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Abstract

Surface flattening is a crucial problem for many applications as indicated by the steady flow of new
methods appearing in related publications. Quality control of these methods, by means of ‘‘accuracy
criteria’’ independent of particular flattening methodologies, has not been addressed yet by researchers.
This is exactly the subject of this paper: a detailed analysis of flattening is presented leading to
geometric and physics-based criteria. These are implemented in intuitively-acceptable visualization
techniques, which are applied to practical examples.

AMS Subject Classifications: 68U05, 68U07, 68U20, 65D17, 65D18.

Keywords: Planar developments, parameterizations, flattening accuracy, digital surfaces, isometry,
isometric mapping, shape deformation, triangle-based surface representation, physics-based criteria,
graphics-based methods.

1. Introduction

Construction of planar developments of free-form surfaces has attracted the
interest of many researchers both in Manufacturing as well as in the Computer
Graphics field. It is well known that it is possible to produce an isometric mapping
of an arbitrary surface onto a plane only if this surface has everywhere zero
Gaussian-curvature, i.e., it is developable. Recently, many methods for the
approximate planar development of free-form surfaces have appeared focusing
either on the fundamental flattening problem or on a specific application like
texture mapping. In general, no unique solution to this problem exists. A common
approach, followed by many researchers, uses a ‘‘custom’’ metric which is
‘‘optimally’’ preserved during surface flattening. Thus, the majority of the existing
methods do not guarantee a generally-acceptable solution to the planar deve-
lopment problem.

As a result of all the above, the end-user has to select the ‘‘best solution’’ among a
large number of flattening methods and eventually among many planar deve-
lopments (resp. parameterizations) of a given surface. This selection must be based
on a specific set of requirements imposed, for example, by product specifications.
Published flattening methods and commercial software offer no adequate tools for
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performing/supporting this task. These tools should be intuitively understood by
the end-user and should provide local and/or global estimations of a develop-
ment’s quality. The introduction/derivation of such a set of tools and development
of the related visualization techniques is the subject of this paper.

2. Current Methods for Approximate Flattening of Surfaces

The surfaces considered in this work are approximated with an adequate mesh U
of triangles. This mesh is allowed to have a variable density depending on the
imposed accuracy criteria. Note that U contains only ‘‘positive’’ non-degenerated
triangles, i.e., their vertices have a counter-clockwise order so that the triangle
area is always positive.

Ma and Lin [10] and later Maillot et al. [11] propose a flattening technique based
on optimizing an objective function comparing the edge-length and triangle areas
between corresponding triangles in U and u. Azariadis and Aspragathos [2, 3]
further improve the aforementioned method by modifying the area energy func-
tion and by giving a solution to the initial-guess problem. Employing the material
properties of the initial surface, Shimada and Tada [17] proceed to developing a
flattening method based on finite elements. Another method is proposed by
Bennis et al. [4], where a relaxation procedure is used for the homogeneous dis-
tribution of deformation of the geodesic-curvature error in a planar development.

Yu et al. [20] present an algorithm using the in-plane strain related to the
transformation of the curved surface to its planar development. Another
approach [18] formulates the planar development problem using a spring-mass
system and calculates the strain energy released during flattening. These authors
also use a color graph to indicate areas where cutting lines should be introduced
to release more strain energy but they use a very generic technique for measuring
the flattening accuracy based on triangle edges and areas difference. The MIPS
method [8] uses a more elaborated approach to measure the local isometry based
on a non-linear energy which is invariant to orthogonal transformations and
homogeneous scalings.

A method based on properties of the Gaussian curvature of a surface is proposed
by Hinds et al. [7] aiming at planar developments for apparel design which are
free of foldovers and are called ‘‘radial developments’’. McCartney et al. [12] offer
another method, aiming again at the clothing industry, which handles insertion of
darts and gussets by creating appropriate openings. Parida/Mudur [13] deal with
the special case of composite materials and propose a robust flattening technique
based on constraints. Azariadis/Aspragathos [1] extend this method to a general-
purpose surface flattening technique divided into three-stages where the unfolding
direction is taken into consideration by minimizing a local energy function.

