, such that for each # € H'(Ds) there holds 17 [l (p,) < o0 with

17 oy = / 17 @)ldz]-
0D

3.1. Standard Sinc Quadrature

Given Z € H! (Ds), h >0, and M € N, we use the notations

In the case w = R, the error estimate of #,, is as follows (cf. [24]). If

F (9] < Cexp(—b|E|) for all £ € R with b,C > 0, (3.3)
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then the error 7,, from (3.2) satisfies

ef2m3/h 1
Iy (F,h)|| < C WHQJHH'(DO) +ZeXP(_th) . (3.4)

The choice h = /2nd/M leads to the exponential convergence rate
Iy (7, )| < Ce 2o (3:5)
with a positive constant C independent of M (cf. [24], [8], [9]). Note that 2M + 1 is

the number of quadrature points. If # is even function, the number of quadrature
points reduces to M + 1.

In the case of integrals defined on R, one has to substitute the corresponding
integral by £ = ¢(z) with a bijection ¢ : R — R,. This changes % into the inte-
grand 7 := ¢ - (Z o @) over R. Assuming %, € H'(D;), one can apply (7)—(9)
to the transformed function. For the respective families of operator-valued

functions on R, , the domain of analyticity Ds will be substituted by Dgl) or DE?),
specified in the examples below.

3.1.1. Example 1: Polynomial Decay
Let us set w = R, and assume the following two conditions (cf. [24, p. 193]):

(i) the integrand % can be analytically extended from the real half-axis into the
sector

Dgl) ={zeC:arg(z)| <} for some 0 < J < T;
(i) & satisfies the inequality
|7 @) <clzl* (1 +1]z)) ™ forsome 0 <o, f<1andallze DEsU' (3.7)

For the ease of exposition we consider only the case o = 1. Choosing m € N and
taking

WY = \/216/(pm), (3.8)

we define the corresponding quadrature rule

M
L(7)=h0 3 kg z @), A= = (39)
k=—pM

possessing the exponential convergence rate

Hz(g«f) 4})(%)” < Cem VoM (3.10)
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with a positive constant C independent of M. Note that in the case =1, the
bound (3.10) coincides with the standard estimate (3.5).

3.1.2. Example 2: Exponential Decay

Let us set w = R, and assume that the integrand % in (3.1) can be analytically

extended into the “‘bullet-shaped” domain Dg2> = {z € C: |arg(sinhz)| < ¢} for
some 0 € (0,n), and that F satisfies

2l

a—1
) e e in DY with 0, 1].
1+|z> e in D;” with o, f € (0, 1]

17 @) < c(

Again we set « = 1. Then choosing #®) = h(!), we obtain the quadrature rule

M
IDF) = 3" WP F (D), 2 =logle” + V14207, ) =142
k=—pM

(3.11)

possessing again the exponential convergence rate (3.10).

3.2. Improved Quadratures in the Case of Hyper-Exponential Decay

In this section, we construct a new Sinc-quadrature rule for the integral (3.1)
defined on R with the operator-valued function % of a strongly positive operator.
This quadrature is similar to that one in [9] and converges faster than (3.5).

Adapting the ideas of [24], [9], one can prove the following approximation results

for functions from H'(D;), describing the accuracy of T(#,h) and Ty (F,h)
(cf. Lemma 2.4 in [9]).

Lemma 3.1: For any operator valued function # € H'(Ds), there holds

efné/h
Fh)|| < ———~|F . 3.12
97 D < 55Ty 17 o (3.12)
If, in addition, [ satisfies the condition

|7 (&)]] < Cexp(—be® ) for all ¢ € R with a,b,C > 0, (3.13)

then the error ny, of the quadrature Ty (F ,h) satisfies

o—2md/h 1 .

s (7, )| < Cly— 257w 17 e o)+ exp(=be™™) (3.14)

with the parameter 5 from H'(Dy).
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Proof: The bound (3.12) is proven in [8]. Assumption (3.13) now implies

g (Z )| < In(F )|+ kY |17 (ki)

|k|>M
exp(—md/h) |
< ——\Z |y p. +ch exp(—be™™). 3.15
i) |7 o b 32 explobert). - (315)

