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Abstract

We investigate strategies for the numerical solution of the initial value problem
yðamÞðxÞ ¼ f ðx; yðxÞ; yða1ÞðxÞ; . . . ; yðam�1ÞðxÞÞ with initial conditions yðkÞð0Þ ¼ yðkÞ0 ðk¼ 0; 1; . . . ; dame � 1Þ;
where 0 < a1 < a2 < � � � < am. Here yðajÞ denotes the derivative of order aj > 0 (not necessarily aj 2 N)
in the sense of Caputo. The methods are based on numerical integration techniques applied to an
equivalent nonlinear and weakly singular Volterra integral equation. The classical approach leads to an
algorithm with very high arithmetic complexity. Therefore we derive an alternative that leads to lower
complexity without sacrificing too much precision.
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1 Introduction

We investigate strategies for the numerical solution of the initial value problem

yðamÞðxÞ ¼f ðx; yðxÞ; yða1ÞðxÞ; . . . ; yðam�1ÞðxÞÞ; ð1Þ
yðkÞð0Þ ¼yðkÞ0 ðk ¼ 0; 1; . . . ; dame � 1Þ; ð2Þ

where 0 < a1 < a2 < � � � < am. Here,

yðajÞðxÞ :¼ Daj
� yðxÞ :¼ J dae�aj DdajeyðxÞ ð3Þ

denotes the derivative of order aj > 0 (not necessarily aj 2 N) in the sense of
Caputo, where, for q > 0,

JqyðxÞ :¼ 1

CðqÞ

Z x

0

ðx� tÞq�1yðtÞdt

is the Riemann-Liouville fractional integral of order q, and where for m 2 N,
Dm denotes the usual differential operator of order m. Since we have a total of
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m differential operators, we call this problem a m-term differential equation.
Applications for such equations arise, e.g., in various areas of mechanics
[15, 19, 21].

In x2, we review the main properties of the fundamental algorithm by looking at
the simplest case, m ¼ 1. The algorithm is a predictor-corrector (more precisely,
PECE) method introduced in [8, 9] and investigated in a more detailed way in
[6, 7]. It can be interpreted in the spirit of the classical Adams-Bashforth-Moulton
schemes for first-order equations. Specifically we analyse the discretization error
of this approach under various assumptions on the given data. It must be
emphasized that other algorithms for certain fractional differential equations are
available, but these (like the ones from [2, 10, 18]) typically have a restricted
applicability in the sense that they normally encounter difficulties when handling
non-linear equations. The Adams method is capable of handling any sort of right-
hand side in eq. (1).

On the basis of these results we then (in x3) look at the general problem for
arbitrary m. Here we first try to generalize the classical approach for higher order
differential equations (with integer aj). It turns out that this is possible only under
some additional number-theoretical assumptions on the aj. Moreover the
resulting systems often have a very large dimension d (whose precise value de-
pends on the exact number-theoretic properties of a1; . . . ; am). The computational
complexity that is due to this high dimensionality is increased even more by the
fact that the special structure of the system forces us to use a very small step size h
for the numerical algorithm. As a rule of thumb we find that a reasonable choice
for the step size is h ¼ Oð1=dÞ.

As an alternative we follow [3] and suggest in x4 to construct an approximate
solution in two steps. First we replace the given equation (1) by a different m-term
fractional differential equation without changing the initial conditions. This sec-
ond differential equation is constructed in such a way that it has two main
properties:

� Its solution ~y does not differ significantly from the solution y of the original
problem.

� Its structure is such that it can be converted into an equivalent system of one-
term fractional differential equations of order a whose dimension is compar-
atively small.

Then we solve this system numerically with our predictor-corrector algorithm. In
view of the properties of the system that are guaranteed by our construction, we
find that the computational effort remains reasonably small without sacrificing
too much precision. We shall see that it may sometimes be useful to replace the
PECE method by a P(EC)mE method with m � 2. In particular we compare
various different choices for the parameter m.
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2 The Fundamental Predictor-Corrector Algorithm

In this section we recall the fundamental algorithm that we shall later use to
solve our differential equations. It has been introduced in [8] and [9] and
investigated further in [6] and [7]. As we shall see in the later sections, it will
be sufficient to consider only the case m ¼ 1 in the initial value problem stated
in eqs. (1) and (2). Thus we momentarily concentrate our attention on the
differential equation

Da
�yðxÞ ¼ f ðx; yðxÞÞ; ð4Þ

equipped with initial conditions

yðkÞð0Þ ¼ yðkÞ0 ; k ¼ 0; 1; . . . ;m� 1; ð5Þ

where m ¼ dae and the real numbers yðkÞ0 , k ¼ 0; 1; . . . ;m� 1, are assumed to be
given.