Schwartz/Shaw/Wolfson [16] and Wolfson/Schwartz [19] use a special MDS
(Multi-Dimensional Scaling) approach to flatten a curved surface utilizing geo-
desic distances. This method’s computational complexity is very high, rendering it
impractical. Zigelman et al. [21] improved this method by introducing a new
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mapping technique that preserves both the local and the global structure of the
planar development with minimal shearing effects. Sander/Snyder et al. [15] and
Snyder/Gortler et al. [14] use a ‘‘texture stretch’’ metric based on singular values
of the Jacobian of the affine mapping 2D-to-3D to compute a good parameteri-
zation. A drawback of this technique is that the boundary should be fixed and
convex, imposing, thus, a large isometry error near boundary edges. Levy et al. [9]
propose Least Squares Conformal Maps built on a criterion that minimizes angle
deformations and non-uniform scalings. Desbrun et al. [5] developed a set of
intrinsic parameterizations which preserve either angles (Discrete Conformal
Mapping) or areas (Discrete Authalic Mapping) which are combined to form a
general discrete parameterization method. They apply their theoretical results to
parameterize 3D meshes with a fixed 2D boundary in the parametric space. They
also show how to interactively optimize the boundary of the parameterization
with respect to an appropriate energy. Conformal parameterizations have also
been proposed by Eck et al. [6] who derived the linear condition for conformality
using harmonic maps. Here again a fixed and convex boundary is required to
produce conformal maps.

The above methods solve the surface development problem by using either
‘‘custom’’ energy models or geometrical properties of the surface. None of these
methods estimates the quality of the planar development in relation to geometric
or other criteria. They all rely on the assumption that, when the employed energy
function is minimized, then an adequate planar development is derived. This is
clearly not sufficient for the end-user who must perform a detailed quality-eval-
uation of the derived developments. To all our knowledge this is the first time that
the notion of quality control of planar developments is proposed.

3. Geometric Quality Control of Planar Developments

3.1. Local Mappings between the Surface and its Planar Development

Let S be a surface given by the parametric equation x ¼ xðu; vÞ and the uv-plane
P . Then, x�1 maps points of S onto the plane P . If x is an isometry then the
surface S is developable. We focus on the opposite case where S is not develop-
able, i.e., x is not an isometry. In this case, one of the methods of Section 2 is
employed, which operates on a triangulation U of S and produces a planar
development on the plane P . The development is defined as a triangular mesh u

having equivalent topological characteristics with U. This section aims at pro-
ducing methods and criteria to analyze u as an approximation to an isometric
development of U.

Let us consider an arbitrarily pair of corresponding triangles DðA;B;CÞ of U and
Dða; b; cÞ of u, where A;B;C 2 <3 and a; b; c 2 <2 are respectively the vertices of
these triangles. We define their vertices through local orthonormal coordinate
systems L and ‘ respectively as AL ¼ ð0; 0Þ, BL ¼ ðBL

x ; 0Þ, CL ¼ ðCL
x ;C

L
y Þ and

a‘ ¼ ð0; 0Þ, b‘ ¼ ðb‘x; 0Þ, c‘ ¼ ðc‘x; c‘yÞ. The affine transformation from Dða; b; cÞ to
DðA;B;CÞ is given by a local linear mapping f written in matrix form as
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BL
x CL

x
0 CL

y

� �
¼ f

b‘x c‘x
0 c‘y

� �
)f ¼

BL
x

b‘x

b‘xCL
x�BL

x c‘x
b‘xc‘y

0
CL

y

c‘y

2
4

3
5 ð1Þ

Note that the matrix
b‘x c‘x
0 c‘y

� �
always has an inverse since the determinant

D ¼ b‘xc‘y is nonzero. The set of all local mappings f define the overall mapping of

u onto U. Thus, a detailed study of f is a prerequisite for the ‘‘isometry evalua-

tion’’ of the development u.

3.2. Properties of Local Mappings

In this section we shall investigate both quantitative and qualitative characteris-
tics of local mappings f in order to ascertain whether they define an isometry or
not.