For the last sum we use the simple estimate to obtain

Z exp(—be®™y =2 Z exp(—be )

kelk|>M k=M+1
o0 2
<2 / exp(—be®™Ndx = ——exp(—be™). (3.16)
M abh
Now (3.15) and (3.16) imply (3.14) completing the proof. O

Due to Lemma 3.1, we can improve the asymptotical convergence of the above
quadratures for the integral (5) in the case w = R. Let fo) be the domain

D(3> = =u+iv v u’ <1
=Qz=ut v —— — ———
0 sin?é cos2d = ]

where 0 < § < /2 (see Fig. 3.1). Returning to the integral (3.1), we can change
the variables by z = sinh w and obtain the integral

1(F) = /R F (2)dz = /[R F (w)dw

with the integrand 7 (w) = cosh w# (sinhw). Under the assumption that .7 (z)
satisfies (3.3), and that it can be analytically extended into the domain DS), we

conclude that the new integrand 7 (w) possesses a hyper-exponential decay (3.13)

~ -
~ -
~ -
~ | -
~ -
~ - 3
d ~ | - oYY
el N
PR
d 70~
~
- ~
- ~

Fig. 3.1. The analyticity domain fo)
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and can be analytically extended into the domain Ds. Now assuming that
F € H'(Ds), we arrive at the situation of Lemma 3.1 and get the following
quadrature rule for (3.1):

(7)) = 3 k7)), (3.17)

where, with some fixed constant C;,; > 0,

logM

WY = Cint77 k3 = cosh(wy), wp = kh®, zf) = sinh w,(f).

Due to Lemma 3.1 (cf. (3.4)), there are some positive constants C,s such that

]My%ﬁﬂyﬁg@ﬂwmﬁ (3.18)

3.3. Numerics I

To complete this section, we present numerical results characterising the expo-
nential convergence of the quadrature rules (3.9) and (3.11). We compute the
integral

L / e "dt, r>0. (3.19)
0

7

The table below represents the error of 1,5,2 )(,97 ) from (3.11), where m is the
parameter from (3.8).

Quadrature (3.11), r = 1.0

m 4 9 16 25 36 49 64

€ 2.610-3 6.019-5 1.319-6 1.810-8 3.910-10 5.440-11 3.610-12

The next table shows the error of quadrature ],<,,1>(37 ) from (3.19) applied to the
above integral.

Quadrature (3.9), r = 1.0

m 4 9 16 25 36 49 64

€ 1.319-2 6.710-4 5.110-5 6.710-7 1.010-7 6.410-10 1.810-10

The last table shows the dependence of m (necessary to achieve the accuracy
e < 4.0\ — 7) with respect to the parameter f from 10 in the case of quadrature
(12). Here a small > 0 corresponds to a small parameter r in the exponent in the
right-hand side of (3.19).
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Quadrature (3.9), accuracy ¢ < 4.0 - 1077

r 1.0 107! 102 1073 10 10°° 10
m 36 81 121 169 200 280 440

3.4. Numerics I

We present numerical results for the quadrature rule (3.17) applied to
F(u) =e . We confirm exponential convergence of the quadrature (3.20),
namely

M
hg:mmWM%mMM»z/
k=—M

F@W:/mmmﬂmmmm,(mm
R R

approximating the Gauss integral

T
—= “dt. 3.21
= / ’ (3.21)

This integral is commonly used in quantum chemistry calculations as well for
representation of certain matrix valued functions. Clearly, in a certain range
[Ri,R2] of ¥ (R; < 1 < Ry), the function cosh(w)F (sinh(w)) satisfies all conditions

of Lemma 3.1. Thus, we choose & = Ciy 10;\,;[/\/1 and obtain fast exponential con-

vergence ((e~M/1°eM) for r € [Ry, Ra).
Quadrature (3.20) for (3.21), r = 1.0

M 4 9 16 25 36
£ 1.150-4 1.510-6 2.310-9 2.010-12 < 1.040-15

Figure 3.2 represents the convergence history for (3.20) corresponding to the
choice » =1 and Cj, = 1.0. This quadrature shows a similar convergence in the
interval » € [0.2,10], i.e., in this case R,/R; =~ Q = 50. An application of this
quadrature for a larger range [Ryn, Rmax] requires piecewise quadrature using a
rescaling of r in each subinterval., thus, in general, we need about pM quadrature
points, where OF = R4y /Ruin (cf. [18] for a quadrature, which is robust with
respect to the condition number R,/ Ruin)-

The following table shows the quadrature error of (3.9) applied to the integral
(3.21) with » = 0.1.