The algorithm will be a generalization of the well known second-order Adams-
Bashforth-Moulton method for first-order initial value problems [12, 13].

Our approach is based on the analytical property that the initial value problem
(4), (5) is equivalent to the Volterra integral equation

yðxÞ ¼
Xdae�1
k¼0

yðkÞ0

xk

k!
þ 1

CðaÞ

Z x

0

ðx� tÞa�1f ðt; yðtÞÞdt ð6Þ

in the sense that a continuous function is a solution of the initial value problem if
and only if it is a solution of (6). For a brief derivation of this equivalence we refer
to [4, Lemma 2.3]. Note that the sum outside the integral on the right-hand side is
completely determined by the initial values and hence is known. Therefore, in-
stead of solving the originally given initial value problem, we now try to solve this
Volterra equation. In typical situations (in particular in the situations that we
shall encounter below, i.e. when this equation is constructed from a given multi-
term equation) one usually has 0 < a < 1, and hence the Volterra equation (6) is
weakly singular. Moreover we want to admit a very large class of possible right-
hand side functions f , and therefore we do not want to assume that the equation
is linear.

In order to construct a reasonable approximate solution of this nonlinear and
weakly singular Volterra equation, we introduce the equispaced nodes tj ¼ jh with
some given h > 0 and simply use the product trapezoidal quadrature formula with
these nodes to replace the integral in (6), which of course yields an implicit
method. Thus we use it as a corrector in a predictor-corrector pair just as one
would do for a first-order equation [12, 13]. In other words, this method can be
considered to be an analogue of the classical one-step Adams-Moulton algorithm.
Hence our corrector formula is given by
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yhðtnþ1Þ ¼
Xdae�1
k¼0

tk
nþ1
k!

yðkÞ0 þ
ha

Cðaþ 2Þ f ðtnþ1; yPh ðtnþ1ÞÞ

þ ha

Cðaþ2Þ
Xn

j¼0
aj;nþ1f ðtj; yhðtjÞÞ; ð7Þ

where

a0;nþ1 ¼ naþ1 � ðn� aÞðnþ 1Þa;
aj;nþ1 ¼ ðn� jþ 2Þaþ1 þ ðn� jÞaþ1 � 2ðn� jþ 1Þaþ1 ð1 � j � nÞ: ð8Þ

The remaining problem is the determination of the predictor formula that we
require to calculate the value yPh ðtnþ1Þ. A natural choice for the predictor of a one-
step Adams-Moulton rule is a one-step Adams-Bashforth rule, i.e. we replace the
integral in eq. (6) by the product rectangle rule with the same nodes as before.
This approach gives us the predictor yPh ðtnþ1Þ as

yPh ðtnþ1Þ ¼
Xdae�1
k¼0

tk
nþ1
k!

yðkÞ0 þ
1

CðaÞ
Xn

j¼0
bj;nþ1f ðtn; yhðtjÞÞ ð9Þ

where now

bj;nþ1 ¼
ha

a
ðnþ 1� jÞa � ðn� jÞað Þ ð0 � j � nÞ ð10Þ

(see also [6, 9] for a more detailed derivation of the method). Our basic algorithm,
the fractional Adams-Bashforth-Moulton method, is completely described now
by eqs. (9) and (7) with the weights bj;nþ1 and aj;nþ1 being defined according to
(10) and (8), respectively.

The mathematical analysis of this method in [7] shows that we may expect the
error to behave as

max
j¼0;1;...;N

jyðtjÞ � yhðtjÞj ¼ OðhpÞ where p ¼ minð2; 1þ aÞ ð11Þ

and the quantities h and N are related according to h ¼ T=N , with T being the
upper bound of the interval on which we are looking for the solution. In view of
the fact that 1 < p � 2 we have a satisfactory globally valid error bound. We note
that, quite in contrast to the behaviour of the algorithm described in [2], the
convergence order p of the Adams-Bashforth-Moulton scheme increases as a, the
order of the differential equation, increases. However, it must be noted that other
methods exist (see, e.g., [2]), that have an error bound of the form Oðh2�aÞ. This is
better than the Adams method for 0 < a < 1=2, and we shall see below that it is
very likely that our multi-term equations like (1) give rise to systems with a being
very small (like a ¼ 0:1 or even smaller). From this point of view the method of [2]
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seems preferable, but it has the significant disadvantage of not being readily
applicable to non-linear problems. Moreover we shall see below that there are
certain other attractive aspects of a predictor-corrector scheme.

