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Abstract

The class ofH-matrices allows an approximate matrix arithmetic with almost linear complexity. In the
present paper, we apply the H-matrix technique combined with the Kronecker tensor-product
approximation (cf. [2, 20]) to represent the inverse of a discrete elliptic operator in a hypercube
0; 1ð Þd2 Rd in the case of a high spatial dimension d. In this data-sparse format, we also represent the
operator exponential, the fractional power of an elliptic operator as well as the solution operator of the
matrix Lyapunov-Sylvester equation. The complexity of our approximations can be estimated by
Oðdn logq nÞ, where N ¼ nd is the discrete problem size.

AMS Subject Classifications: 65F50, 65F30, 46B28, 47A80.

Keywords: Hierarchical matrices, Kronecker tensor products, high space dimensions, Sinc-quad-
rature.

1. Introduction

There are several sparse N � N -matrix approximations which allow to construct
optimal solution methods for elliptic/parabolic boundary value problems with
OðNÞ arithmetic operations. In many applications, one has to deal with full
matrices arising from boundary element discretisations (BEM) or FEM methods.
In the latter case the inverse of a sparse FEM matrix is a full matrix.

A class of hierarchical ðHÞ matrices has been introduced and developed in [15]-
[19], [11]. These structured matrices allow an approximate matrix arithmetic
(including the computation of the inverse) of almost linear complexity and can be
considered as data-sparse. Given an elliptic operator A, it is of important the-
oretical and practical interest to find H-matrix approximations of the operator

exponential expðtAÞ, of sinhðt
ffiffiffiffiffi

A
p
Þ and of cosðt

ffiffiffiffiffi

A
p
Þ, which represent the solu-

tion operators for evolution differential equations of parabolic, elliptic and
hyperbolic types, respectively. Another interesting example of an operator-valued
function is given by sign ðAÞ that arises in many-particle simulations, control
theory and linear algebra. Data-sparse ðHÞ-matrix approximations of almost
linear complexity in N based on the efficient Sinc-quadrature for the Dunford-
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Cauchy integral representation to the above mentioned operator-valued functions
have been developed in [7]-[9]. Note that generalised Gaussian quadratures for
certain improper integrals were described in [27]. The basic approximation theory
by exponential sums is presented in [3].

There are important applications requiring computations in higher spatial
dimensions, where the problem size may grow exponentially in d, i.e., N ¼ OðndÞ.
In particular, we mention the many-particle Schrödinger equation in quantum
chemistry and material sciences, the Black-Scholes equation describing option
pricing problems in financial models as well as multi-dimensional data mining
problems. We stress that due to the ‘‘curse of dimensionality’’, in the case of
higher dimensions linear complexity OðNÞ is not satisfactory, hence we are
looking for efficient methods with a cost Oðdnp logq nÞ, with p; q independent of d:
A desirable cost would be a clearly sublinear cost like Oðdn logq nÞ (i.e., p ¼ 1Þ.

The approximability of integral operators in higher dimensions using the so-
called hierarchical Kronecker tensor-product format (abbreviation:HKT format) is
proven in [20]. Therein, also numerical experiments indicating exponential con-
vergence of the HKT approximation to the inverse of an elliptic operator were
presented. Moreover, the efficiency of the corresponding matrix algebra involving
tensor-product vector representation was also addressed (see also [26] for tensor
representation of function generated matrices). In paper [2], the idea was de-
scribed on how the inverse to the multi-dimensional Laplace operator D can be
approximated in the Kronecker tensor-product format using an integral repre-
sentation to ð�DÞ�1 that includes the operator exponential expðtDÞ (cf. (37)).
However, both the theoretical analysis and numerical tests are missing there.
Computational aspects of a low Kronecker-rank approximation to the solution of
a tensor system with tensor right-hand side were considered in [10]. The HKT
approximation to the matrix-valued functions A�1 and sign ðAÞ for indefinite
matrices A representing the discrete elliptic operators is addressed in [18].

In the present paper, we construct and analyse an HKT approximation to A�1

and to expð�tAÞ in higher dimensions d for the general class of strongly positive
operators A in Rd , defined as a sum of low-dimensional commutative operators.
Combining the tensor-product representation that includes one-dimensional
operators and then approximating the latter in the H-format, we arrive at the
complexity OðdN 1=d logq N 1=dÞ ¼ Oðdn logq nÞ. Finally, we develop the data-sparse
HKT approximation to fractional powers A�r (r > 0) of an elliptic operator as
well as to the solution operator of the matrix Lyapunov-Sylvester equation. In
the case of discrete elliptic operators we provide a unified construction of the
approximate inverse to a family of matrices provided that the spectrum of the
corresponding matrix family lies in a fixed sector in the right half-plane.

Note that our approach represents the (approximate) inverse of the finite
difference or finite element approximations to A�1 on a hypercube and, hence, it
can be interpreted as an extension of the widely used Fast Fourier Transform
(FFT). In fact, contrary to the FFT, the presented method applies to nonuniform
tensor-product grids and to variable equation coefficients.
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2. Preliminaries

In the following, we use the notation A;B; ::: for operators and A;B; ::: for
matrices.

2.1. Excursus to the Approximation Theory

Practically relevant methods approximating functions in higher dimensions are
usually based on some kind of separation of variables. One may try to approx-
imate a multi-variate function F : Rd ! R, d � 2, in the form

Frðx1; :::; xdÞ :¼
X

r

k¼1
U1

kðx1Þ � � �Ud
k ðxdÞ � F ; ð2:1Þ

where the set of functions fUl
kðxlÞg can be fixed or chosen adaptively (cf. dis-

cussion in [2]). Here the key quantity is r, which is usually called the separation
rank and which should be reasonably small. One expects the approximation error
to tend to zero as r!1, but the crucial question is how r depends on the
required approximation accuracy.

Let e > 0 be the required approximation accuracy. In the case of globally analytic
data, the classical polynomial approximation by interpolation at tensor-product
Chebyshev nodes implies

r ¼ O ðlog j log ejÞd�1j log ejd�1
� �

; ð2:2Þ

where the low-order factor Oððlog j log ejÞd�1Þ appears because of the bound
Oðlog j log ejÞ on the Lebesque constant due to the tensor-product interpolation (cf.
[17], [21, Theorem 4.1] ). The above mentioned estimates are based on the standard
results for the best polynomial approximation of analytic functions. Let
I0 :¼ �1; 1½ �d and let E1

r � C be the interior of the ellipse with focal points �1 such
that the sum of semi-axes equals r > 1. We set Er :¼ E1

r1 � ::: � E1
rd
. Let AðEr; I0; MÞ

be the subset of those continuous functions on I0 which can be extended analyti-
cally into Er and are bounded there by the positive constant M . In opposite to the
one-dimensional construction in the multi-dimensional case there are various
possibilities to choose the polynomial space pm. One can use, for example,

P ðxÞ ¼
X

0	k	m�1
akx

k 2 pm; x 2 I0 � Rd ;

with the multi-index notation k ¼ ðk1; :::; kdÞ; m ¼ ðm1; :::;mdÞ; m� 1 ¼
ðm1 � 1; :::;md � 1Þ; xk ¼ xk1

1 � � � x
kd
d , where 0 	 k 	 m� 1 means the component-

wise inequalities 0 	 kj 	 mj � 1 ðj ¼ 1; :::; dÞ: The dimension of pm is

N ¼ dim pm ¼
Qd

j¼1 mj. Given a function f ðxÞ 2 AðEr; I0; MÞ; choosing N points

xð1Þ; :::; xðNÞ lying on a m1 � :::� md tensor-product grid in I0, we want to deter-

mine a polynomial P ðxðjÞÞ ¼ P ðxðjÞ; f Þ – the interpolation polynomial – satisfying
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PðxðjÞ; f Þ ¼ f ðxðjÞÞ; j ¼ 1; :::;N :

These conditions define the projector P : CðI0Þ !L; P : f ! Pð�; f Þ. It is known
(see, e.g., [17]) that for m1 ¼ � � � ¼ md ¼ m there exists a constant C independent
of n such that

kf ðxÞ � P ðxðjÞÞk1 	 CðlogmÞdr�m

for some r > 1. Thus, in order to arrive at a given tolerance e; we require
m ¼ O ðlog j log ejÞj log ejð Þ, i.e., one needs at least

Ne ¼ O ðlog j log ejÞd j log ejd
� �

parameters. Obviously, one can apply interpolation algorithms to achieve these
optimal characteristics for the separable approximation (2.1). The constructions
of such algorithms for analytic data that represent certain operator-valued
functions is one of the aims of this paper.

