
Dimension–Adaptive Tensor–Product Quadrature

T. Gerstner and M. Griebel, Bonn

Received March 25, 2003; revised April 15, 2003
Published online: June 23, 2003

� Springer-Verlag, 2003

Abstract

We consider the numerical integration of multivariate functions defined over the unit hypercube. Here,
we especially address the high–dimensional case, where in general the curse of dimension is encoun-
tered. Due to the concentration of measure phenomenon, such functions can often be well approxi-
mated by sums of lower–dimensional terms. The problem, however, is to find a good expansion given
little knowledge of the integrand itself.
The dimension–adaptive quadrature method which is developed and presented in this paper aims to
find such an expansion automatically. It is based on the sparse grid method which has been shown to
give good results for low- and moderate–dimensional problems. The dimension–adaptive quadrature
method tries to find important dimensions and adaptively refines in this respect guided by suitable
error estimators. This leads to an approach which is based on generalized sparse grid index sets. We
propose efficient data structures for the storage and traversal of the index sets and discuss an efficient
implementation of the algorithm.
The performance of the method is illustrated by several numerical examples from computational
physics and finance where dimension reduction is obtained from the Brownian bridge discretization of
the underlying stochastic process.

AMS Subject Classifications: 65D30, 65C20, 65U05, 65Y20.

Keywords: multivariate numerical integration, adaptivity, curse of dimension.

1. Introduction

The computation of high–dimensional integrals is a central part of computer
simulations in many application areas such as statistical mechanics, financial
mathematics, and computational physics. Here, the arising integrals usually
cannot be solved analytically, and thus, numerical approaches are required.
Furthermore, often a high accuracy solution is needed and thus, such problems
can be computationally quite challenging even for parallel supercomputers.

The main reason for this difficulty is the so–called curse of dimension [2], which
can be understood in two ways. First, one observes that in classical numerical
quadrature methods (e.g. based on product rules) the amount of work N required
in order to achieve a prescribed accuracy e grows exponentially with the dimen-
sion d,

eðNÞ ¼ OðN�r=dÞ;

Computing 71, 65–87 (2003)
Digital Object Identifier (DOI) 10.1007/s00607-003-0015-5

for functions with bounded derivatives up to order r [7]. Thus, already for
moderate dimensions the order of convergence is so slow that a high accuracy
cannot be obtained in practice. The situation gets worse as the dimension in-
creases.

The curse of dimension can also be approached from the point of numerical
complexity theory. There it has been shown that for some integration problems
(i.e. for integrands from certain function spaces) even the minimum amount of
work in order to achieve a prescribed accuracy grows exponentially with the
dimension [34]. These lower bounds hold for all algorithms from a specific
algorithmic class (i.e. those using linear combinations of function evaluations).
Such problems are therefore called intractable. However, application problems
are often in a different (or smaller) problem class and thus may be tractable,
although the correct classification can be difficult. In addition, there may exist
(e.g. non–linear or quantum) algorithms which stem from a different algorithmic
class and thus may be able to break the curse of dimension.

Randomized algorithms, whose probably best–known representative are Monte
Carlo methods, is one such class of algorithms. Here, the integrand is evalu-
ated at a set of (pseudo-)randomly chosen points and the integral is computed
approximately as the average of these function values. Then, the average
amount of work in order to reach an accuracy e (for integrands with bounded
variance) is

eðNÞ ¼ OðN�1=2Þ

and is thus independent of the dimension. Nevertheless, the convergence rate is
quite low and a high accuracy is only achievable with a tremendous amount of
work (that is function evaluations). Indeed, more than half of the computing time
of today’s supercomputers is used just for the generation of random numbers.

Therefore, so–called Quasi–Monte Carlo algorithms have attained much atten-
tion in the last years. Here, the integrand is evaluated not at random but at
structurally determined points such that the discrepancy of these points is smaller
than that for random points. Then, for functions with bounded (mixed) variation,
the complexity is

eðNÞ ¼ OðN�1ðlogNÞdÞ

and is thus almost half an order better than the complexity of the Monte Carlo
approach [25]. In addition, the bounds are deterministic. However, the dimension
enters through a logarithmic term and this dependence on the dimension therefore
causes problems for high dimensions.

Note that in both cases the convergence rate does not depend on the smoothness.
Thus, smoother integrands are not computed more efficiently than non–smooth
ones. The first method which makes use of the smoothness of the integrand and at
the same time does not suffer from the curse of the dimension is the so–called

66 T. Gerstner et al.

sparse grid method [41] which dates at least back to the Russian mathematician
Smolyak [33]. In this approach, multivariate quadrature formulas are constructed
by a combination of tensor products of univariate formulas. Of all possible
combinations of one–dimensional quadrature formulas only those are considered
whose corresponding indices are contained in the unit simplex. This way, the
complexity becomes

eðNÞ ¼ OðN�rðlogNÞðd�1Þðrþ1ÞÞ;

for functions from spaces with bounded mixed derivatives up to order r. Thus, for
r > 1 a better convergence rate than for Quasi–Monte Carlo can be expected. For
very smooth integrands (r!1) the convergence will even be exponential.

Despite the large improvements of the Quasi–Monte Carlo and sparse grid
methods over the Monte Carlo method, their convergence rates will suffer more
and more with rising dimension due to their respective dependence on the
dimension in the logarithmic terms. Therefore, one aim of recent numerical ap-
proaches has been to reduce the dimension of the integration problem without
(too great) affection of the accuracy.

In some applications, the different dimensions of the integration problem are not
equally important. For example, in path integrals the number of dimensions
corresponds to the number of time–steps in the time discretization. Typically the
first steps in the discretization are more important than the last steps since they
determine the outcome more substantially. In other applications, although the
dimensions seem to be of the same importance at first sight, the problem can be
transformed into an equivalent one where the dimensions are not. Examples are
the Brownian bridge discretization or the Karhunen–Loeve decomposition of
stochastic processes.