We also note that Lubich [16] has proposed to solve the integral equation (6)
by a fractional multistep method. This idea gives, in theory, a class of methods
with high convergence order; however there are various practical disadvantages
associated with this concept. For example, high-order methods require the
starting values to be determined with sufficient accuracy, and the construction
of suitable numerical methods for this problem is by no means evident.
Moreover they require the construction of certain starting weights. For the
classical case a ¼ 1=2 this is rather simple, but for general a this may be a
highly ill-conditioned problem, and for a close to 0 (which is the case that we
need to deal with; see below) it is also computationally very expensive because
a linear system of dimension Oð1=aÞ needs to be solved at every step. There-
fore we prefer the Adams scheme described above in the situation at hand
here.

3 Extension to Multi-Term Equations

In order to apply such a method to a multi-term equation, i.e. to an equation of
the form (1) with m � 2, we first have to transform the given initial value problem
into a system of equations, all of which have the same order. In other words we
must construct an initial value problem of the form

Dq
�Y ðxÞ ¼ gðx; Y ðxÞÞ; Y ð0Þ ¼ Y0 ð12Þ

where now Y0 is a vector of a suitable dimension d, say, the function Y maps an
interval ½0; T � to Rd , and g : ½0; T � � Rd ! Rd . Having done this, we need to
establish the connection between the solution Y of this problem and the solution y
of the original problem. It turns out (see, e.g., [1, 3, 5, 14]) that such a con-
struction is possible only under certain assumptions on the parameters a1; . . . ; am;
indeed it can be seen that we can perform this conversion

� in the case am � 1 if and only if aj 2 Q for all j, and

� in the case am < 1 if and only if the quotients aj=ak 2 Q for all j and k.

(Note that the condition in the latter case is weaker than in the former.) The
resulting system is then, as derived in [3], of the form (12), where

Y ðxÞ ¼ ðy0ðxÞ; y1ðxÞ; . . . ; yd�1ðxÞÞT ð13Þ

with d ¼ am=q, where

q ¼ gcdða1; a2; . . . ; amÞ if am < 1,
gcdð1; a1; a2; . . . ; amÞ if am � 1.

�
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The gcd terminology has to be used in the generalized sense here because the
arguments may be non-integer numbers, i.e. we set

gcdðz1; . . . ; znÞ :¼ maxfz 2 R : zj=z 2 N for all jg:

The assumptions above make sure that the required greatest common divisors
exist. The function g on the right-hand side of (12) is then given by

gðx; Y ðxÞÞ ¼

y1ðxÞ
y2ðxÞ

..

.

yd�1ðxÞ
f ðx; y0ðxÞ; ya1=qðxÞ; . . . ; yam�1=qðxÞÞ

0
BBBBB@

1
CCCCCA

ð14Þ

and the initial conditions have the form

yjð0Þ ¼ yðjqÞ0 for jq 2 N0,
0 else.

�
ð15Þ

The connection between the given equation (1) and this system is then simply
established by noting that the exact solution y of the multi-term equation is
identical to the component y0 of the solution vector of the system.

The analytical approach itself is rather straightforward and does not present
major difficulties. However, from the numerical point of view, there are some
problems associated with this approach. These problems are essentially created
by the structure of the initial conditions as described in (15). In particular, we
note that the vector containing the initial conditions consists of the entry yð0Þ0 in
the first component, followed by 1=q� 1 zeros. Only then the next non-zero
entry may appear; its value comes from the given initial values of the original
problem, i.e. from eq. (2). In practical applications one often has very small
values of q and hence a very large number of zeros in the vector Y0. The Predict-
Evaluate-Correct-Evaluate (PECE) form of the Adams algorithm means that the
non-zero elements are propagated by two rows in each step, and hence the
algorithm needs to take, roughly speaking, 1=ð2qÞ steps before it can produce an
approximation for y0 that differs form the initial value. In other words, if q is
small then we need to take a very large number of steps before the numerical
solution can leave the initial value and start to follow the exact solution.
Assuming that we want to work on a given fixed interval, this means that we
need to run the scheme with a very small step size just to overcome this
problem, whereas a much larger step size might be sufficient in order to achieve
a certain accuracy.