For more general classes of multi-variate functions one obtains much worse
complexity estimates. Let X ¼ W r

p ðM ; IÞ with M ¼ ðM1; :::;MdÞ and r ¼ ðr1; :::; rdÞ
be the class of anisotropic Sobolev spaces defined on the d-dimensional interval

I ¼
Qd

j¼1½aj; bj� possessing generalised xj-derivatives of order rj which are boun-

ded by the constants Mj with respect to the Chebyshev norm k � k1. The

important characteristics of this function class are the effective class smoothness

q ¼ 1=ð
Pd

j¼1 r�1j Þ and the class constant l ¼
Qd

j¼1 Mq=rj

j (cf. [1, p. 81]). It is known

(cf. [1, p. 232]) that for this class we need

N ðoptÞ
e 
 constðlÞ � e�1= q� 1=pð Þ

parameters in order to approximate an arbitrary function of this class with a
given tolerance e. Note that N ðoptÞ

e grows exponentially as d !1. This phe-

nomenon is known as the ‘‘curse of dimensionality’’.

The familiar hyperbolic-cross approximation (cf. [25], [13]) allows to get rid of
this phenomenon. It applies to the class of functions with higher mixed derivatives
and leads to a complexity r ¼ Oðn logd�1 nÞ.

On the level of operators (matrices) we distinguish the following structure. Given
a matrix A 2 CN�N of order N ¼ nd , we try to approximate A by a matrix Ar of the
form

Ar ¼
X

r

k¼1
V 1

k � � � � � V d
k � A; ð2:3Þ

where the V ‘
k are n� n-matrices and � denotes the Kronecker product operation.

Now the crucial parameter is r; called the Kronecker rank (cf. [20]). Very little is
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known about the approximability of nonlocal operators (e.g., integral and
pseudo-differential operators, operator-valued functions) by the Kronecker ten-
sor-product ansatz (2.3). The HKT approximation to the integral operators with
asymptotically smooth kernel was introduced in [20], tensor approximations of
some function-related matrices have been addressed in [26].

The main result of the present paper is a proof for the existence of tensor product

approximations to expð�tAÞ, A�r ðr > 0Þ and the Lyapunov-Sylvester solution

operator, in the form (2.3) with a Kronecker rank r ¼ Oðj log ej2Þ independent of
d (cf. (2.2)). Furthermore, we provide a constructive algorithm producing Ar in

the HKT form (cf. [20]), where each Kronecker factor V ‘
k is given in theH-matrix

format with complexity Oðn log4 nÞ. This leads to an overall cost

Oðdn log4 nj log ej2Þ to compute the discrete elliptic inverse A�1. Note that the
dimension d appears as a factor but not in the exponent.

2.2. Strongly Positive Operators

The following notation is commonly used in operator theory. A densely defined
closed linear operator A with the domain DðAÞ in a Banach space X , with the
spectral set rðAÞ, the resolvent set qðAÞ and the numerical range mðAÞ is said to
be of type ðh;MÞ for h 2 ð0; p=2Þ and M � 1, if CnRh � qðAÞ,

kðzI �AÞ�1k 	 M
jzj for <e z < 0;

kðzI �AÞ�1k 	 M�

jzj for hþ � 	 j arg zj 	 p with � > 0;

where Rh ¼ fz 2 C : 0 	 j arg zj 	 hg for h 2 ð0; p=2Þ (cf. [5, p. 6]). In what fol-
lows, we suppose that zero belongs to the resolvent set of A. By LðX Þ, we denote
the space of bounded linear operators in a Banach space X .

Let aijðxÞ ¼ ajiðxÞ; bjðxÞ; cðxÞ be real valued smooth functions on X 2 Rd and
suppose uniform ellipticity,

<e
X

d

i;j¼1
aijðxÞninj � rjnj2 for n ¼ ðn1; :::; ndÞ 2 Rd and x 2 X

with a constant r > 0. Given

A ¼ �
X

d

i;j¼1

@

@xi
aijðxÞ

@

@xj
þ
X

d

j¼1
bjðxÞ

@

@xj
þ cðxÞ

with X ¼ L2ðXÞ the associated bilinear form reads

aðu; vÞ ¼
Z

X

�

X

d

i;j¼1
aijðxÞ

@u
@xj

@v
@xi
þ
X

d

j¼1
bjðxÞ

@u
@xj

vþ cðxÞuv
�

dx
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with V ¼ H1
0 ðXÞ. The bilinear form a : V � V ! R is continuous and it is assumed

to be V -elliptic:

jaðu; vÞj 	 CkukV kvkV ; <e aðv; vÞ � d0kvk2V ; d0 > 0;

and the corresponding elliptic operator A satisfies

kðzI �AÞ�1kX X 	
1

jzj sinðh1 � hÞ for all z 2 C with h1 	 j arg zj 	 p; ð2:4Þ

for any h1 2 ðh; pÞ; where cos h ¼ d0=C:

Note that operators of type ðh;MÞ are also called strongly positive with the
spectral angle h 2 ð0; p=2Þ (see, e.g., [6] and the references therein).

In the case of discrete elliptic operators (say, A is the FEM stiffness matrix
corresponding to a) the bound (2.4) on the matrix resolvent is valid uniformly in
the mesh-size h (cf. Example 4.3).

3. Exponentially Convergent Quadrature Rules

In the following, our low Kronecker rank tensor-product approximations are
based on efficient quadratures for the arising improper integrals on
R :¼ �1;1ð Þ. Quadrature rules with an exponentially convergent rate can be
based on the so-called Sinc-quadrature formulae from [24]. We consider the inte-
gral

IðFÞ ¼
Z

x
FðxÞdx x ¼ R or x ¼ Rþð Þ; ð3:1Þ

under different assumptions on the integrand F : x!LðX Þ. The quadratures
discussed below can be applied, in particular, to operator- or matrix-valued
functions of a strongly positive elliptic operator A.