3.2.1. Local Isometry Examination

We can simplify the used notation taking into account that, since L and ‘ are
orthonormal coordinate systems, we can express the coordinates of the vertices of
DðA;B;CÞ and Dða; b; cÞ in a global coordinate system W as it is shown in Fig. 1:

AW ¼ ð0; 0Þ; BW ¼ ðBL
x ; 0Þ; CW ¼ CL

x ;C
L
y

� �

aW ¼ ð0; 0Þ; bW ¼ ðb‘x; 0Þ; cW ¼ c‘x; c‘y
� � ð2Þ

Let p=(x,y) be a point within DðaW ; bW ; cW Þ. This point is mapped to a point
P = (X,Y), within DðAW ; BW ; CW Þ, according to P ¼ fp. If f is an isometry then
the squared Euclidean-distance between p and P should be zero, which is equiv-
alent to having f11 ¼ 1, f22 ¼ 1 and f12 ¼ 0. Thus, the only case where f causes no
distortion is f=I2.

Fig. 1. The two corresponding triangles placed in the global coordinate system W with unit vectors
i=(1,0) and j=(0,1)
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3.2.2. Deformation of a Unit Circle

A different configuration of the two triangles DðA;B;CÞ and Dða; b; cÞ is used with
respect to a global orthonormal coordinate system W . The vertices of DðA;B;CÞ
are defined according to Eq. (2) while the triangle Dða; b; cÞ is translated from its
original location in u by �a:

AW ¼ ð0; 0Þ; BW ¼ ðBW
x ; 0Þ; CW ¼ CW

x ;C
W
y

� �

aW ¼ ð0; 0Þ; bW ¼ ðbW
x ; b

W
y Þ; cW ¼ cW

x ; c
W
y

� �
ð3Þ

This configuration is depicted in Fig. 2. In this case, the mapping f is given by

f ¼
BW

x cW
y �CW

x bW
y

bW
x cW

y �bW
y cW

x

bW
x CW

x �BW
x cW

x
bW

x cW
y �bW

y cW
x

� CW
y bW

y

bW
x cW

y �bW
y cW

x

CW
y bW

x

bW
x cW

y �bW
y cW

x

2
4

3
5 ð4Þ

Let us consider a circle xcðxÞ ¼ xcðxÞ; ycðxÞð Þ ¼ cosx; sinxð Þ of unit radius with
its center lying at the origin of the global system of reference. An arbitrarily circle
point xcðxÞ ¼ ðxcðxÞ; ycðxÞÞ is mapped, through f ¼ fij

� �
, to a point XcðxÞ

according to

XcðxÞ
YcðxÞ

� �
¼ f11 cosxþ f12 sinx

f21 cosxþ f22 sinx

� �
ð5Þ

Then, the squared distance between the new point ðXcðxÞ; YcðxÞÞ and the origin is

gðxÞ ¼ X 2ðxÞ þ Y 2ðxÞ ¼ ðf 2
11 þ f 2

21Þ cos2 x

þ ðf 2
12 þ f 2

22Þ sin2 xþ 2ðf11f12 þ f21f22Þ cosx sinx ð6Þ

This distance should be equal to one for every ðXcðxÞ; YcðxÞÞ in order to avoid
deformations. However, if f is not an isometry then deformations are unavoidable
and the unit circle is deformed into an ellipse. The angle at which the unit circle
undergoes the maximum or minimum deformation is computed at g0ðxÞ ¼ 0 as

Fig. 2. The two corresponding triangles placed in the global coordinate system W with unit vectors
i=(1,0) and j=(0,1)
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x1 ¼
1

2
tan�1

2ðf11f12 þ f21f22Þ
f 2
11 þ f 2

21 � f 2
12 � f 2

22

ð7Þ

Substituting Eq. (7) into Eq. (6), the principal direction of the ellipse relative to
the x-axis of the frame W is given by

b ¼ tan�1
Ycðx1Þ
Xcðx1Þ

ð8Þ

The deformation of the unit circle along the first and second principal direc-
tions is

dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

c ðx1Þ þ Y 2
c ðx1Þ

q
and dq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

c x1 þ p=2ð Þ þ Y 2
c x1 þ p=2ð Þ

q
ð9Þ

Remark 1. The ellipse components (semiaxes) dp and dq are the square roots of the
eigenvalues of the positive matrix ffT.

Remark 2. The mapping f is an isometry iff dp ¼ 1 and dq ¼ 1.