As mentioned at the end of x2, it is possible to solve eq. (12) by Lubich’s multistep
technique [16], but here we must note that in addition to the practical disad-
vantages mentioned above, one would encounter the need to solve a nonlinear
system of dimension q (a potentially very large number) at every step. Therefore
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we shall devote the next sections to some ideas that improve the performance of
the predictor-corrector scheme.

4 The Two-Stage Approach

The problem described above is due to the large dimension of the system, and this
in turn is a consequence of the size of the greatest common divisor of the orders of
the differential operators in the given system. Therefore we have suggested [3] an
alternative approach that is based on a two-stage strategy.

The first stage consists of replacing the given equation (1) with initial conditions
(2) by a new differential equation

~yð~amÞðxÞ ¼ f ðx; ~yðxÞ; ~yð~a1ÞðxÞ; . . . ; ~yð~am�1ÞðxÞÞ ð16Þ

with identical initial conditions. We thus perturb the orders of the differential
operators, but all other parameters of the given problem (the function f on the
right-hand side and the initial conditions) remain unchanged.

The essence of this idea is that, according to the results of [3], the exact solution ~y
of this new initial value problem and the exact solution y of the original problem
differ only by

ky � ~yk1 ¼ O max
j¼1;2;...;m

jaj � ~ajj
� �

: ð17Þ

Here by k � k1 we denote the Chebyshev norm taken over a suitable finite interval
½0; T �, say, where both problems have a solution.

In order to exploit the capabilities of this approach, we need to choose the new
parameters ~a1; . . . ; ~am in such a way that they have the following three properties:

(a) ~a1; . . . ; ~am 2 Q,

(b) gcdð~a1; . . . ; ~amÞ is large,

(c) maxj jaj � ~ajj is small.

Here condition (a) asserts that a conversion of eq. (16) to a single-term system (as
described in x3) is possible. Specifically, since only the new values ~aj enter the later
stages of the scheme, such a conversion is always possible, without any restric-
tions on the original values aj. Condition (b) makes sure that the dimension d of
this system is small (remember that in x3 we had seen that essentially d 	 1=q
where q is the greatest common divisor mentioned in condition (b)). The signifi-
cance of this property lies in the reduction of the computational complexity.
Condition (c) finally makes sure that the error introduced by this perturbation
remains small, cf. eq. (17).

It must be noted of course that there is a conflict between conditions (b) and (c):
In many cases it will be possible to improve the approximation required in (c) at
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the price of decreasing the gcd mentioned in (b). A proper compromise must be
found in this case. It seems to be impossible however to state a generally valid
strategy for the solution of this conflict; a good compromise will likely depend on
the specific parameters of the equation under consideration.

This completes the first stage of the algorithm. At the end of this stage we have
found a new initial value problem that consists of the perturbed differential
equation (16) together with the original (unperturbed) initial conditions (2).

The second stage of the algorithm is then the stage where the initial value problem
that was constructed in stage 1 will be solved numerically. In practice we will first
use the approach of x3 to convert the new initial value problem into a single-term
system, and then we will solve this system numerically (for example by means of
the Adams method described in x2). As pointed out at the end of x3 the large
number of zeros in the initial condition of the resulting system may force us to use
a very small step size. Alternatively it may be useful to replace the plain PECE
structure by a PðECÞmE method, i.e. by introducing additional corrector itera-
tions. This would allow for a quicker propagation of the non-zero elements, and it
may be possible to avoid the use of excessively small step sizes. We shall provide
some numerical examples in x5. This flexibility in the number of corrector steps is
actually one of the main reasons why we suggest the Adams scheme and not, e.g.,
the method of [2].

5 A Numerical Example

We want to illustrate the properties of our scheme by using the example

yð1:455ÞðxÞ ¼ �x0:1
E1:545ð�xÞ
E1:445ð�xÞ e

xyðxÞyð0:555ÞðxÞ þ e�2x � ½yð1ÞðxÞ�2; ð18Þ

yð0Þ ¼ 1; y0ð0Þ ¼ �1; ð19Þ

where El denotes the Mittag-Leffler function of order l, defined by

ElðxÞ ¼
X1
j¼0

xj

Cðjlþ 1Þ :

Obviously this is a nonlinear three-term equation with a1 ¼ 0:555, a2 ¼ 1 and
a3 ¼ 1:455. The initial conditions are chosen such that the exact solution is

yðxÞ ¼ e�x:

We want to look at this equation on the interval [0, 1]. All calculations were done
on a 500 MHz Pentium based PC in double precision arithmetic.