Let x ¼ R. We introduce the family H1ðDdÞ of all operator-valued functions of
strongly positive operators, which are analytic in Dd :¼ fz 2 C : j=mzj 	 dg,
0 < d < p, such that for each F 2 H1ðDdÞ there holds kFkH1ðDdÞ <1 with

kFkH1ðDdÞ :¼
Z

@Dd

kFðzÞkjdzj:

3.1. Standard Sinc Quadrature

Given F 2 H1ðDdÞ, h > 0, and M 2 N, we use the notations

T ðF; hÞ ¼ h
X

1

k¼�1
FðkhÞ; TM ðF ; hÞ ¼ h

X

M

k¼�M

FðkhÞ;

gðF; hÞ ¼ IðFÞ � T ðF; hÞ; gM ðF; hÞ ¼ IðFÞ � TM ðF; hÞ:
ð3:2Þ

In the case x ¼ R, the error estimate of gM is as follows (cf. [24]). If

kFðnÞk 	 C expð�bjnjÞ for all n 2 R with b;C > 0; ð3:3Þ

136 I. P. Gavrilyuk et al.



then the error gM from (3.2) satisfies

kgM ðF; hÞk 	 C
e�2pd=h

1� e�2pd=h
kFkH1ðDdÞ þ

1

b
expð�bhMÞ

� �

: ð3:4Þ

The choice h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pd=M
p

leads to the exponential convergence rate

gM ðF; hÞk k 	 Ce�
ffiffiffiffiffiffiffiffiffi

2pdM
p

ð3:5Þ

with a positive constant C independent of M (cf. [24], [8], [9]). Note that 2M þ 1 is
the number of quadrature points. IfF is even function, the number of quadrature
points reduces to M þ 1:

In the case of integrals defined on Rþ one has to substitute the corresponding
integral by n ¼ uðzÞ with a bijection u : R! Rþ. This changes F into the inte-
grand F1 :¼ u0 � F � uð Þ over R. Assuming F1 2 H1ðDdÞ; one can apply (7)–(9)
to the transformed function. For the respective families of operator-valued

functions on Rþ, the domain of analyticity Dd will be substituted by Dð1Þd or Dð2Þd ,
specified in the examples below.

3.1.1. Example 1: Polynomial Decay

Let us set x ¼ Rþ and assume the following two conditions (cf. [24, p. 193]):

(i) the integrand F can be analytically extended from the real half-axis into the
sector

Dð1Þd ¼ fz 2 C : j argðzÞj < dg for some 0 < d < p;

(ii) F satisfies the inequality

FðzÞk k 	 cjzja�1ð1þ jzjÞ�a�b for some 0 < a; b 	 1 and all z 2 Dð1Þd : ð3:7Þ

For the ease of exposition we consider only the case a ¼ 1. Choosing m 2 N and
taking

hð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pd=ðbmÞ
p

; ð3:8Þ

we define the corresponding quadrature rule

I ð1ÞM ðFÞ ¼ hð1Þ
X

M

k¼�bM

jð1Þk Fðzð1Þk Þ; zð1Þk ¼ ekhð1Þ ; jð1Þk ¼ ekhð1Þ ; ð3:9Þ

possessing the exponential convergence rate

IðFÞ � I ð1ÞM ðFÞ
�

�

�

�

�

�
	 Ce�

ffiffiffiffiffiffiffiffiffiffiffi

2pdbM
p

ð3:10Þ
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with a positive constant C independent of M . Note that in the case b ¼ 1, the
bound (3.10) coincides with the standard estimate (3.5).

3.1.2. Example 2: Exponential Decay

Let us set x ¼ Rþ and assume that the integrand F in (3.1) can be analytically

extended into the ‘‘bullet-shaped’’ domain Dð2Þd ¼ fz 2 C : j argðsinh zÞj < dg for
some d 2 ð0; pÞ; and that F satisfies

FðzÞk k 	 C
jzj

1þ jzj

	 
a�1
e�b<ez in Dð2Þd with a; b 2 ð0; 1�:

Again we set a ¼ 1. Then choosing hð2Þ ¼ hð1Þ, we obtain the quadrature rule

I ð2Þm ðFÞ¼ hð2Þ
X

M

k¼�bM

jð2Þk Fðzð2Þk Þ; zð2Þk ¼ log½ekhð2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2khð2Þ
p

�; jð2Þk ¼ 1þ e�2khð2Þ

ð3:11Þ

possessing again the exponential convergence rate (3.10).

3.2. Improved Quadratures in the Case of Hyper-Exponential Decay

In this section, we construct a new Sinc-quadrature rule for the integral (3.1)
defined on R with the operator-valued function F of a strongly positive operator.
This quadrature is similar to that one in [9] and converges faster than (3.5).

Adapting the ideas of [24], [9], one can prove the following approximation results

for functions from H1ðDdÞ, describing the accuracy of T ðF; hÞ and TM ðF; hÞ
(cf. Lemma 2.4 in [9]).

Lemma 3.1: For any operator valued function F 2 H1ðDdÞ, there holds

kgðF; hÞk 	 e�pd=h

2 sinhðpd=hÞ kFkH1ðDdÞ: ð3:12Þ

If, in addition, f satisfies the condition

kFðnÞk 	 C expð�beajnjÞ for all n 2 R with a; b;C > 0; ð3:13Þ

then the error gM of the quadrature TM ðF; hÞ satisfies

kgM ðF; hÞk 	 C
e�2pd=h

1� e�2pd=h
kFkH1ðDdÞ þ

1

ab
expð�beahM Þ

� �

ð3:14Þ

with the parameter d from H1ðDdÞ.
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Proof: The bound (3.12) is proven in [8]. Assumption (3.13) now implies

kgM ðF; hÞk 	 kgðF; hÞk þ h
X

jkj>M

kFðkhÞk

	 expð�pd=hÞ
2 sinhðpd=hÞ kFkH1ðDdÞ þ ch

X

k:jkj>M

expð�beajkhjÞ: ð3:15Þ

For the last sum we use the simple estimate to obtain

X

k:jkj>M

expð�beajkhjÞ ¼ 2
X

1

k¼Mþ1
expð�beajkhjÞ

	 2

Z 1

M
expð�beajxhjÞdx ¼ 2

abh
expð�beahM Þ: ð3:16Þ

Now (3.15) and (3.16) imply (3.14) completing the proof. h

Due to Lemma 3.1, we can improve the asymptotical convergence of the above

quadratures for the integral (5) in the case x ¼ R. Let Dð3Þd be the domain

Dð3Þd :¼ z ¼ uþ iv :
v2

sin2 d
� u2

cos2 d
	 1

� �

;

where 0 < d < p=2 (see Fig. 3.1). Returning to the integral (3.1), we can change
the variables by z ¼ sinhw and obtain the integral

IðFÞ ¼
Z

R

FðzÞdz ¼
Z

R

~FðwÞdw

with the integrand ~FðwÞ ¼ coshwFðsinhwÞ. Under the assumption that FðzÞ
satisfies (3.3), and that it can be analytically extended into the domain Dð3Þd ; we
conclude that the new integrand ~FðwÞ possesses a hyper-exponential decay (3.13)

0

d

d

D
d
(3)

Fig. 3.1. The analyticity domain Dð3Þd

Hierarchical Tensor-Product Approximation 139



and can be analytically extended into the domain Dd. Now assuming that
~F 2 H1ðDdÞ, we arrive at the situation of Lemma 3.1 and get the following
quadrature rule for (3.1):

I ð3ÞM ðFÞ ¼ hð3Þ
X

M

k¼�M

jð3ÞFðzð3Þk Þ; ð3:17Þ

where, with some fixed constant Cint > 0,

hð3Þ ¼ Cint
logM

M
; jð3Þ ¼ coshðwkÞ; wk ¼ khð3Þ; zð3Þk ¼ sinhwð3Þk :

Due to Lemma 3.1 (cf. (3.4)), there are some positive constants C; s such that

IðFÞ � I ð3ÞM ðFÞ
�

�

�

�

�

�
	 Ce�sM=ðlogMÞ: ð3:18Þ

3.3. Numerics I

To complete this section, we present numerical results characterising the expo-
nential convergence of the quadrature rules (3.9) and (3.11). We compute the
integral

1

r
¼
Z 1

0

e�rtdt; r > 0: ð3:19Þ

The table below represents the error of I ð2Þm ðFÞ from (3.11), where m is the
parameter from (3.8).