Intuitively, problems where the different dimensions are not of equal importance
might be easier to solve. Numerical methods could concentrate on the more
important dimensions and spend more work for these dimensions than for the
unimportant ones. Interestingly, also complexity theory reveals that integration
problems with weighted dimensions can become tractable even if the unweighted
problem is not [39]. Unfortunately, classical adaptive numerical integration
algorithms [13, 35] cannot be applied to high–dimensional problems since the
work overhead in order to find and adaptively refine in important dimensions
would be too large.

To this end, a variety of algorithms have been developed which try to find and
quantify important dimensions. Often, the starting point of these algorithms is
Kolmogorov’s superposition theorem [22, 23]. Here, a high–dimensional function
is approximated by sums of lower–dimensional functions. A survey of this
approach from the point of approximation theory is given in [21]. Further results
can be found in [29, 32]. Analogous ideas are followed in statistics for regression
problems and density estimation. Here, examples are so–called additive models
[16], multivariate adaptive regression splines (MARS) [11], and the ANOVA

Dimension–Adaptive Tensor–Product Quadrature 67

decomposition [37, 40], see also [19]. Other interesting techniques for dimension
reduction are presented in [17].

In case the importance of the dimensions is known a priori, techniques such as
importance sampling can be applied in Monte Carlo methods [20]. For the Quasi–
Monte Carlo method already a sorting of the dimensions according to their
importance leads to a better convergence rate (yielding a reduction of the effective
dimension). The reason for this is the better distributional behaviour of low
discrepancy sequences in lower dimensions than in higher ones [6]. The sparse grid
method, however, a priori treats all dimensions equally and thus gains no immediate
advantage for problems where dimensions are of different importance.

The aim of this paper is to develop a generalization of the conventional sparse
grid approach [33] which is able to adaptively assess the dimensions according to
their importance and thus reduces the dependence of the computational com-
plexity on the dimension. The dimension–adaptive algorithm tries to find
important dimensions automatically and adapts (places more integration points)
in those dimensions. To achieve this efficiently, a data structure for a fast
bookkeeping and searching of generalized sparse grid index sets is proposed as
well. We will show the performance of the new algorithm in a series of moderate
and high–dimensional numerical examples from computational physics and
finance. Thereby, the Brownian bridge discretization for the underlying stochastic
processes is used advantageously.

The outline of this paper is as follows. In Section 2 we will shortly review the
conventional sparse grid approach for multivariate integration. In Section 3 we
will then illustrate the dimension–adaptive algorithm. Data structures and
implementation details are the subject of Section 4. Numerical examples are
presented in Section 5. The remarks of Section 6 conclude the paper.

2. Sparse Grids

Let us briefly review the conventional sparse grid method and indicate some basic
properties of sparse grid quadrature formulas. For more information on the
method itself and the previous literature see [14].

In the following, boldface letters indicate d–dimensional vectors or multi–indices.
Let us consider the numerical integration of functions f ðdÞðxÞ from a function
class F over the d–dimensional hypercube X :¼ ½�1; 1�d ,

If ðdÞ :¼
Z

X
f ðdÞðxÞ dx;

by a sequence of nðdÞl –point quadrature formulas with level l 2 N and nðdÞl < nðdÞlþ1,

Qlf ðdÞ :¼
XnðdÞl

i¼1
wli � f ðdÞðxliÞ;

68 T. Gerstner et al.

using weights wli and abscissas xli. The quadrature error is defined by
Elf ðdÞ :¼ jIf ðdÞ � Qlf ðdÞj.

The sparse grid construction starts with a series of one–dimensional quadrature
formulas for a univariate function f ð1Þ,

Qlf ð1Þ :¼
Xnð1Þl

i¼1
wli � f ð1ÞðxliÞ:

Now, consider the difference formulas defined by

Dkf ð1Þ :¼ ðQk � Qk�1Þf ð1Þ with

Q0f ð1Þ :¼ 0:

Then, for k 2 Nd , the conventional sparse grid quadrature method for
d–dimensional functions f ðdÞ is for a given level l 2 N

Qlf ðdÞ :¼
X

jkj1�lþd�1
ðDk1 � . . .� Dkd Þf ðdÞ: ð1Þ

Here, of all possible product combinations of one–dimensional quadrature for-
mulas only those are considered whose indices are contained in the unit simplex
jkj1 � lþ d � 1. The collection of all nðdÞl points xli 2 X generated in this way is
called a (conventional) sparse grid of level l. Note that if the univariate quad-
rature formulas are nested, then Dkf ð1Þ requires the same number of function
evaluations as Qlf ð1Þ and also the resulting sparse grids are nested.

We will now take a look at the integration error of the sparse grid method. Let us
consider the class of functions Wr

d with bounded mixed derivatives of order r,

Wr
d :¼ g : X�!R;

@jsj1g
@xs1

1 . . . @xsd
d

����
����
1
<1; si � r

� �
:

Let us further assume that the underlying one–dimensional quadrature formula
satisfies the error bound

jElf ð1Þj ¼ Oððnð1Þl Þ
�rÞ;

for functions f ð1Þ 2Wr
1. This bound holds, for example, for all interpolatory

quadrature formulas with positive weights, such as the Clenshaw–Curtis, Gauß–
Patterson and Gauß–Legendre formulas [7]. If such a quadrature formula is taken
as the one–dimensional starting point and if nð1Þl ¼ Oð2lÞ, then the error of the
conventional sparse grid quadrature formula is of the order

jElf ðdÞj ¼ OððnðdÞl Þ
�rðlog nðdÞl Þ

ðd�1Þðrþ1ÞÞ;

for f 2Wr
d [38].