Quadrature (3.9), r = 0.1

M 4 9 16 25 36 49 64
& 6.210-2 1.810-3 2.810-4 1.510-5 3.710-7 2.010-9 1.310-10

In the second example, we set F(u) := e“~"¢" in (23), which applies to the integral

1o / e du, (3.22)
R

7
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F=exp(-r®t?),r=1.0,C_=1.0

error

2 4 6 8 10 12 14 16 18 20
M — number of quadrature points

Fig. 3.2. Approximation to the integral (3.21)

obtained from (3.19) by the substitution #=e¢“, u € R. Here we choose
h = CintEM with Cipe = 1.35.

Quadrature (3.20) for (3.22), »r = 1.0

M 4 9 16 25 36 49 64

€ 1.619-2 1.010-5 2.63-6 4.110-9 2.710-11 2.11p-12 5.210-14

Figure 3.3 illustrates exponential convergence (we use a semi-logarithmic scale),
though the theoretical analysis does not imply the desired estimate. The above
quadrature converges faster than (3.11), however, the convergence rate strongly
deteriorates if R,qyx/Ruin increases. The robust quadrature for the integral (3.19) is
presented in [18].

4. Tensor-Product Approximation to exp(—t.c7)
4.1. Approximation to exp(—t</) by a Sum of Few Resolvents

It was shown in [22, p. 30] that each operator exponential e™*¥ with ¢ € [0, c0)
(belonging to the semi-group {e~*“ }1>0 generated by a strongly positive operator
/) can be represented by the Dunford-Cauchy integral

1
T(t;o) = e = 2 - ez — A) dz
1 —t —1 1 / —t -1
=— Wzl — o) dz+— (zl — /) d
27'Ci I, ¢ (Z ) 2 271:1 T ¢ (Z ) i

where I'=1,+1T_ is a curve in the resolvent set with the ray I'y =
{z:z2=pe" pc(0,00)} running from oce’ to 0 and the ray I ={z:z=
pe ™ p e (0,00)} running from 0 to coe~%. This leads to the representation
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10 po

_2 .

T

T

F = exp(t-r exp(t)), r=1.0, C;nt=1.0

.

4 7

10 13 16 19 22 25 28 31
M — number of quadrature points

F = exp(t-r exp(t)), r=1.0, Cint:1 A

error

4 7

10 13 16 19 22 25 28 31
M — number of quadrature points

F = exp(t-r exp(t), r=1.0, =12

10 —

error

4 7

Fig. 3.3. Quadrature (3.20) for the integral (3.22), » = 1.0, with different Ciy,

10 13 16 19 22 25 28 31
M — number of quadrature points

143
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r(isot) =5 [ Fp)d. (1)

where F = —¢'"F + ¢~ F, with
F1 (t, ,0) _ e—tp(cos()1+isin()1)(pei()ll _ %)*1’

Fz(t, ,0) _ eftp(cos 0, —isin ()1)(,0671'()1] _ sz)il

We choose 0, >0 such that 0, +0, <zn/2 and 0, — 0, > 0. Considering
p = |ple®, || < 0, as a complex variable, one can easily see that the integral can
be extended analytically into the sector

2(')2 = {p = |p|el¢ : |p| € (0,00)7(]5 € (702792)}7

and the following estimates hold in Zy,:

it plei(@+0y)
1 (8, p)II = lle™ P (ple @01 — )7
< eft|p|cos(gb+91 (1 + |P|)_ < eft|p|cos(02+0|)(1 + ‘P|)_17
[ )| = lle™ P (ple! 00T — ) 7H| < el B0 (1 o o)~

Thus, the integrand in (4.1) can be analytically extended into the sector Dgl) from
[24, p. 68] (see also (3.6)) with 6 = 0, and in this region the estimate (3.7) holds

w1th o = f§ = 1. This means that we can apply the quadrature rule (3.9) with
27t(3/M to derive
D I () M () D
I(¢) = I/ (1) :%k;ukk F(t,z)), x) =", z) =" (42)

which possesses the accuracy ¢/(e~V?™M). The formulae

M
— 1 1 - 1 1 -1
T(6) =~ T (6) = 1 (0 = > [l @ =)™ + kDo - )7
=M
(4.3)
with
i01 (1) (1) .
) :_e —1e"" (cos 0y +isin ;) kh()
K1 (1) € e,