The next table shows the error of quadrature I ð1Þm ðFÞ from (3.19) applied to the
above integral.

The last table shows the dependence of m (necessary to achieve the accuracy
e 	 4:010 � 7) with respect to the parameter b from 10 in the case of quadrature
(12). Here a small b > 0 corresponds to a small parameter r in the exponent in the
right-hand side of (3.19).

Quadrature (3.11), r ¼ 1:0

m 4 9 16 25 36 49 64

e 2.610-3 6.010-5 1.310-6 1.810-8 3.910-10 5.410-11 3.610-12

Quadrature (3.9), r ¼ 1:0

m 4 9 16 25 36 49 64

e 1.310-2 6.710-4 5.110-5 6.710-7 1.010-7 6.410-10 1.810-10
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3.4. Numerics II

We present numerical results for the quadrature rule (3.17) applied to
F ðuÞ ¼ e�r2u2 . We confirm exponential convergence of the quadrature (3.20),
namely

h
X

M

k¼�M

coshðkhÞF ðsinhðkhÞÞ �
Z

R

F ðuÞdu ¼
Z

R

coshðwÞF ðsinhðwÞÞdw; ð3:20Þ

approximating the Gauss integral

1

r
¼ 1

ffiffiffi

p
p
Z

R

e�r2t2dt: ð3:21Þ

This integral is commonly used in quantum chemistry calculations as well for
representation of certain matrix valued functions. Clearly, in a certain range
½R1;R2� of r ðR1 < 1 < R2Þ, the function coshðwÞF ðsinhðwÞÞ satisfies all conditions
of Lemma 3.1. Thus, we choose h ¼ Cint

logM
M and obtain fast exponential con-

vergence Oðe�cM= logM Þ for r 2 ½R1;R2�.

Figure 3.2 represents the convergence history for (3.20) corresponding to the
choice r ¼ 1 and Cint ¼ 1:0. This quadrature shows a similar convergence in the
interval r 2 ½0:2; 10�, i.e., in this case R2=R1 � Q ¼ 50. An application of this
quadrature for a larger range ½Rmin;Rmax� requires piecewise quadrature using a
rescaling of r in each subinterval., thus, in general, we need about pM quadrature
points, where Qp � Rmax=Rmin (cf. [18] for a quadrature, which is robust with
respect to the condition number Rmax=Rmin).

The following table shows the quadrature error of (3.9) applied to the integral
(3.21) with r ¼ 0:1.

In the second example, we set F ðuÞ :¼ eu�reu
in (23), which applies to the integral

1

r
¼
Z

R

eu�reu
du; ð3:22Þ

Quadrature (3.9), accuracy e 	 4:0 � 10�7

r 1.0 10-1 10-2 10-3 10-4 10-5 10-6

m 36 81 121 169 200 280 440

Quadrature (3.20) for (3.21), r ¼ 1:0

M 4 9 16 25 36

e 1.110-4 1.510-6 2.310-9 2.010-12 < 1.010-15

Quadrature (3.9), r ¼ 0:1

M 4 9 16 25 36 49 64

e 6.210-2 1.810-3 2.810-4 1.510-5 3.710-7 2.010-9 1.310-10
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obtained from (3.19) by the substitution t ¼ eu, u 2 R. Here we choose
h ¼ Cint

logM
M with Cint ¼ 1:35.

Figure 3.3 illustrates exponential convergence (we use a semi-logarithmic scale),
though the theoretical analysis does not imply the desired estimate. The above
quadrature converges faster than (3.11), however, the convergence rate strongly
deteriorates if Rmax=Rmin increases. The robust quadrature for the integral (3.19) is
presented in [18].

4. Tensor-Product Approximation to expð�tAÞ

4.1. Approximation to expð�tAÞ by a Sum of Few Resolvents

It was shown in [22, p. 30] that each operator exponential e�tA with t 2 ½0;1Þ
(belonging to the semi-group fe�tAgt�0 generated by a strongly positive operator
A) can be represented by the Dunford-Cauchy integral

T ðt;AÞ :¼ e�tA ¼ 1

2pi

Z

C
e�tzðzI �AÞ�1dz

¼ 1

2pi

Z

Cþ

e�tzðzI �AÞ�1dzþ 1

2pi

Z

C�

e�tzðzI �AÞ�1dz;

where C ¼ Cþ þ C� is a curve in the resolvent set with the ray Cþ ¼
fz : z ¼ qeih1 ; q 2 ð0;1Þg running from 1eh1 to 0 and the ray C� ¼ fz : z ¼
qe�ih1 ; q 2 ð0;1Þg running from 0 to 1e�h1 . This leads to the representation

2 4 6 8 10 12 14 16 18 20

100

er
ro

r

2 t 2), r=1.0, C
int

=1.0

Fig. 3.2. Approximation to the integral (3.21)

Quadrature (3.20) for (3.22), r ¼ 1:0

M 4 9 16 25 36 49 64

e 1.610-2 1.010-5 2.68-6 4.110-9 2.710-11 2.110-12 5.210-14
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Fig. 3.3. Quadrature (3.20) for the integral (3.22), r ¼ 1:0; with different Cint
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T ðt;AÞ ¼ 1

2pi

Z

1

0

F ðt; qÞdq; ð4:1Þ

where F ¼ �eih1F1 þ e�ih1F2 with

F1ðt; qÞ ¼ e�tqðcos h1þi sin h1Þðqeih1I �AÞ�1;
F2ðt; qÞ ¼ e�tqðcos h1�i sin h1Þðqe�ih1I �AÞ�1:

We choose h2 > 0 such that h1 þ h2 < p=2 and h1 � h2 > h. Considering
q ¼ jqjei/; j/j < h2; as a complex variable, one can easily see that the integral can
be extended analytically into the sector

Rh2 ¼ fq ¼ jqjei/ : jqj 2 ð0;1Þ;/ 2 ð�h2; h2Þg;

and the following estimates hold in Rh2 :

kF1ðt; qÞk ¼ ke�tjqjeið/þh1Þ ðjqjeið/þh1ÞI �AÞ�1k
	 e�tjqj cos ð/þh1Þð1þ jqjÞ�1 	 e�tjqj cos ðh2þh1Þð1þ jqjÞ�1;

kF2ðt; qÞk ¼ ke�tjqjeið/�h1Þ ðjqjeið/�h1I �AÞ�1k 	 e�tjqj cos ðh2þh1Þð1þ jqjÞ�1:

Thus, the integrand in (4.1) can be analytically extended into the sector Dð1Þd from

[24, p. 68] (see also (3.6)) with d ¼ h2 and in this region the estimate (3.7) holds
with a ¼ b ¼ 1. This means that we can apply the quadrature rule (3.9) with

hð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pd=M
p

to derive

IðtÞ � I ð1ÞM ðtÞ ¼
hð1Þ

2pi

X

M

k¼�M

jð1Þk F ðt; zð1Þk Þ; jð1Þk ¼ ekhð1Þ ; zð1Þk ¼ ekhð1Þ ; ð4:2Þ

which possesses the accuracy Oðe�
ffiffiffiffiffiffiffiffiffi

2pdM
p

Þ. The formulae

T ðt;AÞ � T ð1ÞM ðt;AÞ ¼ I ð1ÞM ðtÞ 
X

M

k¼�M

jð1Þk;1ðtÞðf
ð1Þ
k;1I �AÞ�1 þ jð1Þk;2ðtÞðf

ð1Þ
k;2I �AÞ�1

h i

ð4:3Þ

with

jð1Þk;1ðtÞ ¼ �
eih1hð1Þ

2pi
e�tekhð1Þ ðcos h1þi sin h1Þekhð1Þ ;

jð1Þk;2ðtÞ ¼
e�ih1h
2pi

e�tekhð1Þ ðcos h1�i sin h1Þekhð1Þ ;

fð1Þk;1 ¼ ekhð1Þeih1 ; fð1Þk;2 ¼ ekhð1Þe�ih1 ;
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and I ð1ÞM ðtÞ computed according to (4.2) represents new exponentially convergent
algorithms for the operator exponential of a strongly positive operator with the
accuracy e�s

ffiffiffiffi

M
p

, where the constant s depends on the spectral characteristics ofA.

