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Abstract

In the framework of classical risk theory we investigate a surplus process in the presence of a nonlinear
dividend barrier and derive equations for two characteristics of such a process, the probability of
survival and the expected sum of discounted dividend payments. Number-theoretic solution techniques
are developed for approximating these quantities and numerical illustrations are given for exponential
claim sizes and a parabolic dividend barrier.
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1. Introduction

Let us consider the classical risk process Rt ¼ uþ ct �
PNðtÞ

i¼1 Xi, where c is a
constant premium intensity, NðtÞ denotes a homogeneous Poisson process with
intensity k which counts the claims up to time t and the claim amounts Xi are iid
random variables with distribution function F ðyÞ. In this context Rt represents the
surplus of an insurance portfolio at time t (for an introduction to classical risk
theory see for instance Gerber [13] and Thorin [24] or more recently Asmussen
[4]). As usual we assume l ¼ EðXiÞ < 1 and c > k

R1
0 y dF ðyÞ. A reasonable

modification of this model is the introduction of a dividend barrier bt, i.e.
whenever the surplus Rt reaches bt, dividends are paid out to the shareholders with
intensity c� dbt and the surplus remains on the barrier, until the next claim
occurs. This means that the risk process develops according to

dRt ¼ c dt � dSt if Rt < bt ð1Þ
dRt ¼ dbt � dSt if Rt ¼ bt; ð2Þ

where we have used the abbreviation St ¼
PNðtÞ

i¼1 Xi. Together with the initial capital
R0 ¼ u; 0 � u < b0 < 1, this determines the risk process fRt; t 
 0g (cf. Fig. 1).
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Two quantities of particular interest in this context are the probability of survival
/ðu; bÞ ¼ PrðRt 
 0 8t > 0jR0 ¼ u; b0 ¼ bÞ (or alternatively the probability of ruin
wðu; bÞ ¼ 1� /ðu; bÞ) and the expected sum of discounted dividend payments
W ðu; bÞ.

Dividend barriermodels have a longhistory in risk theory (see, e.g., [9], [7], [13]). For
a survey on the relation between dividend payments and tax regulations we refer to
[3], [5]. Gerber [12] showed that barrier dividends constitute a complete family of
Pareto-optimal dividends. In the case of a horizontal dividend barrier
bt � bc ¼ const:, it is easy to see that /ðu; bÞ ¼ 0 8 0 � u � b. Segerdahl [21] used
the technique of integro-differential equations to derive the characteristic function
of the time to ruin in the presence of a horizontal dividend barrier for exponentially
distributed claims. This approach was generalized by Gerber and Shiu [15]. Paulsen
and Gjessing [19] calculated the optimal value of bc that maximizes the expected
value of the discounted dividend payments in an economic environment. Recently
Irbäck [17] developed an asymptotic theory for a high horizontal dividend barrier.

If one allows for monotonically increasing bt in the model, a positive probability
of survival can be achieved. The case of linear dividend barriers is fairly well
understood: Gerber [11] derived an upper bound for the probability of ruin for
bt ¼ bþ at by martingale methods and in [14] he obtained exact solutions for the
probability of ruin and the expected sum of discounted dividend payments
W ðu; bÞ in terms of infinite series in the case of exponentially distributed claim
amounts. This result was generalized to arbitrary Erlang claim amount distri-
butions in Siegl and Tichy [22] by developing a suitable solution algorithm. The
convergence of this algorithm was proved by Albrecher and Tichy [1].

Apart from mathematical simplicity there is no compelling reason to restrict the
model to linear dividend barriers. Moreover, simulations indicate that by

Fig. 1. A typical sample path of Rt

290 H. Albrecher and R. Kainhofer



choosing an appropriate dividend barrier, the expected value of discounted div-
idend payments W ðu; bÞ can be increased, while the probability of survival /ðu; bÞ
stays constant (cf. Alegre et al. [2]).

In this paper, nonlinear dividend barrier models are investigated. In Section 2 we
derive integro-differential equations for /ðu; bÞ and W ðu; bÞ and discuss the ex-
istence and uniqueness of the corresponding solutions. Our main focus is on the
development of efficient numerical algorithms to obtain those quantities. More
precisely, we adapt number-theoretic solution methods in the spirit of [25] to the
current situation (Sect. 3). Finally Sect. 4 gives numerical results for the special
case of a parabolic dividend barrier and exponential claim amount distributions.

2. The Model

Model A: We consider a classical risk process extended by a dividend barrier of
type

bt ¼ bm þ t
a

� �1=m
ða; b > 0;m > 1Þ:

Note that m ¼ 1 corresponds to the linear barrier case.

The probability of survival /ðu; bÞ can then be expressed as a boundary value
problem in the following way: Conditioning on the occurrence of the first claim,
we get for u < b

/ðu; bÞ ¼ ð1� k dtÞ/ uþ c dt; bm þ dt
a

� �1=m !

þ k dt
Z uþcdt

0

/ uþ c dt � z; bm þ dt
a

� �1=m !
dF ðzÞ: ð3Þ

Taylor series expansion of the functions / on the right-hand side of (3) and
division by dt shows that / satisfies the equation

c
@/
@u

þ 1

ambm�1
@/
@b

� k/ þ k
Z u

0

/ðu� z; bÞdF ðzÞ ¼ 0; ð4Þ

which, for reasons of continuity, is valid for 0 � u � b. For u ¼ b we get along the
same line of arguments

/ðu; bÞ ¼ ð1� k dtÞ/ bm þ dt
a

� �1=m
; bm þ dt

a

� �1=m !