3.3. Measuring the Accuracy of Planar Developments

The geometric accuracy of planar developments relates to measuring the metric
distortion caused by the flattening process, which must be measured locally and
globally. Trivial techniques for measuring accuracy, like triangle area, edge length
and angles, provide only a quantitative evaluation of a development without
being able to express qualitative properties like i.e. homogeneity or aspect ratio of
the distortion. In addition, the measuring technique should be unaffected by
translations, orthogonal transformations and by homogeneous scaling. The
proposed indices take into account both quantitative and qualitative properties of
planar developments.

3.3.1. Local Accuracy Measurement

Direct Triangle-Edge Difference: A straightforward measurement of the local
accuracy is achieved by examining the difference in edge-lengths of corresponding
triangles:

DðT Þ ¼ ABk k � abk k
ABk k

����
����þ ACk k � ack k

ACk k

����
����þ BCk k � bck k

BCk k

����
����; ð10Þ

where D Tð Þ 2 0;þ1½ Þ and T ¼ DðA;B;CÞ 2 U with Dða; b; cÞ the corresponding
triangle in u. The closer to zero DðT Þ is, the lesser the local distortion in Dða; b; cÞ.
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Although DðT Þ is not invariant to scaling, it can be used for a quick quantitative
measurement of local isometry.

Homogeneity of Distortion: Since deformation is unavoidable in planar develop-
ments of free-form surfaces, it is important to examine whether this distortion is
homogeneously dispread on the flattened surface, in order to avoid rapid changes
in local accuracy and concentration of deformation in certain areas. This quali-
tative criterion can be defined as follows:

h fð Þ ¼ dpdq � 1
�� ��; h fð Þ 2 0;þ1½ Þ ð11Þ

Ideally, h fð Þ should be equal to zero for an isometric mapping f.

Aspect Ratio: Aspect ratio should be preserved to avoid non-uniform deformation
of the planar development. This measurement is expressed as:

r fð Þ ¼ dp

dq
� 1

����
����; r fð Þ 2 0;þ1½ Þ ð12Þ

For an isometric mapping f, r fð Þ is equal to zero.

3.3.2. Global Accuracy Estimation

Global Triangle-Edge Difference: A global ‘‘isometry criterion’’ is directly derived
by (10):

D ¼
X
T2U

DðT Þ; D 2 0;þ1½ Þ ð13Þ

Obviously, D ¼ 0 is a necessary condition for u to be an isometric mapping of U.

Global Homogeneity of Distortion: The ratio of min dpdq
	 


over max dpdq
	 


, for
all mappings, characterizes the global homogeneity of distortion in the planar
development, i.e.,

h ¼
min dpdq

	 

max dpdq

	 
; ð14Þ

where h 2 0; 1ð �. Ideally, h should be equal to one.

Global Aspect Ratio: A global index characterizing the variation of aspect ratio on
the entire planar surface is given by

r ¼
min dq

	 

max dp

	 
; ð15Þ

where r 2 0;þ1ð Þ and, ideally, r should be equal to one.

Planar Development of Free-Form Surfaces 19



T
a
b
le

1
.
Q
u
a
li
ty

co
n
tr
o
l
re
su
lt
s
fo
r
th
e
te
st

ca
se
s.

S
u
rf
a
ce

G
lo
b
a
l
h
o
m
o
g
en
ei
ty

o
f
d
is
to
rt
io
n
h

G
lo
b
a
l
a
sp
ec
t

ra
ti
o
r

M
in

D
(T
)

M
a
x

D
(T
)

M
in

h
(f
)

M
a
x

h
(f
)

M
in

r(
f)

M
a
x

r(
f)

T
o
ru
s
(F
ig
.
3
b
)

5
.9
8

·
1
0

)
1

5
.3
7

·
1
0

)
1

6
.3
5

·
1
0
)
3

7
.5
1

·
1
0
)
1

4
.7
0

·
1
0
)
5

3
.1
7

·
1
0
)
1

3
.1
1

·
1
0
)
3

5
.0
4

·
1
0
)
1

T
o
ru
s
(F
ig
.
3
c)