Dimension–Adaptive Tensor–Product Quadrature 69

We see that the convergence rate depends only weakly on the dimension but
strongly on the smoothness r. However, the conventional sparse grid method
treats all dimensions equally (because this is also true for the unit simplex) and
thus the dependence of the quadrature error on the dimension in its logarithmic
term will cause problems for high–dimensional integrands.

3. Dimension–Adaptive Quadrature

In order to be able to assess the dimensions differently, it is necessary to modify
the original sparse grid construction. Note that conventional adaptive sparse grid
approaches [3, 4, 9] merely tackle a locally non–smooth behaviour of the inte-
grand function and usually cannot be applied to high–dimensional problems.

The most straightforward way to generalize the conventional sparse grid with
respect to differently important dimensions is to consider a different index set than
the unit simplex jkj1 � lþ d � 1. For example, one could consider the class of
general simplices a � k � lþ d � 1 where a 2 Rd

þ is a weight vector for the dif-
ferent dimensions [12, 14, 30]. A static strategy would be to analyse the problem
and then to choose a suitable vector a. Such a strategy has two drawbacks,
though. First, it is hard to a–priori choose the optimal (or, at least, a good) weight
vector a, and second, the class of general simplices itself may be inadequate for the
problem at hand (e.g. more or less points in mixed directions may be required).

Instead, we will allow more general index sets [18, 28, 39] in the summation of (1)
and try to choose them properly. To this end, we will consider the selection of the
whole index set as an optimization problem, i.e. as a binary knapsack problem [5,
15], which is closely related to best N–term approximation [8]. A self–adaptive
algorithm can try to find the optimum index set in an iterative procedure.
However, not all index sets are admissible in the generalized sparse grid con-
struction and special care has to be taken during the selection of indices, as we
will see.

In the following, we will take a look at the general sparse grid construction and at
the required conditions on the index set. After that, we will present the basic
iterative algorithm for the selection of an appropriate index set. Then, we will
address the important issue of error estimation.

3.1 Generalized sparse grids

We will start with the admissibility condition on the index set for the generalized
sparse grid construction. An index set I is called admissible if for all k 2 I,

k� ej 2 I for 1 � j � d; kj > 1;

holds. Here, ej is the j–th unit vector. In other words, an admissible index set
contains for every index k all indices which have smaller entries than k in at least
one dimension. Note that the admissibility condition on the index set ensures the

70 T. Gerstner et al.

validity of the telescope sum expansion of the general sparse grid quadrature
formulas using the difference formulas D1

kj
.

Now we are able to define the general sparse grid construction [14]:

QðdÞI f ðdÞ :¼
X
k2I
ðDk1 � � � � � Dkd Þf ðdÞ;

for an admissible index set I 2 Nd .

Note that this general sparse grid construction includes conventional sparse grids
(I ¼ fk : jkj1 � lþ d � 1g) as well as classical product formulas (I ¼
fk : maxfk1; . . . ; kdg � lg) as special cases. Unfortunately, little is known about
error bounds of quadrature formulas associated to general index sets I (see
[28,39]). However, by a careful construction of the index sets I we can hope that
the error for generalized sparse grid quadrature formulas is at least as good as in
the case of conventional sparse grids. Furthermore, the algorithm allows for an
adaptive detection of the important dimensions.

3.2 Basic algorithm

Our goal is now to find an admissible index set such that the corresponding
integration error e is as small as possible for a given amount of work (function
evaluations). The procedure starts with the one–element index set f1g; 1 ¼
ð1; . . . 1Þ and adds indices successively such that

� the resulting index sets remain admissible, and

� possibly a large error reduction is achieved.

To this end, an estimated error gk called error indicator is assigned to each index k

which is computed from the differential integral

Dkf ðdÞ ¼ ðDk1 � � � � � Dkd Þf ðdÞ ð2Þ

and from further values attributed to the index k like the work involved for the
computation of Dkf . Let us remark here that the exact integration error is un-
known since the integrand itself is unknown. We will address error estimation in
the next section.

In our algorithm always the index with the largest error indicator is added to the
index set. Once an index is added, its forward neighbourhood is scanned for new
admissible indices and their error indicators are computed. Here, the forward
neighbourhood of an index k is defined as the d indices fkþ ej, 1 � j � dg.
Conversely, the backward neighbourhood is defined by fk� ej, 1 � j � dg. Alto-
gether, we hope to heuristically build up an optimal index set in the sense of [5, 15]
or [8] this way.

Dimension–Adaptive Tensor–Product Quadrature 71

Recall that the computed total integral is just the sum over all differential integrals
within the actual index set I. Now as soon as the error indicator for a new index
is computed, the index can in fact already be added to the index set since it does
not make sense to exclude the just computed differential integral from the total
integral. Therefore, when the error indicator of an index is computed, the index is

Fig. 1. The basic dimension–adaptive algorithm

72 T. Gerstner et al.

put into the index set I (but its forward neighbours in turn are currently not
considered).

To this end, we partition the current index set I into two disjoint sets, called
active and old indices. The active index set A contains those indices of I
whose error indicators have been computed but the error indicators of all their
forward neighbours have not yet been considered. The old index set O contains
all the other indices of the current index set I. The error indicators associated
with the indices in the set A act as an estimate g ¼

P
i2A gi for the global

error.

Now, in each iterative step of the dimension–adaptive algorithm the following
actions are taken: The index with the largest associated error indicator is selected
from the active index set and put into the old index set. Its associated error is
subtracted from the global error estimate g. Also, the error indicators of the
admissible forward neighbouring indices of this index are computed and their
indices are put into the active index set. Accordingly, the corresponding values of
the differential integral (2) are added to the current quadrature result and the
corresponding values of the error indicators are added to the current global error
estimate. If either the global error estimate falls below a given threshold or the
work count exceeds a given maximal amount, the computation is stopped and the
computed integral value is returned. Otherwise, the index with the now largest
error is selected, and so on (see Figure 1).