þ k dt
Z bmþdt

að Þ1=m

0

/ bm þ dt
a

� �1=m
� z; bm þ dt

a

� �1=m !
dF ðzÞ; ð5Þ
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from which it follows that

1

ambm�1
@/
@u

þ 1

ambm�1
@/
@b

� k/ þ k
Z u

0

/ðu� z; bÞdF ðzÞ ¼ 0: ð6Þ

Comparing (4) and (6) we thus obtain the boundary condition

@/
@u





u¼b

¼ 0: ð7Þ

A further natural requirement is

lim
b!1

/ðu; bÞ ¼ /ðuÞ; ð8Þ

where /ðuÞ is the probability of survival in absence of the barrier.

Contrary to ruin, the crossing of the dividend barrier is a much desired event.
For equal slopes of the barrier at time 0, the expected time until the first
crossing of the dividend barrier will be considerably less for sub-linear barriers
as introduced above than for the linear case. A quantitative result in this di-
rection follows from Boogaert et al. [6] who used a martingale technique to
derive upper bounds for the probability PrðD > tÞ that the surplus process does
not reach a given barrier before time t. Adapting these results to our situation,
we obtain

PrðD > tÞ � klt

u� bm þ t=að Þ1=mþct

for all t that satisfy uþ ct > bm þ t=að Þ1=m.

Let furthermore W ðu; bÞ denote the expected present value of the future dividend
payments, which are discounted with a constant intensity d, and stop when ruin
occurs. Then, in a similar way to (3) and (5), one can derive the integro-differential
equation

c
@W
@u

þ 1

ambm�1
@W
@b

� ðd þ kÞW þ k
Z u

0

W ðu� z; bÞdF ðzÞ ¼ 0; ð9Þ

with boundary condition

@W
@u





u¼b

¼ 1: ð10Þ

In the actuarial literature [11, 26] there has been some interest in models
where dividends can also be paid after a ruin event (this makes sense since ruin
of a portfolio is a technical term used in decision making and does not
necessarily imply bankruptcy). If we allow for dividend payments after ruin in
our model, then along the same line of arguments as above, we obtain the
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following equation for the expected value V ðu; bÞ of the discounted dividend
payments

c
@V
@u

þ 1

ambm�1
@V
@b

� ðd þ kÞV þ k
Z 1

0

V ðu� z; bÞdF ðzÞ ¼ 0; ð11Þ

and the initial condition @V
@u





u¼b

¼ 1. Note that for a linear dividend barrier the

corresponding integro-differential equation was much simpler, because V could be
expressed as a function of one variable only (cf. [26]); for a nonlinear barrier this is
no longer the case.

Model B: In addition to Model A, we will also consider a ‘‘finite-horizon’’
version of the model, namely we introduce an absorbing upper barrier
bmax � const. If the surplus process Rt 
 bmax for some t > 0, it is absorbed and
the company is considered to have survived. From an economic point of view
this can be interpreted that the company will then decide to pursue other
forms of investment strategies. Mathematically, this model has some nice
features (e.g., the process stops in finite time with probability 1). The boundary
value problem for the probability of survival can now be formulated by (4), (7)
and

/ðu; bmaxÞ ¼
/ðuÞ

/ðbmaxÞ
; ð12Þ

where 0 � u � b � bmax and as before /ðuÞ is the probability of survival in
absence of the barrier.

Example: For exponentially distributed claim amounts ðF ðzÞ ¼ 1� e�zÞ, Eq. (4)
can be expressed as a hyperbolic partial differential equation with variable coef-
ficients

c
@2/
@u2

þ 1

ambm�1
@2/
@b @u

þ ðc� kÞ @/
@u

þ 1

ambm�1
@/
@b

¼ 0 ð13Þ

and with boundary conditions (7) and

c
@/
@u

þ 1

ambm�1
@/
@b

� k/

� �





u¼0

¼ 0: ð14Þ

Since /0ðu; bÞ ¼ e�sbm�rðsÞu is a solution of (13), where rðsÞ satisfies

cr2 þ
�
s=a þ k � c

�
r � s=a ¼ 0; ð15Þ

one can try to obtain a solution of the form
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/ðu; bÞ ¼
Z 1

0

e�sbmA1ðsÞe�r1ðsÞudsþ
Z 1

0

e�sbmA2ðsÞe�r2ðsÞudsþ /ðuÞ;

where r1ðsÞ; r2ðsÞ are the solutions of (15) and the AiðsÞ have to be deter-
mined according to (7) and (14). However, this turns out to be an intricate
problem.

Similarly, the integro-differential equations for W ðu; bÞ and V ðu; bÞ can be
expressed as second-order PDE’s in the case of exponentially distributed
claims.

3. Solution Techniques

The above example shows that even for the simple case of exponentially dis-
tributed claim amounts it is a delicate problem to obtain analytical solutions.
Thus there is a need for effective algorithms to obtain numerical solutions to these
problems. In this paper we focus on the development of number-theoretic solution
methods.