—i0

e "'h eftekh(l)(cos 0, —isin Hl)ekh(1>

) 2mi ’
() _ kn iy (1) _ kb —i0
Ck,l—e € lyé’k,z—e e,
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and I}P(t) computed according to (4.2) represents new exponentially convergent
algorithms for the operator exponential of a strongly positive operator with the
accuracy e“‘\/"_’[, where the constant s depends on the spectral characteristics of .o7.

Due to Lemma 3.1, we can improve the asymptotical convergence of the above
quadratures to the better estimate (21). Let us defines the so-called spectral curve

Is={z=¢+in:&=ay’ +by}, (4.4)
containing the spectrum sp(.<) of the operator .«7.

Lemma 4.1 [9]: Let the spectral curve for of be T's defined by (4.4). Choose the
(integration) curve T'y={z=¢+in: &= a,cosh(s),n = b.sinhs} with a,, b,

such that Ty envelops Ts. Then the operator exponential T(t;.«/) = e can be
represented by the Dunford-Cauchy integral
1
T(t; o) = —/ ez — o) dz = /Fl(s, t)ds,
T I, R
where the integrand
Fi(s,t) = —5e 2 (s)(zl — )", (45)

z = a, cosh(s) + ib, sinh(s), Z/(s) = a. sinh(s) + ib, cosh(s), s € R,
can be estimated on the real axis by
1A (n,1)]] < Mye~"Vetbilsinhsl — for 5 € R

with some positive constant M. Moreover, Fy (-, t) can be analytically extended into
the strip Ds of the width 6 > 0 and belongs to the class H' (D) (even to the suitably
defined spaces HP (Dy) for all p € [1,0)).

The operator exponential T(¢ .o7) is represented as integral according to Lemma
4.1. Applying the quadrature rule 7), (cf. (3.2)) to the operator valued function
Fi(n,t) given by (4.5), we obtain for the operator family {/(¢t) = T(#; /) : t > 0}
(cf. (3.1)) that

M
1(t) = Ty (Fi,h) = h Y Fi(kh,1). (4.6)
k=—M
The error analysis is due to Lemma 4.1: Set h = k’gTM, then (cf. Theorem 2.5 in [9])
1

||T(t7 ‘Q/) - TM(t,LQ/)H < (372”‘3M/108M 4 et angbgM).

t\/az + b2

We see that for fixed # > 0, the error of this quadrature becomes (/(e~°M/10eM),
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4.2. Tensor-Product Representation of exp(—t.</) in R?

Let of = Z‘f:l o/ ; be a strongly positive operator, where .«/; are mutually com-
mutative, strongly positive operators with the respective spectral sectors S;. Then
we introduce the tensor-product approximant

:ﬁT(l; He i T(t m(t;&/):ﬁTmi(t;Jz{j), (4.7

j=1 j=1 J=1

where each of the operator exponentials 7, (#;.</;) can be computed by Algorithm

(4.3) or (4.6). Here we use the notations m = (m, ..., my). We denote by m; the
quadrature parameter in the quadratures above. For simplicity, we consider only
the case m = (m, ..., m) with fixed m; = m.

Lemma 4.2: For any fixed t > 0, the approximation error by (4.7) satisfies
lle™ — T(t; )| < Cde™M, (4.8)

where M = \/m in the case of (4.3) and M = m/logm in the case of (4.6), and
where C and s depend neither on d nor on m.

Proof: Representing the error by a chain sum, we arrive at the estimate (say in the
case (4.3))

”e—ty/ o Tm(l;.,Q{) H _ ” [e—t,,cfl _ Tm}e—t%z . .e—t{q/d + Tm(l) [e—m/z o Tm (t)]e—tylg . _e—t&/d
o T () T()[e " = T, (1)] |
< Cde™sV™

providing an error bound (4.8) with C,s being independent of d, m.

To represent the operator exponential with small # > 0, in the following propo-
sition we use an approximation to the weighted exponential
T,(t) = T,(t; 4) == /%", t >0, ¢ >1, which guarantees an exponential
convergence rate for all # > 0.