Due to Lemma 3.1, we can improve the asymptotical convergence of the above
quadratures to the better estimate (21). Let us defines the so-called spectral curve

CS ¼ fz ¼ nþ ig : n ¼ apg
2 þ bpg; ð4:4Þ

containing the spectrum spðAÞ of the operator A.

Lemma 4.1 [9]: Let the spectral curve for A be CS defined by (4.4). Choose the
(integration) curve CI ¼ fz ¼ nþ ig : n ¼ ae cosh sð Þ; g ¼ be sinh sg with ae; be

such that CI envelops CS . Then the operator exponential T ðt;AÞ ¼ e�tA can be
represented by the Dunford-Cauchy integral

T ðt;AÞ ¼ 1

2pi

Z

CI

e�ztðzI �AÞ�1dz ¼
Z

R

F1ðs; tÞds;

where the integrand

F1ðs; tÞ ¼ � 1
2pi e�ztz0ðsÞðzI �AÞ�1;

z ¼ ae cosh sð Þ þ ibe sinh sð Þ; z0ðsÞ ¼ ae sinh sð Þ þ ibe cosh sð Þ; s 2 R;
ð4:5Þ

can be estimated on the real axis by

kF1ðg; tÞk 	 M1e�t
ffiffiffiffiffiffiffiffiffi

a2eþb2e
p

j sinh sj for s 2 R

with some positive constant M1. Moreover, F1ð�; tÞ can be analytically extended into
the strip Dd of the width d > 0 and belongs to the class H1ðDdÞ (even to the suitably
defined spaces HpðDdÞ for all p 2 ½1;1�).

The operator exponential T ðt;AÞ is represented as integral according to Lemma
4.1. Applying the quadrature rule TM (cf. (3.2)) to the operator valued function
F1ðg; tÞ given by (4.5), we obtain for the operator family IðtÞ  T ðt;AÞ : t > 0f g
(cf. (3.1)) that

IðtÞ � TM ðF1; hÞ ¼ h
X

M

k¼�M

F1ðkh; tÞ: ð4:6Þ

The error analysis is due to Lemma 4.1: Set h ¼ logM
M , then (cf. Theorem 2.5 in [9])

kT ðt;AÞ � TM ðt;AÞkK
1

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
e þ b2

e

p ðe�2pdM= logM þ e�t
ffiffiffiffiffiffiffiffiffi

a2eþb2e
p

M Þ:

We see that for fixed t > 0, the error of this quadrature becomes Oðe�cM= logMÞ.
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4.2. Tensor-Product Representation of expð�tAÞ in Rd

Let A ¼
Pd

j¼1 Aj be a strongly positive operator, where Aj are mutually com-
mutative, strongly positive operators with the respective spectral sectors Sj. Then
we introduce the tensor-product approximant

T ðt;AÞ ¼
Y

d

j¼1
T ðt;AjÞ ¼

Y

d

j¼1
e�tAj � TmðtÞ ¼ Tmðt;AÞ ¼

Y

d

j¼1
Tmjðt;AjÞ; ð4:7Þ

where each of the operator exponentials Tmjðt;AjÞ can be computed by Algorithm
(4.3) or (4.6). Here we use the notations m ¼ ðm1; . . . ;mdÞ. We denote by mj the
quadrature parameter in the quadratures above. For simplicity, we consider only
the case m ¼ ðm; . . . ;mÞ with fixed mj ¼ m:

Lemma 4.2: For any fixed t > 0, the approximation error by (4.7) satisfies

ke�tA � Tmðt;AÞk 	 Cde�sM ; ð4:8Þ

where M ¼
ffiffiffiffi

m
p

in the case of (4.3) and M ¼ m= logm in the case of (4.6), and
where C and s depend neither on d nor on m.

Proof: Representing the error by a chain sum, we arrive at the estimate (say in the
case (4.3))

ke�tA�Tmðt;AÞk¼ k½e�tA1 �Tm�e�tA2 � � �e�tAd þTmðtÞ½e�tA2 �TmðtÞ�e�tA3 � � �e�tAd

þ . . .þTmðtÞ � � �TmðtÞ½e�tAd �TmðtÞ�k
	Cde�s

ffiffiffi

m
p

providing an error bound (4.8) with C; s being independent of d, m.

To represent the operator exponential with small t > 0, in the following propo-
sition we use an approximation to the weighted exponential
TrðtÞ ¼ Trðt;AÞ :¼A�re�tA, t � 0, r > 1, which guarantees an exponential
convergence rate for all t � 0.

Proposition 4.3 [9]: (a) Let e > 0 be given. In order to obtain kTrðtÞ� Tr;M ðtÞk
Ke uniformly with respect to t � 0; choose

M ¼ Oðj log ej2Þ; h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pd=½rM �
p

;

zk ¼ zðkhÞ ¼ nðkhÞ þ iwðkhÞ ðk ¼ �M ; . . . ;MÞ;
nðsÞ ¼ ae cosh s; wðsÞ ¼ be sinh s;

cr;kðtÞ ¼ z�r
k e�zk t h

2pi
z0ðkhÞ:

Then Tr;M ðtÞ is a linear combination of 2M þ 1 resolvents with scalar weights
depending on t:
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Tr;M ðtÞ ¼
X

M

k¼�M

cr;kðtÞðzkI �AÞ�1;

so that the computation of Tr;M ðtÞ requires 2M þ 1 ¼ Oðj log ej2Þ evaluations of the
resolvents ðzkI �AÞ�1; k ¼ �M ; . . . ;M :

(b) The evaluations (or approximations) of the resolvents can be performed in
parallel. Note that the shifts zk are independent of t:

(c) Having evaluated the resolvents, Tr;M ðtÞ can be determined in parallel for dif-
ferent t-values t1; t2; . . . :

In practical computations one can choose r ¼ 2. Hence, the operator exponential
Tmjðt;AjÞ in (33) can be approximated by

Tmjðt;AjÞ � A2
j T2;mjðt;AjÞ: ð4:9Þ

4.3. Some Examples

Example 4.4: As a basic example we consider the elliptic operatorA ¼
Pd

j¼1 Aj in
the d-dimensional unit hypercube 0; 1ð Þd ; subject to zero Dirichlet boundary con-
ditions, where

Aj ¼
X

2m

k¼0
akðxjÞ

@k

@xk
j
; ð�1Þma2mðxjÞ � l > 0;

is a one-dimensional, strongly elliptic operator. It is known (cf. [7], [22]) that A and
each Aj are strongly positive (m-sectorial). Furthermore, it is easy to see that the
operators Aj : H�mð0; 1Þ ! Hm

0 ð0; 1Þ are commutative.