6
.4
1

·
1
0

)
1

6
.8
7

·
1
0

)
1

1
.9
5

·
1
0
)
3

4
.6
5

·
1
0
)
1

0
2
.7
0

·
1
0
)
1

1
.4
6

·
1
0
)
3

2
.6
7

·
1
0
)
1

L
a
st

3
.8
0

·
1
0

)
1

6
.9
0

·
1
0

)
1

3
.0
0

·
1
0
)
6

5
.8
9

·
1
0
)
1

1
.1
9

·
1
0
)
7

1
.2
0

6
.5
5

·
1
0
)
7

5
.9
6

·
1
0
)
1

H
ea
d

4
.4
5

·
1
0

)
1

2
.7
4

·
1
0

)
1

1
.3
0

1
.7
4

2
.1
6
2
5

6
.1
0

1
.2
2

·
1
0
)
3

2
.0
9
8
1

20 Phillip N. Azariadis and Nickolas S. Sapidis



4. Physics-based Quality Control of Planar Developments

This section introduces an alternative methodology to evaluate developments as
well as the related flattening-algorithms on the basis of the forces required to
produce a planar development. This method is based on the error analysis of
Section 3.2.2 and on the theory of Finite Elements Analysis (FEA). More
specifically, in Section 3.2.2 we derived the deformation that each triangle in the
flattened surface undergoes as a matrix product including two rotations and a
deformation along principal directions. The first rotation is expressed through the
angle b (Eq. (8)) and the components of the deformation by dp and dq (Eq. (9)).
Using well-known results from FEA, we express this deformation in terms of
nodal force-vectors (at the triangle vertices). In the plane stress problem, B is the
strain matrix that contains the strain-nodal-displacement relationships, and D is
the elasticity matrix representing stress-strain relationships for the surface’s
material. The nodal force-vector gf implied by the deformation caused by f

(Eq. (14)) is given by [17]

gf ¼
Z
D

BTDT

dp � 1
dq � 1

0

0
@

1
Adx dy ¼ ABTDT

dp � 1
dq � 1

0

0
@

1
A; ð16Þ

where A is the triangle’s area and the orthogonal matrix T is given by

T ¼
cos2 b sin2 b �2 sin b cos b

sin2 b cos2 b 2 sin b cos b

sin b cos b � sin b cos b cos2 b� sin2 b

2
64

3
75 ð17Þ

Clearly, gf ¼ 0 iff f is an isometry. It is proposed that nodal force-vectors are
plotted on planar developments and are used as a secondary tool to locate
excessive distortions; see examples in the next section.

Fig. 3. Part of a torus surface with two corresponding planar developments
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5. Test cases1

5.1. Color Maps

All local, geometric accuracy-indices (Section 3.3.1) are presented to the user
through appropriate color maps. More specifically, application of a particular
quality criterion commences with calculation of the corresponding accuracy index
at each vertex of a development through averaging of values produced by all
triangles sharing this vertex. This value is then projected onto 0; 1½ � interval and it
is eventually associated to a color value expressed in grayscale. In all the examples
presented in this section the darker the color, the higher the value of the associ-
ated index is.

5.2. Examples

The quality-control criteria and visualization methods, introduced in the previous
sections of this paper, are applied to planar developments of varying quality to
confirm/demonstrate their effectiveness in identifying inaccuracies. All numerical
results related to the present examples are assembled in a single table (Table 1) to
facilitate comparisons.

The first example is a torus part (Fig. 3). We perform quality control on two
planar developments of this surface derived using the method [17]. In order to
illustrate the effectiveness of the proposed tools in detecting accuracy problems,
we produce (a) a suboptimal development by forcing the method to terminate
prematurely, and (b) a high-quality development using the method appropriately.
These are shown in Fig. 3.

For the suboptimal planar development (Fig. 3(b)): Since the local isometry index
D Tð Þ takes values up to 0.75114, meaning that there exist triangles distorted up to
75%, it is evident that this planar development is not accurate. However, distor-
tion is dispread within this planar development quite uniformly, except for the two
dark areas in Fig. 4(a) where h fð Þ reaches local maxima, i.e., there is a high con-
centration of deformation. Figure 4(b) depicts a color map of the local aspect ratio
index r fð Þ (Eq. (12)) together with the nodal forces (Section 4). It is obvious that
significant distortion exists near the upper-right corner of the planar development,
where also excessive stretching forces appear. In general, high r fð Þ appears in areas
where shear stress exists, as it is shown at the upper-right corner of Fig. 4b (right).
Conclusion: All criteria agree that the development in Fig. 3(b) is not accurate and
thus inappropriate for applications. To confirm this, we use this planar development
to map a texture pattern onto the corresponding toroidal surface using the method
[2]. The texture pattern is monochrome and consists of uniformly distributed black
circular-disks. The texture mapped image (Fig. 4(c)) identifies vividly the parts of
the surface corresponding to distorted areas of the planar development. Indeed, in
the heavily distorted areas where r fð Þ is high, the circles of the pattern are also