Proposition 4.3 [9]: (a) Let ¢ > 0 be given. In order to obtain ||T,;(t)— Ty (2)||
<& uniformly with respect to t > 0, choose

M= 0(lloge), h = /ad][o],
zp = z(kh) = E(kh) + iy (kh) (k=-M,...,M),
&(s) = a.coshs, Y(s) = b, sinhs,

—0 ,—Z h
Yoi(t) =2z %€ ktz—m.z/(kh)-

Then T, (t) is a linear combination of 2M + 1 resolvents with scalar weights
depending on t:
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0= Vsl =)
k=M

so that the computation of Ty (t) requires 2M + 1 = O(|log s|2) evaluations of the
resolvents (zil — )" k=—M,... M.

(b) The evaluations (or approximations) of the resolvents can be performed in

parallel. Note that the shifts zy are independent of t.

(¢) Having evaluated the resolvents, T, (t) can be determined in parallel for dif-
ferent t-values t,t,,... .

In practical computations one can choose ¢ = 2. Hence, the operator exponential
T, (t;<7;) in (33) can be approximated by

T (t; 4 }) 2 A5 Ty (1557 ). (4.9)

4.3. Some Examples

Example 4.4: As a basic example we conszder the elliptic operator of = Z A in
the d-dimensional unit hypercube (0, 1) , subject to zero Dirichlet boundary con-
ditions, where

%j = Zak(x/) Ox k’ (_l)ma2/1z(xj) > n> 0,
k=0

is a one-dimensional, strongly elliptic operator. It is known (cf. [7], [22]) that .o/ and
each o/ ; are strongly positive (m-sectorial). Furthermore, it is easy to see that the
operators </; : H"(0,1) — H{'(0,1) are commutative.

Example 4.5: Consider the elliptic operator of divergent type,
d
=D 0a(x)9;,  xeQ=(0,1)",

defined on the Sobolev space H}(Q). We assume that a; > ag > 0. Introduce a
uniform grid with step size h and N = n® interior nodes. Using the (2d + 1)-point
stencil, we obtain the finite difference discretization

d ¢z . — T A
za;jzll.Nld b,,1251 (ij=1). cl',+]zll...(l,'+1)...ld

L J .
Ahz::—z 7 ‘ , 1 <i;<n,
J=1

(4.10)

where z denotes the vector corresponding to [Zilmid]g-:l e RY given in the tensor-
product numbering. In fact, we can regard d-dimensional n X ... X n arrays
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(tensors) also as one-dimensional ones (vectors) with n? components. Then the
matrix Ay in (4.10) takes the form

d
A= _4;,
j=1
where
A=V xIx...xI, Ay=1IxV*x...xI, ..., dg=1x...xIxV?
with
2d] ] 1
o =b, 24 ) 1
V7 :ﬁ . , ] = )
—b,y 24, —¢ !
—b{; 2a{¢ nxn 1 nxn
It is easy to see that A; > 0 for all j =1, ... ,d, and that they commute pairwise, i.e.,

AjAy = AnA;. Finally, (4.7) implies the following tensor-product representation

d
@ (V7).

Example 4.6: In the situation of Example 4.5, we consider an application to par-
abolic problems in R? posed in the semi-discrete form. Using the semigroup theory
(see [22] for more details), the solution of the first-order evolution equation

di
jt;—l—Ahu—ﬁ u(0) = up € RV,

with a given initial vector uy and with a given right-hand side f € L*(Qr),
Or == (0,T) x RY, can be represented as

t

u(t) = exp(—td,)uo + /exp(—(t —8)A4p)f (s)ds, t € (0,T].
0

Assume that our input data can be represented in the tensor-product form
r r
Uy ~ Zull‘(xl) ® ... @ub(xs), [~ Zflk(s;xl) ... ® fr(s;%4)
k=1 k=1

with u¥, fF € R", i = 1,...,d, and with r = O(|logé|"). Then we obtain the tensor-
product approximation
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r d d
u(n) =Yy @Tn/(t; Vf)uf(x_,-)+/®Tn/ (t = s; V) fF(s;x;)ds 3 ~ ult)

— =1
k=1 0 J

which can be implemented with the complexity O(rdnlogl n).