Example 4.5: Consider the elliptic operator of divergent type,

A :¼ �
X

d

j¼1
@jajðxjÞ@j; x 2 X :¼ 0; 1ð Þd ;

defined on the Sobolev space H 1
0 ðXÞ. We assume that aj � a0 > 0. Introduce a

uniform grid with step size h and N ¼ nd interior nodes. Using the ð2d þ 1Þ-point
stencil, we obtain the finite difference discretization

Ahz :¼ �
X

d

j¼1

2aj
ij zi1...id � bj

ij�1zi1...ðij�1Þ...id � cj
ijþ1zi1...ðijþ1Þ...id

h2
; 1 	 ij 	 n;

ð4:10Þ

where z denotes the vector corresponding to ½zi1...id �
n
ij¼1 2 RN given in the tensor-

product numbering. In fact, we can regard d-dimensional n� . . .� n arrays
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(tensors) also as one-dimensional ones (vectors) with nd components. Then the
matrix Ah in (4.10) takes the form

Ah ¼
X

d

j¼1
Aj;

where

A1 ¼ V 1 � I � . . .� I ; A2 ¼ I � V 2 � . . .� I ; . . . ; Ad ¼ I � . . .� I � V d

with

V j ¼ 1

h2

2aj
1 �cj

1

�bj
2 2aj

2 �cj
2

. .
. . .

. . .
.

�bj
n�1 2aj

n�1 �cj
n�1

�bj
n 2aj

n

2

6

6

6

6

6

4

3

7

7

7

7

7

5

n�n

; I ¼

1
1

. .
.

1
1

2

6

6

6

6

4

3

7

7

7

7

5

n�n

:

It is easy to see that Aj > 0 for all j ¼ 1; . . . ; d, and that they commute pairwise, i.e.,
AjAm ¼ AmAj. Finally, (4.7) implies the following tensor-product representation

e�tA �b
d

j¼1
Tmjðt; V jÞ:

Example 4.6: In the situation of Example 4.5, we consider an application to par-
abolic problems in Rd posed in the semi-discrete form. Using the semigroup theory
(see [22] for more details), the solution of the first-order evolution equation

du
dt
þ Ahu ¼ f ; uð0Þ ¼ u0 2 RN ;

with a given initial vector u0 and with a given right-hand side f 2 L2ðQT Þ,
QT :¼ ð0; T Þ � RN , can be represented as

uðtÞ ¼ expð�tAhÞu0 þ
Z

t

0

expð�ðt � sÞAhÞf ðsÞds; t 2 ð0; T �:

Assume that our input data can be represented in the tensor-product form

u0 �
X

r

k¼1
uk
1ðx1Þ � . . .� uk

dðxdÞ; f �
X

r

k¼1
f k
1 ðs; x1Þ � . . .� f k

d ðs; xdÞ

with uk
i ; f

k
i 2 Rn, i ¼ 1; :::; d, and with r ¼ Oðj log ejqÞ. Then we obtain the tensor-

product approximation
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euðtÞ ¼
X

r

k¼1
b

d

j¼1
Tnjðt; V jÞuk

j ðxjÞ þ
Z

t

0

b
d

j¼1
Tnjðt � s; V jÞf k

j ðs; xjÞds

8

<

:

9

=

;

� uðtÞ

which can be implemented with the complexity Oðrdn logp nÞ.

5. A Separable Representation to A�1 and Further Applications

5.1. Inverse of a Strongly Positive Operator

Lemma 5.1: Let A be a densely defined, strongly positive operator with the
spectral set rðAÞ. Then the following integral representation holds:

A�1 ¼
Z 1

0

e�tAdt: ð5:1Þ

Proof: For A being strongly positive, the semigroup fe�tAgt�0 can be extended
to an analytic semigroup in the sector

Dd ¼ fw : j argðwÞj < dg

of the complex w-plane and ke�wAk is uniformly bounded in every closed sub-
sector Dd0 ; d0 < d; of Dd (see [22, p. 61]).

Let C ¼ @XC be a closed path in the complex z-plane consisting of the two rays

Sð�/Þ ¼ qe�i/ : c 	 q <1
� �

and the circular arc C ¼
�

z : jzj ¼ c; j arg zj 	 /
�

(see Fig. 4) with / such that

RðAÞ � XC:

Fig. 5.1. The integration path for an unbounded operator A
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Let w ¼ jwjeiw 2 Dd0 and jwj 	 d0. For any / < p=2; there exists a positive number
d00 ¼ d00ð/Þ such that d00 < / and /þ d00 < p=2. Using the representation of e�wA

by the Dunford-Cauchy integral along the path C, we conclude for w 2 Dd00 that

ke�wAk¼ 1

2pi
�
Z 1

c
e�wqexpði/Þðqexpði/Þ�AÞ�1dq

�
�

�

�

�

�ic
Z /

�/
e�wexpðichÞeichðceich�AÞ�1dh

þ
Z 1

c
e�wqexpð�i/Þðqe�i/�AÞ�1dq

�
�

�

�

�

¼ 1

2pi
�
Z 1

c
e�jwjqexpðið/þwÞÞðqexpði/Þ�AÞ�1dq

�
�

�

�

�

� ic
Z /

�/
e�jwjexpðicðhþwÞÞeichðceich�AÞ�1dh

þ
Z 1

c
e�jwjqexpð�ið/�wÞÞðqexpð�i/Þ�AÞ�1dq

�
�

�

�

�

	 c
Z 1

c
e�jwjqcosð/þd00Þ dq

q
þ c
Z /

�/
e�jwjccosðhþd00Þ dh

c
þ
Z 1

c
e�jwjqcos/

dq
q

� �

:

ð5:2Þ

The function f ðsÞ ¼ se�s is bounded on ½0;1Þ by a constant c yielding the
estimate

ke�wAk 	 c
1

jwj cos ð/þ d00Þ

Z 1

c
q�2dqþ 2/

jwj cos ð/þ d00Þ þ
1

jwj cos/

Z 1

c
q�2dq

� �

;

ð5:3Þ

which we use for jwj small enough. For jwj large enough and for some positive
�1 < c; we get

ke�wAk	 c
Z 1

c
e�jwjðq��1þ�1Þcos /þd00ð Þ dq

q
þ 2/

jwjcosð/þd00Þ
þ
Z 1

c
e�jwjðq��1þ�1Þcos/

dq
q

� �

	 c e�jwj�1 cos /þd00ð Þ
Z 1

c
e�jwjðq��1Þcos /þd00ð Þ dq

q

�

þ 2/

jwjcos /þd00ð Þþ e�jwj�1 cos/
Z 1

c
e�jwjðq��1Þcos/

dq
q

�

	 ce�jwj�1 cos /þd00ð Þ: ð5:4Þ

The estimates (5.3), (5.4) imply that there exists a constant c0 independent of c;/
and constants c ¼ cðc;/Þ 	 c0

c cos ð/þd00Þ ; b ¼ bðc;/Þ 	 c cos ð/þ d00Þ such that (5.3)

holds for all w 2 Dd00 : The condition w 2 Dd00 now implies
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ke�wAk 	 c
1

1þ jwj e
�b<e w; ð5:5Þ

where c!1; b! 0 as c! 0 or /! p=2.

The asymptotics in (5.5) ensure the existence of the integral in (5.1). Finally, the
assertion follows from

A

Z 1

0

expð�tAÞdt
	 


¼ �
Z 1

0

@

@t
expð�tAÞdt ¼ expð0Þ ¼ I ;

due to the main property of the continuous semigroup fe�tAgt�0. h

Remark 5.2: In the case of a bounded operator A, one can integrate in (5.2), e.g.,
along the closed path as in Fig. 5.2, and gets the estimate (5.5) with constants
depending on c, and the angle /.