Following a procedure developed by Gerber [14] for the case of linear barriers, we
first show that the boundary value problem (9) together with (10) has a unique
bounded solution. For that purpose, we define an operator A by

Agðu; bÞ ¼
Z t�

0

ke�ðkþdÞt
Z uþct

0

g uþ ct � z; bm þ t
a

� �1=m� �
dF ðzÞdt

þ
Z 1

t�
ke�ðkþdÞt

Z bmþ t
að Þ1=m

0

g bm þ t
a

� �1=m
�z; bm þ t

a

� �1=m� �
dF ðzÞdt

þ
Z 1

t�
ke�kt

Z t

t�
e�ds c� 1

ma bm þ s
a

� �1�1=m
 !

ds dt: ð16Þ

Here t� is the positive solution of uþ ct ¼ bm þ t
a

� �1=m
(since m > 1, bt is concave

and u � b, so this number is unique). Note that (16) can be interpreted as a
conditioning on whether a claim occurs before the surplus process hits the divi-
dend barrier (t < t�) or after this event (in which case we have an additional term
representing the discounted dividends paid until the claim occurs). The solution
W ðu; bÞ of (9) with its initial condition (10) is a fixed point of the integral operator
A. For any two bounded functions g1; g2

Ag1ðu; bÞ � Ag2ðu; bÞj j � g1 � g2k k1
Z 1

0

ke�ðkþdÞtdt � k
k þ d

g1 � g2k k1 ð17Þ

for arbitrary 0 � u � b < 1, where �k k1 is the supremum norm on
0 � u � b < 1, and thus it follows that A is a contraction and the fixed point is
unique by Banach’s theorem.
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Proceeding in the same way as for W ðu; bÞ above, one can easily show that
Eq. (11) together with its initial condition has a unique bounded solution.

In the case of Model B we can proceed in a similar way to obtain a contraction
map for the probability of survival as its fixed point: Like in Eq. (16), let t� be
the time when the surplus would reach the dividend barrier given that no claim
occurs. Let furthermore t�� ¼ aðbmmax � bmÞ be the time when the dividend barrier
reaches the absorbing barrier, and ~tt ¼ ðbmax � uÞ=c the time when the surplus
would reach the absorbing barrier in the absence of a dividend barrier and of
claims. As the dividend barrier is an increasing function on Rþ, t�� is uniquely
determined, just as is ~tt. Combining the two possible scenarios 0 � t�� � ~tt � t�

and 0 � t� � ~tt � t�� (depending on the values of u and b), we define the operator
A as

A/ðu; bÞ ¼
Z T

0

ke�kt
Z zminðu;b;tÞ

0

/ zminðu; b; tÞ � z; bm þ t
a

� �1
m

� �
dF ðzÞdt þ e�kT ;

ð18Þ

where T ¼ max ~tt; t��ð Þ is the time when the surplus process would reach the
absorbing upper barrier bmax, and

zminðu; b; tÞ ¼ min uþ ct; bm þ t
a

� �1
m

� �
: ð19Þ

Let /1 and /2 now be two bounded functions on 0 � u � b � bmax, then

A/1ðu; bÞ � A/2ðu; bÞj j � /1 � /2k k1
Z T

0

ke�ktdt ¼ /1 � /2k k1 1� e�kT� �
:

Since T ¼ T ðu; bÞ < M < 1, this operator is a contraction, and Banach’s fixed
point theorem establishes the existence and uniqueness of the solution. Here, the
absorbing barrier and the resulting restriction to the finite area 0 � u � b � bmax
ensures that the solution is unique in contrast to the case without the absorbing
barrier.

Correspondingly, the contraction map for the expected sum of dividend payments
in Model B is given by

Agðu; bÞ ¼
Z t�

0

ke�ðkþdÞt
Z uþct

0

g uþ ct � z; bm þ t
a

� �1=m� �
dF ðzÞdt

þ
Z t��

t�
ke�ðkþdÞt

Z bmþ t
að Þ1=m

0

g bm þ t
a

� �1=m
�z; bm þ t

a

� �1=m� �
dF ðzÞdt

þ
Z t��

t�
e�ðkþdÞt c� 1

ma bm þ t
a

� �1�1=m
 !

dt; ð20Þ
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if t�� > t� and Agðu; bÞ ¼ 0 otherwise, because then the surplus reaches the
absorbing barrier before the dividend barrier. The last term in (20) represents the
dividends that are paid out until t�� and is a simplification of the original
expression

Z t��

t�
ke�kt

Z t

t�
e�ds c� 1

ma bm þ s
a

� �1�1=m
 !

ds dt

þ
Z 1

t��
ke�kt

Z t��

t�
e�ds c� 1

ma bm þ s
a

� �1�1=m
 !

ds dt:

From (20) it follows that

Ag1ðu; bÞ � Ag2ðu; bÞk k1 � k
k þ d

1� e�ðkþdÞt��
� �

g1 � g2k k1;

for any two bounded functions g1; g2 and we again have a contraction in the
Banach space of bounded functions equipped with the supremum norm, which
implies the existence and uniqueness of the solution.

The following algorithms are now efficient ways of approximating the corre-
sponding fixed point:

3.1. Double-recursive Algorithm

This procedure will be described for the operator (16); it can easily be adapted
to the other integral operators introduced above. Moreover we will restrict
ourselves to the case of exponentially distributed claim amounts (with
parameter c); the extension of the method to other distributions is straight-
forward.