As a first attempt to solve the problem with the two-stage strategy of x4, we have
approximated this equation by
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~yð1:5ÞðxÞ ¼ �x0:1
E1:545ð�xÞ
E1:445ð�xÞ e

x~yðxÞ~yð0:5ÞðxÞ þ e�2x � ½~yð1ÞðxÞ�2; ð20Þ

converted (20) to a three-dimensional system of order q ¼ 0:5, and solved this
system numerically with the Adams method in its plain PECE form using various
step sizes. The results are described in Table 1.

We can see that there is almost no improvement when we change the step size
from 1=20 to 1=40. This indicates that the error of the Adams scheme (i.e. the
error introduced in the second stage) is already very small compared to the error
of the first stage. Therefore there is no need to look for an improved scheme for
the solution of this simple system. Note in particular that (see Figure 1) even the
crudest of these three approximations (the dashed line) gives a qualitatively cor-
rect picture of the exact solution (the solid line).

In order to obtain a better approximation with our method we must now reduce
the error of stage 1, i.e. we need to introduce smaller perturbations in the orders of
the differential operators. We thus try to approximate the given equation (18) not
by (20) but by

~yð1:45ÞðxÞ ¼ �x0:1
E1:545ð�xÞ
E1:445ð�xÞ e

x~yðxÞ~yð0:55ÞðxÞ þ e�2x � ½~yð1ÞðxÞ�2 ð21Þ

and proceed as above. Consequently we find that we have to solve a 29-dimen-
sional system of order 0:05 numerically. This task is (in particular due to the
nature of the initial conditions) much more difficult than the previous one, and

Table 1. Numerical results of first approximation (d ¼ 3, q ¼ 0:5).

Step size Maximal error Run time

1=10 0:136 0:07 s
1=20 0:124 0:18 s
1=40 0:118 0:56 s

Fig. 1. Exact solution and first approximation (d ¼ 3, q ¼ 0:5, step size h ¼ 0:1)
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therefore we need to put more effort into the numerical scheme. This means that
we have to use a smaller step size or more corrector iterations. The results for
smaller step sizes are given in Table 2.

For the purpose of comparison with the previous example we have included the
case of a step size of 1=40. As can be seen by comparing Tables 1 and 2, the error
is much larger now than it was before. The reason is the problem that we men-
tioned above: Since the dimension of the system has been increased, the numerical
solution needs more time to get away from the initial value. An even more
obvious picture of the situation appears when we look at the graphical data
provided in Figure 2. Here again the solid line is the exact solution, the other lines
correspond to the numerical solutions (dashed line: h ¼ 1=40; dash-dotted line:
h ¼ 1=100; dotted line: h ¼ 1=200). We thus have to say that the graph for
h ¼ 1=40 does not give a qualitatively correct picture of the true solution.

Alternatively we may replace the PECE scheme by a PðECÞmE scheme, thus
introducing more corrector iterations. Then we can reduce the error without using
smaller step sizes. The point here is that by, for example, doubling the number of
corrector iterations, we essentially leave the computational complexity un-
changed: A corrector iteration is of the form

y½‘�h ðtnþ1Þ ¼
Xdae�1
k¼0

tk
nþ1
k!

yðkÞ0 þ
ha

Cðaþ 2Þ f ðtnþ1; y
½‘�1�
h ðtnþ1ÞÞ

þ ha

Cðaþ2Þ
Xn

j¼0
aj;nþ1f ðtj; yhðtjÞÞ;

Table 2. Numerical results of second approximation (d ¼ 29, q ¼ 0:05).

step size maximal error run time

1=40 0:2015 0:9 s
1=100 0:0861 5:5 s
1=200 0:0440 21:5 s
1=400 0:0222 82:4 s

Fig. 2. Exact solution and second approximation (d ¼ 29, q ¼ 0:05, various step sizes)
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cf. eq. (7). Here y½‘�h ðtnþ1Þ denotes the approximation after ‘ corrector steps,
y½0�h ðtnþ1Þ ¼ yPh ðtnþ1Þ is the predictor, and yhðtnþ1Þ :¼ y½m�h ðtnþ1Þ is the final approx-
imation after m corrector steps that we actually use. We can rewrite this as

y½‘�h ðtnþ1Þ ¼ cnþ1 þ
ha

Cðaþ 2Þ f ðtnþ1; y
½‘�1�
h ðtnþ1ÞÞ

where

cnþ1 ¼
Xdae�1
k¼0

tk
nþ1
k!