Let A ¼
P

Aj with commutative matrices (operators) Aj as above. Now, given
M ; we get a ¼ 1; b ¼ maxð1; c cosð/þ d00ÞÞ and h (cf. (3.8)) which define the
following quadrature rule:

A�1 ¼
Z 1

0

e�tAdt � hð2Þ
X

M

k¼�bM

jð2Þk e�zð2Þk A ¼ hð2Þ
X

M

k¼�bM

jð2Þk

Y

d

j¼1
e�zð2Þk Aj

� hð2Þ
X

M

k¼�bM

jð2Þk

Y

d

j¼1
T ð‘ðkÞÞm ðzð2Þk ;AjÞ :¼Ar;

where, first, the quadrature (3.11) with hð2Þ ¼ hð1Þ given by (3.8) can be used in

order to approximate the integral
R1
0 e�tAdt and then T ð‘ðkÞÞm ðzð2Þk ;AjÞ represents

each exponent e�zð2Þk Aj by Algorithm (4.9) for ‘ðkÞ ¼ 3 or by (35) for ‘ðkÞ ¼ 2,
where ‘ðkÞ is defined by

‘ðkÞ ¼ 3 if jzð2Þk j � t0
2 if jzð2Þk j < t0

(

for some t0 > 0 ; ð5:6Þ

and so we arrive at the desired product representation.

Fig. 5.2. The integration path for a bounded operator A
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Let b ¼ 1, then the quadrature error to approximate the Laplace transform is

Oðe�s1
ffiffiffiffi

M
p
Þ. Furthermore, the quadrature error of our representations to each

individual exponential is Oðe�s2
ffiffiffi

m
p
Þ for ‘ ¼ 2 and Oðe�s3m= logmÞ for ‘ ¼ 3 in the

operator norm. Hence, with r ¼ 2M þ 1, we obtain

kA�1 �Ark 	 C1e�s1
ffiffiffiffi

M
p
þ C2e�s2

ffiffiffi

m
p
þ C3e�s3m= logm:

Remark 5.3: For the matrix arising in Example 4.5, A ¼ Ah, we obtain the fol-
lowing low Kronecker rank tensor-product approximation

A�1h � hð2Þ
X

M

k¼�bM

jð2Þk b
d
j¼1T

ð‘ðkÞÞ
m ðzð2Þk ; V jÞ :¼ Ar ð5:7Þ

with ‘ðkÞ defined in (5.6). Here each low-dimensional component

T ð‘ðkÞÞm ðzð2Þk ; V jÞ 2 Rn�n is a sum of 2mþ 1 rank-1 H-matrices via the weak admis-

sible partitioning. Hence T ð‘ðkÞÞm ðzð2Þk ; V jÞ is at most the rank-ð2mþ 1ÞH-matrix and
(5.7) is the desired HKT approximation to A�1h .

5.2. Numerics III

We give numerical examples that illustrate the accuracy of our quadrature rule for
the integral (5.1) in the case of the Laplace operator in Rd . We show the spectral
norm of the matrix (see Example 4.5) that represents the approximation error for

the quadrature I ð2Þm ,

d :¼ A�1h � h
X

m

k¼�m

ð1þ e�2khÞbd
j¼1e�zkV j

�

�

�

�

�

�

�

�

�

�

2

;

where the sum of Kronecker tensor-product terms is calculated with linear
complexity OðdmW ðnÞÞ with W ðnÞ being the cost to compute a matrix exponential
in Rn�n. The main observation is that the rate of exponential convergence does
not depend on the spatial dimension d and also the rate turns out to be nearly the
same as that for the quadrature rules from above applied to the integrals of
analytic functions (compare the tables in Sect. 4).

Our calculations also show that the approximation error practically does not
depend on the ‘‘one-dimensional’’ problem size n, which is also confirmed by our

Approximation to A�1h ¼ D�1h in ½0; 1�d , with N ¼ nd , n ¼ 4

m 4 9 16 25 36

d ¼ 1 4.910-3 1.610-4 6.710-6 2.810-7 1.110-8
d ¼ 2 6.210-3 2.910-4 1.210-5 4.310-7 2.410-8
d ¼ 3 4.410-3 1.910-4 7.410-6 2.910-7 1.310-8
d ¼ 4 4.210-3 1.810-4 7.910-6 3.310-7 1.410-8
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theory. The next table shows that with a fixed number of terms in the quadrature
rule (we choose m ¼ 4), we obtain the same accuracy d for different values of the
problem size n.

5.3. Negative Fractional Powers of A

Similar to the previous section, we can prove the following result.

Theorem 5.4: Let A be a densely defined, strongly positive operator, then the fol-
lowing integral representation holds

A�r�1 ¼ 1

Cðrþ 1Þ

Z 1

0

tre�tAdt; r > �1:

Moreover, let Ah ¼
P

Aj with commutative matrices Aj as in Example 4.5. Define
‘ðkÞ as in (5.6), then the following Kronecker tensor-product approximation
obtained by combining the three quadrature algorithms from above,

A�r�1
h � hð2Þ

X

M

k¼�M

jð2Þk ðz
ð2Þ
k Þ

r
b

d
j¼1T

ð‘ðkÞÞ
m ðzð2Þk ; V jÞ :¼ Ar ðr ¼ 2M þ 1Þ;

has an error estimate

kA�r�1
h � Ark 	 C1e�s1

ffiffiffiffi

M
p
þ C2e�s2

ffiffiffi

m
p
þ C3e�s3m= logm:

Proof: Analogously to the previous section, the integrand IrðtÞ ¼ tre�tA can be
analytically extended into the sector Dd ¼ fz : j argðzÞj < dg and kIrðzÞk is

uniformly bounded in every closed subsector Dd0 ; d0 < d; of Dd. Thus, given M ;

we get a ¼ 1; b ¼ maxð1; c cos ð/þ d00ÞÞ and h (see (3.8)) and obtain the

representation

A�r�1
h ¼

Z 1

0

tre�tAh dt� hð2Þ
X

M

k¼�bM

jð2Þk ðz
ð2Þ
k Þ

re�zð2Þk Ah ¼ hð2Þ
X

M

k¼�bM

jð2Þk ðz
ð2Þ
k Þ

r
b

d
j¼1e�zkV j

� hð2Þ
X

M

k¼�bM

jð2Þk ðz
ð2Þ
k Þ

r
b

d
j¼1T ð‘ðkÞÞm ðzð2Þk ;V jÞ

(see (3.11)) with an error Oðe�s1
ffiffiffiffi

M
p
Þ for the external quadrature. Now, we can

represent each e�zkV j
by the algorithms (4.9) or (4.6) with an error Oðe�s2

ffiffiffi

m
p
Þ for

‘ ¼ 2 and Oðe�s3m= logmÞ for ‘ ¼ 3 in the operator norm, which leads to the desired
HKT (tensor) representation of A�r�1

h : h

Approximation for D�1h in ½0; 1�d , with m ¼ 4, d ¼ 2

n 4 8 16 32 64

d 6.2 10-3 7.310-3 7.4 10-3 7.4 10-3 7.610-3
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We note that the case A�1=2h plays the important role for the interface precondi-
tioning in FEM and BEM applications.