A two–dimensional example for the operations of the algorithm is shown in
Figure 2. Whenever an active index is selected and put into the old index set (in
this example the indices ð2; 2Þ, ð1; 4Þ, and ð2; 3Þ) its two forward neighbours
(indicated by arrows) are considered. If they are admissible, they are inserted in
the active index set. In the example the forward neighbour ð2; 4Þ of ð1; 4Þ is not
inserted since it is not admissible (its backward neighbour ð2; 3Þ is in the active
index set but not in the old index set).

3.3 Error estimation

Error estimation is a crucial part of the algorithm. If the estimated error for a
given index k happens to be very small, then there may be no future adaptive
refinement in its forward neighbourhood. Now, this behaviour can be good or
bad. If the errors of the forward neighbours of k are smaller or of the same
magnitude as the error of k, then the algorithm has stopped the adaption pro-
perly. But, it might be that one or more forward neighbours have a significantly
larger error and thus the algorithm should refine there. Unfortunately, there is
usually no way to know the actual magnitude beforehand (besides by a close
a–priori analysis of the integrand function, which is usually not available). The
problem could of course be fixed by actually looking at the forward neighbours
and the computation of their error indicators. But, this just puts the problem off
since we encounter the same difficulty again with the neighbours of the neigh-
bours.

Dimension–Adaptive Tensor–Product Quadrature 73

We will here attack this problem through an additional consideration of the
involved work. The number of function evaluations required for the computation
of the differential integral (and thus also for the error estimation) for a given index
k is known beforehand. If we assume that the univariate quadrature formulas are
nested, then the number of function evaluations nk related to an index k is given
by

nk :¼ nð1Þk1
� . . . � nð1Þkd

;

and thus can be computed directly from the index vector. Now, in order to avoid a
too early stopping it makes sense to consider the forward neighbourhood of an
index with a small error if the work involved is small – especially in comparison to
the work for the index with the currently largest error. Let us therefore consider a
generalized error indicator gk which depends on both the differential integral and
the number of function evaluations,

gk :¼ qðjDkf j; nkÞ;

with a yet to be specified function q which relates these two numbers. Clearly, the
function q should be increasing with the first and decreasing with the second
argument.

As a possible choice for q we will consider the following class of generalized error
estimators

Fig. 2. A few snapshots of the evolution of the dimension–adaptive algorithm. Shown are the sparse
grid index sets (upper row) together with the corresponding sparse grids using the midpoint rule (lower
row). Active indices are dark–shaded, old indices are light–shaded. The encircled active indices have

the largest error indicators and are thus selected for insertion into the old index set

74 T. Gerstner et al.

gk ¼ max w
jDkf j
jD1f j ; ð1� wÞ n1

nk

� �

where w 2 ½0; 1� relates the influence of the error in comparison to the work (we
assume that D1f 6¼ 0; this reference value can also be replaced by a suitable
normalizing constant or the maximum of previously computed differential inte-
grals). Let us remark that usually n1 ¼ 1.

By selection of w ¼ 1 a greedy approach is taken which disregards the sec-
ond argument i.e. when the function is known to be very smooth (e.g. strictly
convex or concave) and thus the error estimates would decay with increasing
indices anyway. Classical sparse grids are realized by w ¼ 0 and in this case
only the involved work is counted. Values of w in between will safeguard
against both comparatively too high work and comparatively too small error.

Note that in general we have to assume that the integrand function fulfills a
certain saturation assumption, compare also [1,10,36] for the case of
adaptive finite elements. This means that the error indicators roughly decrease
with the magnitude of their indices. This condition would not be true for
example for functions with spikes on a very fine scale or large local discon-
tinuities. Let us remark here that we believe it impossible to search such spikes
or discontinuities in high–dimensional space unless the integrand function has
special properties (for example, convexity). Note that such functions would
practically not be integrable by Monte Carlo and Quasi–Monte Carlo methods
as well.

Note furthermore that the global error estimate g typically underestimates the
error. But, g and the true integration error e are proportional to each other if the
error indicators decrease with the magnitude of their indices. Therefore, the error
tolerance TOL is only achieved up to a constant. In our experiments of Section 5
this constant was of moderate size (up to 10).

4. Data Structures

The number of indices in the index sets can become very large for difficult (high–
dimensional) problems. For the performance of the overall dimension–adaptive
algorithm it is necessary to store the indices in such a way that the operations
required by the algorithm can be performed efficiently.

In view of Section 3.2 these operations are

� to insert and remove indices from the active index set A,

� to insert indices into the old index set O,

� to find the index in the active index set with the largest error,

� to check if an index is admissible.

Dimension–Adaptive Tensor–Product Quadrature 75

In this section we will describe the data structures which allow a fast execution of
these operations. We will use relative addressing for the storage of the indices, a
heap for the active indices, a linear array for the old indices, and linked neighbour
lists for the admissibility check.

4.1 Relative addressing

In contrast to classical numerical algorithms the dimension d of the problem at
hand is highly variable and cannot be neglected in the space and time complexity
of the algorithm. In application problems this dimension can readily range up to
1000 and, for example, already a cubic dependence on the dimension can render
an algorithm impractible.

This easily overlooked problem becomes visible when for example a multi–index
of dimension d has to be copied to a different memory location or when two
indices have to be checked for identity. A straightforward approach would require
OðdÞ operations (to copy or compare all the single elements). If these operations
are performed within an inner loop of the algorithm, complexities multiply and
the total dependence on d is increased.