The fixed point of (16) can be approximated by applying the contracting integral
operator A k times to a starting function hðu; bÞ which we choose to be the in-
homogeneous term in the corresponding integral operator (where k is chosen
according to the desired accuracy of the solution):

gðkÞðu; bÞ ¼ Akgð0Þðu; bÞ;

gð0Þðu; bÞ ¼ hðu; bÞ :¼
Z 1

t�
ke�kt

Z t

t�
e�ds c� 1

ma bm þ s
a

� �1�1
m

0
@

1
Ads dt:

This leads to a 2k-dimensional integral for gðkÞðu; bÞ, which is calculated
numerically using Monte Carlo and Quasi-Monte Carlo methods. For that
purpose we transform the integration domain of operator (16) into the unit
cube:
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Agðu;bÞ¼ hðu;bÞþ k
kþd

"
1�e�ðkþdÞt�
� �Z1

0

Z1
0

g uþct1� z1; bmþ t1
a

� �1
m

� �

�ð1�e�cðuþct1Þ
�
dv1 dw1þe�ðkþdÞt�

Z1
0

Z1
0

g bmþ t2
a

� �1
m

�z2;
�

� bmþ t2
a

� �1
m
�
� 1�e�c bmþt2

að Þ
1
m

� �
dv2 dw2

#

with

t1 ¼ �
log 1� w1 1� e�ðkþdÞt�� �� �

k þ d
z1 ¼ �

log 1� v1 1� e�cðuþct1Þ
� �� �

c
; ð21Þ

t2 ¼ t� � logð1� w2Þ
k þ dð Þ z2 ¼ �

log 1� v2 1� e�c bmþt2
að Þ

1
m

� �� �
c

: ð22Þ

The Monte Carlo-estimator of W ðu; bÞ for given values of u and b is

W ðu; bÞ � 1

N

XN
n¼1

gðkÞn ðu; bÞ; ð23Þ

where the gðkÞn ðu; bÞ are calculated recursively for each n by

gð0Þn ðu; bÞ ¼ hðu; bÞ

and

gðiÞn ðu;bÞ¼hðu;bÞþ k
kþd

� 1�e�cðuþcti
1;nÞ

� �
1�e�ðkþdÞt�
� �

gði�1Þn uþcti1;n� zi1;n; bmþ
ti1;n
a

 !1
m

0
@

1
A

8<
:

þ 1�e
�c bmþ

ti
2;n
a

� �1
m

0
@

1
Ae�ðkþdÞt�gði�1Þn bmþ

ti2;n
a

 !1
m

�zi2;n; bmþ
ti2;n
a

 !1
m

0
@

1
A
9=
;:

Here tij;n and zij;n ðj ¼ 1; 2Þ are determined according to (21) and (22) for (quasi-)
random deviates vj;wj of the uniform distribution in the unit interval ð1 � i � kÞ.

Since in every recursion step the function g is called twice, the number of
evaluations of g doubles in every recursion step. Thus, in order to keep the
computations tractable, in what we will call the double-recursive algorithm in
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the sequel, the double recursion is only used for the first two recursive steps and
for the remaining recursion steps the recursive algorithm described in Sect. 3.2 is
applied.

3.2. Recursive Algorithm

Instead of calculating the first two integrals occurring in operator (16) separately,
one can combine them to one integral. A suitable change of variables then leads to

Agðu;bÞ¼ hðu;bÞþ
Z 1

0

Z 1

0

k
kþd

1�e�czminðu;b;tÞ
� �

g zminðu;b; tÞ� z; bmþ t
a

� �1
m

� �
dvdw;

ð24Þ

where t and z are given by

t ¼ � logð1� wÞ
k þ dð Þ ;

z ¼ �
log 1� v 1� e�czminðu;b;tÞ

� �� �
c

ð25Þ

and zminðu; b; tÞ is determined by (19). Like in the double recursive case, this
integral operator is now applied k times onto gð0Þ, and the resulting multidi-
mensional integral gðkÞðu; bÞ is again approximated by

gðkÞðu; bÞ � 1

N

XN
n¼1

gðkÞn ðu; bÞ; ð26Þ

where each gðkÞn ðu; bÞ ðn ¼ 1; . . . ;NÞ is based on a pseudo-random (or quasi-
random, resp.) point xn 2 ½0; 1�2k and calculated by the recursion

gð0Þk ðu; bÞ ¼ hðu; bÞ;

gðiÞn ðu; bÞ ¼ k
k þ d

1� e�czminðu;b;tinÞ
� �

gi�1n zminðu; b; tinÞ � zin; bm þ tin
a

� �1
m

 !
þ hðu; bÞ;

with 1 � i � k. tin and zin are given by (25) with v and w being the value of the 2i-th
and 2iþ 1-th, component of xn, respectively. Note that for this algorithm, the
number of integration points needed for a given recursion depth is one fourth of
the corresponding number required for the double-recursive case.

3.3. Simulation

Since there are no analytical solutions available for the above problems, we need
simulation estimates of the ruin probabilities and discounted dividend payments
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to compare them to the results of the integration methods that were described in
the last sections.

We sample N paths of the risk reserve process in the following way: Starting with
t0 :¼ 0, b0 :¼ b and x0 :¼ u, where u is the initial reserve of the insurance company,
we first generate an exponentially distributed random variable ~tti with parameter k
for the time until the next claim occurs and set tiþ1 :¼ ti þ ~tti. The claim amount is
sampled from an exponentially distributed random variable zi (with parameter c),
and the reserve after the claim is xiþ1 :¼ minfxi þ c~tti; ðbmi þ ~tti=aÞ1=mg � zi. Due to
the structure of the dividend barrier, we can reset the origin to tiþ1 in every step, if we
also set biþ1 ¼ bmi þ ~tti

a

� �
1=m
. We then have to discount the dividend payments

between the i-th and ðiþ 1Þ-th claims by the factor e�dti .

A simulation estimate for the survival probability /ðu; bÞ can now be obtained by

/ðu; bÞ � m
N
;

where m is the number of paths for which ruin does not occur (i.e. xi > 0 8 i). We
consider a path as having survived, if for some i the condition xi > xmax is fulfilled,
where xmax is a sufficiently large threshold. This can be viewed as an absorbing
horizontal barrier at xmax, and so the process stops with probability 1. Using this
stopping criterion, we overestimate the actual probability of survival /ðu; bÞ; for
sufficiently large xmax, however, this effect is negligible.