1 Further material associated to the presented examples is available at http://www.syros.aegean.gr/
users/azar/pub/pde.htm
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distorted into elliptical shapes. It is interesting to note that the orientation of the
‘‘ellipses’’ agrees with that of the calculated nodal forces.

Applying the same quality-control methods on the second planar development
(Fig. 3(c)) reveals its high quality/accuracy, indicated, e.g., by all indices in
Table 1. Figure 5(a) (which is created using the same data range as the one used in
Fig. 4(b)) agrees with this observation as the r fð Þ value is significantly lower than
that of Fig. 4(b). Furthermore, nodal forces along vertical boundaries appear
almost symmetrical as one would expect based on the symmetry of the toroidal
surface. However, there is an area near the middle of the horizontal boundaries
where r fð Þ is quite high, indicating a deformation of the aspect ratio. This defor-
mation is confirmed by the texture mapped image (Fig. 5(b)), generated using this
second development. Indeed, in Fig. 5(b) the result is quite satisfactory everywhere
except for the indicated part corresponding to the area discussed above.

As a second test case we use an example from the footwear industry: flattening of
the surface of a last (Fig. 6). We flatten the last using the global optimization
method under constrains [3] making sure that the method terminates prematurely,

Fig. 4. The color maps corresponding to the suboptimal planar development of the torus (Fig. 3(b)).
(a) Color map of the h fð Þ index (suboptimal development). (b) Color map of the r fð Þ index

(suboptimal). (c) Texture mapped image on the torus part using the suboptimal planar development
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Fig. 5. Optimal planar development of the torus surface (Fig. 3c). (a) Color map of the r fð Þ index
(optimal development). (b) Texture mapped image on the torus part using the optimal planar

development

Fig. 6. The color maps of the last’s surface. (a) Surface of a last and the corresponding planar
development. (b) Color map of the h fð Þ index. (c) Color map of the r fð Þ index. (d) Texture mapped image
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so that the result is not accurate; see Fig. 6(a). The numerical indicators in
Table 1 agree with that; e.g., D Tð Þ indicates up to 58% distortion of triangle-
edges. Furthermore, the color maps in Figs. 6(b) and 6(c) also identify inaccu-
racies at the forepart and at the perimeter of the surface, respectively. These
results are empirically confirmed through the texture mapped image of the last
illustrated in Fig. 6(d), where significant deformation of the pattern is shown at
the forepart.

The third example tests our proposals on a highly complex surface, the human-
head model in Fig. 7(a). The corresponding planar development is derived using
the method [11]. All indices in Table 1 indicate significant inaccuracies in this
development. The problematic areas are highlighted by the color maps of
Figs. 7(b) and 7(c): The former points out inaccuracies at the area of the nose,
while the latter indicates non-uniform deformations near the nose and in the neck
area. These observations are empirically confirmed by texture mapping; see the
two marked areas in Fig. 7(d).

Fig. 7. Human-head surface and the corresponding planar development. (a) Human-head surface and
the corresponding planar development. (b) Color map of the h fð Þ index. (c) Color map of the r fð Þ index.

(d) Texture mapped image with areas of maximum deformation colored yellow
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6 Summary

Planar development of free-form surfaces is a classical problem in Computer-
Aided Manufacturing with an increasing involvement in other fields like
Computer Graphics. Currently, many solution-algorithms are available, forcing
software-developers and end-users to seek criteria and methods to evaluate them.
These ‘‘quality-control’’ criteria must focus on the fundamental features of planar
development, being independent of the characteristics of any particular flattening
method. This has been exactly the subject of the reported research that produced
various geometric indices and one physics-based method to evaluate planar
developments.