Therefore, we use relative addressing here. We allocate one two–dimensional
array I for all (active and old) indices which contains the elements of the current
index set I ¼A [O. This array has dimension m� d where m is the maximum
number of generated indices. The size m can be chosen statically as the maximum
amount of memory available (or that one is willing to spend). Alternatively, m can
be determined dynamically and the whole array is reallocated (e.g. with size 2m)
when the current number of elements denoted by ni exceeds the available space.
One byte per index element is sufficient for the storage. Indices which are newly
generated (i.e. as a forward neighbour of a previously generated active index) are
inserted successively. Indices are never moved within the array or removed from
the array.

For the description of the active and old index sets (A and O) we use one–
dimensional arrays A and O of maximum size m, respectively. Each entry in these
arrays is the position of the corresponding index in the array I. In addition, the
current number of indices in A and O denoted by na and no are stored (see
Figure 3). Now, when an index is copied from A to O, only the entry to I has to be
copied and not all its d elements. This way, the total dependence on d of the
algorithm is reduced.

4.2 Active indices

So far we have not illustrated how the indices in A and O are stored. The required
operations on the active and old index sets are quite different and therefore, we
will arrange the two sets differently.

Let us first look at the set of active indices. The necessary operations are fast
insertion and removal of indices. Furthermore, we have to be able to find the

76 T. Gerstner et al.

index with the largest associated error indicator. For the latter operation one
clearly does not want to search through all the indices in order to find the current
maximum every time (which would lead to a quadratic work complexity in the
number of indices).

Let us first remark that we store the error indicators in an additional floating
point array G of size m (with the same numbering as I, see Figure 3). We will here
use a (at least in the computer science literature) well–known data structure called
heap [31] which supports the required operations in the most efficient way. A heap
is an ordering of the indices in A such that the error indicator for an index at
position p is greater than (or equal to) the error indicators of the indices at
positions 2p and 2p þ 1. This way, a binary tree hierarchy is formed on the set of
indices where the index at the root (position 1) has the largest error indicator.

When the root index is removed (i.e. by putting it into the old index set), then the
one of the two sons (at positions 2 and 3) with the larger error indicator is
promoted as the new root. The vacancy that arises this way is filled with the son
which possesses the larger error indicator and this scheme is repeated recursively
until the bottom of the tree is reached.

4.3 Old indices

Similarly, when a new index is inserted (i.e. as the forward neighbour of the just
removed index) it is first placed at the last position in the tree (i.e. it is assigned the
highest position na+1). Now, if the error indicator of the father of the new index
is smaller than its own error indicator, then the two positions are swapped. This
procedure is repeated recursively until the error indicator of the current father is
larger than that of the new index. This way, insertion and removal are functions
which can all be performed in OðlogðnaÞÞ operations.

The required operations on the old index set are the insertion of indices and the
checking if an index is admissible. Since indices are never removed from the old
index set, the indices are stored in order of occurrence and insertion is simply
done at the end of O (at position no+1). The check for admissibility is more

Fig. 3. The data types and memory requirements for the dimension–adaptive algorithm

Dimension–Adaptive Tensor–Product Quadrature 77

difficult, though, since it involves the location of the whole backward neigh-
bourhood of a given index. To this end, we explicitly store all the neighbours.
For every index in both the active and old index sets the positions in I of the d
forward neighbours and the d backward neighbours are stored. This requires an
array N of size m� 2d where the first d entries are the forward and the second d
entries the backward neighbours (see Figure 3). Note that the indices in I
themselves already require m � d bytes. Thus, the overhead for the new array is
not large. Note also that indices in the active index have only backward
neighbours.

Now, let us discuss how the neighbour array is filled. Let us assume that a new
index is generated as the forward neighbour of an active index k in direction i. The
backward neighbour of the new index in direction i is known (the previously
active index k), but the d � 1 other backward neighbours are unknown. Let us
consider the backward neighbour in direction j 6¼ i. This backward neighbour can
be found as the forward neighbour in direction i of the backward neighbour in
direction j of the previously active index (see Figure 5). Put differently,

Fig. 4. A schematic representation of the data structures. Shown are the arrays for the active and old
indices A and O, the index elements I, the error estimates G, and the neighbours N

78 T. Gerstner et al.

�ppjð piðkÞÞ ¼ pið �ppjðkÞÞ;

where pi is the forward neighbour in direction i and �ppj is the backward neigh-
bour in direction j. In turn, when the backward neighbour in direction j is
found, the new index is stored as its forward neighbour in direction j. This way,
all required forward neighbours can be found and stored in the data structure.
In summary, the construction of the neighbour array is done in constant
additional time.

A new index is admissible if all backwards neighbours are in the array O. Indices
in O can be distinguished from indices in N e.g. by looking at the first forward
neighbour. Recall that indices in N do not have any forward neighbours and thus
a marker (e.g. �1) may be used to identify them without additional storage. In
summary, the admissibility check can now be performed in OðdÞ operations.

4.4 Complexities

We will now discuss the space and time complexities of the algorithm. Con-
cerning the time complexity we will distinguish between the work involved for
the computation of the integral and the work overhead for the bookkeeping of
the indices.

The memory requirement of the data types of Figure 3 is ð9d þ 16Þmþ 12 bytes.
Additionally, the nodes and weights of the univariate quadrature formulas have
to be stored (if they cannot be computed on–the–fly). This storage, however, can
usually be neglected. In our experience, 257 quadrature nodes have proved to be
more than enough for typical high–dimensional problems. In summary, the
required memory is Oðd � mÞ bytes (with a constant of about 9).