For the simulation of the expected value of the dividend payments, we proceed as
described above and whenever the process reaches the dividend barrier, i.e.
xi þ c~tti > ðbmi þ ~tti=aÞ

1
m, we need to calculate the amount of dividends that are paid

until the next claim i occurs:

vi :¼ vi�1 þ e�dti

Z ~tti

t�
e�ds c� 1

ma bmi þ s
a

� �1�1
m

0
@

1
Ads; i 
 1

and v0 ¼ 0, where t� is the positive solution of xi þ ct ¼ bmi þ t
a

� �1=m
, i.e. the time

when the process reaches the dividend barrier. The process is stopped, if ruin
occurs (i.e., xi < 0 for some i) or at some sufficiently large time tmax, after which
the expected value of discounted dividends becomes negligible due to the discount
factor e�dt. Let vðjÞ now be the final value of vi for path j. The expected value of
the dividends is then approximated by

E½W ðu; bÞ� � 1

N

XN
j¼1

vðjÞ:

3.4. Quasi-Monte Carlo Approach

The use of deterministic uniformly distributed point sequences (instead of
pseudo-random sequences in crude Monte Carlo) has proven to be an efficient
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extension of the classical Monte Carlo method. A well-known measure for the
uniformness of the distribution of a sequence xnf g1�n�N in Us :¼ 0; 1½ Þs is the
star-discrepancy

D�
N ðxnÞ ¼ sup

I2Js
0

Aðxn; IÞ
N

� ksðIÞ










;
where Js0 is the set of all intervals of the form ½0;~yyÞ ¼ ½0; y1Þ � ½0; y2Þ � � � � �
½0; ysÞ with 0 � yi < 1; i ¼ 1; . . . ; s and Aðxn; IÞ is the number of points of the
sequence xnf g1�n�N that lie in I . ksðIÞ denotes the s-dimensional Lebesgue-
measure of I .

The notion of discrepancy is particularly useful for obtaining an upper bound for
the error of quasi-Monte Carlo integration:

Lemma 1 (Koksma-Hlawka Inequality). Let the function f : ½0; 1Þs ! R be of
bounded variation V ð½0; 1Þs; f Þ in the sense of Hardy and Krause. Then for any set of
points x1; . . . ; xNf g � ½0; 1Þs

1

N

XN
n¼1

f ðxnÞ �
Z
½0;1Þs

f ðuÞdu












 � V ð½0; 1Þs; f ÞD�
N x1; . . . ; xNð Þ: ð27Þ

For a proof of this famous inequality we refer to [10]. This error bound is
deterministic (opposed to error bounds obtainable for crude Monte Carlo).
Especially for s not too large, certain quasi-Monte Carlo sequences have turned
out to be superior to pseudo-Monte Carlo sequences in many applications. This
is in particular the case for so-called low discrepancy sequences, i.e. sequences for
which

D�
N x1; . . . ; xNð Þ � Cs

ðlogNÞs

N
; ð28Þ

with an explicitly computable constant Cs, holds. Bounds for Cs are usually
pessimistic and often the actual error made by quasi-Monte Carlo integration is
much lower than the bound implied by Cs (see e.g. [8]). Some low discrepancy
sequences will be given in the sequel:

� The Halton sequence [16] is defined as a sequence of vectors in Us based on the
digit representation of n in base pi

nn ¼ ðbp1ðnÞ; bp2ðnÞ; . . . ; bpsðnÞÞ; ð29Þ

where pi is the i-th prime number and bpðnÞ is the digit reversal function for base
p given by

bpðnÞ ¼
X1
k¼0

nkp�k�1; n ¼
X1
k¼0

nkpk;
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where the nk are integers. One could also use pairwise coprime base numbers,
but the error estimate turns out to be the best possible for prime bases pn.

Better error bounds can be obtained for low-discrepancy sequences based on
so-called ðt;m; sÞ-nets or nets for short. These nets are based on the b-adic rep-
resentation of vectors in Us. Instead of optimizing the discrepancy itself, one
considers the discrepancy with respect to elementary intervals J in base b only, i.e.
J ¼

Qs
i¼1½aib�di ; ðai þ 1Þb�diÞ with integers di 
 0 and integers 0 � ai < bdi for

1 � i � s, and tries to construct point sequences in Us such that the discrepancy
with respect to these intervals J is optimal for subsequences of length N ¼ bm.

Let #ðJ ;NÞ denote the number of points of a sequence xnf g1�n�N that lie in J . A
point set P with cardðPÞ ¼ bm is now called a ðt;m; sÞ-net, if

#ðJ ; bmÞ ¼ bt

for every elementary interval J with ksðJÞ ¼ bt�m. The parameter t is a quality
parameter. For t ¼ 0 we have the minimal discrepancy of the point set P with
respect to the family of elementary intervals.

Definition: Let t 
 0 be an integer. A sequence n1; n2; . . . of points in Us is called a
ðt; sÞ-sequence in base b, if for all integers k 
 0 and m > t, the point set consisting
of the nn with kbm < n � ðk þ 1Þbm is a ðt;m; sÞ-net in base b.

Examples of ðt;m; sÞ-nets are:

� The Sobol Sequence is a ðt; sÞ-sequence in base 2 with values t that depend on s.
For a construction of this sequence we refer to [23].

� The Niederreiter sequences (cf. [18]) yield ðt; sÞ-sequences in arbitrary base;
among them there are ð0; sÞ-sequences in prime power bases b 
 s. In partic-
ular, for Niederreiter sequences the constant Cs in (28) tends to zero for s ! 1 .