yðkÞ0 þ
ha

Cðaþ2Þ
Xn

j¼0
aj;nþ1f ðtj; yhðtjÞÞ

is independent of ‘. Thus the total arithmetic complexity of the corrector part of
the nth step (taking us from tn�1 to tn) is OðnÞ for the calculation of cn plus OðmÞ
for the m corrector steps, which (since m is constant) is asymptotically the same as
the complexity in the case m ¼ 1.

If we would use the other option and reduce the step size by a factor of two, then
the run time would increase by a factor of four because the complexity of the
algorithm is Oðh�2Þ. Both approaches would reduce the size of the initial interval
where the numerical solution gets stuck at the initial value by a factor of 1=2.

It is possible to use the approach of Ford and Simpson [11] to reduce the com-
plexity of the basic algorithm to Oðh�1 ln h�1Þ, but not more; we have refrained
from doing so because (a) this is still slower than an increase of the number of
corrector steps, and (b) it would have introduced an additional computational
overhead.

The data obtained by our PðECÞmE approach are given in Table 3. Note that the
data of Table 2 correspond to this method with m ¼ 1.

It is clearly seen that there is a significant advantage in this approach: By choosing
m ¼ 10 and h ¼ 1=40 for example, we obtain an absolute error that is about 25%
smaller than in the case m ¼ 1 and h ¼ 1=200, and at the same time the run time is
75% shorter. The reason is the following. In the case m ¼ 1 the numerical solution
gets stuck at the initial value for a rather long interval. At the end of this interval
the true solution has moved away significantly from the initial value, and here the
error attains its maximum. Over the remainder of the interval ½0; 1� the numerical
solution then has to creep towards the exact solution, and the error gets smaller. If
we choose a larger value for m, we make the problematic initial interval smaller,

Table 3. Numerical results of second approximation (d ¼ 29, q ¼ 0:05), with PðECÞmE algorithm.

Number of corrector
iterations

Step size Maximal error Run time

10 1=40 0:03175 1:3 s
10 1=100 0:01174 6:5 s
20 1=40 0:00989 1:6 s
20 1=100 0:00379 7:2 s
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and therefore we also diminish the error attained over this interval. This is
apparent from Figure 3 where we have compared the absolute errors for m ¼ 1,
h ¼ 1=200 (solid line) and m ¼ 10, h ¼ 1=40 (dashed line).

Finally we note that all orders of the differential operators in eq. (18) are rational,
and so we may skip stage 1 of our two-stage process (thus effectively approxi-
mating the given equation by itself) and continue with stage 2 as usual. This gives
rise to a 291-dimensional system of order q ¼ 0:005. Some numerical results for
the plain PECE method are given in Table 4.

It is clear that the run times are not competitive. Therefore we once again revert to
the PðECÞmE structure with larger values for m and larger step sizes as before.
Some results are stated in Table 5.

Comparing Tables 4 and 5 we once again find a significant run time advantage in
the PðECÞmE method as compared to the PECE method without losing accuracy,
but even the approximations obtained by the faster P(EC)mE approach are less

Fig. 3. Errors for second approximation (d ¼ 29, q ¼ 0:05, various combinations of step size and
number of corrector steps)

Table 4. Numerical results for unperturbed equation (d ¼ 291, q ¼ 0:005), with PECE algorithm.

Step size Maximal error Run time

1=200 0:3904 101:2 s
1=400 0:2193 368:4 s
1=800 0:1164 1358:0 s
1=1600 0:0600 5017:4 s

Table 5. Numerical results for unperturbed equation (d ¼ 291, q ¼ 0:005), with PðECÞmE algorithm.

Number of corrector
iterations

Step size Maximal error Run time

10 1=100 0:16473 24:6 s
10 1=200 0:08607 85:4 s
20 1=100 0:08607 25:4 s
20 1=200 0:04400 86:1 s
200 1=120 0:03880 9:5 s
200 1=100 0:00430 58:5 s
200 1=200 0:00226 154:8 s
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accurate and more time consuming than the results presented in Table 3 where we
had used a simpler differential equation system.