The amount of work required for Dkf is c � nk where c is the cost of a function
evaluation (which is at least OðdÞ). However, since the total cost depends on
the size and structure of the index set, which is unknown beforehand, bounds for

Fig. 5. Index n has just been generated as the forward neighbour in direction i of index k. The backward
neighbour of n in direction j 6¼ i can be found as the forward neighbour in direction i of the backward

neighbour in direction j of k

Dimension–Adaptive Tensor–Product Quadrature 79

the work required for the function evaluations can in general not be obtained. For
the conventional sparse grid of level l, we know that this work is Oð2l � ld�1Þ, but
we hope that the work for a dimension–adapted grid is substantially smaller
(especially concerning the dependence on d).

However, we can tell something about the work overhead for the bookkeeping of
the indices. In view of Figure 1 we see that for each index which is put into O two
for loops (over k and q) of size d are performed. In the outer loop, the new index is
put into A which requires OðlognaÞ operations. So, the worst case time com-
plexity for bookkeeping is Oðd2 þ d lognaÞ. Note that the average case com-
plexity is smaller since the inner loop can be terminated early. In practice, the total
overhead behaves like Oðd2Þ.

5. Numerical Examples

We will now study the performance of the dimension–adaptive algorithm in
numerical examples. First, we consider some two–dimensional test functions
which allows us to show the resulting grids and index sets. In these cases, the
exact value of the integral is known (or can be computed quickly). The second
example is a path integral of 32 dimensions in which the integral value is also
known beforehand. The third example is a 256–dimensional application
problem from finance where the exact value is unknown. As univariate
quadrature formulas we use in all examples the well–known Patterson formulas
[27] which have shown to be a good choice for the sparse grid construction
[14].

5.1 Test examples (2 dimensions)

Let us first consider simple combinations of exponential functions defined over
½0; 1�2. In Figures 6 and 7 we depict the old and active index sets as well as the
resulting dimension–adapted sparse grids for some isotropic and some
anisotropic functions, respectively. In these examples, the selected error
threshold is TOL ¼ 10�15. Note that the integration error was of the same
magnitude. As weighting parameter for error estimation we use w ¼ 1 since the
functions are smooth. In all examples, the computation took less than 0.01s on
a Pentium II.

The first example is a sum of one–dimensional functions. The dimension–adaptive
algorithm correctly selects no indices in joint dimensions. Also, more points are
placed in x–direction than in y–direction in the anisotropic case. Clearly, here the
conventional sparse grid would spend too many points in joint directions.
Although the function has additive structure, the index (2,2) is selected as active
by the algorithm (because (1,2) and (2,1) are put into the old index set). Note that
for a d–dimensional additive function with non–constant directions always
dðd � 1Þ indices of this type are selected.

80 T. Gerstner et al.

The second example is not separable neither has product structure. The resulting
index set is almost triangular, like the conventional sparse grid. However, the
dimension–adaptive algorithm chooses to select more points on the axes while the
conventional sparse grid would have spent too many points in the interior. In our
experience, many application problems fall in this category which we would call
nearly–additive.

The third example is the well known Gaussian hat function and has
product structure. In this example, many points in joint dimensions are re-
quired. Here, the conventional sparse grid would have placed too few points
there. This is an at first sight surprising result, since product functions should
be easier integrable by a tensor product approach. However, the mixed
derivatives of the Gaussian can get large even if they are bounded which
reduces the efficiency of both the conventional sparse grid and the dimension–
adaptive approaches.

5.2 Path integral (32 dimensions)

Let us now approach some higher–dimensional problems. We will first consider
an initial value problem given by the linear parabolic differential equation

Fig. 6. The resulting index sets and corresponding sparse grids for TOL ¼ 10�15 for some isotropic test
functions

Dimension–Adaptive Tensor–Product Quadrature 81

@u
@t
¼ 1

2
� @

2u
@x2
ðx; tÞ þ vðx; tÞ � uðx; tÞ;

with initial condition uðx; 0Þ ¼ f ðxÞ. The solution of this problem can be obtained
with the Feynman–Kac formula as

uðx; tÞ ¼ Ex;0 f ðnðtÞÞ � e
R t

0
vðnðrÞ;t�rÞ dr

� �
;

where n represents a Wiener path starting at nð0Þ ¼ x. The expectation Ex;0 can be
approximated by a discretization of time using a finite number of time steps
ti ¼ i � Dt with Dt ¼ t=d. The integral in the exponent is approximated by a one–
dimensional quadrature formula such as a sufficiently accurate trapezoidal rule.

The most natural way to discretize the Wiener path is by a random walk, i.e. by
the recursive formula

nk ¼ nk�1 þ
ffiffiffiffiffi
Dt
p

zk;

where n0 ¼ x and zk are normally distributed random variables with mean zero
and variance one. The dimensions in the random walk discretization are all of the
same importance since all the variances are identical to Dt.

Fig. 7. The resulting index sets and corresponding sparse grids for TOL ¼ 10�15 for some anisotropic
test functions

82 T. Gerstner et al.

In the Brownian bridge discretization [6], however, the path is discretized using a
future and a past value

nk ¼
1

2
ðnk�h þ nkþhÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
h � Dt
2

r
� zk:

Starting with n0 :¼ x and nd :¼ xþ
ffiffi
t
p

zd , the subsequent values to be computed
are nd=2; nd=4; n3d=4; nd=8; n3d=8; n5d=8; n7d=8; n1d=16; n3d=16; . . . with corresponding
h ¼ 1=2; 1=4; 1=4; 1=8; 1=8; 1=8; 1=8; 1=16; 1=16; The Brownian bridge leads to
a concentration of the total variance in the first few steps of the discretization and
thus to a weighting of the dimensions.