Following a technique developed in [25], we can now use (27) to find an upper
bound for the error of the recursive algorithm estimate introduced in Sect. 3.2 in
terms of the discrepancy of the sequence used:

Theorem 1. If the expected value W ðu; bÞ of the discounted dividends is approxi-
mated by gðkÞðu; bÞ as given in ð23Þ using a sequence x of N elements, the error is
bounded by

W ðu; bÞ � gðkÞðu; bÞ
�� ��

1 � hðu; bÞk k1
1� q

qk þ qDN ðxÞ
� �

ð30Þ

with q :¼ k
kþd.

Proof. Since we have gð0Þðu; bÞ ¼ hðu; bÞ, it follows from Banach’s fixed point
theorem together with the estimate (17), that
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W ðu; bÞ � gðkÞðu; bÞ
�� ��

1 � W ðu; bÞ � Akhðu; bÞ
�� ��

1þ Akhðu; bÞ � gðkÞðu; bÞ
�� ��

1

� qk

1� q
hðu; bÞk k1þ Akhðu; bÞ � gðkÞðu; bÞ

�� ��
1: ð31Þ

Iterating the integral equation (24) k times leads to

Akhðu0;b0Þ¼
Xk
i¼1

Z
� � �
Z

½0;1�2i

Yi�1
j¼0

Cjq

 !
hðui;biÞdvi�1 dwi�1 � � �dv0 dw0þhðu0;b0Þ ð32:1Þ

¼
Z

� � �
Z

½0;1�2k

Xk
i¼1

Yi�1
j¼0

Cjq

 !
hðui;biÞdvk�1 dwk�1 � � �dv0 dw0þhðu0;b0Þ; ð32:2Þ

where for 0 � j � k � 1 we have

tj ¼ � 1
k
logð1� wjÞ;

zj ¼ � 1
c
log 1� vj 1� e�czminðuj;bj;tjÞ

� �� �
;

zminðuj; bj; tjÞ ¼ cutj :¼ min uj þ ctj; bmj þ tj
a

� �1
m

� �
; ð33Þ

Cj ¼ 1� e�ccutjð Þ;
ujþ1 ¼ cutj � zj;

bjþ1 ¼ bmj þ tj
a

� �1
m

:

In our recursive algorithm the 2k-dimensional integral (32.2) is approximated by
quasi-Monte Carlo integration and in order to use Koksma-Hlawka’s inequality
for bounding the error, we have to determine the total variation of the integrand
in (32.2). For that purpose we investigate each of the summands separately and
define Fi to be the integrand of the i-th term in (32.1):

Fiðv0;w0; . . . ; vi�1;wi�1Þ :¼ qi
Yi�1
j¼0

1� e�czminðuj;bj;tjÞ
� �

hðui; biÞ: ð34Þ

We now show that this function is increasing in all the variables wj and decreasing
in all the variables vj (j ¼ 1; . . . ; i� 1Þ:

Choose a j 2 f1; . . . ; i� 1g and let vj be increasing (while all the other variables
are fixed), then Ck, uk, and tk remain constant for all k � j. Furthermore zk
remains constant for all k < j and so does bk for arbitrary k. But then it is easy to
see that ujþ1 and zminðujþ1; bjþ1; tjþ1Þ are decreasing. By induction and some
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elementary monotonicity investigations it follows that ujþk and
zminðujþk; bjþk; tjþkÞ are decreasing for all k 
 1. But since hðu; bÞ is an increasing
function of u it follows from (34) that Fi is a decreasing function of vj
(j ¼ 1; . . . ; i� 1). Similarly it can be shown that Fi is an increasing function of wj

(j ¼ 1; . . . ; i� 1).

This monotone behavior now allows to bound the variation of Fi:

V ð½0; 1Þ2i; FiÞ ¼ Fið0; 1; . . . ; 0; 1Þ � Fið1; 0 � � � ; 1; 0Þ �
k

k þ d

� �i

hk k1:

By summing up the variations of the Fi we get an upper bound for the total
variation of the integrand F of (32.2)

V ð½0; 1�2k; F Þ �
Xk
i¼1

k
k þ d

� �i

hk k1¼ q
1� qk

1� q
hk k1 � q

1� q
hk k1:

If we use this estimate together with Lemma 1 we get

Akhðu; bÞ � gðkÞðu; bÞ
�� ��

1 � hk k1
q

1� q
DN ðxÞ

and inserting this into Eq. (31) finally gives

W ðu; bÞ � gðkÞðu; bÞ
�� ��

1 � qk

1� q
hðu; bÞk k1þ hk k1

q
1� q

DN ðxÞ

¼ hk k1
1� q

qk þ qDN ðxÞ
� �

: (

4. Numerical Results for the Parabolic Case

In this section, numerical illustrations for a parabolic dividend barrier of the form
bt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ t=a

p
and exponentially distributed claim amounts (F ðzÞ ¼ 1� e�z) are

presented. Note that in this case

t� ¼ 1

2ac2
� u

c
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ac2
� u

c

� �2
þ b2 � u2

c2

s

and the inhomogeneous term hðu; bÞ in (16) can be calculated explicitly to

hðu; bÞ ¼ e�t�ðkþdÞ c
k þ d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
ðk þ dÞa

r
fez

2

2
erfcðzÞ

 !

with z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ dÞðab2 þ t�Þ

p
and thus we have hðu; bÞk k1 � c

kþd.
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The parameters are set to c ¼ 1:5, d ¼ 0:1, a ¼ 0:5, k ¼ c ¼ 1 and the absorbing
upper barrier in Model B is chosen at bmax ¼ 4.