5. A Separable Representation to ./~ and Further Applications

5.1. Inverse of a Strongly Positive Operator

Lemma 5.1: Let o/ be a densely defined, strongly positive operator with the
spectral set a(o/). Then the following integral representation holds:

o7 = /0 e dt. (5.1)

Proof: For .o/ being strongly positive, the semigroup {e™"“} ., can be extended
to an analytic semigroup in the sector

As = {w: arg(w)| < d}

of the complex w-plane and [le™”| is uniformly bounded in every closed sub-
sector Ay, &' < 3, of As (see [22, p. 61]).

Let I' = 0Qr be a closed path in the complex z-plane consisting of the two rays
S(x¢) = {pe™® : 9 < p < o0}

and the circular arc C = {z: |z| =, |argz| < ¢} (see Fig. 4) with ¢ such that

(/) C Or.
A &)
Q.
7
// !
[ AW 24 >
\ |
I
I

Fig. 5.1. The integration path for an unbounded operator .o/
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Letw = |wle¥ € Ay and || < §'. For any ¢ < m/2, there exists a positive number
8" = 0"(¢) such that 6" < ¢ and ¢ + 6" < m/2. Using the representation of e~
by the Dunford-Cauchy integral along the path I', we conclude for w € Ay that

1

7wy/|| _ ‘ 2_m

lle

{_ / &) (pexp(id) — o)\ dp
7
) ) . . 1
—¢

+/ e_WpeXp(_i¢)(p€_i¢—,52/)ldp:| H

2
v

1
2mi

[_/00 ~Wloexpie0)  pexp (i) — ) dp
Y
o
iy / PSP+ 10 (010 _ o\ g
9

[ e g i)y |

9
/

ScU " o pcos(pran 40 / ? o inbeos o) 40 / ooewcowd—”]
Y P —¢ Y y P

(5.2)
The function f(t) =te " is bounded on [0,00) by a constant ¢ yielding the
estimate
, 1 *© 2¢ 1 *©
—w.el < / 72d 72d
R e ] A = e e d AR

(5.3)

which we use for |w| small enough. For |w| large enough and for some positive
€ <y, we get

e sc{/ e mardontb 2 +72¢ | Ooe"‘””“‘wcmd_p]
Wleos( o7 '), )

<c |:e—we]cos(¢+6”) /Ooe—|w\(ﬂ—51)cos(¢+6”)d_p
< i P
2(¢ ot o Ivlarcosg / > o hwllp—a)cosp 4P
|w|cos(¢p+ 0 . 0
< ce-wlacos(@+d"). (5.4)

The estimates (5.3), (5.4) imply that there exists a constant ¢y independent of y, ¢
and constants ¢ = ¢(y, p) < —2— B = B(y,p) < ycos(¢p + §") such that (5.3)

= ycos (p+5")?
holds for all w € Ay. The condition w € Ay now implies



Hierarchical Tensor-Product Approximation 151

, 1
—w.e/ < —pRe w 55
o) < et e P (5.5)

where ¢ — 0o, f —0asy— 0or ¢ — n/2.

The asymptotics in (5.5) ensure the existence of the integral in (5.1). Finally, the
assertion follows from

o0 (o 0] a
,9/(/ exp(—t{sz/)dt) = —/ —exp(—tof)dt = exp(0) =1,
0 0 ot
due to the main property of the continuous semigroup {@_M}tzo- O

Remark 5.2: In the case of a bounded operator < , one can integrate in (5.2), e.g.,
along the closed path as in Fig. 5.2, and gets the estimate (5.5) with constants
depending on vy, and the angle ¢.

Let .o/ = ) .o/; with commutative matrices (operators) .o/; as above. Now, given
M, we get o =1, f=max(1,ycos(¢+ ")) and & (cf. (3.8)) which define the
following quadrature rule:

o M M d
o = / e " dt ~ h® Z K,(cz)efz(kz)'“/ = p? Z K,({z) H efzf)"/f
0

k=—pM k=—pM j=1
M @ d
~ h?) Z K HTK zk7 A) = oA,
k=—pM j=1
where, first, the quadrature (3.11) with A?) = (1) given by (3.8) can be used in

order to approximate the integral [ e™*“dt and then T,f,ak))(z,(f); o/ ;) represents

each exponent ¢ /by Algorithm (4.9) for £(k) =3 or by (35) for £(k) =2
where £(k) is defined by

k) = 3 %f |z,(€2)\ = for some 5 > 0, (5.6)
2 if |Zk ‘ <
and so we arrive at the desired product representation.
A ®
Q

/7 ’ !