6 Full Description of a Possible Algorithm

Based on our theoretical considerations above and on heuristical arguments
coming from the numerical results, we now give a complete description of our
algorithm for the approximate solution of the initial value problem (1), (2). The
algorithm will follow the basic ideas outlined above. The fundamental concept is
that we assume a bound on the complexity to be given (expressed in terms of the
gcd of the orders ~aj) and that we try to achieve a high accuracy in the solution
without exceeding the complexity limit.

Specifically, we assume that the user specifies a parameter q 2 Q which we
interpret as a lower bound for gcdð1; ~a1; . . . ; ~amÞ. Since the dimension d of the
system that we shall construct in stage 2 of the algorithm is given by
d ¼ ~am=q 
 am=q, this data gives us an upper bound on the dimension and hence
an upper bound on the arithmetic complexity.

We begin by constructing the perturbations required for the first stage. This is
very simple; for j ¼ 1; 2; . . . ; m we only have to set ~aj :¼ bjq where bj 2 N is
chosen to be the natural number closest to aj=q (i.e. bj ¼ baj=qþ 0:5c). In this
way we make sure that, for every single j, the quantity j~aj � ajj is minimized
under the condition that gcdð1; ~a1; . . . ; ~amÞ � q. This essentially completes the
first stage.

The second stage begins by rewriting the perturbed equations as a system of
order q and dimension d as described in x3. This system is solved by the
P(EC)mE scheme indicated in xx4 and 5. To avoid the problems caused by the
large number of zeros in the new initial condition, we choose the parameter m in
a way that depends on the number of zeros (i.e. on q); specifically we set
m :¼ d1=qe. Note that it follows from the considerations in x5 that it is neither
necessary nor helpful to introduce additional flexibility by choosing different
values for the parameter m in each step. The choice that we propose here is
sufficient to avoid the problems caused by the (possibly) large number of zeros
in the initial condition. Choosing m larger than this would not give a better
order of accuracy, so there is no point in doing that (cf. the considerations on
eq. (22) below). Choosing m smaller (permanently or temporarily) would mean
that the problem cannot be avoided totally, so one would have to assume a
deterioration of the approximation quality, but on the other hand it would not
lead to a significantly faster algorithm because the arithmetic complexity of the
entire scheme is (asymptotically) independent of m.

Another advantage of the PðECÞmE scheme with the choice of m indicated above
can be explained by a careful look at the error analysis of the plain PECE scheme
in [7] combined with the standard error analysis of PðECÞmE schemes for first-
order equations (cf., e.g., [20]): The algorithm converges to the true solution of the
perturbed equation with an error of
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max
j¼0;1;...;N

jyðtjÞ � yhðtjÞj ¼ OðhpÞ where p ¼ minð2; 1þ qmÞ: ð22Þ

In the special case of the PECE scheme (i.e. m ¼ 1) this reduces to the observation
of eq. (11). Since we advocate to use m ¼ d1=qe � 1=q, this means that we actually
have p ¼ 2 in every case, so we find slightly better convergence behaviour than in
the simple PECE approach; indeed this is the maximum order than one can
possibly obtain by an algorithm that uses the approximation method underlying
our scheme. As noted above, in many applications of interest our approach is
likely to give q very close to 0, and then the Oðh2Þ convergence obtained in this
way is a significant advantage compared to the Oðh1þqÞ behaviour of the plain
PECE method.

Our approach is particularly useful when one is looking for a computationally
inexpensive but still reasonably accurate approximation. In many applications
this will be what is desired because often one needs to solve a great number of
such initial value problems whose solutions are then required as input data for
other problems. Additionally, high accuracy is frequently impossible to obtain
anyway because the given data (in particular the orders aj of the differential
operators) are something like material constants known only up to a certain
(usually moderate) precision.

7 Conclusion

We have shown that the two-stage method of Diethelm and Ford [3] can be a very
useful and efficient tool for the approximate solution of initial value problems
involving multi-term fractional differential equations. In order to fully exploit the
capabilities of the approach it seems to be useful to tune the parameters according
to the specific requirements of the problem under consideration. In particular, one
should combine the approach with a PðECÞmE algorithm, i.e. an algorithm that
uses more than just one corrector step, if the order of the single-term system
constructed in the process is small. The precise choice of the parameters of the
second stage (step size and number of corrector steps) thus must depend on the
choice of the parameters in the first stage (the approximate orders of the differ-
ential operators).
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