The MC and QMC estimators are obtained using N ¼ 66 000 paths for the re-
cursive case and for the simulation and N ¼ 33 000 for the double-recursive
calculations. The corresponding ‘‘exact’’ value, in lack of an analytic solution, is
obtained by a MC-simulation over 10 million paths for each choice of u and b.

For the recursive and double recursive calculations we use a recursion depth of
k ¼ 66, which leads to a 132-dimensional sequence needed for the MC- and
QMC-calculations, while for the simulation we take a 400-dimensional sequence
so that 200 consecutive claims and interoccurrence times of a risk reserve sample
path can use the different dimensions of one element of the sequence and corre-
lations among the claim sizes and claim occurrence times are avoided.

We use so-called hybrid Monte Carlo sequences for all our QMC-calculations,
where the initial 50 dimensions are generated by a 50-dimensional low discrepancy
sequence and the remaining dimensions are generated by a pseudo-random
number generator. Throughout this paper, we use ran2 as our pseudo-random
number generator, which basically is an improved version of a Minimal Standard
generator based on a multiplicative congruential algorithm (for a description we
refer to [20]). The use of hybrid Monte Carlo sequences has proven to be a
successful modification of the QMC-technique, since for low discrepancy
sequences typically the number of points needed to obtain a satisfying degree of
uniformness dramatically increases with the number of dimensions.

The different methods and sequences used are compared via the mean square
error (MSE)

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Pj j
X

ðu;bÞ2P

�
gðu; bÞ � ~ggðu; bÞ

�2s
;

where gðu; bÞ and ~ggðu; bÞ denote the exact and the approximated value, respec-
tively, and the set P is a grid in the triangular region ðb ¼ 0::½0:1�::1; u ¼ 0::½0:1�::bÞ.
In addition, for each method we give the maximal deviation of the approximated
value from the corresponding exact value Dk k1¼ maxðu;bÞ2P ðgðu; bÞ � ~ggðu; bÞÞ.

4.1. Survival Probability

In Model A the survival probability can only be calculated using the simulation
approach. Table 1 gives the mean-square and the maximal error of the simulation
results (together with the corresponding calculation time in seconds) for each of
the sequences used (with N ¼ 66 000):

Figure 2 shows a log-log-plot of the mean square error S as a function of N . To
quantify the effect of using a low discrepancy sequence, we perform a regression
analysis by fitting
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log2ðSÞ ¼ a0 þ a1 log2ðNÞ þ a2 log2ðlog2ðNÞÞ þ �

to the data using a least square fit. Note that Koksma-Hlawka’s inequality (27)
could be interpreted as implying a1 ¼ �1 and a2 ¼ s, where s is the dimension of
the sequence used. However, since we use a hybrid sequence and since the effective
dimension may differ from the theoretical dimension, the values of a1 and a2
deviate from the ones above. Figure 3 gives these fitted curves. In the sequel all
figures on simulation results will be given in terms of their regression fits.

In Model B approximate solutions for the survival probability can be obtained by
the recursive method using the operator (18) and by simulation. The numerical
errors and the corresponding calculation time are given in Table 3 and the fitted
curves for the mean square error are depicted in Fig. 4.

Table 1. MSE and maximum error for /ðu; bÞ in Model A

Monte Carlo Halton Niederr. (t, s) Sobol

Simulation S 0.001307 0.001798 0.001706 0.0009
kDk1 0.003741 0.003619 0.003472 0.002451

(163.16 s) (149.58 s) (281.61 s) (150.09 s)

Fig. 2. Mean square error of the simulated survival probability in Model A

Fig. 3. Regression fits for the MSE of the simulated survival probability in Model A
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Figure 4 shows that while the recursive Monte Carlo method is favorable to the
Monte Carlo simulation, for larger values of N the simulation technique using the
Halton and the Sobol sequence, respectively, gives even better results. However,
the best results in terms of convergence rate of the error are obtained for the
recursive method using quasi-Monte Carlo sequences. To quantify this effect, we
introduce the efficiency gain

gaini ¼
N �
MC

ðSÞ
N�
i ðSÞ

;

where N �
MC

ðSÞ is the number of paths needed in the Monte Carlo simulation
to reach a given error of S, and N �

i ðSÞ is the corresponding number of paths (the

Table 2. Exact values of the survival probability in % in Model A

bnx 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 10.28
0.1 10.28 10.75
0.2 10.32 10.77 11.19
0.3 10.40 10.86 11.27 11.63
0.4 10.51 10.99 11.42 11.75 12.04
0.5 10.62 11.12 11.56 11.94 12.24 12.44
0.6 10.78 11.28 11.74 12.16 12.48 12.75 12.90
0.7 10.94 11.48 11.97 12.37 12.74 13.01 13.25 13.35
0.8 11.13 11.69 12.19 12.65 13.02 13.34 13.60 13.79 13.86
0.9 11.33 11.91 12.44 12.91 13.31 13.67 13.95 14.22 14.37 14.43
1.0 11.54 12.14 12.68 13.18 13.60 14.02 14.35 14.62 14.83 14.97 15.01

Table 3. MSE and maximum error for /ðu; bÞ in Model B

Monte Carlo Halton Niederr. (t,s) Sobol

Simulation S 0.001796 0.000676 0.001621 0.00062
kDk1 0.004066 0.001813 0.002529 0.001217

(99.71 s) (86.92 s) (87.21 s) (86.91 s)

Recursive S 0.000934 0.000155 0.000168 0.000128
kDk1 0.002504 0.000365 0.000392 0.000317

(386.44 s) (374.3 s) (374.4 s) (374.21 s)

Fig. 4. MSE of /ðu; bÞ estimates as a function of N in Model B
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number of summands in approximations (23) and (26), respectively) using an
alternative method. Figure 5 shows that except for the ð0; sÞ-nets all methods are
an improvement in efficiency compared to Monte Carlo simulation, and the gain
increases with smaller errors.