2\ | 2l -

\ |« =
|
|

Fig. 5.2. The integration path for a bounded operator .o/
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Let f =1, then the quadrature error to approximate the Laplace transform is

@(e’“m). Furthermore, the quadrature error of our representations to each
individual exponential is O(e=V™) for £ =2 and @(e *"/'°¢™) for £ =3 in the
operator norm. Hence, with r = 2M + 1, we obtain

/" =t < Crem VM 4 Crem 2V 4 Cyemmm/ e,

Remark 5.3: For the matrix arising in Example 4.5, o/ = Ay, we obtain the fol-
lowing low Kronecker rank tensor-product approximation

M
4t = H Y QT ET ) = A, (57)
k=—pM

with  L(k) defined in (5.6). Here each low-dimensional component
T,E,(}'(k))(z,(f); Viy e R™ is a sum of 2m + 1 rank-1 A#'-matrices via the weak admis-

sible partitioning. Hence T,gf(k))(z,(f); V7) is at most the rank-(2m + 1) # -matrix and
(5.7) is the desired HKT approximation to A;".

5.2. Numerics 111

We give numerical examples that illustrate the accuracy of our quadrature rule for
the integral (5.1) in the case of the Laplace operator in R?. We show the spectral
norm of the matrix (see Example 4.5) that represents the approximation error for

the quadrature 1,512),

o=

)

2

A;l _h Z (1 + e—Zkh)@j’:le—sz/

k=—m

where the sum of Kronecker tensor-product terms is calculated with linear
complexity O(dmW (n)) with W (n) being the cost to compute a matrix exponential
in R"™", The main observation is that the rate of exponential convergence does
not depend on the spatial dimension d and also the rate turns out to be nearly the
same as that for the quadrature rules from above applied to the integrals of
analytic functions (compare the tables in Sect. 4).

Approximation to 4;! = A;l in [0, 1]d, with N =n?, n=14

m 4 9 16 25 36
d=1 4.910-3 1.610-4 6.710-6 2.810-7 1.110-8
d=2 6.210-3 2.910-4 1.210-5 4.310-7 2.410-8
d=3 4.419-3 1.910-4 7.419-6 2.919-7 1.310-8
d=4 4.210-3 1.810-4 7.910-6 3.310-7 1.410-8

Our calculations also show that the approximation error practically does not
depend on the “one-dimensional” problem size n, which is also confirmed by our
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theory. The next table shows that with a fixed number of terms in the quadrature
rule (we choose m = 4), we obtain the same accuracy ¢ for different values of the
problem size n.

Approximation for A" in [0, 19, withm=4,d =2

n 4 8 16 32 64
6.2 10-3 7.310-3 7.4 10-3 7.4 10-3 7.610-3

5.3. Negative Fractional Powers of .o/

Similar to the previous section, we can prove the following result.

Theorem 5.4: Let o/ be a densely defined, strongly positive operator, then the fol-
lowing integral representation holds

o/ 0! __ Oct“e—"“’dt o> —1
. _F(6+l) 0 ’ ’

Moreover, let Ay, = A; with commutative matrices A; as in Example 4.5. Define
L(k) as in (5.6), then the following Kronecker tensor-product approximation
obtained by combining the three quadrature algorithms from above,

A}?Uﬁl %h(z) Z ®1 1 m Zk 7V1) Ar (}":2M—|-1),

has an error estimate
437" = 4, < Crem VT - oV 4 Gy mm/owm,

Proof: Analogously to the previous section, the integrand I,(f) = °e~"” can be
analytically extended into the sector A; = {z:|arg(z)| <} and |I;(z)]| is

uniformly bounded in every closed subsector Ay, ' < §, of As. Thus, given M,
we get a=1, f=max(l,ycos(¢+ ")) and & (see (3.8)) and obtain the
representation

00 M )
A;"_l :/0 o gt ms b? Z K]({)(zm)a - yAe) Z K]((z)(zl({z)y@j:le—zw/

k=—pM k=—pM

M
~h? Z K(Z) (2) @, 1 m );Vj)

k=—pM

(see (3.11)) with an error G(e"“‘/"_”) for the external quadrature. Now, we can
represent each e~*"’ by the algorithms (4.9) or (4.6) with an error O(e=>V"™) for
¢ =2 and O(e*"/1°2™) for ¢ = 3 in the operator norm, which leads to the desired
HKT (tensor) representation of 4, ! O
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We note that the case Ah_l/ 2 plays the important role for the interface precondi-
tioning in FEM and BEM applications.