5.4. A HKT Representation to the Lyapunov-Sylvester Solution Operator

As an example we consider the matrix Sylvester equation

AX þ XB ¼ G

with the solution given by the integral

FðG; A;BÞ ¼
Z 1

0

e�tAGe�tBdt; ð5:8Þ

(see, e.g. [8]), where we suppose that A;B provide the existence of this integral (for
example, that A;B are strongly positive and G is bounded). A particular case is the
Lyapunov equation

AX þ XA ¼ G

with the solution

FðG; AÞ ¼
Z 1

0

e�tA>Ge�tAdt

generated by a discrete elliptic operator A.

Analogously as above for A being strongly positive, the semigroup fe�tAgt�0 can
be extended to an analytic semigroup in the sector

DdA ¼ fw : j argðwÞj < dAg

of the complex w-plane and ke�wAk is uniformly bounded in every closed
subsector Dd0A

; d0A < dA; of DdA . Let CA ¼ @XC be a closed path in the complex
z-plane consisting of the two rays

SAð�uAÞ ¼ .e�iuA : cA 	 . <1
� �

and the circular arc C ¼
�

z : jzj ¼ cA; j arg zj 	 uA

�

with uA such that

rðAÞ � XCA :

Let w ¼ jwjeiw 2 Dd0A
and jwj 	 d0A. Since /A < p=2; there exists a positive number

d00A ¼ d00Að/AÞ such that d00A < /A and /A þ d00A < p=2. Using the representation of

e�wA by the Dunford-Cauchy integral along the path CA, analogously as above we
get the estimate

ke�wAk 	 cA
1

1þ jwj e
�bA<e w

for all w 2 Dd00 , where cA ¼ cAðcA;/AÞ 	
c0;A

cA cos ð/Aþd00AÞ
; bA ¼ bAðcA;/AÞ 	

cA cos ð/A þ d00AÞ, the constant c0 is independent of cA;/A and cA !1; bA ! 0 as
cA ! 0 or /A ! p=2.
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Similarly, one defines the constants dB; d
0
B; d

00
B; cB;/B; cB; bB and gets the

estimate

ke�wBk 	 cB
1

1þ jwj e
�bB<e w

for all w 2 Dd00B
. Thus, in the smallest of the two sectors Dd00A

;Dd00B
we have

ke�wAGe�wBk 	 cAcB
1

1þ jwj e
�ðbAþbBÞ<e w;

which provides the representation (5.8). Moreover we can use the quadrature
(3.11) in order to approximate the integral

R1
0 e�tAGe�tBdt and then again one of

the quadratures (3.11) or (3.17) in order to approximate the split operator
exponentials:

FðG; A;BÞ ¼
Z 1

0

e�tAGe�tBdt � hð2Þ
X

M

k¼�M

jð2Þk e�zð2Þk AGe�zð2Þk B

¼ hð2Þ
X

M

k¼�M

jð2Þk

Y

d

j¼1
e�zð2Þk Aj

 !

G
Y

d

j¼1
e�zð2Þk Bj

 !

� hð2Þ
X

M

k¼�M

jð2Þk

Y

d

j¼1
T ð‘ðkÞÞm ðzð2Þk ; AjÞ

 !

G
Y

d

j¼1
T ð‘ðkÞÞm ðzð2Þk ; BjÞ

 !

; ð5:9Þ

where T ð‘ðkÞÞm ðzð2Þk ; AjÞ, T ð‘ðkÞÞm ðzð2Þk ; BjÞ, for various ‘ðkÞ ¼ 2; 3 denote one of the

algorithms (4.9), (4.6). The accuracy of the product approximation (5.9) is

bounded by the error Oðe�s
ffiffiffiffi

M
p
Þ for external integral, while for internal quadra-

tures we have the error Oðe�s2
ffiffiffi

m
p
Þ for ‘ ¼ 2 and Oðe�s3m= logmÞ for ‘ ¼ 3, respec-

tively, in the operator norm. Now, we can summarize our considerations in the
following assertion.

Theorem 5.5: Let A and B be strongly positive matrices, then the following integral
representation

FðG; A;BÞ ¼
Z 1

0

e�tAGe�tBdt

holds. Moreover, let A ¼ A1 þ . . .þ Ad ;B ¼ B1 þ . . .þ Bd and let fAjg; fBjg be
commutative sets of matrices (but Aj must not necessarily commute with Bl), then
the tensor-product approximation

FðG; A;BÞ � hð2Þ
X

M

k¼�M

jð2Þk

Y

d

j¼1
T ð‘ðkÞÞm ðzð2Þk ; AjÞ

 !

G
Y

d

j¼1
T ð‘ðkÞÞm ðzð2Þk ; BjÞ

 !

:¼ Ar

with ‘ðkÞ defined by (5.6) allows an error bound

Hierarchical Tensor-Product Approximation 155



kFðG; A;BÞ � Ark 	 C1e�s1
ffiffiffiffi

M
p
þ C2e�s2

ffiffiffi

m
p
þ C3e�s3m= logm

in the operator norm.

The statement similar to Remark 5.3 remains true.

References

[1] Babenko, K. I.: Foundations of the numerical analysis. Moscow: Nauka 1986 (in Russian).
[2] Beylkin, G., Mohlenkamp, M. J.: Numerical operator calculus in higher dimensions. University

of Colorado, APPM preprint no. 476, August 2001.
[3] Braess, D.: Nonlinear approximation theory. Springer 1986.
[4] Dautray, R., Lions, J.-L.: Mathematical analysis and numerical methods for science and

technology, vol. 5: Evolution problems I. Springer 1992.
[5] Fujita, H., Saito, N., Suzuki, T.: Operator theory and numerical methods. Elsevier 2001.
[6] Gavrilyuk, I.P.: Strongly P-positive operators and explicit representation of the solutions of

initial value problems for second-order differential equations in Banach space. J. Math. Anal.
Appl. 236, 327–349 (1999).

[7] Gavrilyuk, I. P., Hackbusch, W., Khoromskij, B. N.: H-matrix approximation for the operator
exponential with applications. Numer. Math. 92, 83–111 (2002).

[8] Gavrilyuk, I. P., Hackbusch, W.: Khoromskij, B. N.: Data-sparse approximation to operator-
valued functions of elliptic operators. Math. Comp. 73(247), 1297–1324 (2004).

[9] Gavrilyuk, I. P., Hackbusch, W., Khoromskij, B. N.: Data-sparse approximation to a class of
operator-valued functions. Math. Comp. (forthcoming).

[10] Grasedyck, L.: Existence and computation of a low Kronecker-rank approximation to the
solution of a tensor system with tensor right-hand side. Computing 70, 295–334.

[11] Grasedyck, L., Hackbusch, W.: Construction and arithmetics of H-matrices. Computing 70,
295–334 (2003).

[12] Grasedyck, L., Hackbusch, W., Khoromskij, B. N.: Solution of large scale algebraic matrix
Riccati equations by use of hierarchical matrices. Computing 70, 121–165 (2003).

[13] Griebel, M., Knapek, S.: Optimized tensor-product approximation spaces. Constr. Approx. 16,
303–332 (2000).

[14] Hackbusch, W.: Elliptic differential equations: Theory and numerical treatment. Berlin: Springer
1992.

[15] Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. Part I: Introduction to
H-matrices. Computing 62, 89–108 (1999).

[16] Hackbusch, W., Khoromskij, B. N.: A sparseH-matrix arithmetic. Part II: Application to multi-
dimensional problems. Computing 64, 21–47 (2000).

[17] Hackbusch, W., Khoromskij, B. N.: Towards H-matrix approximation of the linear complexity.
In: Operator theory: Advances and applications, vol. 121 (Elschner, J., Gohberg, I., Silbermann,
B., eds.), pp 194–220. Basel: Birkhäuser 2001.
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