References

[1] Azariadis, P., Aspragathos, N.: Design of plane patterns of doubly curved surfaces. Computer-
Aided Design 29, 675–685 (1997).

[2] Azariadis, P., Aspragathos, N.: On using planar developments to perform texture mapping on
arbitrarily curved surfaces. Computers & Graphics 24, 539–554 (2000).

[3] Azariadis, P., Aspragathos, N.: Geodesic curvature preservation in surface flattening through
constrained global optimization. Computer-Aided Design 33, 581–591 (2001).

[4] Bennis, C., Vezien, J.-M., Iglesias, G.: Piecewise surface flattening for non-distorted texture
mapping. Computer Graphics 25, 237–246 (1991).

[5] Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. In: Drettakis,
G., Seidel, H.-P. (eds.): Proceedings of Eurographics 2002, Computer Graphics forum, pp. 21, 3,
210–218. Saarbrucken: Blackwell, 2002.

[6] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution
analysis of arbitrary meshes. In: Proceedings of ACM SIGGRAPH 1995, Computer Graphics
Proceedings, Annual Conference Proceedings, pp. 173–182, 1995.

[7] Hinds, B. K., McCartney, L., Woods, G.: Pattern development for 3D Surfaces. Computer-Aided
Design 23, 583–592 (1991).

[8] Hormann, K., Greiner, G.: MIPS – An efficient global parameterization method. In: Curve and
Surface Design Conference Proceedings, pp. 153–162, 1999.

[9] Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture
atlas generation. ACM Transactions on Graphics 21, 362–371 (2002).

[10] Ma, S. D., Lin, H.: Optimal texture mapping. Proc. EUROGRAPHICS 88, 421–428 (1988).
[11] Maillot, J., Yahia, H., Verroust, A.: Interactive texture mapping. Proc. SIGGRAPH 93, pp. 27–34.

California: Anaheim 1993.
[12] McCartney, J., Hinds, B. K., Seow, B. L.: The flattening of triangulated surfaces incorporating

darts and gussets. Computer-Aided Design 31, 249–260 (1999).
[13] Parida, L., Mudur, S. P.: Constraint-satisfying planar development of complex surfaces.

Computer-Aided Design 25, 225–232 (1993).
[14] Sander, P., Gortler, S., Snyder, J., Hoppe, H.: Signal-specialized parameterization. In:

Proceedings of Thirteen Eurographics Workshop on Rendering, pp. 87–98, 2002.
[15] Sander, P. V., Snyder, J., Gortler, S., Hoppe, H.: Texture mapping progressive meshes. In:

Proceedings of ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference
Proceedings, pp. 409–416, 2001.

[16] Schwartz, E. L., Shaw, A., Wolfson, E.: A numerical solution to the generalized mapmaker’s
problem: flattening nonconvex polyhedral surfaces. IEEE Trans. on Pattern Analysis and
Machine Intelligence 11, 1005–1008 (1989).

[17] Shimada, T., Tada, Y.: Approximate transformation of an arbitrary curved surface into a plane
using dynamic programming. Computer-Aided Design 23, 153–159 (1991).

[18] Wang, C., Chen, S.-F., Yuen, M.: Surface flattening for the fashion industry: a generic approach
using Spring-Mass system. Computers in Industry 1548, 1–10 (2001).

[19] Wolfson, E., Schwartz, E. L.: Computing minimal distances on polyhedral surfaces. IEEE Trans.
on Pattern Analysis and Machine Intelligence 11, 1001–1005 (1989).

[20] Yu, G., Patrikalakis, N. M., Maekawa, T.: Optimal development of doubly curved surfaces.
Computer Aided Geometric Design 17, 545–577 (2000).

26 Phillip N. Azariadis and Nickolas S. Sapidis



[21] Zigelman, G., Kimmel, R., Kiryati, N.: Texture mapping using surface flattening via multi-
dimensional scaling. IEEE Trans. on Visualization and Computer Graphics 8, 198–207 (2002).

Phillip N. Azariadis
Nickolas S. Sapidis
Department of Product &
Systems Design Engineering
University of the Aegean
Ermoupolis, Syros
84100 Greece
e-mails: azar@aegean.gr

sapidis@aegean.gr

Planar Development of Free-Form Surfaces 27