Let us now consider the concrete example [24]

vðx; tÞ ¼ 1

t þ 1
þ 1

x2 þ 1
� 4x2

ðx2 þ 1Þ2

 !
;

with initial condition uðx; 0Þ ¼ 1
x2þ1. The exact solution is then

uðx; tÞ ¼ t þ 1

x2 þ 1
:

The results for d ¼ 32, t ¼ 0:02 and x ¼ 0 are shown in Figure 8 (left). We see the
integration error plotted against the number of function evaluations in a log–log
scale. Here, the conventional sparse grid method is compared with the dimension–
adaptive algorithm for the random walk and Brownian bridge discretizations. In
this example, the conventional sparse grid is for the random walk discretization
obviously close to the optimum since the dimension–adaptive method cannot
improve on the performance. The conventional sparse grid gains no advantage
from the Brownian bridge discretization, but the convergence rate of the
dimension–adaptive algorithm is dramatically improved. Note that the
convergence rate of the Quasi–Monte Carlo method (with Brownian bridge) is

Fig. 8. Computational results for the path integral (d ¼ 32): integration error vs. number of function
evaluations (left) and maximum level over all dimensions (sorted) for the dimension–adaptive

algorithm with Brownian bridge discretization (right)

Dimension–Adaptive Tensor–Product Quadrature 83

comparable to that of the conventional sparse grid approach [24, 14]. In Figure 8
(right) we plot the maximum level per dimension of the final index set of the
dimension–adaptive method without and with the Brownian bridge discretization.
Here, the dimensions are sorted according to this quantity. For the Brownian
bridge discretization, the maximum level decays with the dimension. This shows
that only a few dimensions are important and thus contribute substantially to the
total integral while the other dimensions add significantly less.

5.3 CMO problem (256 dimensions)

Let us now consider a typical collateralized mortgage obligation problem, which
involves several tranches which in turn derive their cash flows from an underlying
pool of mortgages [6, 26]. The problem is to estimate the expected value of the
sum of present values of future cash flows for each tranche. Let us assume that the
pool of mortgages has a 21 1/3 year maturity and cash flows are obtained
monthly. Then, the expected value requires the evaluation of an integral of
dimension d ¼ 256 for each tranche,

Z
Rd

vðn1; . . . ; ndÞ � gðn1Þ � . . . � gðndÞ dn1 . . . dnd ;

with Gaussian weights gðniÞ ¼ ð2pr2Þ�1=2e�n2i =2r
2

. The sum of the future cash
flows v is basically a function of the interest rates ik (for month k),

ik :¼ K0en1þ���þnk i0

with a certain normalizing constant K0 and an initial interest rate i0 (for details see
[6], first example, and [14, 26]). Again the interest rates can either be discretized
using a random walk or the Brownian bridge construction. For the numerical
computation, the integral over Rd is transformed to an unweighted integral on
½0; 1�d with the help of the inverse normal distribution.

In Figure 9 we again compare the conventional sparse grid method with the
dimension–adaptive method for the random walk and the Brownian bridge dis-
cretization. The error is computed against an independent Quasi–Monte Carlo
calculation. Note that also in this example the convergence rate of the conven-
tional sparse grid approach is comparable to the Quasi–Monte Carlo method [14].

We see that again a weighting of the dimensions does not influence the conver-
gence of the conventional sparse grid method. But for the dimension–adaptive
method the amount of work is again substantially reduced (by several orders of
magnitude) for the same accuracy when the Brownian bridge discretization is used
and thus higher accuracies can be obtained. In this example the dimension–
adaptive method also gives better results than the conventional sparse grid
method for the random walk discretization. This implies that the conventional
sparse grid spends too many points in mixed dimensions for this problem. The
problem seems to be intrinsically lower–dimensional and nearly additive [6].

84 T. Gerstner et al.

6. Concluding Remarks

In this paper, we have presented a dimension–adaptive algorithm for the
numerical integration of multivariate functions. The method which can be seen as
a generalization of the sparse grid method tries to find important dimensions
automatically and places more integration points there. We have also discussed
the implementation of the algorithm and proposed data structures which allow
for the efficient bookkeeping of the sparse grid index sets.

We have shown that this algorithm can substantially improve the convergence
rate of the conventional sparse grid method through a reduction of the depen-
dence on the dimension. This behaviour has been confirmed in numerical
experiments and in application problems from computational physics and finance.
In these examples, the dimension–adaptive algorithm was clearly superior to the
Monte Carlo and Quasi–Monte Carlo methods.

Let us finally remark that the whole approach is not restricted to integration
problems but can also be used for interpolation, the solution of partial differential
and integral equations, or eigenvalue problems for the high–dimensional case.
There, the possible application areas include computer simulations in statistical
physics and chemistry, queueing theory, and data mining.

References

[1] Bank, R.: Hierarchical bases and the finite element method. Acta Numerica 5, 1–43 (1996).
[2] Bellman, R.: Dynamic Programming. Princeton: University Press 1957.
[3] Bonk, T.: A new algorithm for multi–dimensional adaptive numerical quadrature. In:

Hackbusch, W., Wittum, G., (eds.) Adaptive methods: algorithms, theory and applications,
volume 46 of Notes on Numerical Fluid Mechanics. Braunschweig: Vieweg 1993.

[4] Bungartz, H.-J.: Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimen-
sionalen Poisson–Gleichung. PhD thesis, Institut für Informatik, TU München, 1992.

[5] Bungartz, H.-J., Griebel, M.: A note on the complexity of solving Poisson’s equation for spaces of
bounded mixed derivatives. J. Complexity 15, 167–199 (1999).

[6] Caflisch, R., Morokoff, W., Owen, A.: Valuation of mortgage backed securities using Brownian
bridges to reduce effective dimension. J. Comput. Finance 1, (1997).