5.4. A HKT Representation to the Lyapunov-Sylvester Solution Operator

As an example we consider the matrix Sylvester equation

AX+XB=G
with the solution given by the integral

7 (G;4,B) = / e Ge Bdt, (5.8)
0

(see, e.g. [8]), where we suppose that 4, B provide the existence of this integral (for
example, that 4, B are strongly positive and G is bounded). A particular case is the
Lyapunov equation

AX +X4 =G
with the solution

F(G;A) = / e Ge "t
0

generated by a discrete elliptic operator A4.

Analogously as above for 4 being strongly positive, the semigroup {e},., can
be extended to an analytic semigroup in the sector

A5, = {w: |arg(w)| < 64}
of the complex w-plane and [le™"4| is uniformly bounded in every closed

subsector K%, 5;1 <04, of As,. Let I'y = 0Qr be a closed path in the complex
z-plane consisting of the two rays

Su(£e,) = {0 1y, <o < oo}

and the circular arc C = {z: |z =y, |argz| < ¢, } with ¢, such that
G(A) C QFA«

Let w = |wle € K(;; and || < &',. Since ¢, < /2, there exists a positive number
8" = 8'j(¢p,) such that &'y < ¢, and ¢, + " < /2. Using the representation of

e by the Dunford-Cauchy integral along the path I, analogously as above we
get the estimate

—wA —f4Re w
< A
for all weAy, where c¢y=cy(yy,d ) < 7}“0;&0@%;), Bi=Bu(rs, dby) <

7,408 (¢, + 8%), the constant ¢y is independent of y,, ¢, and ¢4 — oo, B, — 0 as
y4 — 0or ¢, — m/2.
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Similarly, one defines the constants &g, 0}, 5y, 75, ¢s,cs, By and gets the
estimate

He—wBH <cp e—/}B,XRe w

1+ |w|
for all w € Ay Thus, in the smallest of the two sectors Ay, Ay, we have

||efwAGefwB|| < c4cp e*(ﬁAﬁLﬁB)?Re w,

1+ |w|

which provides the representation (5.8). Moreover we can use the quadrature
(3.11) in order to approximate the integral fow e “Ge "Bdt and then again one of
the quadratures (3.11) or (3.17) in order to approximate the split operator
exponentials:

[o¢] M 7
eg‘j(G7 A7 B) = / e_tA Ge_tht ~ h(2> E Kl(cz)e—Z,(;)A Ge—z]({z)B
0 =M

(e el 1)

d d
2 H 2
K( )< Tn<1[ Zk > j ) < TZ Z/(c)v j )a (5'9)
J=1 J=1

where T,,(,ak))(z,g);A i), T,,(f(k»(z,({z);Bj), for various ¢(k) = 2,3 denote one of the
algorithms (4.9), (4.6). The accuracy of the product approximation (5.9) is
bounded by the error @(eﬂm) for external integral, while for internal quadra-
tures we have the error ¢(e V™) for £ =2 and (e /12 for ¢ = 3, respec-
tively, in the operator norm. Now, we can summarize our considerations in the
following assertion.

‘HM& QM&

k

Theorem 5.5: Let A and B be strongly positive matrices, then the following integral
representation

7 (G;A,B) = / e “Ge Bar
0

holds. Moreover, let A=A+ ...+ A4,B=By+ ...+ By and let {4;},{B;} be
commutative sets of matrices (but A; must not necessarily commute with B;), then
the tensor-product approximation

M d d
7(GiA,B) =~ 1P Y il (H )(22; ,) (HTé (27; )z ,

with £(k) defined by (5.6) allows an error bound



156

1. P. Gavrilyuk et al.

7(GiA,B) = 4] < Cre™ T 4 Coem 4 Cgsmoun

in the operator norm.

The statement similar to Remark 5.3 remains true.
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