Fig. 5. Efficiency gain of the solution methods of Fig. 4

Table 4. Exact values of the survival probability in % in Model B

bnx 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 23.28
0.1 23.31 24.32
0.2 23.40 24.44 25.34
0.3 23.58 24.62 25.56 26.33
0.4 23.80 24.87 25.87 26.64 27.27
0.5 24.09 25.21 26.20 27.07 27.75 28.20
0.6 24.42 25.56 26.64 27.54 28.29 28.86 29.22
0.7 24.80 26.02 27.10 28.05 28.90 29.54 30.01 30.28
0.8 25.22 26.50 27.64 28.65 29.50 30.26 30.84 31.27 31.45
0.9 25.68 27.00 28.17 29.24 30.20 31.00 31.69 32.20 32.56 32.71
1.0 26.17 27.50 28.75 29.90 30.88 31.76 32.52 33.14 33.61 33.93 34.07

Table 5. Exact values of the expected dividend payments in Model A

bnx 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 1.482
0.1 1.482 1.592
0.2 1.481 1.591 1.701
0.3 1.480 1.590 1.699 1.808
0.4 1.478 1.588 1.700 1.806 1.913
0.5 1.476 1.586 1.696 1.805 1.912 2.014
0.6 1.474 1.583 1.694 1.802 1.908 2.014 2.117
0.7 1.469 1.582 1.690 1.797 1.904 2.008 2.114 2.215
0.8 1.466 1.578 1.685 1.793 1.900 2.006 2.110 2.214 2.315
0.9 1.462 1.572 1.680 1.788 1.894 2.001 2.104 2.208 2.311 2.412
1.0 1.456 1.565 1.675 1.782 1.886 1.994 2.098 2.201 2.304 2.407 2.506

Risk Theory with a Nonlinear Dividend Barrier 307



4.2. Expected Value of the Dividend Payments

The exact values of W ðu; bÞ in Models A and B are given in Tables 5 and 6,
respectively. The numerical results given in Table 7 and Figs. 6 and 7 show that
the performance of the various solution techniques is similar to the case of sur-
vival probabilities. For a moderate choice of N (N � 210) the Monte Carlo
methods have a smaller mean square error than the QMC simulation techniques;
for larger N , however, all Quasi-Monte Carlo methods outperform the Monte
Carlo schemes, with the recursive algorithm giving better results than the

Fig. 6. MSE of W ðu; bÞ estimates as a function of N in Model A

Table 7. MSE and maximum error for W ðu; bÞ estimates in Model A

Monte Carlo Halton Niederr. (t,s) Sobol

Simulation S 0.007141 0.005095 0.006126 0.004136
kDk1 0.018727 0.010935 0.009418 0.006817

(163.16 s) (149.58 s) (281.61 s) (150.09 s)

Recursive S 0.004046 0.000755 0.001083 0.000755
kDk1 0.012431 0.001758 0.002598 0.001786

(507.3 s) (494.72 s) (494.62 s) (495.04 s)

Double recursive S 0.004309 0.00078 0.000871 0.001054
kDk1 0.008598 0.001811 0.002389 0.002432

(3914.71 s) (1761.22 s) (1761.44 s) (3910.15 s)

Table 6. Exact values of the expected dividend payments in Model B

bnx 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 1.045
0.1 1.045 1.136
0.2 1.041 1.132 1.225
0.3 1.036 1.126 1.218 1.312
0.4 1.028 1.118 1.211 1.302 1.397
0.5 1.019 1.108 1.198 1.291 1.384 1.479
0.6 1.007 1.095 1.185 1.276 1.368 1.463 1.559
0.7 0.993 1.081 1.169 1.258 1.350 1.442 1.536 1.634
0.8 0.977 1.064 1.151 1.239 1.328 1.420 1.513 1.608 1.706
0.9 0.960 1.045 1.130 1.217 1.306 1.395 1.486 1.579 1.674 1.773
1.0 0.940 1.023 1.108 1.193 1.278 1.367 1.457 1.548 1.641 1.737 1.836
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simulation. This is in particular relevant for practical purposes, since the gener-
ation of these QMC-sequences can be done faster than the generation of pseudo-
random numbers based on ran1 or ran2.

Fig. 8. MSE of W ðu; bÞ estimates as a function of N in Model B

Fig. 9. Efficiency gain of the solution methods of Fig. 8

Fig. 7. Efficiency gain of the solution methods of Fig. 6
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For the dividend payments in Model B the superiority of the quasi-Monte Carlo
approach is even more pronounced (see Figs. 8 and 9 and Table 8).

Since for a fixed N the recursive numerical techniques need more calculation time
than the simulation approach, it is instructive to investigate the accuracy of the
numerical results with respect to calculation time. Figure 10 gives a log-log-plot of
the mean-square error S as a function of calculation time t for the dividend
payments in Model B. It turns out that the quasi-Monte Carlo techniques clearly
outperform the corresponding Monte Carlo techniques. For smaller values of t
the Sobol sequence is particularly well-suited for our integrands, whereas for large
t the use of the Halton sequence seems preferable.
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