Fig. 9. Computational results for the CMOproblem (d ¼ 256): integration error vs. number of function
evaluations (left) and maximum level over all dimensions (sorted) for the dimension–adaptive algorithm

with and without Brownian bridge discretization (right)

Dimension–Adaptive Tensor–Product Quadrature 85

[7] Davis, P., Rabinowitz, P.: Methods of numerical integration. Academic Press, 1975.
[8] DeVore, R.: Nonlinear approximation. Acta Numerica 7, 51–150 (1998).
[9] Dirnstorfer, S.: Adaptive numerische Quadratur höherer Ordnung auf dünnen Gittern. Master’s

thesis, Institut für Informatik, TU München, 2000.
[10] Dörfler, W.: A robust adaptive strategy for the nonlinear Poisson equation. Computing 55, 289–

304 (1995).
[11] Friedman, J.: Multivariate adaptive regression splines. Annals of Statistics 19, 1–141 (1991).
[12] Garcke, J., Griebel, M.: Classification with anisotropic sparse grids using simplicial basis

functions. Intelligent Data Analysis 6(6), 483–502 (2002).
[13] Genz, A., Malik, A.: An adaptive algorithm for numerical integration over an n-dimensional

rectangular region. J. Comp. Appl. Math. 6, 295–302 (1980).
[14] Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18, 209–

232 (1998).
[15] Griebel, M., Knapek, S.: Optimized tensor-product approximation spaces. Constructive

Approximation 16(4), 525–540 (2000).
[16] Hastie, T., Tibshirani, R.: Generalized additive models. London: Chapman and Hall 1990.
[17] He, T.-X.: Dimensionality reducing expansion of multivariate integration. Birkhäuser 2001.
[18] Hegland, M.: Adaptive sparse grids. In: Proceedings of CTAC, Brisbane, July 16–18, 2001, 2001.
[19] Hegland, M., Pestov, V.: Additive models in high dimensions. Technical Report 99–33, School of

mathematical and computing sciences, Victoria University of Wellington, 1999.
[20] Kalos, M., Whitlock, P.: Monte Carlo Methods. Wiley & Sons 1986.
[21] Khavinson, S.: Best approximation by linear superposition (approximate nomography). AMS

Translations of mathematical monographs vol. 159. Providence: AMS 1997.
[22] Kolmogoroff, A.: On the representation of continuous functions of several variables by

superpositions of continuous functions of fewer variables. Dokl. Akad. Nauk SSSR 108, 179–182
(1956). (in Russian, Engl. Transl.: Amer. Math. Soc. Transl. (2) 17, 369–373 (1961)).

[23] Kolmogoroff, A.: On the representation of continuous functions of several variables by
superpositions of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR
114, 953–956 (1957). (in Russian, Engl. Transl.: Amer. Math. Soc. Transl. (2) 28, 55–59 (1963)).

[24] Morokoff, W., Caflisch, R.: Quasi–monte carlo integration. J. Comp. Phys. 122, 218–230 (1995).
[25] Niederreiter, H.: Random number generation and quasi–Monte Carlo methods. Philadelphia:

SIAM 1992.
[26] Paskov, S., Traub, J.: Faster valuation of financial derivatives. J. Portfolio Management 22, 113–

120 (1995).
[27] Patterson, T.: The optimum addition of points to quadrature formulae. Math. Comp. 22, 847–

856, 1968.
[28] Plaskota, L.: The exponent of discrepancy of sparse grids is at least 2.1933. Adv. Comp. Math.

12, 3–24 (2000).
[29] Rassias, T., Simsa, J.: Finite sums decompositions in mathematical analysis. Chichester: Wiley &

Sons 1995.
[30] Röschke, D.: Über eine Kombinationstechnik zur Lösung partieller Differentialgleichungen.

Master’s thesis, Institut für Informatik, TU München, 1991.
[31] Sedgewick, R.: Algorithms in C. Addison Wesley, 1990.
[32] Simsa, J.: The best L2-approximation by finite sums of functions with separable variables.

Aequationes Mathematicae 43, 284–263 (1992).
[33] Smolyak, S. A.: Interpolation and quadrature formulas for the classes W a

s and Ea
s . Dokl. Akad.

Nauk SSSR 131, 1028–1031 (1960). (in Russian, Engl. Transl.: Soviet Math. Dokl. 4, 240–243
(1963)).

[34] Traub, J., Wasilkowski, G., Woźniakowski, H.: Information–based complexity. New York:
Academic Press 1988.

[35] Van Dooren, P., De Ridder, L.: An adaptive algorithm for numerical integration over an
n–dimensional cube. J. Comp. Appl. Math 2, 207–217 (1976).

[36] Verführt, R.: A review of a posteriori error estimation and adaptive mesh–refinement techniques.
Teubner, 1996.

[37] Wahba, G.: Spline models for observational data. Philadelphia: SIAM 1990.
[38] Wasilkowski, G. W., Woźniakowski, H.: Explicit cost bounds of algorithms for multivariate

tensor product problems. J. Complexity 11, 1–56 (1995).
[39] Wasilkowski, G. W., Woźniakowski, H.: Weighted tensor product algorithms for linear

multivariate problems. J. Complexity 15, 402–447 (1999).
[40] Yue, R., Hickernell, F.: Robust designs for smoothing spline ANOVA models. Metrika 55, 161–

176 (2002).

86 T. Gerstner et al.

[41] Zenger, C.: Sparse grids. In: Hackbusch, W., (ed.) Parallel algorithms for partial differential
equations, volume 31 of Notes on Numerical Fluid Mechanics. Braunschweig: Vieweg 1991.

Thomas Gerstner
Michael Griebel
Department for Applied Mathematics
University of Bonn Wegelerstr. 6 D-53115 Bonn
Germany
e-mail: fgerstner,griebelg@iam.uni-bonn.de

Dimension–Adaptive Tensor–Product Quadrature 87

